2017年徐汇区高考数学二模试卷含答案

合集下载

上海市徐汇区2017年中考数学二模试卷(含解析)

上海市徐汇区2017年中考数学二模试卷(含解析)

2017年上海市徐汇区中考数学二模试卷一、选择题(本大题共6题.每题4分.满分24分)【下列各题的四个选项中.有且只有一个选项是正确的】1.如果数轴上表示2和﹣4的两点分别是点A和点B.那么点A和点B之间的距离是()A.﹣2 B.2 C.﹣6 D.6.2.已知点M(1﹣2m.m﹣1)在第四象限内.那么m的取值范围是()A.m>1 B.m<C.<m<1 D.m<或m>13.如图.AB∥CD.BE平分∠ABC.∠C=36°.那么∠ABE的大小是()A.18° B.24° C.36° D.54°.4.已知直线y=ax+b(a≠0)经过点A(﹣3.0)和点B(0.2).那么关于x的方程ax+b=0的解是()A.x=﹣3 B.x=﹣1 C.x=0 D.x=25.某校开展“阅读季”活动.小明调查了班级里40名同学计划购书的花费情况.并将结果绘制成如图所示的条形统计图.根据图中相关信息.这次调查获取的样本数据的众数和中位数分别是()A.12和10 B.30和50 C.10和12 D.50和30.6.如图.在△ABC中.AC=BC.点D、E分别是边AB、AC的中点.延长DE到F.使得EF=DE.那么四边形ADCF是()A.等腰梯形 B.直角梯形 C.矩形 D.菱形二、填空题(本大题共12题.每题4分.满分48分)7.人体中成熟的红细胞的平均直径为0.0000077m.0.0000077用科学记数法表示为.8.方程=的解是.9.如果反比例函数y=(k≠0)的图象经过点P(﹣1.4).那么k的范围是.10.如果关于x的方程x2+3x﹣k=0有两个不相等的实数根.那么k的取值范围是.11.将抛物线y=x2﹣2x+1向上平移2个单位后.所得抛物线的顶点坐标是.12.在实数.π.3°.tan60°.2中.随机抽取一个数.抽得的数大于2的概率是.13.甲.乙.丙.丁四名跳高运动员赛前几次选拔赛成绩如表所示.根据表中的信息.如果要从中.选择一名成绩好又发挥稳定的运动员参加比赛.那么应选.甲乙丙丁平均数(cm)185 180 185 180 方差 3.6 3.6 7.9 8.214.如果t是方程x2﹣2x﹣1=0的根.那么代数式2t2﹣4t的值是.15.如图.四边形DEFG是△ABC的内接矩形.其中D、G分别在边AB.AC上.点E、F在边BC上.DG=2DE.AH 是△ABC的高.BC=20.AH=15.那么矩形DEFG的周长是.16.如图.在平行四边形ABCD中.AE⊥CD.垂足为E.AF⊥BC.垂足为F.AD=4.BF=3.∠EAF=60°.设=.如果向量=k(k≠0).那么k的值是.17.如图.在△ABC中.AD平分∠BAC交边BC于点D.BD=AD.AB=3.AC=2.那么AD的长是.18.如图.在△ABC中.∠ACB=α(90°<α<180°).将△ABC绕着点A逆时针旋转2β(0°<β<90°)后得△AED.其中点E、D分别和点B、C对应.联结CD.如果CD⊥ED.请写出一个关于α与β的等量关系的式子.三、(本大题共7题.第19-22题每题10分;第23、24每题12分;第25题14分;满分78分)19.先化简.再求值:÷﹣(其中a=)20.解方程组:.21.某足球特色学校在商场购买甲、乙两种品牌的足球.已知乙种足球比甲种足球每只贵20元.该校分别花费2000元、1400元购买甲、乙两种足球.这样购得甲种足球的数量是购得乙种足球数量的2倍.求甲、乙两种足球的单价各是多少元?22.如图.已知梯形ABCD中.ADǁBC.AC、BD相交于点O.AB⊥AC.AD=CD.AB=3.BC=5.求:(1)tan∠ACD的值;(2)梯形ABCD的面积.23.如图1.在Rt△ABC中.∠ACB=90°.点D是边AB的中点.点E在边BC上.AE=BE.点M是AE的中点.联结CM.点G在线段CM上.作∠GDN=∠AEB交边BC于N.(1)如图2.当点G和点M重合时.求证:四边形DMEN是菱形;(2)如图1.当点G和点M、C不重合时.求证:DG=DN.24.如图.已知抛物线y=ax2+4(a≠0)与x轴交于点A和点B(2.0).与y轴交于点C.点D是抛物线在第一象限的点.(1)当△ABD的面积为4时.①求点D的坐标;②联结OD.点M是抛物线上的点.且∠MDO=∠BOD.求点M的坐标;(2)直线BD、AD分别与y轴交于点E、F.那么OE+OF的值是否变化.请说明理由.25.如图.已知△ABC中.AB=AC=5.BC=6.点O是边BC上的动点.以点O为圆心.OB为半径作圆O.交AB 边于点D.过点D作∠ODP=∠B.交边AC于点P.交圆O与点E.设OB=x.(1)当点P与点C重合时.求PD的长;(2)设AP﹣EP=y.求y关于x的解析式及定义域;(3)联结OP.当OP⊥OD时.试判断以点P为圆心.PC为半径的圆P与圆O的位置关系.2017年上海市徐汇区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6题.每题4分.满分24分)【下列各题的四个选项中.有且只有一个选项是正确的】1.如果数轴上表示2和﹣4的两点分别是点A和点B.那么点A和点B之间的距离是()A.﹣2 B.2 C.﹣6 D.6.【考点】13:数轴.【分析】本题可以采用两种方法:(1)在数轴上直接数出表示﹣4和表示2的两点之间的距离.(2)用较大的数减去较小的数.【解答】解:根据较大的数减去较小的数得:2﹣(﹣4)=6.故选D.【点评】本题考查了数轴.掌握数轴上两点间的距离的计算方法是解题的关键.2.已知点M(1﹣2m.m﹣1)在第四象限内.那么m的取值范围是()A.m>1 B.m<C.<m<1 D.m<或m>1【考点】CB:解一元一次不等式组;D1:点的坐标.【分析】根据坐标系内点的横纵坐标符号特点列出关于m的不等式组求解可得.【解答】解:根据题意.可得:.解不等式①.得:m<.解不等式②.得:m<1.∴m<.故选:B.【点评】本题考查的是解一元一次不等式组.正确求出每一个不等式解集是基础.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.如图.AB∥CD.BE平分∠ABC.∠C=36°.那么∠ABE的大小是()A.18° B.24° C.36° D.54°.【考点】JA:平行线的性质;IJ:角平分线的定义.【分析】先根据平行线的性质.得出∠ABC=36°.再根据BE平分∠ABC.即可得出∠ABE=∠ABC.【解答】解:∵AB∥CD.∠C=36°.∴∠ABC=36°.又∵BE平分∠ABC.∴∠ABE=∠ABC=18°.故选:A.【点评】本题主要考查了平行线的性质.解题时注意:两直线平行.内错角相等.4.已知直线y=ax+b(a≠0)经过点A(﹣3.0)和点B(0.2).那么关于x的方程ax+b=0的解是()A.x=﹣3 B.x=﹣1 C.x=0 D.x=2【考点】FC:一次函数与一元一次方程.【分析】直线y=ax+b与x轴交点的横坐标的值即为关于x的方程ax+b=0的解.【解答】解:∵直线y=ax+b(a≠0)经过点A(﹣3.0).∴关于x的方程ax+b=0的解是x=﹣3.故选A.【点评】本题本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0 (a.b为常数.a≠0)的形式.所以解一元一次方程可以转化为:当某个一次函数的值为0时.求相应的自变量的值.从图象上看.相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.5.某校开展“阅读季”活动.小明调查了班级里40名同学计划购书的花费情况.并将结果绘制成如图所示的条形统计图.根据图中相关信息.这次调查获取的样本数据的众数和中位数分别是()A.12和10 B.30和50 C.10和12 D.50和30.【考点】VC:条形统计图;W4:中位数;W5:众数.【分析】众数就是出现次数最多的数.据此即可判断.中位数就是大小处于中间位置的数.根据定义判断.【解答】解:这组数据中30元出现次数最多.故众数是:30元;40个数据中位数是第20个数据50元与第21个数据50元的平均数.故中位数是:50元.故选B.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图.从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.6.如图.在△ABC中.AC=BC.点D、E分别是边AB、AC的中点.延长DE到F.使得EF=DE.那么四边形ADCF是()A.等腰梯形 B.直角梯形 C.矩形 D.菱形【考点】LI:直角梯形;L9:菱形的判定;LC:矩形的判定.【分析】先证明四边形ADCF是平行四边形.再证明AC=DF即可.【解答】解:∵E是AC中点.∴AE=EC.∵DE=EF.∴四边形ADCF是平行四边形.∵AD=DB.AE=EC.∴DE=BC.∴DF=BC.∵CA=CB.∴AC=DF.∴四边形ADCF是矩形;故选:C.【点评】本题考查了矩形的判定、等腰三角形的性质、平行四边形的判定、三角形中位线定理;熟记对角线相等的平行四边形是矩形是解决问题的关键.二、填空题(本大题共12题.每题4分.满分48分)7.人体中成熟的红细胞的平均直径为0.0000077m.0.0000077用科学记数法表示为7.7×10﹣6.【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示.一般形式为a×10﹣n.与较大数的科学记数法不同的是其所使用的是负指数幂.指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000077=7.7×10﹣6.故答案为:7.7×10﹣6.【点评】本题考查用科学记数法表示较小的数.一般形式为a×10﹣n.其中1≤|a|<10.n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.方程=的解是x1=2.x2=﹣1 .【考点】AG:无理方程.【分析】将方程两边平方整理得到关于x的一元二次方程.然后求解即可.【解答】解:方程两边平方得.x2﹣x=2.整理得.x2﹣x﹣2=0.解得x1=2.x2=﹣1.经检验.x1=2.x2=﹣1都是原方程的根.所以.方程的解是x1=2.x2=﹣1.故答案为:x1=2.x2=﹣1.【点评】本题主要考查解无理方程的知识点.去掉根号把无理式化成有理方程是解题的关键.注意观察方程的结构特点.把无理方程转化成一元二次方程的形式进行解答.需要同学们仔细掌握.9.如果反比例函数y=(k≠0)的图象经过点P(﹣1.4).那么k的范围是﹣4 .【考点】G6:反比例函数图象上点的坐标特征.【分析】直接把点P(﹣1.4)代入反比例函数y=(k≠0).求出k的值即可.【解答】解:∵反比例函数y=(k≠0)的图象经过点P(﹣1.4).∴4=.解得k=﹣4.故答案为:﹣4.【点评】本题考查的是反比例函数图象上点的坐标特点.熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.10.如果关于x的方程x2+3x﹣k=0有两个不相等的实数根.那么k的取值范围是k>﹣.【考点】AA:根的判别式.【专题】11 :计算题.【分析】利用判别式的意义得到△=32﹣4(﹣k)>0.然后解不等式即可.【解答】解:根据题意得△=32﹣4(﹣k)>0.解得k>﹣.故答案为k>﹣.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时.方程有两个不相等的两个实数根;当△=0时.方程有两个相等的两个实数根;当△<0时.方程无实数根.11.将抛物线y=x2﹣2x+1向上平移2个单位后.所得抛物线的顶点坐标是(1.2).【考点】H6:二次函数图象与几何变换.【分析】根据配方法先化为顶点式.再根据上加下减左加右减的原则得出解析式.最后确定顶点坐标即可.【解答】解:y=x2﹣2x+1=(x﹣1)2.平移后的解析式为y=(x﹣1)2+2.∴顶点的坐标为(1.2).故答案为(1.2).【点评】本题考查了二次函数的图象与几何变换.掌握用配方法把一般式化为顶点式以及顶点坐标的求法是解题的关键.12.在实数.π.3°.tan60°.2中.随机抽取一个数.抽得的数大于2的概率是.【考点】X4:概率公式.【分析】先找出大于2的数.再根据概率公式即可得出答案.【解答】解:在实数.π.3°.tan60°.2中.大于2的数有.π.则抽得的数大于2的概率是;故答案为:.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.13.甲.乙.丙.丁四名跳高运动员赛前几次选拔赛成绩如表所示.根据表中的信息.如果要从中.选择一名成绩好又发挥稳定的运动员参加比赛.那么应选甲.甲乙丙丁平均数(cm)185 180 185 180 方差 3.6 3.6 7.9 8.2【考点】W7:方差;W2:加权平均数.【分析】先确定平均数较大的运动员.再选出方差较小的运动员.【解答】解:因为甲的平均数较大.且甲的方差较小.比较稳定.所以选择甲参加比赛.故答案为:甲.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大.则平均值的离散程度越大.稳定性也越小;反之.则它与其平均值的离散程度越小.稳定性越好14.如果t是方程x2﹣2x﹣1=0的根.那么代数式2t2﹣4t的值是 2 .【考点】A3:一元二次方程的解.【专题】11 :计算题.【分析】根据一元二次方程的解的定义得到t2﹣2t﹣1=0.则t2﹣2t=1.然后利用整体代入的方法计算代数式2t2﹣4t的值.【解答】解:当x=t时.t2﹣2t﹣1=0.则t2﹣2t=1.所以2t2﹣4t=2(t2﹣2t)=2.故答案为2.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.如图.四边形DEFG是△ABC的内接矩形.其中D、G分别在边AB.AC上.点E、F在边BC上.DG=2DE.AH 是△ABC的高.BC=20.AH=15.那么矩形DEFG的周长是36 .【考点】S9:相似三角形的判定与性质;LB:矩形的性质.【分析】根据相似三角形的判定和性质结论得到结论.【解答】解:∵DG∥BC.AH⊥BC.∴AH⊥DG.△ADG∽△ABC.∴.即.∴DE=6.∴DG=2DE=12.∴矩形DEFG的周长=2×(6+12)=36.故答案为:36.【点评】本题考查了相似三角形的判定和性质.矩形的性质.熟练掌握相似三角形的判定和性质是解题的关键.16.如图.在平行四边形ABCD中.AE⊥CD.垂足为E.AF⊥BC.垂足为F.AD=4.BF=3.∠EAF=60°.设=.如果向量=k(k≠0).那么k的值是﹣.【考点】LM:*平面向量;L5:平行四边形的性质.【分析】根据AE⊥CD、AF⊥BC及∠EAF=60°可得∠C=120°.由平行四边形得出∠B=∠D=60°、AB ∥CD且AB=CD.利用三角函数求得DE=2、AB=6.CE=4.最后可得==﹣=﹣.【解答】解:∵AE⊥CD、AF⊥BC.∴∠AEC=∠AFC=90°.∵∠EAF=60°.∴∠C=360°﹣∠AEC﹣∠AFC=120°.∵四边形ABCD是平行四边形.∴∠B=∠D=60°.∴DE=ADcosD=4×=2.AB===6.则CE=CD﹣DE=AB﹣DE=6﹣2=4.∵AB∥CD.且AB=CD.∴==﹣=﹣=﹣.故答案为:﹣.【点评】本题主要考查四边形内角和、平行四边形的性质、三角函数的应用及平面向量的计算.熟练掌握平行四边形的性质是解题的关键.17.如图.在△ABC中.AD平分∠BAC交边BC于点D.BD=AD.AB=3.AC=2.那么AD的长是.【考点】S9:相似三角形的判定与性质.【分析】根据题意得到△ACD∽△BCA.然后根据题目中的数据即可求得AD的长.【解答】解:∵在△ABC中.AD平分∠BAC交边BC于点D.BD=AD.∴∠BAD=∠CAD.∠BAD=∠ABD.∴∠ABC=∠CAD.又∵∠ACD=∠BCA.∴△ACD∽△BCA.∴.∵BD=AD.AB=3.AC=2.∴.解得.AD=.CD=.故答案为:.【点评】本题考查相似三角形的判定与性质.解答本题的关键是明确题意.找出三角形相似的条件.18.如图.在△ABC中.∠ACB=α(90°<α<180°).将△ABC绕着点A逆时针旋转2β(0°<β<90°)后得△AED.其中点E、D分别和点B、C对应.联结CD.如果CD⊥ED.请写出一个关于α与β的等量关系的式子α+β=180°.【考点】R2:旋转的性质;K7:三角形内角和定理;KH:等腰三角形的性质.【分析】先过A作AF⊥CD.根据旋转的性质.得出∠ADE=∠ACB=α.AC=AD.∠CAD=2β.再根据等腰三角形的性质.即可得到Rt△ADF中.∠DAF+∠ADF=β+α﹣90°=90°.据此可得α与β的等量关系.【解答】解:如图.过A作AF⊥CD.由旋转可得.∠ADE=∠ACB=α.∵CD⊥DE.∴∠ADC=α﹣90°.由旋转可得.AC=AD.∠CAD=2β.∴∠DAF=β.∴Rt△ADF中.∠DAF+∠ADF=90°.即β+α﹣90°=90°.∴α+β=180°.故答案为:α+β=180°.【点评】本题主要考查了旋转的性质.三角形内角和定理以及等腰三角形的性质的综合应用.解决问题的关键是作辅助线构造直角三角形.依据等腰三角形三线合一的性质进行计算.三、(本大题共7题.第19-22题每题10分;第23、24每题12分;第25题14分;满分78分)19.先化简.再求值:÷﹣(其中a=)【考点】6D:分式的化简求值.【分析】先算除法.再算减法.最后把a的值代入进行计算即可.【解答】解:原式=•﹣=(a﹣1)﹣3=a﹣1﹣3=a﹣4.当a=时.原式=﹣4=﹣3.【点评】本题考查的是分式的化简求值.此类题型的特点是:利用方程解的定义找到相等关系.再把所求的代数式化简后整理出所找到的相等关系的形式.再把此相等关系整体代入所求代数式.即可求出代数式的值.20.解方程组:.【考点】AF:高次方程.【分析】由②得出(2x﹣3y)2=16.求出2x﹣3y=±4.把原方程组转化成两个二元一次方程组.求出方程组的解即可.【解答】解:由②得:(2x﹣3y)2=16.2x﹣3y=±4.即原方程组化为和.解得:..即原方程组的解为:..【点评】本题考查了解高次方程组.能把高次方程组转化成二元一次方程组是解此题的关键.21.某足球特色学校在商场购买甲、乙两种品牌的足球.已知乙种足球比甲种足球每只贵20元.该校分别花费2000元、1400元购买甲、乙两种足球.这样购得甲种足球的数量是购得乙种足球数量的2倍.求甲、乙两种足球的单价各是多少元?【考点】B7:分式方程的应用.【分析】设购买一个甲品牌的足球需x元.则购买一个乙品牌的足球需(x+20)元.根据购买甲种足球数量是购买乙种足球数量的2倍列出方程解答即可.【解答】解:(1)设购买一个甲种足球需要x元.=×2.解得.x=50.经检验.x=50是原分式方程的解.所以x+20=70(元).答:购买一个甲种足球需50元.一个乙种足球需70元.【点评】本题考查分式方程的应用.关键是根据数量作为等量关系列出方程.22.如图.已知梯形ABCD中.ADǁBC.AC、BD相交于点O.AB⊥AC.AD=CD.AB=3.BC=5.求:(1)tan∠ACD的值;(2)梯形ABCD的面积.【考点】LH:梯形;T7:解直角三角形.【分析】(1)作DE∥AB交BC于E.交AC于M.证出DE⊥AC.由等腰三角形的性质得出AM=CM.证明四边形ABED是平行四边形.得出DE=AB=3.在Rt△ABC中.由勾股定理求出AC=4.得出AM=CM=2.由平行线分线段成比例定理得出DM=EM=DE=.即可求出tan∠ACD==;(2)梯形ABCD的面积=△ABC的面积+△ACD的面积.即可得出答案.【解答】解:(1)作DE∥AB交BC于E.交AC于M.如图所示:∵AB⊥AC.DE∥AB.∴DE⊥AC.∵AD=CD.∴AM=CM.∵AD∥BC.DE∥AB.∴四边形ABED是平行四边形.∴DE=AB=3.在Rt△ABC中.AC===4.∴AM=CM=2.∵AD∥BC.∴DM:EM=AM:CM=1:1.∴DM=EM=DE=.∴tan∠ACD===;(2)梯形ABCD的面积=△ABC的面积+△ACD的面积=×3×4+×4×=9.【点评】本题考查了梯形的性质、等腰三角形的性质、勾股定理、平行线的性质、平行线分线段成比例定理、梯形和三角形面积的计算等知识;本题综合性强.有一定难度.23.如图1.在Rt△ABC中.∠ACB=90°.点D是边AB的中点.点E在边BC上.AE=BE.点M是AE的中点.联结CM.点G在线段CM上.作∠GDN=∠AEB交边BC于N.(1)如图2.当点G和点M重合时.求证:四边形DMEN是菱形;(2)如图1.当点G和点M、C不重合时.求证:DG=DN.【考点】LA:菱形的判定与性质.【分析】(1)如图2中.首先证明四边形DMEN是平行四边形.再证明ME=MD即可证明.(2)如图1中.取BE的中点F.连接DM、DF.只要证明△DMG≌△DFN即可.【解答】证明:(1)如图2中.∵AM=ME.AD=DB.∴DM∥BE.∴∠GDN+∠DNE=180°.∵∠GDN=∠AEB.∴∠AEB+∠DNE=180°.∴AE∥DN.∴四边形DMEN是平行四边形.∵DM=BE.EM=AE.AE=BE.∴DM=EM.∴四边形DMEN是菱形.(2)如图1中.取BE的中点F.连接DM、DF.由(1)可知四边形EMDF是菱形.∴∠AEB=∠MDF.DM=DF.∴∠GDN=∠AEB.∴∠MDF=∠GDN.∴∠MDG=∠FDN.∵∠DFN=∠AEB=∠MCE.∠GMD=∠EMD+∠CME.、在Rt△ACE中.∵AM=ME.∴CM=ME.∴∠MCE=∠CEM=∠EMD.∴∠DMG=∠DFN.∴△DMG≌△DFN.∴DG=DN.【点评】本题考查菱形的判定和性质、全等三角形的判定和性质、直角三角形斜边中线定理等知识.解题的关键是学会添加常用辅助线.构造全等三角形解决问题.属于中考常考题型.24.如图.已知抛物线y=ax2+4(a≠0)与x轴交于点A和点B(2.0).与y轴交于点C.点D是抛物线在第一象限的点.(1)当△ABD的面积为4时.①求点D的坐标;②联结OD.点M是抛物线上的点.且∠MDO=∠BOD.求点M的坐标;(2)直线BD、AD分别与y轴交于点E、F.那么OE+OF的值是否变化.请说明理由.【考点】HF:二次函数综合题.【分析】(1)先确定出抛物线解析式.①设出点D坐标.用三角形ABD的面积建立方程即可得出点D 坐标;②分点M在OD上方.利用内错角相等.两直线平行.即可得出点M的纵坐标.即可得出M的坐标.带你M在OD下方时.求出直线DG的解析式.和抛物线解析式联立求出直线和抛物线的交点即可判断不存在;(2)设出点D的坐标.利用平行线分线段成比例定理表示出OE.OF求和即可得出结论.【解答】解:(1)∵抛物线y=ax2+4(a≠0)与x轴交于点A和点B(2.0).∴A(﹣2.0).4a+4=0.∴a=﹣1.AB=4.∴抛物线的解析式为y=﹣x2+4.①设D(m.﹣m2+4).∵△ABD的面积为4.∴4=×4(﹣m2+4)∴m=±.∵点D在第一象限.∴m=.∴D(.2).②如图1.点M在OD上方时.∵∠MDO=∠BOD.∴DM∥AB.∴M(﹣.2).当M在OD下方时.设DM交x轴于G.设G(n.0).∴OG=n.∵D(.2).∴DG=.∵∠MDO=∠BOD.∴OG=DG.∴.∴n=.∴G(.0).∵D(.2).∴直线DG的解析式为y=﹣2x+6①.∵抛物线的解析式为y=﹣x2+4②.联立①②得.x=.y=2.此时交点刚好是D点. 所以在OD下方不存在点M.(2)OE+OF的值不发生变化.理由:如图2.过点D作DH⊥AB于H.∴OF∥DH.∴.设D(b.﹣b2+4).∴AH=b+2.DH=﹣b2+4.∵OA=2.∴.∴OF=.同理:OE=2(2+b).∴OE+OF=2(2﹣b)+2(2+b)=8.【点评】此题是二次函数综合题.主要考查了待定系数法.平行线的判定.平行线分线段成比例定理.解(1)的关键是求出抛物线解析式.难点是分情况求出点M的坐标.解(2)的关键是作出辅助线.25.如图.已知△ABC中.AB=AC=5.BC=6.点O是边BC上的动点.以点O为圆心.OB为半径作圆O.交AB 边于点D.过点D作∠ODP=∠B.交边AC于点P.交圆O与点E.设OB=x.(1)当点P与点C重合时.求PD的长;(2)设AP﹣EP=y.求y关于x的解析式及定义域;(3)联结OP.当OP⊥OD时.试判断以点P为圆心.PC为半径的圆P与圆O的位置关系.【考点】MR:圆的综合题.【分析】(1)如图1中.首先求出cos∠B.cos∠A.如图2中.当点P与C重合时.只要证明PA=PD即可;(2)如图2中.作CG⊥AB于G.OH⊥BD于H.分两种情形①当≤x≤时.如图4中.②当<x<时.如图5中.作PG⊥AB于G.(3)如图6中.连接OP.根据cos∠C=cos∠B==.列出方程.求出两圆的半径.圆心距即可判断.【解答】解:(1)如图1中.作AH⊥BC于H.CG⊥AB于G.∵AB=AC=5.AH⊥BC.∴BH=CH=3.AH=4.∵•BC•AH=•AB•CG.∴CG=.AG==.∴cos∠B=.cos∠BAC=.如图2中.当点P与C重合时.∵OB=OD.∴∠B=∠ODB=∠ACB.∵∠ADO=∠B+∠BOD=∠CDO+∠ADP.∠ODP=∠B. ∴∠ADP=∠BOD=∠BAC.∴PA=PD=5;(2)如图2中.作CG⊥AB于G.OH⊥BD于H.∵AD=2AG=.∵BD=2BH=2OB•cos∠B=x.∴x+=5.∴x=.如图3中.当P、E重合时.作EG⊥AD于G.根据对称性可知.B、E关于直线OD对称.∴DB=DE=AE=x.∵cos∠A==.∴=.解得x=.当点D与A重合时x=5.∴x=.当≤x≤时.如图4中.∵y=PA﹣PE=PD﹣PE=DE=BD=x.∴y=x.当<x<时.如图5中.作PG⊥AB于G.∵BD=DE=x.DG=AG=(5﹣x).∴AP=AG÷cos∠A=(5﹣x).∴y=AP﹣EP=(5﹣x)﹣[x﹣(5﹣x)]=﹣x+.综上所述.y=.(3)如图6中.连接OP.连接OP.∵OP⊥AC.∴cos∠C=cos∠B==.∴=.∴x=.PC=.OP=.∵<+.∴以点P为圆心.PC为半径的圆P与圆O的位置关系是相交.【点评】本题考查圆综合题、锐角三角函数、等腰三角形的判定和性质等知识.解题的关键是寻找特殊点解决问题.学会构建方程的解决问题.学会用分类讨论的思想思考问题.属于中考压轴题.。

2017年-上海各区-数学高三二模试卷和答案

2017年-上海各区-数学高三二模试卷和答案

宝山2017二模一、填空题(本大题共有12题,满分54分,第16题每题4分,第712题每题5分)考生应在答题纸的相应位置直接填写结果.1.若集合{}|0A x x =>,{}|1B x x =<,则A B ⋂=____________2.已知复数z1z i ⋅=+(i 为虚数单位),则z =____________ 3.函数()sin cos cos sin x x f x x x=的最小正周期是____________4.已知双曲线()2221081x y a a -=>的一条渐近线方程3y x =,则a =____________ 5.若圆柱的侧面展开图是边长为4的正方形,则圆柱的体积为____________6.已知,x y 满足0220x y x y x -≤⎧⎪+≤⎨⎪+≥⎩,则2z x y =+的最大值是____________7.直线12x t y t =-⎧⎨=-⎩(t 为参数)与曲线3cos 2sin x y θθ=⎧⎨=⎩(θ为参数)的交点个数是____________8.已知函数()()()220log 01xx f x x x ⎧≤⎪=⎨<≤⎪⎩的反函数是()1f x -,则12f -1⎛⎫= ⎪⎝⎭____________9.设多项式()()()()23*11110,nx x x x x n N ++++++++≠∈的展开式中x 项的系数为n T ,则2limnn T n →∞=____________10.生产零件需要经过两道工序,在第一、第二道工序中产生的概率分别为0.01和p ,每道工序产生废品相互独立,若经过两道工序得到的零件不是废品的概率是0.9603,则p =____________11.设向量()(),,,m x y n x y ==-,P 为曲线()10m n x ⋅=>上的一个动点,若点P 到直线10x y -+=的距离大于λ恒成立,则实数λ的最大值为____________12.设1210,,,x x x 为1,2,,10的一个排列,则满足对任意正整数,m n ,且110m n ≤<≤,都有m n x m x n +≤+成立的不同排列的个数为____________二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设,a b R ∈,则“4a b +>”是“1a >且3b >”的( ) A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分又不必要条件14.如图,P 为正方体1111ABCD A B C D -中1AC 与1BD 的交点,则PAC 在该正方体各个面上的射影可能是( )A. ①②③④B.①③C. ①④D.②④15.如图,在同一平面内,点P 位于两平行直线12,l l 同侧,且P 到12,l l 的距离分别为1,3.点,M N 分别在12,l l 上,8PM PN +=,则PM PN ⋅的最大值为( )A. 15B. 12C. 10D. 916.若存在t R ∈与正数m ,使()()F t m F t m -=+成立,则称“函数()F x 在x t =处存在距离为2m 的对称点”,设()()20x f x x xλ+=>,若对于任意()2,6t ∈,总存在正数m ,使得“函数()f x 在x t =处存在距离为2m 的对称点”,则实数λ的取值范围是( )A. (]0,2B. (]1,2C. []1,2D. []1,4三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分8分,第2小题满分6分)如图,在正方体1111ABCD A B C D -中,E 、F 分别是线段BC 、1CD 的中点. (1)求异面直线EF 与1AA 所成角的大小; (2)求直线EF 与平面11AA B B 所成角的大小.18.(本题满分14分,第1小题6分,第2小题8分)已知抛物线()220y px p =>,其准线方程为10x +=,直线l 过点()(),00T t t >且与抛物线交于A 、B 两点,O 为坐标原点.(1)求抛物线方程,并证明:OA OB ⋅的值与直线l 倾斜角的大小无关; (2)若P 为抛物线上的动点,记PT 的最小值为函数()d t ,求()d t 的解析式.19.(本题满分14分,第1小题6分,第2小题8分)对于定义域为D 的函数()y f x =,如果存在区间[](),m n D m n ⊆<,同时满足:①()f x 在[],m n 内是单调函数;②当定义域是[],m n 时,()f x 的值域也是[],m n 则称函数()f x 是区间[],m n 上的“保值函数”.(1)求证:函数()22g x x x =-不是定义域[]0,1上的“保值函数”;(2)已知()()2112,0f x a R a a a x=+-∈≠是区间[],m n 上的“保值函数”,求a 的取值范围.20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)数列{}n a 中,已知()12121,,n n n a a a a k a a ++===+对任意*n N ∈都成立,数列{}n a 的前n 项和为n S .(这里,a k 均为实数) (1)若{}n a 是等差数列,求k ; (2)若11,2a k ==-,求n S ; (3)是否存在实数k ,使数列{}n a 是公比不为1的等比数列,且任意相邻三项12,,m m m a a a ++按某顺序排列后成等差数列?若存在,求出所有k 的值;若不存在,请说明理由.21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)设T,R 若存在常数0M >,使得对任意t T ∈,均有t M ≤,则称T 为有界集合,同时称M 为集合T 的上界.(1)设121|,21x xA y y x R ⎧⎫-==∈⎨⎬+⎩⎭、21|sin 2A x x ⎧⎫=>⎨⎬⎩⎭,试判断1A 、2A 是否为有界集合,并说明理由;(2)已知()2f x x u =+,记()()()()()()11,2,3,n n f x f x f x f f x n -===.若m R ∈,1,4u ⎡⎫∈+∞⎪⎢⎣⎭,且(){}*|n B f m n N =∈为有界集合,求u 的值及m 的取值范围;(3)设a 、b 、c 均为正数,将()2a b -、()2b c -、()2c a -中的最小数记为d ,是否存在正数()0,1λ∈,使得λ为有界集合222{|,dC y y a b c ==++a 、b 、c 均为正数}的上界,若存在,试求λ的最小值;若不存在,请说明理由.宝山区答案1.(0,1)2.13. π4.35. 5.16. 37. 28. 19.1210. 0.03 11.212.512 13. B14. C15.A16.A17. (1) (2)arctan 218.(1)24y x =,证明略(2)2)(t),(0t 2)d t ⎧≥⎪=⎨<<⎪⎩19. (1)证明略(2)12a或32a 20. (1)12k =(2)2(21,),(2,)n n n k k N S n n k k N **⎧-=-∈=⎨=∈⎩ (3)25k =-21.(1)1A 为有界集合,上界为1;2A 不是有界集合 (2)14u =,11,22m ⎡⎤∈-⎢⎥⎣⎦ (3)15λ=解析:(2)设()()011,,,1,2,3,...n n a m a f m a f a n -====,则()n n a f m =∵()2114a f m m u ==+≥,则222111111024a a a a u a u ⎛⎫-=-+=-+-≥ ⎪⎝⎭且211111024n n n n n a a a u a a ---⎛⎫-=-+-≥⇒≥ ⎪⎝⎭若(){}*|N n B f m n =∈为有界集合,则设其上界为0M ,既有*0,N n a M n ≤∈∴()()()112211112211......n n n n n n n n n a a a a a a a a a a a a a a a ------=-+-++-+=-+-++-+2222121111111...242424n n a u a u a u m u --⎛⎫⎛⎫⎛⎫=-+-+-+-++-+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭222212111111...22244n n a a a m n u u n u u --⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-++-+≥-+⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦若0n a M ≤恒成立,则014n u u M ⎛⎫-+≤ ⎪⎝⎭恒成立,又11044u u ≥⇒-≥ ∴14u =,∴()214f x x =+ 设12m λ=+(i )0λ>,则()22101011112422a a f m m a a λλλ⎛⎫⎛⎫-=-=++-+=⇒>> ⎪ ⎪⎝⎭⎝⎭∴111...2n n a a a m ->>>>>记()()212g x f x x x ⎛⎫=-=- ⎪⎝⎭,则当1212x x >>时,()()12g x g x >∴()()()2111110n n n n n g a f a a a a g m a a λ----=-=->=-=∴()211n a a n λ>+-,若0na M ≤恒成立,则0λ=,矛盾。

年上海市徐汇区高三二模数学卷(含答案)

年上海市徐汇区高三二模数学卷(含答案)

2017学年第二学期徐汇区学习能力诊断卷高三数学 2018.4一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 考生应在答题纸的相应位置直接填写结果.1.已知全集R U =,集合{}0322>--=x x x A ,则=A C U .2.在61x x ⎛⎫+ ⎪⎝⎭的二项展开式中,常数项是 .3.函数()lg(32)x xf x =-的定义域为_____________. 4.已知抛物线2x ay =的准线方程是14y =-,则a = . 5.若一个球的体积为323π,则该球的表面积为_________. 6.已知实数x y ,满足001x y x y ≥⎧⎪≥⎨⎪+≤⎩,,. 则目标函数z x y =-的最小值为___________.7.函数()2sin cos 1()11x x f x +-=的最小正周期是___________.8.若一圆锥的底面半径为3,体积是12π,则该圆锥的侧面积等于 .9.将两颗质地均匀的骰子抛掷一次,记第一颗骰子出现的点数是m ,记第二颗骰子出现的点数是n ,向量()2,2a m n =--,向量()1,1b =,则向量a b ⊥的概率..是 . 10.已知直线12:0,:20l mx y l x my m -=+--=.当m 在实数范围内变化时,1l 与2l 的交点P 恒在一个定圆上,则定圆方程是 .11.若函数222(1)sin ()1x xf x x ++=+的最大值和最小值分别为M 、m ,则函数()()()sin 1g x M m x M m x =+++-⎡⎤⎣⎦图像的一个对称中心是 . 12.已知向量,a b 满足||a =、||b =,若对任意的{}(,)(,)||1,0x y x y xa yb xy ∈+=>,都有||1x y +≤成立,则a b ⋅的最小值NMD 1C 1B 1A 1DCBA为 .二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项。

上海市徐汇区20172018学年高考数学二模试卷理科Word版含解析

上海市徐汇区20172018学年高考数学二模试卷理科Word版含解析

上海市徐汇区2017-2018 学年高考数学二模试卷(理科)一.填空题(本大题满分56 分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得 4 分,不然一律得0分.1.( 4 分)已知会集 A=,会集 B={y|y=x 2, x∈A} ,则 A ∩B= .2.( 4 分)若复数 z=1﹣ 2i( i 为虚数单位),则=.3.( 4 分)已知直线l 的一个法向量是,则此直线的倾斜角的大小为.4.( 4 分)某中学采纳系统抽样的方法从该校2014-2015 学年高一年级全体800 名学生中抽取50 名学生进行体能测试.现将800名学生从 1 到 800 进行编号,求得间隔数k==16.若从1~ 16 中随机抽取 1 个数的结果是抽到了 7,则在编号为 33~ 48 的这 16 个学生中抽取的一名学生其编号应当是.5.( 4 分)在△ ABC 中,角 A , B ,C 所对的边分别为a, b, c,若 a=,则△ ABC 的面积为.x﹣1(log2 5)的解为.6.( 4 分)设函数 f (x) =log 2( 2 +1),则不等式2f( x)≤f7.( 4 分)直线 y=x 与曲线 C:(θ为参数,π≤θ≤2)的交点坐标是.8.( 4 分)甲、乙两人各进行一次射击,假设两人击中目标的概率分别是0.6 和 0.7,且射击结果相互独立,则甲、乙至多一人击中目标的概率为.9.( 4 分)矩阵中每一行都构成公比为 2 的等比数列,第i 列各元素之和为S i,则=.10.( 4 分)以以下图:在直三棱柱 ABC ﹣ A 1B 1C1中, AB ⊥BC ,AB=BC=BB 1,则平面 A1B1C 与平面 ABC 所成的二面角的大小为.11.( 4 分)履行以以下图的程序框图,输出的结果为a,二项式的睁开式中x3项的系数为,则常数m= .12.( 4 分)设 f ( x)是定义域为 R 的奇函数, g( x)是定义域为 R 的偶函数,若函数 f ( x)+g ( x)的值域为 [1, 3),则函数 f( x)﹣ g( x)的值域为.13.( 4 分)△ABC 所在平面上一点P 满足,若△ ABP的面积为 6,则△ ABC 的面积为.14.( 4 分)关于曲线 C 所在平面上的定点 P0,若存在以点P0为极点的角α,使得α≥∠ AP 0B 关于曲线 C 上的任意两个不一样的点 A ,B 恒建立,则称角α为曲线 C 相关于点 P0的“界角”,并称此中最小的“界角”为曲线C相关于点P0的“确界角”.曲线 C:y=相关于坐标原点O 的“确界角”的大小是.二.选择题(本大题满分 20 分)本大题共有 4 题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得 5 分,不然一律得 0 分.15.( 5 分)以下不等式中,与不等式≥0 同解的是()A . ( x3)( 2 x ) ≥0 B . ( x 3)( 2 x )> 0 C . ≥0 D .≥016.( 5 分) M 、N 两个随机事件,假如 M 、 N 互斥事件,那么() A . 是必然事件B .M ∪ N 是必然事件C .与 必定 互斥事件D .与 必定不 互斥事件17.( 5 分)在极坐 系中,与曲 ρ=cos θ+1 关于直 θ= ( ρ∈R ) 称的曲 的极坐 方程是() A . ρ=sin (+θ)+1 B . ρ=sin (θ)+1 C . ρ=sin ( +θ) +1 D . ρ=sin ( θ) +1218.( 5 分)已知函数f ( x ) =x ?sinx ,各 均不相等的数列{x n } 足 |x i |≤( i=1 , 2,3, ⋯,*n ).令 F ( n ) =(x 1+x 2+⋯+x n ) ?[f ( x 1) +f ( x 2)+⋯f ( x n ) ]( n ∈N ). 出以下三个:( 2)若数列 {x n } 的通 公式, F ( 2k )> 0 k ∈N *恒建立;( 3)若数列 {x n } 是等差数列, F (n ) ≥0 n ∈N *恒建立.此中真的序号是()A . ( 1)(2)B . ( 1)( 3)C . ( 2)( 3)D .( 1)( 2)(3)三.解答 (本大 分 74 分)本大 共有 5 ,解答以下各 必 在答 相 号的 定地域内写出必需的步 .19.( 12 分)如 ,在 Rt △AOB 中,∠ OAB= ,斜 AB=4 ,D 是 AB 的中点. 将 Rt △ AOB以直角AO 旋 一周获得一个 ,点C 底面 周上的一点,且∠BOC=.( 1)求 的全面 ; ( 2)求异面直AO 与 CD 所成角的大小.( 果用反三角函数 表示)20.( 14 分)一个随机 量 ξ的概率分布律以下:ξ x 1 x 2Pcos2Asin ( B+C )此中 A , B , C 角三角形 ABC 的三个内角.( 1)求 A 的 ;( 2)若 x 1=cosB ,x 2=sinC ,求数学希望 E ξ的取 范 .21.( 14 分)用 管 接而成的花 构件如右 所示, 它的外框是一个等腰梯形 PQRS ,内部是一段抛物 和一根横梁.抛物 的 点与梯形上底中点是 接点 O ,梯形的腰 靠在抛 物 上,两条腰的中点是梯形的腰、抛物 以及横梁的 接点A ,B ,抛物 与梯形下底的两个 接点 C , D .已知梯形的高是 40 厘米, C 、 D 两点 的距离 40 厘米.( 1)求横梁 AB 的 度; ( 2)求梯形外框的用料 度.(注: 管的粗 等要素忽视不 , 算 果精确到1 厘米.)22.( 16 分)已知函数f ( x ) =, g ( x ) = .( 1)求函数 h (x ) =f ( x ) +2g ( x )的零点;( 2)若直 l :ax+by+c=0 ( a ,b ,c 常数) 与 f ( x )的 象交于不一样的两点的 象交于不一样的两点 C 、 D ,求 : |AC|=|BD| ;A 、B ,与g ( x )( 3)求函数F ( x ) =[f ( x ) ] 2n [g ( x ) ] 2n ( n ∈N *)的最小 .23.( 18 分) 于一 向量( n ∈N *),令,假如存在( p ∈{1 ,2,3⋯,n} ),使得 ||,那么称是 向量 的 “h 向量 ”.( 1)=(n , x+n )(n ∈N *),若是向量的 “h 向量 ”,求 数 x 的取 范 ;( 2)若( n ∈N *),向量能否存在 “h 向量 ”? 出你的 并 明原由;( 3)已知均是向量的 “h 向量 ”,此中 =( sinx ,cosx ), =( 2cosx ,2sinx ). 在平面直角坐 系中有一点列Q 1,Q 2,Q 3,⋯,Q n 足: Q 1 坐 原点,Q 2 为 的地点向量的终点,且Q 2k+1 与 Q 2k 关于点 Q 1 对称, Q 2k+2 与 Q 2k+1( k ∈N *)关于点Q 2 对称,求 | |的最小值.上海市徐汇区 2015 届高考数学二模试卷(理科)参照答案与试题分析一.填空题(本大题满分 56 分)本大题共有14 题,考生应在答题纸相应编号的空格内直接 填写结果,每个空格填对得 4 分,不然一律得0 分.1.( 4 分)已知会集 A=,会集 B={y|y=x2, x ∈A} ,则 A ∩B={1} .考点 : 交集及其运算. 专题 : 会集. 分析: 把 A 中元素代入 B 中求出 y 的值,确立出B ,找出 A 与 B 的交集即可.解答:解:∵ A={1 , 2, } , B={y|y=x 2,x ∈A} ,∴ B={ ,1, 4},则 A ∩B={1} , 故答案为: {1}评论: 此题观察了交集及其运算,娴熟掌握交集的定义是解此题的要点.2.( 4 分)若复数 z=1﹣ 2i ( i 为虚数单位) ,则 =6﹣ 2i .考点 : 复数的基本看法;复数代数形式的乘除运算. 专题 : 计算题.分析: 把复数 z=1﹣ 2i 及它的共轭复数代入,将其化简为 a+bi ( a , b ∈R )的形式,即可.解答: 解:观察复数基本运算=( 1﹣ 2i )( 1+2i )+1﹣ 2i=6 ﹣ 2i .故答案为: 6﹣ 2i .评论:此题观察复数的基本看法,复数代数形式的乘除运算,是基础题.3.( 4 分)已知直线 l 的一个法向量是,则此直线的倾斜角的大小为 .考点 : 直线的斜率. 专题 : 直线与圆.分析: 设直线的方向向量为 =( a , b ),直线的倾斜角为 α.利用 =0,即可得出.解答:解:设直线的方向向量为 =( a , b ),直线的倾斜角为 α.则=a ﹣b=0,∴ =tan α,∴ α= ,故答案为:.评论: 此题观察了直线的方向向量与法向量、向量垂直与数目积的关系,观察了计算能力,属于基础题.4.( 4 分)某中学采纳系统抽样的方法从该校 2014-2015 学年高一年级全体 800 名学生中抽取 50 名学生进行体能测试. 现将 800 名学生从 1 到 800 进行编号, 求得间隔数 k==16.若从1~ 16 中随机抽取 1 个数的结果是抽到了 7,则在编号为 33~ 48 的这 16 个学生中抽取的一名学生其编号应当是39.考点 : 系统抽样方法. 专题 : 概率与统计.分析: 依据系统抽样的定义进行求解.解答:解:∵样本间隔 k=16 ,若从 1~ 16 中随机抽取 1 个数的结果是抽到了7,∴抽取的号码数为 7+16x ,当 x=2 时, 7+16×2=39 , 即在编号为 33~48 的这 16 个学生中抽取的一名学生其编号应当 39,故答案为: 39评论: 此题主要观察系统抽样的应用,比较基础.5.( 4 分)在 △ ABC 中,角 A , B ,C 所对的边分别为 a , b , c ,若 a= ,则△ ABC 的面积为.考点 : 正弦定理. 专题 : 解三角形. 分析: 利用余弦定理可得 b ,再利用三角形面积计算公式即可得出.解答:解:∵ a=,∴ a 2=b 2+c 2﹣2bccosA ,∴ 3=4+b 2﹣ 4b ×,化为 b 2﹣ 2b+1=0,解得 b=1.∴ S △ABC ===.故答案为:.评论: 此题观察了余弦定理、三角形面积计算公式,观察了推理能力与计算能力,属于中档题.x ﹣1(log 2 5)的解为(﹣ ∞, 0] .6.( 4 分)设函数 f (x ) =log 2( 2 +1),则不等式 2f ( x ) ≤f 考点 : 指、对数不等式的解法.专题 : 函数的性质及应用.分析:先依据函数的定义域求出x 的范围,而后代入分析式,解对数不等式,转变为指数不等式进行求解,即可求出 x 的取值范围解答:解: f ﹣ 1x( x )=log 2( 2 ﹣ 1),x ∈( 0,+∞).由 2f ( x ) ≤f ﹣1(log 25),2log 2( 2x+1 )≤log 2(﹣ 1) =log 24,∴ log 2( 2x+1)≤1∴ 0< 2x +1≤2,∴ 0< 2x≤1,? x ≤0; 综上, x ≤0;故答案为:(﹣ ∞, 0].评论: 此题主要观察了反函数的求解,以及对数函数图象与性质的综合应用,同时观察转变与划归的思想,计算能力,属于中档题7.( 4 分)直线 y=x 与曲线 C :( θ为参数, π≤θ≤2)的交点坐标是.考点 : 参数方程化成一般方程. 专题 : 坐标系和参数方程.分析: 此题由曲线 C 的参数方程消去参数后,获得其一般方程,再用双方程联列方程组,获得交点坐标,即此题结论.解题时要注意纵坐标的取值范围.解答:解:由曲线 C :(θ为参数, π≤θ≤2),获得:(y ≤0).由,获得,∵ y ≤0,∴,∴.∴直y=x与曲C:(θ 参数,π≤θ≤2)的交点坐是.故答案:.点:本考了将曲的参数方程化一般方程,本度不大,属于基.8.( 4 分)甲、乙两人各行一次射,假两人中目的概率分是0.6 和 0.7,且射果相互独立,甲、乙至多一人中目的概率0.58.考点:相互独立事件的概率乘法公式.:算;概率与.分析:依据意可得两人能否中目是相互独立的,利用相互独立事件的概率乘法公式可得答案.解答:解:由意可得:两人能否中目是相互独立的,因两人中目的概率分是0.6 和 0.7,所以两人都中目的概率:0.6×0.7=0.42 ,所以甲、乙至多一人中目的概率:1 0.42=0.58 .故答案: 0.58 .点:本主要考相互独立事件的定与相互独立事件的概率乘法公式的用,此属于基,只要学生知心的算即可获得全分.9.( 4 分)矩中每一行都构成公比 2 的等比数列,第i 列各元素之和S i,=.考点:数列的极限;数列的乞降.:算;等差数列与等比数列.分析:i ﹣ 1(1+2+ ⋯+n)=i ﹣1,再求极限即可.先求出 S i =2?2解答:解:∵矩中每一行都构成公比 2 的等比数列,第i 列各元素之和S i,∴ S i=2i﹣1( 1+2+ ⋯+n) =?2i﹣1,∴==.故答案:.点:本考数列的极限与乞降,考学生的算能力,正确乞降是关.10.( 4 分)如所示:在直三棱柱ABC A 1B 1C1中, AB ⊥BC ,AB=BC=BB 1,平面 A 1B1C与平面 ABC 所成的二面角的大小.考点:二面角的平面角及求法.:空角.分析:通意易得直三棱柱ABC A1B 1C1即正方体的一半,直接得出答案.解答:解:依据意,易得直三棱柱ABC A 1B1C1即正方体的一半,∴所求即平面 A 1B1C 与平面 A 1B1C1所成的二面角,即∠C1B 1C,又∵△ B 1C1C 等腰直角三角形,∴∠C1B1C= ,故答案:.点:本考二面角的求法,“直三棱柱 ABC A 1 1 1 即正方体的一半”是解决本B C的关,属于中档.11.( 4 分)行如所示的程序框,出的果 a,二式的睁开式中x 3的系数,常数 m= .考点 : 程序框图.专题 : 算法和程序框图;二项式定理. 分析:依据程序求出 a 的值,而后利用二项式定理的内容即可获得结论.解答:解:当 i=1 ,满足条件t < 2014, a==﹣ 1, i=2 ,当 i=2 ,满足条件t < 2014, a== , i=3 ,当 i=3 ,满足条件t < 2014, a==2, i=4 ,当 i=4 ,满足条件t < 2014, a==﹣ 1, i=5 ,∴ s 的取值具备周期性,周期数为3,∴当 i=2014 ,不满足条件 i < 2014 ,∴当 i=2013 时, a=2,二项式的睁开式的通项公式为 (2 4 ﹣ k)x ) ?(k?x ,由 8﹣ =3,解得: k=2= m ∴当 k=2 时 x 3项的系数是m=1,可解得: m= .故答案为: .评论: 此题主要观察程序框图的应用,以及二项式定理的应用,综合性较强.12.( 4 分)设 f ( x )是定义域为 R 的奇函数, g ( x )是定义域为 R 的偶函数,若函数 f ( x )+g ( x )的值域为 [1, 3),则函数 f ( x )﹣ g ( x )的值域为(﹣ 3,﹣ 1] .考点 : 奇偶性与单调性的综合;函数的定义域及其求法;函数的值域;函数奇偶性的性质. 专题 : 函数的性质及应用.分析: 依据函数奇偶性和单调性之间的关系,进行判断即可.解答:解:∵ f ( x )是定义域为 R 的奇函数, g ( x )是定义域为R 的偶函数,∴﹣ [f ( x )﹣ g ( x ) ]=﹣ f ( x )+g ( x ) =f (﹣ x ) +g (﹣ x ),∵函数 f ( x) +g( x)的值域为 [1, 3),∴1≤f(﹣ x) +g (﹣ x)< 3,即 1≤﹣[f ( x)﹣ g( x) ] < 3,则﹣ 3<f (x)﹣ g(x)≤﹣ 1,即函数 f ( x)﹣ g( x)的值域为(﹣3,﹣ 1],故答案为:(﹣ 3,﹣ 1]评论:此题主要观察函数值域的求解,依据函数奇偶性的性质进行转变是解决此题的要点.13.( 4 分)△ABC 所在平面上一点P 满足,若△ ABP的面积为 6,则△ ABC 的面积为12.考点:平面向量的基本定理及其意义.专题:计算题;平面向量及应用.分析:由已知中P 是△ABC 所在平面内一点,且满足,我们依据向量加法的三角形法规可得m =2 , C 到直线 AB 的距离等于 P 到直线 AB 的距离的 2 倍,故 S△ABC =2S△ABP,联合已知中△ABP 的面积为6,即可获得答案.解答:解:取 AC 的中点 O,则,∵,∴m =2 ,∴C 到直线 AB 的距离等于 P 到直线 AB 的距离的 2 倍,故 S△ABC=2S△ABP=12 .故答案为: 12.评论:此题观察的知识点是向量的加减法及其几何意义,此中依据m =2,获得S△ABC =2S△ABP,是解答此题的要点.14.( 4 分)关于曲线 C 所在平面上的定点 P0,若存在以点P0为极点的角α,使得α≥∠ AP 0B 关于曲线 C 上的任意两个不一样的点 A ,B 恒建立,则称角α为曲线 C 相关于点 P0的“界角”,并称此中最小的“界角”为曲线C相关于点P0的“确界角”.曲线 C:y=相关于坐标原点O 的“确界角”的大小是.考点:曲线与方程.专题:综合题;直线与圆;圆锥曲线的定义、性质与方程.分析:画出函数(f x)的图象,过点 O 作出两条直线与曲线无穷凑近,x≥0 时,曲线 y=与直线 y=k 1x 无穷凑近,考虑渐近线,求出22( x k1=1; x< 0 时,曲线可化为 x +(y﹣ 2) =1< 0),圆心到直线的距离为=1,故 k2=﹣,再由两直线的夹角公式即可获得所求的“确界角”.解答:解:画出函数 f( x)的图象,过点 O 作出两条直线与曲线无穷凑近,设它们的方程分别为 y=k 1x, y=k 2x,当 x≥0 时,曲线 y=与直线 y=k 1x 无穷凑近,即为双曲线的渐近线,故k1=1;当 x< 0 时,曲线可化为22=1,故 k2= x +( y﹣ 2) =1( x< 0),圆心到直线的距离为﹣,由两直线的夹角公式得,tanθ=||=2+ ,故曲线 C 相关于点 O 的“确界角”为.故答案为:.评论:此题观察新定义“确界角”及应用,观察直线与圆的地点关系,属于中档题.双曲线的性质:渐近线,二.选择题(本大题满分 20 分)本大题共有 4 题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得 5 分,不然一律得 0 分.15.( 5 分)以下不等式中,与不等式≥0 同解的是()A .( x﹣ 3)( 2﹣ x)≥0B .(x﹣3)(2﹣x)>0C.≥0 D .≥0考点:其余不等式的解法.专题:不等式的解法及应用.分析:将不等式进行等价变形进行比较即可.解答:解:不等式≥0等价为,即≥0,应选: D.评论:此题主要观察分式不等式的求解和变形,比较基础.16.( 5 分)设 M 、N 为两个随机事件,假如M 、 N 为互斥事件,那么()A .是必然事件B.M∪ N 是必然事件C.与必定为互斥事件D.与必定不为互斥事件考点:互斥事件与对峙事件;随机事件.专题:概率与统计.分析:有 M 、 N 是互斥事件,作出相应的表示图,即可得.解答:解:由于 M 、 N 为互斥事件,如图:,无论哪一种状况,是必然事件.应选 A.评论:此题观察借助表示图判断事件间的关系,观察互斥事件的定义,属于基础题17.( 5 分)在极坐标系中,与曲线ρ=cosθ+1关于直线θ=(ρ∈R)对称的曲线的极坐标方程是()A .ρ=sin(+θ)+1 B.ρ=sin(﹣θ)+1 C.ρ=sin(+θ) +1 D .ρ=sin(﹣θ)+1考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:第一步:将对称轴方程化为直角坐标方程;第二步:在已知曲线ρ=cosθ+1 上任取一点,并化为直角坐标;第三步:求 点关于 称 称的点,并化 极坐 形式;第四步:将此极坐 逐一代入四个 中 即可达到目的. 解答:解:由 θ=,得tan θ=,即,得 称 方程.在方程 ρ=cos θ+1 中,取 θ=,,由,得点(, 1)的直角坐 (0, 1),点(0, 1)且与直垂直的直 的直角坐 方程,从而此两直 的交点坐 ,由中点公式,得点(0, 1)关于直称的点,其极坐 (ρ0,θ0), ,取 ,又,得点 ,此点必在曲ρ=cos θ+1 关于直 θ= ( ρ∈R ) 称的曲 上,在四个 中,只有 C 中的方程 足.故 : C .点 : 本 考 了极坐 与直角坐 之 的相互 化,及 称 的 理, 点是点关于直 称的点的求法,求解 擅长运用中点公式及两直 相互垂直的充要条件.18.( 5 分)已知函数2 ni( i=1 , 2,3, ⋯,f ( x ) =x ?sinx ,各 均不相等的数列 {x } 足 |x |≤*n ).令 F ( n ) =(x 1+x 2+⋯+x n ) ?[f ( x 1) +f ( x 2)+⋯f ( x n ) ]( n ∈N ). 出以下三个:( 2)若数列 {x n } 的通 公式, F ( 2k )> 0 k ∈N *恒建立;( 3)若数列 {x n } 是等差数列, F (n ) ≥0 n ∈N *恒建立.此中真的序号是()A . ( 1)(2)B . ( 1)( 3)C . ( 2)( 3)D .( 1)( 2)(3)考点 : 的真假判断与 用.:等差数列与等比数列;不等式的解法及 用.分析:由 意, f (x )=x 2s inx 是奇函数,只要考 0<x ≤1 的性 ,此 y=x2,y=sinx 都是增函数,得 f ( x )=x 2sinx 在[0,1] 上是增函数;即x 1+x 2≠0 ,( x 1+x 2)(f (x 1) +f ( x 2))> 0;于( 1),取≤x 1= x 3 , x 2=0,即可判断;于( 2),运用等比数列的乞降公式和性 ,即可判断;于( 3),运用等差数列的乞降公式和性 , 合函数f (x )的 性,即可判断.2解答: 解:由 意得 f ( x )=x sinx 是奇函数,当 0< x ≤ , y=x 2, y=sinx 都是增函数, ∴ f ( x ) =x 2sinx 在[0 , ] 上 增,∴ f ( x ) =x 2sinx 在[, ] 上是增函数;若 x 1+x 2< 0, x 1< x 2,∴ f (x 1)< f ( x 2),即 f ( x 1)< f ( x 2),∴ f ( x 1) +f ( x 2)< 0;同理若 x 1+x 2> 0,可得 f ( x 1)+f (x 2)> 0; ∴ x 1+x 2≠0 ,( x 1+x 2)( f ( x 1)+f ( x 2))> 0.于( 1),取≤x 1=x 3, x 2=0, F ( 3) =( x 1+x 2+x 3) ?[f (x 1) +f ( x 2) +f ( x 3) ] =0,所以( 1)正确;于( 2),∵ ,∴ x 1+x 2+⋯+x n = < 0,又 f ( 2k 1) +f ( 2k )= + =< 0,∴ F ( 2k )> 0 k ∈N *恒建立,故( 2)正确;于( 3),如 x 1+x 2+⋯+x n =0, F ( n ) =0 ,若数列 {x n } 是等差数列,x 1+x 2+⋯+x n > 0, x 1+x n >0,f ( x 1)> f ( x n ),可得 x 2+x n ﹣ 1> 0,⋯,f ( x 2)> f ( x n ﹣1),⋯相加即可获得 F ( n )> 0,同理 x 1+x 2+⋯+x n < 0,即有 f ( x 1)+f ( x 2)+⋯f ( x n )< 0,即 F ( n )> 0,( 3)正确.故D .点 : 本 通 真假的判断,考 了新定 的函数的性 以及 用 ,函数的 性与奇偶性 ,等差与等比数列的性 与 用 ,是 合 .三.解答 (本大 分 74 分)本大 共有 5 ,解答以下各 必 在答 相 号的 定地域内写出必需的步 .19.( 12 分)如 ,在 Rt △AOB 中,∠ OAB= ,斜 AB=4 ,D 是 AB 的中点. 将 Rt △ AOB以直角AO 旋 一周获得一个 ,点C 底面 周上的一点,且∠BOC=.( 1)求 的全面 ;(2)求异面直 AO 与 CD 所成角的大小.(果用反三角函数表示)考点:异面直及其所成的角;棱柱、棱、棱台的面和表面.:空地点关系与距离.分析:( 1)求出底面半径,的面S 侧,而后求解的全面.( 2) D 作 DM ∥ AO 交 BO 于 M, CM ,明∠ CDM 异面直 AO 与 CD 所成角,在Rt△ CDM 中,求解异面直 AO 与 CD 所成角的大小.解答:解:( 1) Rt△ AOB 中, OB=2即底面半径 2的面S 侧=πrl=8 π⋯.4’故的全面S 全 =S 侧 +S 底 =8π+4π=12 π⋯.6’(2) D 作 DM∥AO 交 BO 于 M, CM∠ CDM 异面直AO 与 CD 所成角⋯.8’∵AO ⊥平面 OBC ∴ DM ⊥平面 OBC ∴ DM ⊥ MC在 Rt△ AOB 中,∴,∵D 是 AB 的中点∴ M 是 OB 的中点,∴OM=1 ∴.在 Rt△ CDM中,,⋯.10’∴,即异面直 AO 与 CD 所成角的大小⋯.12’点:本考异面直所成角的求法,几何体的全面的求法,考空想象能力以及算能力.20.( 14 分)一个随机量ξ的概率分布律以下:ξx1x2P cos2A sin( B+C )此中 A , B, C 角三角形ABC 的三个内角.(1)求 A 的;(2)若 x1=cosB ,x2=sinC ,求数学希望 Eξ的取范.考点:失散型随机量的希望与方差.:概率与.分析:( 1)通概率和1,利用三角形的内角和化求解即可.( 2)利用( 1)的果求出B+C ,表示出的范,而后求解希望的范.解答:解:( 1)由 cos2A+sin( B+C ) =1,⋯2’12⋯4’2sin A+sinA=1又 A 角,得⋯6’( 2)由得,,即⋯8’⋯9’==,⋯11’由△ ABC 角三角形,得,得⋯14’点:本考概率的用,希望的求法,概率与三角函数相合,目新,是好.21.( 14 分)用管接而成的花构件如右所示,它的外框是一个等腰梯形PQRS,内部是一段抛物和一根横梁.抛物的点与梯形上底中点是接点O,梯形的腰靠在抛物上,两条腰的中点是梯形的腰、抛物以及横梁的接点 A ,B,抛物与梯形下底的两个接点C, D .已知梯形的高是40 厘米, C、 D 两点的距离40 厘米.(1)求横梁 AB 的度;(2)求梯形外框的用料度.(注:管的粗等要素忽视不,算果精确到1 厘米.)考点:直与曲的关系.:曲的定、性与方程.分析:( 1)以 O 原点,梯形的上底所在直x ,建立直角坐系,梯形下底与y交于点2( p< 0),利用 D,求出 p,获得抛物方程,即可求M ,抛物的方程: x =2py解横梁 AB 的度.(2)明梯形腰的中点是梯形的腰与抛物独一的公共点,立在与抛物方程,通相切关系,求出直的斜率,而后求解制作梯形外框的用料度.解答:解:( 1)如,以O 原点,梯形的上底所在直x ,建立直角坐系,2梯形下底与y 交于点M ,抛物的方程:x =2py( p< 0),2由意 D ,得 p= 5,x = 10y⋯3’,取,即,答:横梁AB 的度28cm.⋯6’( 2)由意,得梯形腰的中点是梯形的腰与抛物独一的公共点⋯7’,,即⋯10’得,梯形周.答:制作梯形外框的用料度141cm⋯14’点:本考抛物方程的用,直与抛物的地点关系的用,考分析解决的能力.22.( 16 分)已知函数 f ( x) =, g( x) =.( 1)求函数h(x) =f ( x) +2g( x)的零点;( 2)若直 l :ax+by+c=0 ( a,b,c 常数)与 f( x)的象交于不一样的两点A、B,与g( x)的象交于不一样的两点C、 D,求: |AC|=|BD| ;( 3)求函数F( x) =[f ( x) ] 2n[g( x) ]2n( n∈N*)的最小.考点 : 函数与方程的 合运用;函数的最 及其几何意 . : 函数的性 及 用;二 式定理. 分析:( 1)求出 H ( x )的分析式,令H (x ) =0 ,解方程即可获得零点;( 2) 出 A , B ,C , D 的坐 , 立直 方程和 f ( x )、 g ( x )消去 y ,运用 达定理和中点坐 公式,即可得 ;( 3)运用二 式定理睁开和合并,再由基本不等式 合二 式系数的性 ,即可求得最小 1.解答:解:( 1)由 意可得,即有函数 h ( x )的零点;( 2) 明:A ( x 1 ,y 1),B ( x 2, y 2),C ( x 3, y 3),D ( x 4,y 4),,同原由, ,AB 中点与 CD 中点重合,即 |AC|=|BD| ;( 3)由 意可得==[( x2n ﹣ 2 2﹣ 2n2n ﹣66﹣ 2n( x6﹣2n2n ﹣ 6( x2﹣2n 2n+x)+( x+x)+⋯++x)++x﹣2 ) ]=2n ﹣ 1?2?2=1,当且 当 x= ±1 ,等号建立.所以函数 F ( x )的最小 1.点 :本 考 函数的性 和运用,主要考 函数的零点和最 的求法,注意运用函数和方程的思想,以及二 式定理和基本不等式的运用:求最 ,属于中档 和易 .23.( 18 分) 于一 向量( n ∈N *),令,假如存在 ( p ∈{1 ,2,3⋯,n} ),使得 ||,那么称是 向量 的 “h 向量 ”.( 1)=(n , x+n )(n ∈N *),若是向量的 “h 向量 ”,求 数 x 的取 范 ;( 2)若( n ∈N *),向量能否存在 “h 向量 ”?出你的 并 明原由;( 3)已知均是向量的 “h 向量 ”,此中=( sinx ,cosx ),=( 2cosx ,2sinx ). 在平面直角坐 系中有一点列Q 1,Q 2,Q 3,⋯,Q n 足: Q 1 坐 原点,Q 2的地点向量的 点,且Q 2k+1 与 Q 2k 关于点 Q 1 称, Q 2k+2 与 Q 2k+1( k ∈N *)关于点Q 2 称,求 | |的最小 .考点 : 数列与向量的 合. : 平面向量及 用.分析:( 1)通 “h 向量 ”的定 直接 算即可;( 2)通 “h 向量 ”的定 , n 分奇偶数 即可;( 3)通 算可得,、 Q n ( x n , y n ),依 意 算可得 =,利用基本不等式可得≥1 当且 当( t ∈Z ) 等号建立,故 .解答:解:( 1)由 意,得:,,解得: 2≤x ≤0;( 2) :是向量 的 “h 向量 ”.原由以下:,,当 n 奇数 ,,∴ ,故= ,即 ;上海市徐汇区20172018学年高考数学二模试卷理科Word版含解析当 n 为偶数时,,故=,即;综合得:是向量组的“h 向量”;( 3)由题意,得:,,即,即,同理,,三式相加并化简,得:,即,,所以,设,由得:,设 Q( x,y ),则依题意得:,n n n得( x2k+2, y2k+2)=2[ (x2, y2)﹣( x1, y1)]+( x2k, y2k)故( x2k+2, y2k+2)=2k[ ( x2, y2)﹣( x1, y1) ] +( x2, y2)( x2k+1, y2k+1)=﹣ 2k[ ( x2,y2)﹣( x1, y1) ]+( x2, y2),所以,当且仅当( t∈Z)时等号建立,故.评论:此题观察新定义,向量模的计算,等比数列的乞降,二倍角公式,基本不等式,注意解题方法的累积,属于中档题.。

【上海中学】2017年高考模拟数学试卷(二)(附答案与解析)

【上海中学】2017年高考模拟数学试卷(二)(附答案与解析)

上海中学2017年高考模拟数学试卷(二)一、选择题:1.复平面上有圆C :||2z =,已知1111z z -+(11z ≠-)是纯虚数,则复数1z 的对应点P ( ) A .必在圆C 上B .必在圆C 内部 C .必在圆C 外部D .不能确定2.一给定函数()y f x =的图象在下列图中,并且对任意(0,1)a ∈,由关系式1()n n a f a +=得到的数列{}n a 满足1n n a a +>,n ∈N*,则该函数的图象是( )ABCD3.已知p :方程20x a x b ++=有且仅有整数解,q :a ,b 是整数,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件4.有一个各条棱长均为a 的正四棱锥,现用一张正方形的包装纸将其完全包住,不能裁剪,可以折叠,那么包装纸的最小边长为( ) A.(1a BCD.a二、填空题:5.方程22121x y a a +=-+表示椭圆,则a ∈__________.6.已知(na x 的展开式中二项式系数之和为512,且展开式中3x 的系数为9,常数a 的值为__________. 7.下列函数中周期是2的函数是__________①22cos π1y x =- ②sin πcos πy x x =+ ③ππtan()23y x =+④sin πcos πy x x =.8.函数13(10)x y x +=-≤<的反函数是__________. 9.已知集合{|25}A x x =-<<,{|121}B x p x p =+-<<,AB A =,则实数p 的取值范围是__________.10.已知E 、F 分别是三棱锥P ABC -的棱AP 、BC 的中点,10PC =,6AB =,AB 与PC 所成的角为60︒,则__________.11.设1|5|z =,2|2|z =,12||z z -=12z z =__________.12.某人有两盒火柴,每盒都有n 根火柴,每次用火柴时他在两盒中任取一盒并从中抽出一根,求他发现用完一盒时另一盒还有r 根(1r n ≤≤)的概率__________.13.在平行六面体1111ABCD A B C D -中,AB a =,BD b =,1AC c =,试用a 、b 、c 表示1BD =__________. 14.若关于xx a +的解是x m >,试求m 的最小值为__________.15.设点P 到点(1,0)-、(1,0)距离之差为2m ,到x 、y 轴的距离之比为2,求m 的取值范围__________. 16.已知椭圆222484840x y kx ky k +--+-=(k 为参数),存在一条直线,使得此直线被这些椭圆截得的线__________. 三、解答题:17.斜三棱柱ABC A B C '''-中,底面是边长为a 的正三角形,侧棱长为b ,侧棱AA '与底面相邻两边AB 、AC 都成45︒角,求此三棱柱的侧面积和体积.18.已知在ABC △中,角A 、B 、C 的对边为a 、b 、c 向量(2cos ,sin())2C m A B =-+,(cos ,2sin())2C n A B =+,且m n ⊥.(Ⅰ)求角C 的大小.(Ⅱ)若22212a b c =+,求sin()A B -的值.19.已知z 是复数,2z i +与2zi -均为实数(i 为虚数单位),且复数2()z ai +在复平面上对应点在第一象限.(Ⅰ)求z 的值;(Ⅱ)求实数a 的取值范围.20.已知函数2()1f x ax bx =++(a ,b 为实数),x ∈R .(1)若函数()f x 的最小值是(1)0f -=,求()f x 的解析式;(2)在(1)的条件下,()f x x k +>在区间[3,1]--上恒成立,试求k 的取值范围; (3)若0a >,()f x 为偶函数,实数m ,n 满足0mn <,0m n +>,定义函数(),0()(),0f x x F x f x x ⎧=⎨-⎩当≥当<,试判断()()F m F n +值的正负,并说明理由.21.若数列{}n a 前n 项和为n S (*n ∈N )(1)若首项11a =,且对于任意的正整数n (2n ≥)均有n n n n S k a kS k a k+-=-+,(其中k 为正实常数),试求出数列{}n a 的通项公式.(2)若数列{}n a 是等比数列,公比为q ,首项为1a ,k 为给定的正实数,满足: ①10a >,且01q <<②对任意的正整数n ,均有0n S k ->; 试求函数()n nn n S k a kf n k S k a k+-=+-+的最大值(用1a 和k 表示) 22.已知椭圆及圆的方程分别为22221x y a b+=和222x y r +=,若直线AB 与圆相切于点A ,与椭圆有唯一的公共点B ,若0a b >>是常数,试写出AB 长度随动圆半径变化的函数关系式||()AB f x =,并求其最大值.上海中学2017年高考模拟数学试卷(二)答 案一、选择题: 1~4.BAAC 二、填空题: 5. 6.16 7.②③8.,() 9. 10.711.12.13. 14. 15. 16三、解答题:17.解:(Ⅰ)∵侧棱与底面相邻两边、都成角,∴三棱柱的三个侧面中,四边形和是有一个角是45︒,相邻两边长分别为,的平行四边形,第三个侧面是边长分别为,的矩形.∴(Ⅱ)过作垂直于底面,交底面于点,作,交于点,连接,由题意,则,,∴, ∴11(1,)(,2)22-⋃1log3x y -=13x ≤<3p ≤322i ±21222n rn r n r C ----⨯b c a +-32(⋃AA 'AB AC 45ABBA ACCA a b a b 2sin 451)S ab ab ab =+=侧1A 1A O ABC ABC O 1A D AB ⊥AB D DO AD 1A D =AO =1AO =21124V a b ==18.解:(Ⅰ)由得, 即;整理得 解得(舍)或60C =︒ 因为,60C =︒(Ⅱ)因为由正弦定理和余弦定理可得,,, 代入上式得 又因为,故 所以19.解:(Ⅰ)设(,),又,且为实数,∴,解得.∴, ∵为实数,∴,解得. ∴42z i =-.(Ⅱ)∵复数,∴,解得.即实数的取值范围是.20.解:(1)由已知,且,解得,, ∴函数的解析式是;(2)在(1)的条件下,,即在区间上恒成立,由于函数在区间上是减函数,且其最小值为1, ∴的取值范围为;0m n =222cos 2sin ()02CA B -+=21cos 2(1cos )0C C +--=22cos cos 10C C +-=cos 1C =-0πC <<sin()sin cos sin cos A B A B B A -=-sinA 2a R =sin 2bB R =222cos 2a c b B ac +-=222cos 2b c a A bc +-=222222222()sin()22224a a c b b b c a a b A B R ac R bc cR+-+---=-=22212a b c -=21sin()sin 442c c A B C cR R -====sin()A B -=z x yi =+x y ∈R 2(2)z i x y i +=++20y +=2y =-2(2)(2)(22)(4)22(2)(2)5z x i x i i x x i i i i i --+++-===---+2z i -405x -=4x =2222()[4(2)i]16(2)8(2)(124)(816)z ai a a a i a a a i +=+-=--+-=+-+-212408160a a a ⎧+-⎨-⎩>>26a <<a 2,6()10a b -+=12ba-=-1a =2b =()f x 2()21f x x x =++()f x x k +>21k x x ++<[3,1]--21y x x =++[3,1]--k (,1)-∞(3)∵是偶函数,∴,∴,由知、异号,不妨设,则,又由得, ,得,又,得,∴的值为正. 21.解:(1)∵,(其中为正实常数), ∴∴当时 即,∴ (2)∵,且对任意的正整数,均有 ∴∴关于是一个单调递减的函数,最大值为. 22.解:(1)设,则过的圆的切线方程为,代入,得由即 整理可得∴∵ ∴ (当且仅当∴()f x 0b =2()1f x ax =+0mn <m n 0m >0n <0m n +>0m n ->>2222()F()()()1(1)()F m n f m f n am an a m n +=-=+-+=-0m n ->>22m n >0a >()()0F m F n +>()()F m F n +n n n n S k a kS k a k+-=-+k (2)n n S a n =-≥2n ≥11n n n n n a S S a a --=-=-+112n n a a -=212a =-11(),221,1n n n a n -⎧-⎪=⎨⎪=⎩≥()n nn n S k a kf n k S k a k+-=+-+11111(1)n n n n n n n n n n S k a k S a k a q kf n k k S k a k S a k a q k++++++-++-+=+=+-++-+10a >01q <<n 0n S k ->11(1)()0n n n n n n n n n n S a k a q k S k a kf n f n k k S a k a q k S k a k++++-+-+-=+-++-+-+<()f n n 1111a k a kk a k a k+-+-+00(,)A x y A 200x x y y r +=22221x y a b+=2222242222002220002()0a x a r x a r b x x a b y y y +-+-==0△2222242222002220002()4()()a r x a x a r b a b y y y =+-2222222002)()a b x x y y a b r r-+-=+--(()f x =b x a <<22222a b x ab x +=≥()f x a b -x ()f x =b x a <<的最大值为()f x a b上海中学2017年高考模拟数学试卷(二)解 析一、选择题:1.B 根据复数的几何意义可知圆为以原点为圆心、2为半径的圆,设对应的点为,把整理出最简形式,根据复数是一个纯虚数,得到复数的实部等于0,虚部不等于0,据此可知点轨迹.解:由可知圆为以原点为圆心、2为半径的圆,设对应的点为,则, ∵是纯虚数, ∴,且,∴点的轨迹为以原点为圆心、1为半径的圆,除掉点, ∴复数的对应点必在圆内部, 故选B .2.A 由关系式得到的数列满足,根据点与直线之间的位置关系,我们不难得到,的图象在上方.逐一分析不难得到正确的答案.解:由知:的图象在上方. 故选:A .3.A 我们先论证命题:,是整数成立时,命题:有且仅有整数解是否成立,即命题命题的真假,再论证命题:有且仅有整数解时,命题:,是整数成立时是否成立,即判断命题命题的真假,然后根据弃要条件的定义易得到答案.解:,是整数时,不一定有整数解, 即命题命题为假命题,若有且仅有整数解,由韦达定理(一元二次方程根与系数的关系)我们易判断,是整数.即命题命题为真命题, 故是的充分不必要条件 故选:A .4.C 根据题设,用一张正方形的包装纸将其完全包住,近似于将正四棱锥的表面展开图重新折回.因此,首先要将四棱锥的四个侧面沿底面展开,观察展开的图形易得出包装纸的对角线处在什么位置是,包装纸面积最小,进而获得问题的解答.C 1z (x,y)1111z z -+P ||2z =C 1z (,)x y 2212211(1)[(1)][(1)]12=1(1)[(1)][(1)](1)z x yi x yi x yi x y yiz x yi x yi x yi x y --+-++-+-+==++++++-++1111(1)1z z z -≠-+2210x y +-=0y ≠P (1,0)±1z P 1()n n a f a +={}n a 1n n a a +>*n ∈N ()f x y x =1()n n n a f a a +=>()f x y x =q a b p 20x ax b ++=p ⇒p p 20x ax b ++=q a b p ⇒q a b 20x ax b ++=p ⇒q 20x ax b ++=a b p ⇒q p q解:将正四棱锥沿底面将侧面都展开如图所示:当以为正方形的对角线时,所需正方形的包装纸的面积最小,此时边长最小. 设此时的正方形边长为则:, 又因为, ∴, 解得:. 二、填空题:5.由椭圆的标准方程可以确定的范围.∵表示椭圆, ∴, ∴或.6.根据的展开式中二项式系数之和为512,,得到,求出了的值,求出二项展开式的通项,令的指数为3求出的值代入通项求出展开式中的系数,解出字母的值,得到结果.解:因为的展开式中二项式系数之和为512,所以 解得所以的展开式的通项为令得 所以展开式中的系数为 所以所以7.利用二倍角公式,和角的三角函数公式分别化简,再利用周期公式可求.解:对于①,∴;PP 'x 22()2PP x '=()2PP a a '=+=22()2a x=x =a 22121x y a a +=-+201021a a a a -⎧⎪+⎨⎪-≠+⎩>>112a -<<122a <<na x (2512n =n x r 3xa na x (2512n =9n=9a x(399219(r rrrr T aC x--+=3932r-=8r =3x 916a 9916a =16a =cos2πy x =2π12πT ==对于②,∴; 对于③; 对于④,∴. 8.本题考查反函数的概念、求反函数的方法、指数式与对数式的互化,求函数的值域;将看做方程解出,然后由原函数的值域确定反函数的定义域即可,注意原函数的定义域为.解:由解得 ∵,∴∴函数()的反函数是() 故答案为:,()9.由题意,由,可得,再由,,分,两类解出参数的取值范围即可得到答案解:由,可得又, 若,即得,显然符合题意若,即有得,时,有解得,故有综上知,实数的取值范围是10.取的中点,由题意可得,,或,由余弦定理,运算求得结果.解:取的中点,则由、分别是三棱锥的棱、的中点,,,与PC 所成的角为可得,,或.中,当时,由余弦定理可得当时,.11.设,,求得、以及,再根据条件求得的值,可得的值,再利用复数三角形式的运算法则求得的值. ππ)4y x =+2π1πT ==π2π2T =1sin 2π2y x =2π12πT ==13x y +=x 0x x -<≤13x y +=1log3x x =-+10x -≤<13x ≤<13x y +=0x x -<≤1log3x y =-+13x ≤<1log3x y -=13x ≤<A B ⋃B A ⊆{|25}A x x =-<<{|121}B x p x p =+-<<B =∅B ≠∅p A B A ⋃=B A ⊆{|25}A x x =-<<{|121}B x p x p =+-<<B =∅121p p +-≥2p ≤B ≠∅121p p +-<2p >12215p p +-⎧⎨-⎩≥≤33p -≤≤23p <≤p 3p ≤PB H 3EH =5HF =60EHF ∠=120EF =PB H E F P ABC -AP BC 10PC =6AB =AB 603EH =5HF =60EHF ∠=120EHF △60EHF ∠=EF ==120EHF ∠=7EF =15(cos sin )z i αα=+22(cos sin )z i ββ=+1z 2z 12z z -cos()αβ+sin()αβ+12z z解:由题意得,可设,,, ,.再由,化简可得.再由同角三角函数的基本关系可得.故 12.根据题意,一共抽了根,这么多次抽取动作中,有次都是操作在A 盒上,次操作在B 盒上,且最后一次一定操作在A 盒所有的抽法共有种,用完一盒时另一盒还有根的抽法有 种由古典概型的概率公式求出概率.解:根据题意,一共抽了根,这么多次抽取动作中,有次都是操作在A 盒上次操作在B 盒上,且最后一次一定操作在A 盒 所以,所有的抽法共有种,用完一盒时另一盒还有根的抽法有种由古典概型的概率公式得他发现用完一盒时另一盒还有根()的概率为13.先画图,理解题意,再根据向量的加法法则和减法法则,将所表示向量用已知向量表示,即可得到结论.解: 故答案为:14.先作出的图象斜率为1,在曲线上方的直线部分为不等式的解集,利用图象,即可求的最小值.解:先作出的图象,的图象斜率为1,在曲线上方的直线部分为不等式的解集 ∵解集为(取不到等号) ∴只能是过点斜率为1的直线 把点的坐标代入得15(cos sin )z i αα=+22(cos sin )z i ββ=+15[cos isin ]5[cos()sin()]z i αααα=-=-+-22(cos sin )2[cos()sin()]z i i ββββ=-=-+-12(5cos 2cos )(5sin 2sin )z z i αβαβ-=-++12||z z -=23(5cos 2cos )(5sin 2sin )13αβαβ-++=4cos(0=5αβ+3sin()5αβ+=±125[cos()sin()]555433[cos()][cos()sin()]=[]22(cos sin )222552z i i i i z i αααβαβαβββ-+-==⨯--=⨯+-+⨯±=±+2n r -n n r -22n r -r 212n rn r C ---2n r -n n r -22n r -r 212n rn r C ---r 1r n ≤≤21222n rn r n r C ----⨯1111BD BD DD BD CC BD AC AC b c a =+=+=+-=+-b c a +-y =y x a =+m y y x a =+x m >A A y x a =+0.5a =再将与(舍)或 即求出了交点由数形结合可知最小值为.15.先设点的坐标为,然后由点到、轴的距离之比为2得一元一次方程,再由点到点、距离之差为,满足双曲线定义,则得其标准方程,最后处理方程组通过求得的取值范围.解:设点的坐标为,依题设得,即, 因此,点、、三点不共线,得 ∵ ∴因此,点在以、为焦点,实轴长为的双曲线上,故将代入,并解得,因为,所以, 解得即的取值范围为. 16.先判断出椭圆(为参数)表示中心在直线上,长轴长和短轴长分别为4,2的一族椭圆,判断出符和条件的直线需要与直线平行,设出直线方程,先利用一个特殊的椭圆与直线方程联立求出直线的方程,在证明对于所以的椭圆都满足条件.0.5yx =+y =0.5x =- 1.5(1.5,2)C m 32P (,y)x P x y P (1,0)-(1,0)2m 2x m P (,)x y ||2||y x =2y x =±0x ≠(,)P x y (1,0)M -(1,0)N ||||||||2PM PN MN -=<||||||2||0PM PN m -=>0||1m <<P M N 2||m 222211x y m m -=-2y =±222211x y m m -=-2222(1)015m m x m -=-≥210m ->2150m ->0||m <m (⋃222484840x y kx ky k +--+-=k 2y x =2y x =解:椭圆(为参数)可化为 ,所以表示中心在直线上,长轴长和短轴长分别为4,2的一组椭圆, 而所求的直线与这组椭圆种的任意椭圆都相交,若所求的直线与直线不平行,则必定存在椭圆与直线l 不相交, 于是,设所求直线的方程为因为此直线被这些椭圆截得的线段长都等于与椭圆,由得得即解得设直线与圆(为参数),相交所得的弦长为d ,则由得 所以所以直线与椭圆(同理可证,对任意,椭圆(为参数)与直线相交所得弦三、解答题:17.解:(Ⅰ)先判断斜三棱柱的三个侧面的形状,分别求出面积再相加,即为斜三棱柱的侧面积.∵侧棱与底面相邻两边、都成角,∴三棱柱的三个侧面中,四边形和是有一个角是,相邻两边长分别为,的平行四边形,第三个侧面是边长分别为,的矩形.∴(Ⅱ)斜三棱柱的体积等于底面积乘高,因为底面三角形是边长为的正三角形,面积易求,所以只需求出222484840x y kx ky k +--+-=k 222484840x y kx ky k +--+-=2y x =l 2y x =2y x b =+2y x b =+2214y x +=22214y x b y x =+⎧⎪⎨+=⎪⎩228440x by b ++-=21212[()4]55x x x x +-=2244()41]88b b ---⨯=2b =±22y x =+222484840x y kx ky k +--+-=k 22248484022x y kx ky k y x ⎧+--+-=⎨=+⎩228(816)880x k x k k +-+-=22221212[()4]55[(21)4(8)]5d x x x x k k k =+-=---=22y x =+222484840x y kx ky k +--+-=k k ∈R 222484840x y kx ky k +--+-=k 22y x =-ABC A B C '''-AA 'AB AC 45ABBA ACCA 45a b a b 2sin 451)S ab ab ab =+=侧a高即可,利用所给线线角的大小即可求出.过作垂直于底面,交底面于点,作,交于点,连接,由题意,则,,∴, ∴18.(Ⅰ)先根据两向量互相垂直等价于二者的数量积等于0,可得到关于的方程,进而得到答案.解:由得, 即;整理得 解得(舍)或 因为,(Ⅱ)先表示出的表达式,再由正弦和余弦定理将角的关系转化为边的关系后代入即得答案.解:因为 由正弦定理和余弦定理可得,,,代入上式得又因为, 故所以.19.(Ⅰ)利用复数的运算法则和复数为实数的充要条件即可得出.解:设(,),又,且为实数,∴,解得. ∴,∵为实数,∴,解得.1A 1A O ABC ABC O 1A D AB ⊥AB DDO AD1A D=AO=1AO=21124V a b ==cos C 0m n =222cos 2sin ()02CA B -+=21cos 2(1cos )0C C +--=22cos cos 10C C +-=cos 1C =-60C =0πC <<60C =sin()A B -sin()sin cos sin cos A B A B B A -=-sinA 2a R =sin 2bB R =222cos 2a c b B ac +-=222cos 2b c a A bc +-=222222222()sin()22224a a c b b b c a a b A BR ac R bc cR +-+---=-=22212a b c-=21sin()sin 442c c A B C cR R -====sin()A B -=z x yi =+x y ∈R 2(2)z i x y i +=++20y +=2y =-2(2)(2)(22)(4)22(2)(2)5z x i x i i x x i i i i i --+++-===---+2z i -45x -=4x =(Ⅱ)利用复数的运算法则和几何意义即可得出.解:∵复数,∴,解得. 即实数的取值范围是.20.(1)由已知,且,解二者联立的方程求出,的值即可得到函数的解析式. 解:由已知,且,解得,, ∴函数的解析式是;(2)将,在区间上恒成立,转化成在区间上恒成立,问题变为求在区间上的最小值问题,求出其最小值,令小于其最小值即可解出所求的范围.解:在(1)的条件下,,即在区间上恒成立, 由于函数在区间上是减函数,且其最小值为1, ∴的取值范围为;(3)是偶函数,可得,求得,由,,可得、异号,设,则,故可得,代入,化简成关于,的代数式,由上述条件判断其符号即可.解:∵是偶函数,∴,∴,由知、异号,不妨设,则,又由得, ,得,又,得,∴的值为正. 21.(1)先根据,(其中为正实常数),求出,然后利用进行求解,注意验证首项;解:∵,(其中为正实常数), ∴∴当时 即,2222()[4(2)i]16(2)8(2)(124)(816)z ai a a a i a a a i +=+-=--+-=+-+-212408160a a a ⎧+-⎨-⎩>>26a <<a 2,6()10a b -+=12ba-=-a b 10a b -+=12ba-=-1a =2b =()f x 2()21f x x x =++()f x x k +>[3,1]--21k x x ++<[3,1]--21x x ++[3,1]--k ()f x x k +>21k x x ++<[3,1]--21y x x =++[3,1]--k (,1)-∞()f x 0b =2()1f x ax =+0mn <0m n +>m n 0m >0n <0m n ->>()()F m F n +m n ()f x 0b =2()1f x ax =+0mn <m n 0m >0n <0m n +>0m n ->>2222()F()()()1(1)()F m n f m f n am an a m n +=-=+-+=-0m n ->>22m n >0a >()()0F m F n +>()()F m F n +n n n n S k a kS k a k+-=-+k (2)n n S a n =-≥1n n n a S S -=-n n n n S k a kS k a k+-=-+k (2)n n S a n =-≥2n ≥11n n n n n a S S a a --=-=-+112n n a a -=212a =-∴(2)先求出,然后根据条件判定的符号,从而确定的单调性,从而求出最大值.解:∵,且对任意的正整数,均有 ∴∴关于是一个单调递减的函数,最大值为. 22.先设,则过的圆的切线方程为,将其与椭圆方程联立,得一一元二次方程,由,整理后即可得,求最大值时使用均值定理,注意等号成立的条件.解:设,则过的圆的切线方程为,代入,得由即 整理可得∴∵ ∴ (当且仅当∴的最大值为11(),221,1n n n a n -⎧-⎪=⎨⎪=⎩≥(1)f n +(1)()f n f n +-()f n ()n n n n S k a kf n k S k a k+-=+-+11111(1)n n n n n n n n n n S k a k S a k a q kf n k k S k a k S a k a q k++++++-++-+=+=+-++-+10a >01q <<n 0n S k ->11(1)()0n n n n n n n n n n S a k a q k S k a kf n f n k k S a k a q k S k a k++++-+-+-=+-++-+-+<()f n n 1111a k a kk a k a k+-+-+00(,)A x y A 200x x y y r +==0△||()AB f r =()f x 00(,)A x y A 200x x y y r +=22221x y a b+=2222242222002220002()0a x a r x a r b x x a b y y y +-+-==0△2222242222002220002()4()()a r x a x a r b a b y y y =+-2222222002)()a b x x y y a b r r-+-=+--(()f x =b x a <<22222a b x ab x +=≥()f x a b -x ()f x =b x a <<()f x a b -。

上海市徐汇区2017年中考数学二模试卷(含解析)

上海市徐汇区2017年中考数学二模试卷(含解析)

2017年上海市徐汇区中考数学二模试卷一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.如果数轴上表示2和﹣4的两点分别是点A和点B,那么点A和点B之间的距离是()A.﹣2 B.2 C.﹣6 D.6.2.已知点M(1﹣2m,m﹣1)在第四象限内,那么m的取值范围是()A.m>1 B.m<C.<m<1 D.m<或m>13.如图,AB∥CD,BE平分∠ABC,∠C=36°,那么∠ABE的大小是()A.18° B.24° C.36° D.54°.4.已知直线y=ax+b(a≠0)经过点A(﹣3,0)和点B(0,2),那么关于x的方程ax+b=0的解是()A.x=﹣3 B.x=﹣1 C.x=0 D.x=25.某校开展“阅读季”活动,小明调查了班级里40名同学计划购书的花费情况,并将结果绘制成如图所示的条形统计图,根据图中相关信息,这次调查获取的样本数据的众数和中位数分别是()A.12和10 B.30和50 C.10和12 D.50和30.6.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,延长DE到F,使得EF=DE,那么四边形ADCF是()A.等腰梯形 B.直角梯形 C.矩形 D.菱形二、填空题(本大题共12题,每题4分,满分48分)7.人体中成熟的红细胞的平均直径为0.0000077m,0.0000077用科学记数法表示为.8.方程=的解是.9.如果反比例函数y=(k≠0)的图象经过点P(﹣1,4),那么k的范围是.10.如果关于x的方程x2+3x﹣k=0有两个不相等的实数根,那么k的取值范围是.11.将抛物线y=x2﹣2x+1向上平移2个单位后,所得抛物线的顶点坐标是.12.在实数,π,3°,tan60°,2中,随机抽取一个数,抽得的数大于2的概率是.13.甲,乙,丙,丁四名跳高运动员赛前几次选拔赛成绩如表所示,根据表中的信息,如果要从中,选择一名成绩好又发挥稳定的运动员参加比赛,那么应选.14.如果t是方程x2﹣2x﹣1=0的根,那么代数式2t2﹣4t的值是.15.如图,四边形DEFG是△ABC的内接矩形,其中D、G分别在边AB,AC上,点E、F在边BC上,DG=2DE,AH是△ABC的高,BC=20,AH=15,那么矩形DEFG的周长是.16.如图,在平行四边形ABCD中,AE⊥CD,垂足为E,AF⊥BC,垂足为F,AD=4,BF=3,∠EAF=60°,设=,如果向量=k(k≠0),那么k的值是.17.如图,在△ABC中,AD平分∠BAC交边BC于点D,BD=AD,AB=3,AC=2,那么AD的长是.18.如图,在△ABC中,∠ACB=α(90°<α<180°),将△ABC绕着点A逆时针旋转2β(0°<β<90°)后得△AED,其中点E、D分别和点B、C对应,联结CD,如果CD⊥ED,请写出一个关于α与β的等量关系的式子.三、(本大题共7题,第19-22题每题10分;第23、24每题12分;第25题14分;满分78分)19.先化简,再求值:÷﹣(其中a=)20.解方程组:.21.某足球特色学校在商场购买甲、乙两种品牌的足球.已知乙种足球比甲种足球每只贵20元,该校分别花费2000元、1400元购买甲、乙两种足球,这样购得甲种足球的数量是购得乙种足球数量的2倍,求甲、乙两种足球的单价各是多少元?22.如图,已知梯形ABCD中,ADǁBC,AC、BD相交于点O,AB⊥AC,AD=CD,AB=3,BC=5.求:(1)tan∠ACD的值;(2)梯形ABCD的面积.23.如图1,在Rt△ABC中,∠ACB=90°,点D是边AB的中点,点E在边BC上,AE=BE,点M是AE 的中点,联结CM,点G在线段CM上,作∠GDN=∠AEB交边BC于N.(1)如图2,当点G和点M重合时,求证:四边形DMEN是菱形;(2)如图1,当点G和点M、C不重合时,求证:DG=DN.24.如图,已知抛物线y=ax2+4(a≠0)与x轴交于点A和点B(2,0),与y轴交于点C,点D是抛物线在第一象限的点.(1)当△ABD的面积为4时,①求点D的坐标;②联结OD,点M是抛物线上的点,且∠MDO=∠BOD,求点M的坐标;(2)直线BD、AD分别与y轴交于点E、F,那么OE+OF的值是否变化,请说明理由.25.如图,已知△ABC中,AB=AC=5,BC=6,点O是边BC上的动点,以点O为圆心,OB为半径作圆O,交AB边于点D,过点D作∠ODP=∠B,交边AC于点P,交圆O与点E.设OB=x.(1)当点P与点C重合时,求PD的长;(2)设AP﹣EP=y,求y关于x的解析式及定义域;(3)联结OP,当OP⊥OD时,试判断以点P为圆心,PC为半径的圆P与圆O的位置关系.2017年上海市徐汇区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.如果数轴上表示2和﹣4的两点分别是点A和点B,那么点A和点B之间的距离是()A.﹣2 B.2 C.﹣6 D.6.【考点】13:数轴.【分析】本题可以采用两种方法:(1)在数轴上直接数出表示﹣4和表示2的两点之间的距离.(2)用较大的数减去较小的数.【解答】解:根据较大的数减去较小的数得:2﹣(﹣4)=6,故选D.【点评】本题考查了数轴,掌握数轴上两点间的距离的计算方法是解题的关键.2.已知点M(1﹣2m,m﹣1)在第四象限内,那么m的取值范围是()A.m>1 B.m<C.<m<1 D.m<或m>1【考点】CB:解一元一次不等式组;D1:点的坐标.【分析】根据坐标系内点的横纵坐标符号特点列出关于m的不等式组求解可得.【解答】解:根据题意,可得:,解不等式①,得:m<,解不等式②,得:m<1,∴m<,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.如图,AB∥CD,BE平分∠ABC,∠C=36°,那么∠ABE的大小是()A.18° B.24° C.36° D.54°.【考点】JA:平行线的性质;IJ:角平分线的定义.【分析】先根据平行线的性质,得出∠ABC=36°,再根据BE平分∠ABC,即可得出∠ABE=∠ABC.【解答】解:∵AB∥CD,∠C=36°,∴∠ABC=36°,又∵BE平分∠ABC,∴∠ABE=∠ABC=18°,故选:A.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.4.已知直线y=ax+b(a≠0)经过点A(﹣3,0)和点B(0,2),那么关于x的方程ax+b=0的解是()A.x=﹣3 B.x=﹣1 C.x=0 D.x=2【考点】FC:一次函数与一元一次方程.【分析】直线y=ax+b与x轴交点的横坐标的值即为关于x的方程ax+b=0的解.【解答】解:∵直线y=ax+b(a≠0)经过点A(﹣3,0),∴关于x的方程ax+b=0的解是x=﹣3.故选A.【点评】本题本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.5.某校开展“阅读季”活动,小明调查了班级里40名同学计划购书的花费情况,并将结果绘制成如图所示的条形统计图,根据图中相关信息,这次调查获取的样本数据的众数和中位数分别是()A.12和10 B.30和50 C.10和12 D.50和30.【考点】VC:条形统计图;W4:中位数;W5:众数.【分析】众数就是出现次数最多的数,据此即可判断,中位数就是大小处于中间位置的数,根据定义判断.【解答】解:这组数据中30元出现次数最多,故众数是:30元;40个数据中位数是第20个数据50元与第21个数据50元的平均数,故中位数是:50元.故选B.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.6.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,延长DE到F,使得EF=DE,那么四边形ADCF是()A.等腰梯形 B.直角梯形 C.矩形 D.菱形【考点】LI:直角梯形;L9:菱形的判定;LC:矩形的判定.【分析】先证明四边形ADCF是平行四边形,再证明AC=DF即可.【解答】解:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE=BC,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形;故选:C.【点评】本题考查了矩形的判定、等腰三角形的性质、平行四边形的判定、三角形中位线定理;熟记对角线相等的平行四边形是矩形是解决问题的关键.二、填空题(本大题共12题,每题4分,满分48分)7.人体中成熟的红细胞的平均直径为0.0000077m,0.0000077用科学记数法表示为7.7×10﹣6.【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000077=7.7×10﹣6,故答案为:7.7×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.方程=的解是x1=2,x2=﹣1 .【考点】AG:无理方程.【分析】将方程两边平方整理得到关于x的一元二次方程,然后求解即可.【解答】解:方程两边平方得,x2﹣x=2,整理得,x2﹣x﹣2=0,解得x1=2,x2=﹣1,经检验,x1=2,x2=﹣1都是原方程的根,所以,方程的解是x1=2,x2=﹣1.故答案为:x1=2,x2=﹣1.【点评】本题主要考查解无理方程的知识点,去掉根号把无理式化成有理方程是解题的关键,注意观察方程的结构特点,把无理方程转化成一元二次方程的形式进行解答,需要同学们仔细掌握.9.如果反比例函数y=(k≠0)的图象经过点P(﹣1,4),那么k的范围是﹣4 .【考点】G6:反比例函数图象上点的坐标特征.【分析】直接把点P(﹣1,4)代入反比例函数y=(k≠0),求出k的值即可.【解答】解:∵反比例函数y=(k≠0)的图象经过点P(﹣1,4),∴4=,解得k=﹣4.故答案为:﹣4.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.10.如果关于x的方程x2+3x﹣k=0有两个不相等的实数根,那么k的取值范围是k>﹣.【考点】AA:根的判别式.【专题】11 :计算题.【分析】利用判别式的意义得到△=32﹣4(﹣k)>0,然后解不等式即可.【解答】解:根据题意得△=32﹣4(﹣k)>0,解得k>﹣.故答案为k>﹣.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.11.将抛物线y=x2﹣2x+1向上平移2个单位后,所得抛物线的顶点坐标是(1,2).【考点】H6:二次函数图象与几何变换.【分析】根据配方法先化为顶点式,再根据上加下减左加右减的原则得出解析式,最后确定顶点坐标即可.【解答】解:y=x2﹣2x+1=(x﹣1)2,平移后的解析式为y=(x﹣1)2+2,∴顶点的坐标为(1,2),故答案为(1,2).【点评】本题考查了二次函数的图象与几何变换,掌握用配方法把一般式化为顶点式以及顶点坐标的求法是解题的关键.12.在实数,π,3°,tan60°,2中,随机抽取一个数,抽得的数大于2的概率是.【考点】X4:概率公式.【分析】先找出大于2的数,再根据概率公式即可得出答案.【解答】解:在实数,π,3°,tan60°,2中,大于2的数有,π,则抽得的数大于2的概率是;故答案为:.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.13.甲,乙,丙,丁四名跳高运动员赛前几次选拔赛成绩如表所示,根据表中的信息,如果要从中,选择一名成绩好又发挥稳定的运动员参加比赛,那么应选甲.【考点】W7:方差;W2:加权平均数.【分析】先确定平均数较大的运动员,再选出方差较小的运动员.【解答】解:因为甲的平均数较大,且甲的方差较小,比较稳定,所以选择甲参加比赛.故答案为:甲.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好14.如果t是方程x2﹣2x﹣1=0的根,那么代数式2t2﹣4t的值是 2 .【考点】A3:一元二次方程的解.【专题】11 :计算题.【分析】根据一元二次方程的解的定义得到t2﹣2t﹣1=0,则t2﹣2t=1,然后利用整体代入的方法计算代数式2t2﹣4t的值.【解答】解:当x=t时,t2﹣2t﹣1=0,则t2﹣2t=1,所以2t2﹣4t=2(t2﹣2t)=2.故答案为2.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.如图,四边形DEFG是△ABC的内接矩形,其中D、G分别在边AB,AC上,点E、F在边BC上,DG=2DE,AH是△ABC的高,BC=20,AH=15,那么矩形DEFG的周长是36 .【考点】S9:相似三角形的判定与性质;LB:矩形的性质.【分析】根据相似三角形的判定和性质结论得到结论.【解答】解:∵DG∥BC,AH⊥BC,∴AH⊥DG,△ADG∽△ABC,∴,即,∴DE=6,∴DG=2DE=12,∴矩形DEFG的周长=2×(6+12)=36.故答案为:36.【点评】本题考查了相似三角形的判定和性质,矩形的性质,熟练掌握相似三角形的判定和性质是解题的关键.16.如图,在平行四边形ABCD中,AE⊥CD,垂足为E,AF⊥BC,垂足为F,AD=4,BF=3,∠EAF=60°,设=,如果向量=k(k≠0),那么k的值是﹣.【考点】LM:*平面向量;L5:平行四边形的性质.【分析】根据AE⊥CD、AF⊥BC及∠EAF=60°可得∠C=120°,由平行四边形得出∠B=∠D=60°、AB∥CD且AB=CD,利用三角函数求得DE=2、AB=6,CE=4,最后可得==﹣=﹣.【解答】解:∵AE⊥CD、AF⊥BC,∴∠AEC=∠AFC=90°,∵∠EAF=60°,∴∠C=360°﹣∠AEC﹣∠AFC=120°,∵四边形ABCD是平行四边形,∴∠B=∠D=60°,∴DE=ADcosD=4×=2,AB===6,则CE=CD﹣DE=AB﹣DE=6﹣2=4,∵AB∥CD,且AB=CD,∴==﹣=﹣=﹣,故答案为:﹣.【点评】本题主要考查四边形内角和、平行四边形的性质、三角函数的应用及平面向量的计算,熟练掌握平行四边形的性质是解题的关键.17.如图,在△ABC中,AD平分∠BAC交边BC于点D,BD=AD,AB=3,AC=2,那么AD的长是.【考点】S9:相似三角形的判定与性质.【分析】根据题意得到△ACD∽△BCA,然后根据题目中的数据即可求得AD的长.【解答】解:∵在△ABC中,AD平分∠BAC交边BC于点D,BD=AD,∴∠BAD=∠CAD,∠BAD=∠ABD,∴∠ABC=∠CAD,又∵∠ACD=∠BCA,∴△ACD∽△BCA,∴,∵BD=AD,AB=3,AC=2,∴,解得,AD=,CD=,故答案为:.【点评】本题考查相似三角形的判定与性质,解答本题的关键是明确题意,找出三角形相似的条件.18.如图,在△ABC中,∠ACB=α(90°<α<180°),将△ABC绕着点A逆时针旋转2β(0°<β<90°)后得△AED,其中点E、D分别和点B、C对应,联结CD,如果CD⊥ED,请写出一个关于α与β的等量关系的式子α+β=180°.【考点】R2:旋转的性质;K7:三角形内角和定理;KH:等腰三角形的性质.【分析】先过A作AF⊥CD,根据旋转的性质,得出∠ADE=∠ACB=α,AC=AD,∠CAD=2β,再根据等腰三角形的性质,即可得到Rt△ADF中,∠DAF+∠ADF=β+α﹣90°=90°,据此可得α与β的等量关系.【解答】解:如图,过A作AF⊥CD,由旋转可得,∠ADE=∠ACB=α,∵CD⊥DE,∴∠ADC=α﹣90°,由旋转可得,AC=AD,∠CAD=2β,∴∠DAF=β,∴Rt△ADF中,∠DAF+∠ADF=90°,即β+α﹣90°=90°,∴α+β=180°.故答案为:α+β=180°.【点评】本题主要考查了旋转的性质,三角形内角和定理以及等腰三角形的性质的综合应用,解决问题的关键是作辅助线构造直角三角形,依据等腰三角形三线合一的性质进行计算.三、(本大题共7题,第19-22题每题10分;第23、24每题12分;第25题14分;满分78分)19.先化简,再求值:÷﹣(其中a=)【考点】6D:分式的化简求值.【分析】先算除法,再算减法,最后把a的值代入进行计算即可.【解答】解:原式=•﹣=(a﹣1)﹣3=a﹣1﹣3=a﹣4.当a=时,原式=﹣4=﹣3.【点评】本题考查的是分式的化简求值,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.20.解方程组:.【考点】AF:高次方程.【分析】由②得出(2x﹣3y)2=16,求出2x﹣3y=±4,把原方程组转化成两个二元一次方程组,求出方程组的解即可.【解答】解:由②得:(2x﹣3y)2=16,2x﹣3y=±4,即原方程组化为和,解得:,,即原方程组的解为:,.【点评】本题考查了解高次方程组,能把高次方程组转化成二元一次方程组是解此题的关键.21.某足球特色学校在商场购买甲、乙两种品牌的足球.已知乙种足球比甲种足球每只贵20元,该校分别花费2000元、1400元购买甲、乙两种足球,这样购得甲种足球的数量是购得乙种足球数量的2倍,求甲、乙两种足球的单价各是多少元?【考点】B7:分式方程的应用.【分析】设购买一个甲品牌的足球需x元,则购买一个乙品牌的足球需(x+20)元,根据购买甲种足球数量是购买乙种足球数量的2倍列出方程解答即可.【解答】解:(1)设购买一个甲种足球需要x元,=×2,解得,x=50,经检验,x=50是原分式方程的解,所以x+20=70(元),答:购买一个甲种足球需50元,一个乙种足球需70元.【点评】本题考查分式方程的应用,关键是根据数量作为等量关系列出方程.22.如图,已知梯形ABCD中,ADǁBC,AC、BD相交于点O,AB⊥AC,AD=CD,AB=3,BC=5.求:(1)tan∠ACD的值;(2)梯形ABCD的面积.【考点】LH:梯形;T7:解直角三角形.【分析】(1)作DE∥AB交BC于E,交AC于M,证出DE⊥AC,由等腰三角形的性质得出AM=CM,证明四边形ABED是平行四边形,得出DE=AB=3,在Rt△ABC中,由勾股定理求出AC=4,得出AM=CM=2,由平行线分线段成比例定理得出DM=EM=DE=,即可求出tan∠ACD==;(2)梯形ABCD的面积=△ABC的面积+△ACD的面积,即可得出答案.【解答】解:(1)作DE∥AB交BC于E,交AC于M,如图所示:∵AB⊥AC,DE∥AB,∴DE⊥AC,∵AD=CD,∴AM=CM,∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形,∴DE=AB=3,在Rt△ABC中,AC===4,∴AM=CM=2,∵AD∥BC,∴DM:EM=AM:CM=1:1,∴DM=EM=DE=,∴tan∠ACD===;(2)梯形ABCD的面积=△ABC的面积+△ACD的面积=×3×4+×4×=9.【点评】本题考查了梯形的性质、等腰三角形的性质、勾股定理、平行线的性质、平行线分线段成比例定理、梯形和三角形面积的计算等知识;本题综合性强,有一定难度.23.如图1,在Rt△ABC中,∠ACB=90°,点D是边AB的中点,点E在边BC上,AE=BE,点M是AE 的中点,联结CM,点G在线段CM上,作∠GDN=∠AEB交边BC于N.(1)如图2,当点G和点M重合时,求证:四边形DMEN是菱形;(2)如图1,当点G和点M、C不重合时,求证:DG=DN.【考点】LA:菱形的判定与性质.【分析】(1)如图2中,首先证明四边形DMEN是平行四边形,再证明ME=MD即可证明.(2)如图1中,取BE的中点F,连接DM、DF.只要证明△DMG≌△DFN即可.【解答】证明:(1)如图2中,∵AM=ME.AD=DB,∴DM∥BE,∴∠GDN+∠DNE=180°,∵∠GDN=∠AEB,∴∠AEB+∠DNE=180°,∴AE∥DN,∴四边形DMEN是平行四边形,∵DM=BE,EM=AE,AE=BE,∴DM=EM,∴四边形DMEN是菱形.(2)如图1中,取BE的中点F,连接DM、DF.由(1)可知四边形EMDF是菱形,∴∠AEB=∠MDF,DM=DF,∴∠GDN=∠AEB,∴∠MDF=∠GDN,∴∠MDG=∠FDN,∵∠DFN=∠AEB=∠MCE,∠GMD=∠EMD+∠CME,、在Rt△ACE中,∵AM=ME,∴CM=ME,∴∠MCE=∠CEM=∠EMD,∴∠DMG=∠DFN,∴△DMG≌△DFN,∴DG=DN.【点评】本题考查菱形的判定和性质、全等三角形的判定和性质、直角三角形斜边中线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.24.如图,已知抛物线y=ax2+4(a≠0)与x轴交于点A和点B(2,0),与y轴交于点C,点D是抛物线在第一象限的点.(1)当△ABD的面积为4时,①求点D的坐标;②联结OD,点M是抛物线上的点,且∠MDO=∠BOD,求点M的坐标;(2)直线BD、AD分别与y轴交于点E、F,那么OE+OF的值是否变化,请说明理由.【考点】HF:二次函数综合题.【分析】(1)先确定出抛物线解析式,①设出点D坐标,用三角形ABD的面积建立方程即可得出点D坐标;②分点M在OD上方,利用内错角相等,两直线平行,即可得出点M的纵坐标,即可得出M的坐标,带你M在OD下方时,求出直线DG的解析式,和抛物线解析式联立求出直线和抛物线的交点即可判断不存在;(2)设出点D的坐标,利用平行线分线段成比例定理表示出OE,OF求和即可得出结论.【解答】解:(1)∵抛物线y=ax2+4(a≠0)与x轴交于点A和点B(2,0),∴A(﹣2,0),4a+4=0,∴a=﹣1,AB=4,∴抛物线的解析式为y=﹣x2+4,①设D(m,﹣m2+4),∵△ABD的面积为4,∴4=×4(﹣m2+4)∴m=±,∵点D在第一象限,∴m=,∴D(,2),②如图1,点M在OD上方时,∵∠MDO=∠BOD,∴DM∥AB,∴M(﹣,2),当M在OD下方时,设DM交x轴于G,设G(n,0),∴OG=n,∵D(,2),∴DG=,∵∠MDO=∠BOD,∴OG=DG,∴,∴n=,∴G(,0),∵D(,2),∴直线DG的解析式为y=﹣2x+6①,∵抛物线的解析式为y=﹣x2+4②,联立①②得,x=,y=2,此时交点刚好是D点,所以在OD下方不存在点M.(2)OE+OF的值不发生变化,理由:如图2,过点D作DH⊥AB于H,∴OF∥DH,∴,设D(b,﹣b2+4),∴AH=b+2,DH=﹣b2+4,∵OA=2,∴,∴OF=,同理:OE=2(2+b),∴OE+OF=2(2﹣b)+2(2+b)=8.【点评】此题是二次函数综合题,主要考查了待定系数法,平行线的判定,平行线分线段成比例定理,解(1)的关键是求出抛物线解析式,难点是分情况求出点M的坐标,解(2)的关键是作出辅助线.25.如图,已知△ABC中,AB=AC=5,BC=6,点O是边BC上的动点,以点O为圆心,OB为半径作圆O,交AB边于点D,过点D作∠ODP=∠B,交边AC于点P,交圆O与点E.设OB=x.(1)当点P与点C重合时,求PD的长;(2)设AP﹣EP=y,求y关于x的解析式及定义域;(3)联结OP,当OP⊥OD时,试判断以点P为圆心,PC为半径的圆P与圆O的位置关系.【考点】MR:圆的综合题.【分析】(1)如图1中,首先求出cos∠B,cos∠A,如图2中,当点P与C重合时,只要证明PA=PD 即可;(2)如图2中,作CG⊥AB于G,OH⊥BD于H.分两种情形①当≤x≤时,如图4中.②当<x<时,如图5中,作PG⊥AB于G.(3)如图6中,连接OP.根据cos∠C=cos∠B==,列出方程,求出两圆的半径,圆心距即可判断.【解答】解:(1)如图1中,作AH⊥BC于H,CG⊥AB于G,∵AB=AC=5,AH⊥BC,∴BH=CH=3,AH=4,∵•BC•AH=•AB•CG,∴CG=,AG==,∴cos∠B=,cos∠BAC=,如图2中,当点P与C重合时,∵OB=OD,∴∠B=∠ODB=∠ACB,∵∠ADO=∠B+∠BOD=∠CDO+∠ADP,∠ODP=∠B,∴∠ADP=∠BOD=∠BAC,∴PA=PD=5;(2)如图2中,作CG⊥AB于G,OH⊥BD于H.∵AD=2AG=,∵BD=2BH=2OB•cos∠B=x,∴x+=5,∴x=,如图3中,当P、E重合时,作EG⊥AD于G.根据对称性可知,B、E关于直线OD对称,∴DB=DE=AE=x,∵cos∠A==,∴=,解得x=,当点D与A重合时x=5,∴x=,当≤x≤时,如图4中,∵y=PA﹣PE=PD﹣PE=DE=BD=x,∴y=x,当<x<时,如图5中,作PG⊥AB于G.∵BD=DE=x,DG=AG=(5﹣x),∴AP=AG÷cos∠A=(5﹣x),∴y=AP﹣EP=(5﹣x)﹣[x﹣(5﹣x)]=﹣x+,综上所述,y=.(3)如图6中,连接OP.连接OP,∵OP⊥AC,∴cos∠C=cos∠B==,∴=,∴x=,PC=,OP=,∵<+,∴以点P为圆心,PC为半径的圆P与圆O的位置关系是相交.【点评】本题考查圆综合题、锐角三角函数、等腰三角形的判定和性质等知识,解题的关键是寻找特殊点解决问题,学会构建方程的解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。

上海市徐汇区高中高三二模数学卷包括答案.doc

上海市徐汇区高中高三二模数学卷包括答案.doc

2017 学年第二学期徐汇区学习能力诊断卷高三数学2018.4一、填空题(本大题共有 12 题,满分 54 分,第 1-6 题每题 4 分,第 7-12 题每题 5 分)考生应在答题纸的相应位置直接填写结果.1.已知全集 U R ,集合 A x x 22x 3 0 ,则 C U A.2.在 x1x6的二项展开式中,常数项是.3.函数 f ( x) lg(3 x 2x ) 的定义域为 _____________.4.已知抛物线 x2ay 的准线方程是 y1,则 a .3245.若一个球的体积为 ,则该球的表面积为 _________.3x ,6.已知实数 x , y 满足,则目标函数 zx y 的最小值为 ___________.y 0x y .1sin x cos x 217.函数 f ( x)的最小正周期是 ___________.118.若一圆锥的底面半径为3,体积是 12 ,则该圆锥的侧面积等于.9.将两颗质地均匀的骰子抛掷一次,记第一颗骰子出现的点数是r m ,记第二颗骰子出现的rm 2,2 n r r.点数是 n ,向量 a,向量 b 1,1 ,则向量 ab 的概率 是..10.已知直线 l 1 : mx y 0,l 2 : x my m2 0 . 当 m 在实数围变化时, l 1 与 l 2 的交点 P恒在一个定圆上,则定圆方程是.11 . 若 函 数f ( x) 2( x 1)2sin x的 最 大 值 和 最 小 值 分 别 为 M 、 m , 则 函 数x 2 1g( x)Mm x sin Mm x 1 图像的一个对称中心是.r rr 8 r 4, 若 对 任 意 的12 . 已 知 向 量 a, b 满 足 | a |15、| b |15( x, y)r r1,xyr r( x, y) | xa yb | , 都 有 | x y | 1 成 立 , 则 a b 的 最 小 值为 .二、选择题(本大题共有 4 题,满分 20 分,每题5分)每题有且只有一个正确选项。

徐汇区2018届高三数学二模试卷及答案,2017学年第二学期徐汇区学习能力诊断卷高三数学试卷及答案

徐汇区2018届高三数学二模试卷及答案,2017学年第二学期徐汇区学习能力诊断卷高三数学试卷及答案

2017学年第二学期徐汇区学习能力诊断卷高三数学 2018.4一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 考生应在答题纸的相应位置直接填写结果.1.已知全集R U =,集合{}0322>--=x x x A ,则=A C U .2.在61x x ⎛⎫+ ⎪⎝⎭的二项展开式中,常数项是 .3.函数()lg(32)xxf x =-的定义域为_____________. 4.已知抛物线2x ay =的准线方程是14y =-,则a = . 5.若一个球的体积为323π,则该球的表面积为_________. 6.已知实数x y ,满足001x y x y ≥⎧⎪≥⎨⎪+≤⎩,,. 则目标函数z x y =-的最小值为___________.7.函数()2sin cos 1()11x x f x +-=的最小正周期是___________.8.若一圆锥的底面半径为3,体积是12π,则该圆锥的侧面积等于 .9.将两颗质地均匀的骰子抛掷一次,记第一颗骰子出现的点数是m ,记第二颗骰子出现的点数是n ,向量()2,2a m n =--,向量()1,1b =,则向量a b ⊥的概率..是 . 10.已知直线12:0,:20l mx y l x my m -=+--=.当m 在实数范围内变化时,1l 与2l 的交点P 恒在一个定圆上,则定圆方程是 .11.若函数222(1)sin ()1x x f x x ++=+的最大值和最小值分别为M 、m ,则函数()()()sin 1g x M m x M m x =+++-⎡⎤⎣⎦图像的一个对称中心是 .12.已知向量,a b 的夹角为锐角,且满足||a =、||b =,若对任意的{}(,)(,)||1,0x y x y xa yb xy ∈+=>,都有||1x y +≤成立,则a b ⋅的最小值为 .NMD 1C 1B 1A 1DCBA二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项。

(完整版)2017年徐汇区高考数学二模试卷含答案,推荐文档

(完整版)2017年徐汇区高考数学二模试卷含答案,推荐文档

2017年徐汇区高考数学二模试卷含答案2017.4一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1. 设全集,集合,则=____________.{}1,2,3,4U ={}2|540,A x x x x Z =-+<∈UC A2. 参数方程为(为参数)的曲线的焦点坐标为____________.22x t y t⎧=⎨=⎩t 3. 已知复数满足,则的取值范围是____________.z 1z =2z -4. 设数列的前项和为,若,则=____________.{}n a n n S *21()3n n S a n N =-∈lim n n S →∞5. 若的二项展开式中前三项的系数依次成等差数列,则_____.*1()(4,)2nx n n N x+≥∈n =6.把分别写在张形状大小一样的卡片上,随机抽取一张卡片,则抽到写着偶数或大12345678910、、、、、、、、、10于的数的卡片的概率为____________.(结果用最简分数表示)67. 若行列式中元素的代数余子式的值为,则实数的取值集合为___________.124cossin 022sin cos822x xx x 412x 8. 满足约束条件的目标函数的最小值是____________.22x y +≤z y x =-9. 已知函数.若函数有两个不同的零点,则实数的取值范2log 02()25()239x x x f x x <<⎧⎪=⎨+≥⎪⎩,,()()g x f x k =-k 围是____________.10. 某部门有8位员工,其中6位员工的月工资分别为8200,8300,8500,9100,9500,9600(单位:元),另两位员工的月工资数据不清楚,但两人的月工资和为17000元,则这8位员工月工资的中位数可能的最大值为____________元.11.如图:在中,为上不同于的任意一点,点满足ABC ∆M BC ,B C N .若,则的最小值为____________.2AN NM = AN xAB y AC =+229x y +12. 设单调函数的定义域为,值域为,如果单调函数使得函数的值域()y p x =D A ()y q x =(())y p q x =也是,则称函数是函数的一个“保值域函数”.A ()y q x =()y p x =已知定义域为的函数,函数与互为反函数,且是的一个“保[],a b 2()3h x x =-()f x ()g x ()h x ()f x 值域函数”,是的一个“保值域函数”,则___________.()g x ()h x b a -=二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13. “”是“”的( ) 1x >11x<(A )充分非必要条件 (B )必要非充分条件(C )充要条件(D )既非充分也非必要条件14. 《九章算术》是我国古代数学著作,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为尺,米堆的高为尺,问米堆的体积及堆放的米各为多少?”已知一85斛米的体积约为立方尺,由此估算出堆放的米约有( )1.62(A )斛(B )斛(C )斛(D )斛2134556315. 将函数的图像按向量平移,得到的函数图像与函数的图像1y x=-(1,0)a = 2sin (24)y x x π=-≤≤的所有交点的横坐标之和等于()(A )(B )(C )(D )246816. 过椭圆右焦点的圆与圆外切,则该圆直径的端点的轨221(4)4x y m m m +=>-F 22:1O x y +=FQ Q 迹是( )(A )一条射线(B )两条射线(C )双曲线的一支(D )抛物线三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17. (本题满分14分,第1小题满分6分,第2小题满分8分)如图:在四棱锥中,⊥平面,底面是P ABCD -PA ABCD ABCD 正方形,.2PA AD ==(1)求异面直线与所成角的大小(结果用反三角函数值表示)PC AB (2)若点、分别是棱和的中点,求证:⊥平面E F AD PC EF .PBC 18. (本题满分14分,第1小题满分6分,第2小题满分8分)已知函数是偶函数.41()2x xm f x ⋅+=(1)求实数的值;m (2)若关于的不等式在上恒成立,求实数的取值范围.x 22()31k f x k ⋅>+(,0)-∞k 19. (本题满分14分,第1小题满分7分,第2小题满分7分)如图所示:湖面上甲、乙、丙三艘船沿着同一条直线航行,某一时刻,甲船在最前面的点处,乙船在中间的点处,丙A B 船在最后面的点处,且.一架无人机在空中C :3:1BC AB =的点处对它们进行数据测量,在同一时刻测得,P 030APB ∠=.(船只与无人机的大小及其它因素忽略不计)090BPC ∠=(1)求此时无人机到甲、丙两船的距离之比;(2)若此时甲、乙两船相距米,求无人机到丙船的距100离.(精确到米)120.(本题满分16分,第1小题满分4分,第2小题满分7分,第3小题满分5分)如图:椭圆与双曲线有相同的焦点,它们在轴右侧有2212x y +=22221(0,0)x y a b a b-=>>12F F 、y 两个交点、,满足.将直线左侧的椭圆部分(含,两点)记为曲线,直线A B 220F A F B +=AB A B 1W 右侧的双曲线部分(不含,两点)记为曲线.以为端点作一条射线,分别交于点AB A B 2W 1F 1W ,交于点(点在第一象限),设此时=.(,)p p P x y 2W (,)M M M x y M M F 11m F P ⋅(1)求的方程; 2W (2)证明:,并探索直线与斜率之间的关系;1p x m=2MF 2PF (3)设直线交于点,求的面积的取值范围.2MF 1W N 1MF N ∆S 21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)现有正整数构成的数表如下: 第一行: 1第二行: 1 2第三行: 1 1 2 3第四行: 1 1 2 1 1 2 3 4第五行: 1 1 2 1 1 2 3 1 1 2 1 1 2 3 4 5…… …… ……第行:先抄写第1行,接着按原序抄写第2行,然后按原序抄写第3行,⋯,直至按原序抄写第行,k 1k -最后添上数.(如第四行,先抄写第一行的数1,接着按原序抄写第二行的数1,2,接着按k 原序抄写第三行的数1,1,2,3,最后添上数4).将按照上述方式写下的第个数记作(如,,,,⋯,,⋯,n n a 11a =21a =32a =41a =73a =).14153,4,a a == (1)用表示数表第行的数的个数,求数列的前项和;k t k {}k t k k T (2)第8行中的数是否超过73个?若是,用表示第8行中的第73个数,试求和的值;0n a 0n 0na若不是,请说明理由;(3)令,求的值.123n n S a a a a =++++ 2017S参考答案一、填空题:(共54分,第1~6题每题4分;第7~12题每题5分)1.2.3.4. 5. 6.{}1,4(1,0)[]1,3187107. 8.9.10.11.12. 1|2,3x x k k Z ππ⎧⎫=±∈⎨⎬⎩⎭2-5(,1)9880025二、选择题:(共20分,每题5分)13. A 14. A 15. D 16. C三、解答题17、解:(1)以点A 为原点,以AB 方向为x 轴正方向,AD 方向为y 轴正方向,建立空间直角坐标系,则,--------2分(0,0,2),(0,0,0),(2,0,0),(2,2,0),(0,2,0)P A B C D 所以,,--------4分(2,2,2),(2,0,0)PC AB =-=设的夹角为,,PC ABα则分cos PC AB PC AB α⋅===⋅所以,的夹角为,,PC AB即异面直线PC 与AB 所成角的大小为.--------6分(2)因为点、分别是棱和的中点,E F AD PC 可得,,所以,--------8分(0,1,0)E (1,1,1)F (1,0,1)EF =又,,--------10分(0,2,0)BC = (2,2,2)PC =-计算可得,--------12分0,0EF PC EF BC ⋅=⋅=所以,,又,所以EF ⊥平面PBC .--------14分,EF PC EF BC ⊥⊥PC BC C =18、(1) 因为函数是定义域为R 的偶函数,所以有,-2分41()2x xm f x ⋅+=()()f x f x -=即, 414122x x x xm m --⋅+⋅+=即, ------------------------------4分44122x x x xm m +⋅+=故m =1.-----------------------------------------6分(2),且在上恒成立,241()0,3102x xf x k +=>+>22()31k f x k ⋅>+(,0)-∞故原不等式等价于在上恒成立,--------------------8分22131()k k f x >+(,0)-∞又x ,所以, -------------------------------------10分∈(,0)-∞()()2,f x ∈+∞所以,----------------------------11分110,()2f x ⎛⎫∈ ⎪⎝⎭从而,----------------------------12分221312k k ≥+因此,. -------------------------------------------------------------------14分1,13k ⎡⎤∈⎢⎥⎣⎦19、(1)在中,由正弦定理,得APB ∆1sin sin 2AP AB ABABP APB==∠∠,-----------2分在中,由正弦定理,得 BPC ∆sin sin 1CP BC BCCBP CPB ==∠∠,-----------4分 又,,--------------------------------------------6分31BC AB =sin sin ABP CBP ∠=∠故.即无人机到甲、丙两船的距离之比为.-----------------------7分23AP CP =23(2)由得AC =400,且, ------------------------------9分:3:1BC AB =0120APC ∠= 由(1),可设AP =2x ,则CP =3x , ---------------------------------------------10分 在中,由余弦定理,得160000=(2x )2+(3x )2-2(2x )(3x )cos1200,------12分APC ∆解得x=CBAP即无人机到丙船的距离为CP =3x米. ----14分275≈20、解:(1)由条件,得,根据知,F 2、A 、B 三点共线,2(1,0)F 220F A F B +=且由椭圆与双曲线的对称性知,A 、B 关于x 轴对称,故AB 所在直线为x =1,从而得,.--------------2分A (1,B所以,,又因为为双曲线的焦点,所以,221112a b-=2F 221a b +=解得. ---------------------------------------------------------------3分2212a b ==因此,的方程为(). ------------4分2W 2211122x y -=1x >(2) 由P (x p ,y p )、M (x M ,y M ),得=(x p +1,y p ),=(x M +1,y M ),1F P 1F M由条件,得,即, ---------------5分1(1)M p M p x m x y my +=+⎧⎪⎨=⎪⎩1M p Mp x mx m y my =+-⎧⎪⎨=⎪⎩由P (x p ,y p )、M (x M ,y M )分别在曲线和上,有1W 2W,消去y p ,得2222122(1)2()1p p p p x y mx m my ⎧+=⎪⎨⎪+--=⎩(*) ---------------7分2234(1)140p p m x m m x m +-+-=将代入方程(*),成立,因此(*)有一根,结合韦达定理得另一根为,因为1m 1p x m =143p m x m-=,所以<-1,舍去.1m >143p mx m-=所以,. -----------------------------------------------------8分1p x m=从而点坐标为(,P 1m所以,直线的斜率,-------------------------------------9分2PF 2PF k =由,得M (1M p x mx m m =+-=m 所以,直线的斜率.--------------------10分2MF 2MF k =因此,与斜率之和为零. ---------------------------------11分2MF 2PF (3)由(2)知直线与关于x 轴对称,结合椭圆的对称性知点P 与点N 关于x 轴对称,故(,2PF 2NF N m1), -----------------------------12分1m-212-m 因此,S=⨯|F 1F 2|(|y M |+|y N |)=⨯2(+)2121212-m m 1212-m =+,-----------14分212-m 2211m -因为S 在上单调递增, ----------------------------------15分()1,+∞所以,S 的取值范围是.----------------------------------------------------16分)+∞21、解:(1)当时,2k ≥ ,----------------------------------------------------------------2分1211k k t t t t -=+++ ,1121k k t t t t +=+++ 于是,即,又, ---------------------3分1k k k t t t +-=12k k t t +=2112,1t t t == 所以,12k k t -=故. ---------------4分21122221k k k T -=++++=- (2)由得第8行中共有27=128个数,12k k t -=所以,第8行中的数超过73个,-------6分,-----7分707732173200n T =+=-+=从而,,020073n a a a ==由26-1=63<73,27-1=127>73,所以,按上述顺序依次写下的第73个数应是第7行的第73-63=10个数,同上过程知=2,--------------------------------------------------------9分7310a a =所以,.--------------------------------------------------------------10分02n a =(3)由于数表的前n 行共有个数,于是,先计算.21n-21n S -方法一:在前个数中,共有1个,2个,22个,……,2n -k 个,21n-n 1n -2n -k ……,2n-1个1, ---------------------------------------------------12分 因此=n ×1+(n -1)×2+…+ k ×2n -k +…+2×2n -2+1×2n -121n S - 则2×=n ×2+(n -1)×22+…+ k ×2n-k+1+…+2×2n-1+1×2n 21n S -两式相减,得=+2+22+…+2n-1+2n =2n+1-n -2.------------15分21n S -n -方法二:由此数表构成的过程知,,---------------12分121212n n S S n ---=+则+n +2=2(+n +1),21n S -121n S --即数列{+n +2}是以S 1+1+2=4为首项,2为公比的等比数列,21n S -所以+n +2=4×2n-1,即=2n+1-n -2. ------------------------------15分21n S -21n S -S 2017=+S 994 -----------------------------------------------------------------16分1021S -=++S 4831021S -921S -=+++S 2281021S -921S -821S -=++++S 1011021S -921S -821S -721S -=+++++S 381021S -921S -821S -721S -621S -=++++++S 71021S -921S -821S -721S -621S -521S -=(211-12)+(210-11)+(29-10)+(28-9)+(27-8)+(26-7)+(24-5)=3986. ------------------------------------------------------------------------18分。

上海市徐汇区2021-2022学年度高考二模数学试题及答案解析

上海市徐汇区2021-2022学年度高考二模数学试题及答案解析

2017-2018学年第二学期徐汇区学习能力诊断卷高三数学 2018.4一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 考生应在答题纸的相应位置直接填写结果.1.已知全集R U =,集合{}0322>--=x x x A ,则=A C U .2.在61x x ⎛⎫+ ⎪⎝⎭的二项展开式中,常数项是.3.函数()lg(32)x xf x =-的定义域为_____________.4.已知抛物线2x ay =的准线方程是14y =-,则a =.5.若一个球的体积为323π,则该球的表面积为_________.6.已知实数x y ,满足001x y x y ≥⎧⎪≥⎨⎪+≤⎩,,.则目标函数z x y =-的最小值为___________.7.函数()2sin cos 1()11x x f x +-=的最小正周期是___________.8.若一圆锥的底面半径为3,体积是12π,则该圆锥的侧面积等于.9.将两颗质地均匀的骰子抛掷一次,记第一颗骰子出现的点数是m ,记第二颗骰子出现的点数是n ,向量()2,2a m n =--,向量()1,1b =,则向量a b ⊥的概率..是. 10.已知直线12:0,:20l mx y l x my m -=+--=.当m 在实数范围内变化时,1l 与2l 的交点P 恒在一个定圆上,则定圆方程是.11.若函数222(1)sin ()1x xf x x ++=+的最大值和最小值分别为M 、m ,则函数()()()sin 1g x M m x M m x =+++-⎡⎤⎣⎦图像的一个对称中心是.12.已知向量,a b 的夹角为锐角,且满足||15a =、||b =,若对任意的{}(,)(,)||1,0x y x y xa yb xy ∈+=>,都有||1x y +≤成立,则a b ⋅的最小值为.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项。

2017届上海各区高三数学二模试卷汇总

2017届上海各区高三数学二模试卷汇总

第 33 页 共 57 页
第 34 页 共 57 页
第 35 页 共 57 页
第 36 页 共 57 页
第 37 页 共 57 页
第 38 页 共 57 页
第 39 页 共 57 页
第 40 页 共 57 页
第 41 页 共 57 页
第 42 页 共 57 页
第 43 页 共 57 页
第 44 页 共 57 页
第 45 页 共 57 页
第 46 页 共 57 页
第 47 页 共 57 页
第 48 页 共 57 页
第 49 页 共 57 页
第 50 页 共 57 页
第 51 页 共 57 页
第 52 页 共 57 页
第 53 页 共 57 页Fra bibliotek第 54 页 共 57 页
2017 届上海各区高三数学二模试卷汇总
第 1 页 共 57 页
第 2 页 共 57 页
第 3 页 共 57 页
第 4 页 共 57 页
第 5 页 共 57 页
第 6 页 共 57 页
第 7 页 共 57 页
第 8 页 共 57 页
第 9 页 共 57 页
第 10 页 共 57 页
第 55 页 共 57 页
第 56 页 共 57 页
第 57 页 共 57 页
第 11 页 共 57 页
第 12 页 共 57 页
第 13 页 共 57 页
第 14 页 共 57 页
第 15 页 共 57 页
第 16 页 共 57 页
第 17 页 共 57 页
第 18 页 共 57 页
第 19 页 共 57 页
第 20 页 共 57 页

2017徐汇数学二模分析

2017徐汇数学二模分析
DG AH DE 2DE 15 DE DE 6, DG 12 CDEFG 2 18 36 BC AH 20 15
A

.
D B
G C
E
H 图4
F
16、如图 5,在□ ABCD 中, AE CD ,垂足为 E , AF BC ,垂足为
A F D E C 图5
10 8
(B) 30 和 50 ; (D) 50 和 30 . 0 20 30 50 图 2 80
100 费用(元)
【分析】 (九年级下学期)统计初步 【答案】B(混淆点:调查的是花费情况,即答案是 x 轴的数据) 6、如图 3,在 △ABC 中, AC BC ,点 D 、 E 分别是边 AB 、 AC 的中点, 延长 DE 到 F 使得 EF DE ,那么四边形 ADCF 是( (A)等腰梯形; (B)直角梯形; (C)矩形; ) (D) 菱形.
12、在实数 5 、 、 30 、 tan 60 、 2 中,随机抽取一个数,抽得的数大于 2 的概率是 【分析】 (七年级下学期、八年级下学期)实数的概念、概率初步 【答案】
2 ( 5 和 ) 5

.
13、甲、乙、丙、丁四名跳高运动员赛前几次选拔赛成绩如表 1 所示,根据表中的信息,如果要从中选择 一名成绩好又发挥稳定的运动员参加比赛,那么应该选 (表 1) 甲 平均数( cm ) 方差 185 3.6 乙 180 3.6 丙 185 7.9 丁 180 8.2 ▲ .
【答案】B
3、如图 1, AB / / CD , BE 平分 ABC , C 36 ,那么 ABE 的大小是( (A) 18 ; 【答案】A (B) 24 ; (C) 36 ; 【分析】 (六年级下学期,七年级下学期)角度计算、平行线与内错角

【2017年整理】徐汇高三数学二模

【2017年整理】徐汇高三数学二模

2014学年第二学期徐汇区学习能力诊断卷高三年级数学学科(理科)2015.4一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得0分.1.已知集合1=1,22A ⎧⎫⎨⎬⎩⎭,,集合{}2=|,B y y x x A =∈,则A B = .2.若复数i i z (21-=为虚数单位),则=+⋅z z z .3.已知直线l的一个法向量是(1,n =,则此直线的倾斜角的大小为 .4.某中学采用系统抽样的方法从该校高一年级全体800名学生中抽取50名学生进行体能测试.现将800名学生从1到800进行编号,求得间隔数1650800==k .若从16~1中随机抽取1个数的结果是抽到了7,则在编号为48~33的这16个学生中抽取的一名学生其编号应该是 . 5.在ABC ∆中,角,,A B C 所对的边分别为,,a b c,若2,3a c A π===,则ABC ∆的面积为 .6.设函数)12(log )(2+=x x f ,则不等式)(2x f 12(log 5)f -≤的解为 .7.直线y x =与曲线3cos :4sin x C y θθ=⎧⎨=⎩(θ为参数,2πθπ≤≤)的交点坐标是 .8.甲、乙两人各进行一次射击,假设两人击中目标的概率分别是0.6和0.7,且射击结果相互独立,则甲、乙至多一人击中目标的概率为 . 9.矩阵1211222232332123in i n i n n ninn a a a a a a a a a n a a a ⎛⎫⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭中每一行都构成公比为2的等比数列,第i 列各元素之和为i S ,则2lim2nnn S n →∞=⋅ .10.如图所示:在直三棱柱111ABC A B C -中,AB BC ⊥,1AB BC BB ==,则平面11A B C 与平面ABC 所成的二面角的大小为 . 11.执行如图所示的程序框图,输出的结果为a ,二项式42的展开式中3x 项的系数为2a ,则常数m = .12.设)(x f 是定义域为R 的奇函数,)(x g 是定义域为R 的偶函数,若函数)()(x g x f +的值域为)3,1[,则函数)()(x g x f -的值域为 .13.ABC ∆所在平面上一点P 满足()0,PA PC mAB m m +=>为常数,若ABP ∆的面积为6,则ABC ∆的面积为 .14.对于曲线C 所在平面上的定点0P ,若存在以点0P 为顶点的角α,使得0AP B α≥∠对于曲线C 上的任意两个不同的点B A ,恒成立,则称角α为曲线C 相对于点0P 的“界角”,并称其中最小的“界角”为曲线C相对于CBAC1B 1A 1点0P 的“确界角”.曲线⎪⎩⎪⎨⎧<--≥+=)0(12)0(1:22x x x x y C 相对于坐标原点O 的“确界角”的大小是 .二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得0分.15.下列不等式中,与不等式302x x-≥-同解的是( ) (A )()()320x x --≥ (B )()()320x x -->(C )203x x -≥- (D )302xx -≥- 16.设M N 、为两个随机事件,如果M N 、为互斥事件,那么( ) (A )M N ⋃是必然事件 (B )M N ⋃是必然事件 (C )M 与N 一定为互斥事件 (D )M 与N 一定不为互斥事件 17.在极坐标系中,与曲线1cos +=θρ关于直线6πθ=(R ∈ρ)对称的曲线的极坐标方程是( )(A )1)3sin(++=θπρ (B )1)3sin(+-=θπρ (C )1)6sin(++=θπρ (D )1)6sin(+-=θπρ18.已知函数2()sin f x x x =⋅,各项均不相等的数列{}n x 满足2i x π≤(1,2,3,,)i n = .令[]*1212()()()()()()n n F n x x x f x f x f x n N =+++⋅++∈ .给出下列三个命题:(1)存在不少于3项的数列{}n x ,使得()0F n =;(2)若数列{}n x 的通项公式为()*12nn x n N ⎛⎫=-∈ ⎪⎝⎭,则(2)0F k >对*k N ∈恒成立;(3)若数列{}n x 是等差数列,则()0F n ≥对*n N ∈恒成立.其中真命题的序号是( )(A )(1)(2) (B )(1)(3) (C ) (2)(3) (D )(1)(2)(3)三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分) 本题共有2个小题,第1小题满分6分,第2小题满分6分.如图,在Rt AOB ∆中,6OAB π∠=,斜边4AB =,D 是AB 的中点.现将Rt AOB∆以直角边AO 为轴旋转一周得到一个圆锥,点C 为圆锥底面圆周上的一点,且2BOC π∠=.(1)求该圆锥的全面积;(2)求异面直线AO 与CD 所成角的大小. (结果用反三角函数值表示)20.(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.一个随机变量ξ的概率分布律如下:其中,,A B C 为锐角三角形ABC 的三个内角.(1)求A 的值;(2)若1cos x B =,2sin x C =,求数学期望E ξ的取值范围.21.(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.用细钢管焊接而成的花坛围栏构件如右图所示,它的外框是一个等腰梯形PQRS ,内部是一段抛物线和一根横梁.抛物线的顶点与梯形上底中点是焊接点O ,梯形的腰紧靠在抛物线上,两条腰的中点是梯形的腰、抛物线以及横梁的焊接点,A B ,抛物线与梯形下底的两个焊接点为,C D .已知梯形的高是40厘米,C D 、两点间的距离为40厘米.(1)求横梁AB 的长度;(2)求梯形外框的用料长度.(注:细钢管的粗细等因素忽略不计,计算结果精确到1厘米.)22.(本题满分16分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知函数11()2f x x x ⎛⎫=+ ⎪⎝⎭,11()2g x x x ⎛⎫=- ⎪⎝⎭.(1)求函数()()()2h x f x g x =+的零点;(2)若直线():0,,l ax by c a b c ++=为常数与()f x 的图像交于不同的两点A B 、,与()g x 的图像交于不同的两点C D 、,求证:AC BD =; (3)求函数()()()22*()nnF x f x g x n N =-∈⎡⎤⎡⎤⎣⎦⎣⎦的最小值.S RPQD CBAO23.(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.对于一组向量n a a a a ,,,,321 (*n N ∈),令n n a a a a S ++++= 321,如果存在p a ({}1,2,3,p n ∈ ),使得||||p n p a S a -≥,那么称p a 是该向量组的“h 向量”.(1)设),(n x n a n +=(*n N ∈),若3a是向量组321,,a a a 的“h 向量”,求实数x 的取值范围;(2)若))1(,)31((1n n n a -=-(*N n ∈),向量组n a a a a ,,,,321 是否存在“h 向量”?给出你的结论并说明理由;(3)已知123a a a、、均是向量组321,,a a a 的“h 向量”,其中)cos ,(sin 1x x a =, )sin 2,cos 2(2x x a =.设在平面直角坐标系中有一点列n Q Q Q Q ,,,,321 满足:1Q 为坐标原点,2Q 为3a 的位置向量的终点,且12+k Q 与k Q 2关于点1Q 对称,22+k Q 与12+k Q (*N k ∈)关于点2Q 对称,求||20142013Q Q 的最小值.理科参考答案一、填空题:(每题4分)1. {}12. 62i -3. 6π4. 395.6. 0x ≤7. 1212,55⎛⎫-- ⎪⎝⎭ 8. 0.58 9. 14 10. 4π 11. 14 12. (]3,1-- 13. 12 14. 512π二、选择题:(每题5分)15. D 16. A 17. C 18. D三、解答题 19、解:(1)在Rt AOB ∆中,2OB =,即圆锥底面半径为2 圆锥的侧面积8S rl ππ==侧………………..4’故圆锥的全面积=+8+412S S S πππ==全侧底……………….6’ (2)解法一:如图建立空间直角坐标系.则(2,0,0),(0,1A C D(0,0,(2,1AO CD ∴=-=-………………..8’ 设AO 与CD所成角为θ则cos AO CD AO CD θ⋅===⋅ ..10’ ∴异面直线AO 与CD所成角为arc ………………..12’ 解法二:过D 作//DM AO 交BO 于M ,连CM则CDM ∠为异面直线AO 与CD 所成角………………..8’ AO OBC⊥平面Q D M O B C ∴⊥平面DM MC ∴⊥ 在Rt AOB ∆中,AO =DM ∴=D Q 是AB 的中点 M ∴是OB 的中点 1OM∴=CM ∴在Rt CDM ∆中,tan CDM ∠==,………………..10’ CDM ∴∠=AO 与CD 所成角的大小为……………….12’20、解:(1)由题()cos2sin 1A B C ++=,………………..2’ 则212sin sin 1A A -+=()1sin sin 02A A ⇒==舍………………..4’ 又A 为锐角,得6A π=………………..6’(2)由6A π=y得56B C π+=,则()1cos 2=sin 2A B C +=,即()()1212P x P x ξξ====…………..8’ 11cos sin 22E B C ξ⇒=+………………..9’1513cos sin sin 26244C C C C π⎛⎫=-+=- ⎪⎝⎭6C π⎛⎫=- ⎪⎝⎭, ………………..11’ 由ABC ∆为锐角三角形,得0,2,,3266350,62C C C B C ππππππππ⎧⎛⎫∈ ⎪⎪⎪⎝⎭⎛⎫⎛⎫⇒∈⇒-∈⎨ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎪=-∈ ⎪⎪⎝⎭⎩则1sin 62C π⎛⎛⎫-∈ ⎪ ⎝⎭⎝⎭,得34E ξ⎫∈⎪⎪⎝⎭………………..14’21、解:(1)如图,以O 为原点,梯形的上底所在直线为x 轴,建立直角坐标系 设梯形下底与y 轴交于点M ,抛物线的方程为:()220x py p =<由题意()20,40D -,得5p =-,210x y =-……….3’取20y x =-⇒=±即()()20,20A B ---()28AB cm =≈答:横梁AB 的长度约为28cm ………………..6’(2)由题意,得梯形腰的中点是梯形的腰与抛物线唯一的公共点设(():200RQ l y k x k +=-<………………..7’(()2220101002010y k x x kx x y ⎧+=-⎪⇒+-=⎨=-⎪⎩则()210040020k k ∆=++=⇒=-:20RQ l y =-+…………..10’得()(),40Q R-OQ MR RQ ⇒===梯形周长为(()2141cm =≈答:制作梯形外框的用料长度约为141cm ………………..14’ y xS RPQM DCBAO22、解:(1)由题31()0223x h x x x =-=⇒=±,函数()h x的零点为3x =±…………4’ (2)设()()()()11223344,,,,,,,A x y B x y C x y D x y()2220112ax by c a b x cx b y x x ++=⎧⎪⇒+++=⎨⎛⎫=+ ⎪⎪⎝⎭⎩,则1222c x x a b +=-+………………..8’ 同理由()2220112ax by c a b x cx b y x x ++=⎧⎪⇒++-=⎨⎛⎫=- ⎪⎪⎝⎭⎩,则3422c x x a b +=-+ 则AB 中点与CD 中点重合,即AC BD =………………..10’(3)由题222111()2n nnF x x x x x ⎡⎤⎛⎫⎛⎫=+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()1223262362212222222122222n n n n n nn n n n n C x C x C x C x ------=++++ ………………..12’ ()()()()12222326622362262122222222212n n n n n n n n n n n n n n n C x x C x x C x x C x x ----------⎡⎤=++++++++⎣⎦ ()13232122222122222n n n n n n n C C C C --≥++++ ……………….14’ 1≥,当且仅当1x =±时,等号成立所以函数()F x 的最小值为1………………..16’23、解:(1)由题意,得:||||213a a a +≥,则22)32(9)3(9++≥++x x ………………..2’解得:02≤≤-x ………………..4’(2) 1a 是向量组n a a a a ,,,,321 的“h 向量”,证明如下:)1,1(1-=a ,2||1=a当n 为奇数时,)0,)31(2121()0,311])31(1[31(1132--⋅-=--=+++n n n a a a ………………..6’ 111110()2232n -≤-⋅<,故=+++||32n a a a 2210])31(2121[221<<+⋅--n ………8’ 即||||321n a a a a +++> 当n 为偶数时,)1,)31(2121(132-⋅-=+++n n a a a 故=+++||32n a a a 2451])31(2121[221<<+⋅--n 即||||321n a a a a +++>综合得:1a 是向量组n a a a a ,,,,321 的“h 向量”………………..10’ (3)由题意,得:||||321a a a +≥,23221||||a a a +≥,即23221)(a a a +≥即322322212a a a a a ⋅++≥,同理312321222a a a a a ⋅++≥,212221232a a a a a ⋅++≥ 三式相加并化简,得:3231212322212220a a a a a a a a a ⋅+⋅+⋅+++≥即0)(2321≤++a a a ,0||321≤++a a a ,所以0321=++a a a ………………..13’ 设),(3v u a =,由0321=++a a a 得:⎩⎨⎧--=--=xx v xx u sin 2cos cos 2sin设),(n n n y x Q ,则依题意得:⎩⎨⎧-=-=++++++),(),(2),(),(),(2),(121222222222111212k k k k k k k k y x y x y x y x y x y x ,得),()],(),[(2),(2211222222k k k k y x y x y x y x +-=++ 故),()],(),[(2),(2211222222y x y x y x k y x k k +-=++ ),()],(),[(2),(2211221212y x y x y x k y x k k +--=++所以2111221222122222124)],(),[(4),(Q Q k y x y x k y y x x Q Q k k k k k k =-=--=++++++……16’12sin 45cos sin 85)sin 2cos ()cos 2sin (||||2223221≥+=+=--+--==x x x x x x x a Q Q 当且仅当4ππ-=t x (Z t ∈)时等号成立故4024||min 20142013=Q Q ………………..18’作文优美语段集锦1、青春是用意志的血滴和拼搏的汗水酿成的琼浆——历久弥香;青春是用不凋的希望和不灭的向往编织的彩虹——绚丽辉煌;青春是用永恒的执著和顽强的韧劲筑起的一道铜墙铁壁——固若金汤。

13.2017年上海高三数学二模分类汇编:参数方程、线性规划

13.2017年上海高三数学二模分类汇编:参数方程、线性规划

参数方程:2(2017徐汇二模). 参数方程为22x t y t⎧=⎨=⎩(t 为参数)的曲线的焦点坐标为2(2017浦东二模). 若直线l 的参数方程为4423x t y t=-⎧⎨=-+⎩,t R ∈,则直线l 在y 轴上的截距是 4(2017松江二模).直线23x y ⎧=-⎪⎨=+⎪⎩(t 为参数)对应的普通方程是5(2017普陀二模). 曲线C :⎩⎨⎧==θθtan sec y x (θ为参数)的两个顶点之间的距离为 6(2017静安二模). 设P 、Q 分别为直线62x t y t =⎧⎨=-⎩(t 为参数)和曲线12x y θθ⎧=+⎪⎨=-⎪⎩(θ为参数)的点,则||PQ 的最小值为7(2017嘉定二模). 直线24x t y t =+⎧⎨=-⎩(t为参数)与曲线35x y θθ⎧=+⎪⎨=⎪⎩(θ为参数)的公共点的个数是7(2017奉贤二模). 在平面直角坐标系xOy 中,直线l 的方程为60x y +-=,圆C 的参数方程为2cos 2sin 2x y θθ=⎧⎨=+⎩([0,2)θπ∈)则圆心C 到直线l 的距离为7(2017长宁/宝山二模). 直线12x t y t =-⎧⎨=-⎩(t 为参数)与曲线3cos 2sin x y θθ=⎧⎨=⎩(θ为参数)的交点个数是线性规划:2(2017静安二模). 若实数x 、y 满足约束条件0290x y x x y ≥⎧⎪≤⎨⎪+-≤⎩,则3z x y =+的最大值等于4(2017闵行二模).直线23x y ⎧=-⎪⎨=+⎪⎩(t 为参数)对应的普通方程是6(2017崇明二模). 若实数x 、y 满足10304x y x y y -+≤⎧⎪+-≥⎨⎪≤⎩,则目标函数2z x y =-的最大值为6(2017长宁/宝山二模). 已知x 、y 满足0220x y x y x -≤⎧⎪+≤⎨⎪+≥⎩,则2z x y =+的最大值是6(2017黄浦二模). 设变量x 、y 满足约束条件212x y x y y +≥⎧⎪-≤⎨⎪≤⎩,则目标函数2z x y =-+的最小值为6(2017奉贤二模). 若x 、y 满足020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,则目标函数2z x y =+的最大值是8(2017杨浦二模). 若变量x 、y 满足约束条件122020x y x y x y +≤⎧⎪-≥⎨⎪-≤⎩,则z y x =-的最小值为8(2017闵行/松江二模). 在约束条件|1||2|3x y ++-≤下,目标函数2z x y =+的最大值为8(2017徐汇二模). 满足约束条件||2||2x y +≤的目标函数z y x =-的最小值是 19(2017普陀二模). 某人上午7时乘船出发,以匀速v 海里/小时()从A 港前往相距50海里的港,然后乘汽车以匀速ω千米/小时(10030≤≤ω)自B 港前往相距300千米的C 市,计划当天下午4到9时到达C 市,设乘船和汽车的所要的时间分别为x 、y 小时,如果所需要的经费1003(5)(8)P x y =+-+-(单位:元)(1)试用含有v 、ω的代数式表示P ;(2)要使得所需经费P 最少,求x 和y 的值,并求出此时的费用;54≤≤v B。

【上海中学】2017年高考模拟数学试卷(二)-答案

【上海中学】2017年高考模拟数学试卷(二)-答案

上海中学2017年高考模拟数学试卷(二)答 案一、选择题: 1~4.BAAC 二、填空题: 5. 6.16 7.②③8.,() 9. 10.711.12.13.14. 15. 16三、解答题:17.解:(Ⅰ)∵侧棱与底面相邻两边、都成角,∴三棱柱的三个侧面中,四边形和是有一个角是45︒,相邻两边长分别为,的平行四边形,第三个侧面是边长分别为,的矩形.∴(Ⅱ)过作垂直于底面,交底面于点,作,交于点,连接,由题意,则,,∴, ∴11(1,)(,2)22-⋃1log3x y -=13x ≤<3p≤322i±21222n rn r n rC ----⨯b c a +-r r r 32(⋃AA 'AB AC 45o ABBA ACCA a b a b 2sin 451)S ab ab ab =+=o 侧1A 1A O ABC ABC O 1A D AB ⊥AB D DO AD =1A D =AO =1AO =21124V a b ==18.解:(Ⅰ)由得, 即;整理得 解得(舍)或60C =︒ 因为,60C =︒(Ⅱ)因为由正弦定理和余弦定理可得,,, 代入上式得 又因为,故所以19.解:(Ⅰ)设(,),又,且为实数,∴,解得.∴, ∵为实数,∴,解得. ∴42z i =-.(Ⅱ)∵复数,∴,解得.即实数的取值范围是.20.解:(1)由已知,且,解得,, ∴函数的解析式是;(2)在(1)的条件下,,即在区间上恒成立,由于函数在区间上是减函数,且其最小值为1, ∴的取值范围为;0m n =g 222cos 2sin ()02CA B -+=21cos 2(1cos )0C C +--=22cos cos 10C C +-=cos 1C =-0πC <<sin()sin cos sin cos A B A B B A -=-sinA 2a R =sin 2bB R =222cos 2a c b B ac +-=222cos 2b c a A bc +-=222222222()sin()22224a a c b b b c a a b A B R ac R bc cR+-+---=-=gg 22212a b c -=21sin()sin 442c c A B C cR R -===sin()A B -=z x yi =+x y ∈R 2(2)z i x y i +=++20y +=2y =-2(2)(2)(22)(4)22(2)(2)5z x i x i i x x i i i i i --+++-===---+2z i -405x -=4x =2222()[4(2)i]16(2)8(2)(124)(816)z ai a a a i a a a i +=+-=--+-=+-+-212408160a a a ⎧+-⎨-⎩>>26a <<a 2,6()10a b -+=12ba-=-1a =2b =()f x 2()21f x x x =++()f x x k +>21k x x ++<[3,1]--21y x x =++[3,1]--k (,1)-∞(3)∵是偶函数,∴,∴,由知、异号,不妨设,则,又由得, ,得,又,得,∴的值为正. 21.解:(1)∵,(其中为正实常数), ∴∴当时 即,∴ (2)∵,且对任意的正整数,均有 ∴∴关于是一个单调递减的函数,最大值为. 22.解:(1)设,则过的圆的切线方程为,代入,得由即 整理可得∴∵ ∴ (当且仅当∴()f x 0b =2()1f x ax =+0mn <m n 0m >0n <0m n +>0m n ->>2222()F()()()1(1)()F m n f m f n am an a m n +=-=+-+=-0m n ->>22m n >0a >()()0F m F n +>()()F m F n +n n n n S k a kS k a k+-=-+k (2)n n S a n =-≥2n ≥11n n n n n a S S a a --=-=-+112n n a a -=212a =-11(),221,1n n n a n -⎧-⎪=⎨⎪=⎩≥()n nn n S k a kf n k S k a k+-=+-+11111(1)n n n n n n n n n n S k a k S a k a q kf n k k S k a k S a k a q k++++++-++-+=+=+-++-+10a >01q <<n 0n S k ->11(1)()0n n n n n n n n n n S a k a q k S k a kf n f n k k S a k a q k S k a k++++-+-+-=+-++-+-+<()f n n 1111a k a kk a k a k+-+-+00(,)A x y A 200x x y y r +=22221x y a b+=2222242222002220002()0a x a r x a r b x x a b y y y +-+-==0△2222242222002220002()4()()a r x a x a r b a b y y y =+-2222222002)()a b x x y y a b r r-+-=+--(()f x =b x a <<22222a b x ab x +=≥()f x a b =-x =()f x =b x a <<的最大值为()f x a b上海中学2017年高考模拟数学试卷(二)解 析一、选择题:1.B 根据复数的几何意义可知圆为以原点为圆心、2为半径的圆,设对应的点为,把整理出最简形式,根据复数是一个纯虚数,得到复数的实部等于0,虚部不等于0,据此可知点轨迹.解:由可知圆为以原点为圆心、2为半径的圆,设对应的点为,则, ∵是纯虚数, ∴,且,∴点的轨迹为以原点为圆心、1为半径的圆,除掉点, ∴复数的对应点必在圆内部, 故选B .2.A 由关系式得到的数列满足,根据点与直线之间的位置关系,我们不难得到,的图象在上方.逐一分析不难得到正确的答案.解:由知:的图象在上方. 故选:A .3.A 我们先论证命题:,是整数成立时,命题:有且仅有整数解是否成立,即命题命题的真假,再论证命题:有且仅有整数解时,命题:,是整数成立时是否成立,即判断命题命题的真假,然后根据弃要条件的定义易得到答案.解:,是整数时,不一定有整数解, 即命题命题为假命题,若有且仅有整数解,由韦达定理(一元二次方程根与系数的关系)我们易判断,是整数.即命题命题为真命题, 故是的充分不必要条件 故选:A .4.C 根据题设,用一张正方形的包装纸将其完全包住,近似于将正四棱锥的表面展开图重新折回.因此,首先要将四棱锥的四个侧面沿底面展开,观察展开的图形易得出包装纸的对角线处在什么位置是,包装纸面积最小,进而获得问题的解答.C 1z (x,y)1111z z -+P ||2z =C 1z (,)x y 2212211(1)[(1)][(1)]12=1(1)[(1)][(1)](1)z x yi x yi x yi x y yiz x yi x yi x yi x y --+-++-+-+==++++++-++1111(1)1z z z -≠-+2210x y +-=0y ≠P (1,0)±1z P 1()n n a f a +={}n a 1n n a a +>*n ∈N ()f x y x =1()n n n a f a a +=>()f x y x =q a b p 20x ax b ++=p ⇒p p 20x ax b ++=q a b p ⇒q a b 20x ax b ++=p ⇒q 20x ax b ++=a b p ⇒q p q解:将正四棱锥沿底面将侧面都展开如图所示:当以为正方形的对角线时,所需正方形的包装纸的面积最小,此时边长最小. 设此时的正方形边长为则:, 又因为, ∴, 解得:. 二、填空题:5.由椭圆的标准方程可以确定的范围.∵表示椭圆, ∴, ∴或.6.根据的展开式中二项式系数之和为512,,得到,求出了的值,求出二项展开式的通项,令的指数为3求出的值代入通项求出展开式中的系数,解出字母的值,得到结果.解:因为的展开式中二项式系数之和为512,所以 解得所以的展开式的通项为令得 所以展开式中的系数为 所以所以7.利用二倍角公式,和角的三角函数公式分别化简,再利用周期公式可求.解:对于①,∴;PP 'x 22()2PP x '=3()23PP a a a a '=+⨯=+22(3)2a a x +=62x a +=a 22121x y a a +=-+201021a a a a -⎧⎪+⎨⎪-≠+⎩>>112a -<<122a <<)2na x x -(2512n =n x r 3x a )2na x x -(2512n =9n =9)2a x x -(399219()2r rrrr T aC x--+=-3932r-=8r =3x 916a 9916a =16a =cos2πy x =2π12πT ==对于②,∴; 对于③; 对于④,∴. 8.本题考查反函数的概念、求反函数的方法、指数式与对数式的互化,求函数的值域;将看做方程解出,然后由原函数的值域确定反函数的定义域即可,注意原函数的定义域为.解:由解得 ∵,∴∴函数()的反函数是() 故答案为:,()9.由题意,由,可得,再由,,分,两类解出参数的取值范围即可得到答案解:由,可得又, 若,即得,显然符合题意若,即有得,时,有解得,故有综上知,实数的取值范围是10.取的中点,由题意可得,,或,由余弦定理,运算求得结果.解:取的中点,则由、分别是三棱锥的棱、的中点,,,与PC 所成的角为可得,,或.中,当时,由余弦定理可得,当时,.11.设,,求得、以及,再根据条件求得的值,可得的值,再利用复数三角形式的运算法则求得的值.ππ)4y x =+2π1πT ==π2π2T =1sin 2π2y x =2π12πT ==13x y +=x 0x x -<≤13x y +=1log3x x =-+10x -≤<13x ≤<13x y +=0x x -<≤1log3x y =-+13x ≤<1log3x y -=13x ≤<A B ⋃B A ⊆{|25}A x x =-<<{|121}B x p x p =+-<<B =∅B ≠∅p A B A ⋃=B A ⊆{|25}A x x =-<<{|121}B x p x p =+-<<B =∅121p p +-≥2p ≤B ≠∅121p p +-<2p >12215p p +-⎧⎨-⎩≥≤33p -≤≤23p <≤p 3p ≤PB H 3EH =5HF =60EHF ∠=o 120o EF =PB H E F P ABC -AP BC 10PC =6AB =AB 60o 3EH =5HF =60EHF ∠=o 120o EHF △60EHF ∠=o EF =120EHF ∠=o 7EF ==15(cos sin )z i αα=+22(cos sin )z i ββ=+1z 2z 12z z -cos()αβ+sin()αβ+12z z解:由题意得,可设,,, ,.再由,化简可得.再由同角三角函数的基本关系可得.故 12.根据题意,一共抽了根,这么多次抽取动作中,有次都是操作在A 盒上,次操作在B 盒上,且最后一次一定操作在A 盒所有的抽法共有种,用完一盒时另一盒还有根的抽法有 种由古典概型的概率公式求出概率.解:根据题意,一共抽了根,这么多次抽取动作中,有次都是操作在A 盒上次操作在B 盒上,且最后一次一定操作在A 盒 所以,所有的抽法共有种,用完一盒时另一盒还有根的抽法有种由古典概型的概率公式得他发现用完一盒时另一盒还有根()的概率为13.先画图,理解题意,再根据向量的加法法则和减法法则,将所表示向量用已知向量表示,即可得到结论.解: 故答案为:14.先作出的图象,的图象斜率为1,在曲线上方的直线部分为不等式的解集,利用图象,即可求的最小值.解:先作出的图象斜率为1,在曲线上方的直线部分为不等式的解集 ∵解集为(取不到等号) ∴只能是过点斜率为1的直线 把点的坐标代入得再将与(舍)或15(cos sin )z i αα=+22(cos sin )z i ββ=+15[cos isin ]5[cos()sin()]z i αααα=-=-+-22(cos sin )2[cos()sin()]z i i ββββ=-=-+-12(5cos 2cos )(5sin 2sin )z z i αβαβ-=-++12||z z -=23(5cos 2cos )(5sin 2sin )13αβαβ-++=4cos(0=5αβ+3sin()5αβ+=±125[cos()sin()]555433[cos()][cos()sin()]=[]22(cos sin )222552z i i i i z i αααβαβαβββ-+-==⨯--=⨯+-+⨯±=±+2n r -n n r -22n r -r 212n rn r C ---2n r -n n r -22n r -r 212n rn r C ---r 1r n ≤≤21222n rn r n r C ----⨯1111BD BD DD BD CC BD AC AC b c a =+=+=+-=+-u u u u ru u u ru u u u ru u u ru u u u ru u u ru u u u ru u u rr r rb c a +-r r ry y x a =+m y =y x a =+x m >A A y x a =+0.5a =0.5y x =+y =0.5x =- 1.5即求出了交点由数形结合可知最小值为.15.先设点的坐标为,然后由点到、轴的距离之比为2得一元一次方程,再由点到点、距离之差为,满足双曲线定义,则得其标准方程,最后处理方程组通过求得的取值范围.解:设点的坐标为,依题设得,即, 因此,点、、三点不共线,得 ∵ ∴因此,点在以、为焦点,实轴长为的双曲线上,故将代入,并解得,因为,所以, 解得即的取值范围为. 16.先判断出椭圆(为参数)表示中心在直线上,长轴长和短轴长分别为4,2的一族椭圆,判断出符和条件的直线需要与直线平行,设出直线方程,先利用一个特殊的椭圆与直线方程联立求出直线的方程,在证明对于所以的椭圆都满足条件.解:椭圆(为参数)可化为 ,(1.5,2)C m 32P (,y)x P x y P (1,0)-(1,0)2m 2x m P (,)x y ||2||y x =2y x =±0x ≠(,)P x y (1,0)M -(1,0)N ||||||||2PM PN MN -=<||||||2||0PM PN m -=>0||1m <<P M N 2||m 222211x y m m -=-2y =±222211x y m m -=-2222(1)015m m x m -=-≥210m ->2150m ->0||m <m (⋃222484840x y kx ky k +--+-=k 2y x =2y x =222484840x y kx ky k +--+-=k所以表示中心在直线上,长轴长和短轴长分别为4,2的一组椭圆, 而所求的直线与这组椭圆种的任意椭圆都相交,若所求的直线与直线不平行,则必定存在椭圆与直线l 不相交, 于是,设所求直线的方程为与椭圆由得得 即解得设直线与圆(为参数),相交所得的弦长为d ,则由得 所以 所以直线与椭圆(同理可证,对任意,椭圆(为参数)与直线相交所得弦三、解答题:17.解:(Ⅰ)先判断斜三棱柱的三个侧面的形状,分别求出面积再相加,即为斜三棱柱的侧面积.∵侧棱与底面相邻两边、都成角,∴三棱柱的三个侧面中,四边形和是有一个角是,相邻两边长分别为,的平行四边形,第三个侧面是边长分别为,的矩形.∴(Ⅱ)斜三棱柱的体积等于底面积乘高,因为底面三角形是边长为的正三角形,面积易求,所以只需求出高即可,利用所给线线角的大小即可求出.222484840x y kx ky k +--+-=2y x =l 2y x =2y x b =+2y x b =+2214y x +=22214y x b y x =+⎧⎪⎨+=⎪⎩228440x by b ++-=21212[()4]55x x x x +-=g2244()41]88b b ---⨯=2b =±22y x =+222484840x y kx ky k +--+-=k 22248484022x y kx ky k y x ⎧+--+-=⎨=+⎩228(816)880x k x k k +-+-=22221212[()4]55[(21)4(8)]5d x x x x k k k =+-=---=g22y x =+222484840x y kx ky k +--+-=k k ∈R 222484840x y kx ky k +--+-=k 22y x =-ABC A B C '''-AA 'AB AC 45o ABBA ACCA 45o a b a b 2sin 451)S ab ab ab =+=o 侧a过作垂直于底面,交底面于点,作,交于点,连接,由题意,则 ,,∴, ∴ 18.(Ⅰ)先根据两向量互相垂直等价于二者的数量积等于0,可得到关于的方程,进而得到答案.解:由得, 即;整理得解得(舍)或因为,(Ⅱ)先表示出的表达式,再由正弦和余弦定理将角的关系转化为边的关系后代入即得答案.解:因为由正弦定理和余弦定理可得,,,代入上式得又因为, 故所以. 19.(Ⅰ)利用复数的运算法则和复数为实数的充要条件即可得出.解:设(,),又,且为实数,∴,解得.∴,∵为实数,∴,解得.(Ⅱ)利用复数的运算法则和几何意义即可得出.解:∵复数,1A 1A O ABC ABC O 1A D AB ⊥AB DDO AD=1A D=AO=1AO=21124V a b ==cos C 0m n =g 222cos 2sin ()02C A B -+=21cos 2(1cos )0C C +--=22cos cos 10C C +-=cos 1C =-60C =o 0πC <<60C =o sin()A B -sin()sin cos sin cos A B A B B A -=-sinA 2a R =sin 2b B R =222cos 2a c b B ac +-=222cos 2b c a A bc +-=222222222()sin()22224a a c b b b c a a b A B R ac R bc cR +-+---=-=g g 22212a b c -=21sin()sin 442c c A B C cR R -===sin()A B -=z x yi =+x y ∈R 2(2)z i x y i +=++20y +=2y =-2(2)(2)(22)(4)22(2)(2)5z x i x i i x x i i i i i --+++-===---+2z i -405x -=4x =2222()[4(2)i]16(2)8(2)(124)(816)z ai a a a i a a a i +=+-=--+-=+-+-∴,解得.即实数的取值范围是.20.(1)由已知,且,解二者联立的方程求出,的值即可得到函数的解析式. 解:由已知,且,解得,, ∴函数的解析式是;(2)将,在区间上恒成立,转化成在区间上恒成立,问题变为求在区间上的最小值问题,求出其最小值,令小于其最小值即可解出所求的范围.解:在(1)的条件下,,即在区间上恒成立, 由于函数在区间上是减函数,且其最小值为1, ∴的取值范围为;(3)是偶函数,可得,求得,由,,可得、异号,设,则,故可得,代入,化简成关于,的代数式,由上述条件判断其符号即可.解:∵是偶函数,∴,∴,由知、异号,不妨设,则,又由得, ,得,又,得,∴的值为正.21.(1)先根据,(其中为正实常数),求出,然后利用进行求解,注意验证首项;解:∵,(其中为正实常数), ∴∴当时即, ∴212408160a a a ⎧+-⎨-⎩>>26a <<a 2,6()10a b -+=12b a -=-a b 10a b -+=12b a-=-1a =2b =()f x 2()21f x x x =++()f x x k +>[3,1]--21k x x ++<[3,1]--21x x ++[3,1]--k ()f x x k +>21k x x ++<[3,1]--21y x x =++[3,1]--k (,1)-∞()f x 0b =2()1f x ax =+0mn <0m n +>m n 0m >0n <0m n ->>()()F m F n +m n ()f x 0b =2()1f x ax =+0mn <m n 0m >0n <0m n +>0m n ->>2222()F()()()1(1)()F m n f m f n am an a m n +=-=+-+=-0m n ->>22m n >0a >()()0F m F n +>()()F m F n +n n n n S k a k S k a k+-=-+k (2)n n S a n =-≥1n n n a S S -=-n n n n S k a k S k a k+-=-+k (2)n n S a n =-≥2n ≥11n n n n n a S S a a --=-=-+112n n a a -=212a =-11(),221,1n n n a n -⎧-⎪=⎨⎪=⎩≥(2)先求出,然后根据条件判定的符号,从而确定的单调性,从而求出最大值.解: ∵,且对任意的正整数,均有 ∴ ∴关于是一个单调递减的函数,最大值为. 22.先设,则过的圆的切线方程为,将其与椭圆方程联立,得一一元二次方程,由,整理后即可得,求最大值时使用均值定理,注意等号成立的条件.解:设,则过的圆的切线方程为,代入,得 由即 整理可得 ∴∵ ∴(当且仅当∴的最大值为(1)f n +(1)()f n f n +-()f n ()n n n n S k a k f n k S k a k +-=+-+11111(1)n n n n nn n n n n S k a k S a k a q k f n k k S k a k S a k a q k++++++-++-+=+=+-++-+10a >01q <<n 0n S k ->11(1)()0n n n n n n n n n n S a k a q k S k a k f n f n k k S a k a q k S k a k++++-+-+-=+-++-+-+<()f n n 1111a k a k k a k a k +-+-+00(,)A x y A 200x x y y r +==0△||()AB f r =()f x 00(,)A x y A 200x x y y r +=22221x y a b +=2222242222002220002()0a x a r x a r b x x a b y y y +-+-==0△2222242222002220002()4()()a r x a x a r b a b y y y =+-2222222002)()a b x x y y a b r r -+-=+--(()f x =b x a <<22222a b x ab x +=≥()f x a b =-x =()f x =b x a <<()f x a b -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年徐汇区高考数学二模试卷含答案 2017.4一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1. 设全集{}1,2,3,4U =,集合{}2|540,A x x x x Z =-+<∈,则U C A =____________.2. 参数方程为22x t y t⎧=⎨=⎩(t 为参数)的曲线的焦点坐标为____________.3. 已知复数z 满足1z =,则2z -的取值范围是____________.4. 设数列{}n a 的前n 项和为n S ,若*21()3n n S a n N =-∈,则lim n n S →∞=____________.5. 若*1()(4,)2nx n n N x+≥∈的二项展开式中前三项的系数依次成等差数列,则n =_____. 6. 把12345678910、、、、、、、、、分别写在10张形状大小一样的卡片上,随机抽取一张卡片,则抽到写着偶数或大于6的数的卡片的概率为____________.(结果用最简分数表示)7. 若行列式124cossin 022sin cos822x xx x 中元素4的代数余子式的值为12,则实数x 的取值集合为___________.8. 满足约束条件22x y +≤的目标函数z y x =-的最小值是____________.9. 已知函数2log 02()25()239x x x f x x <<⎧⎪=⎨+≥⎪⎩,,.若函数()()g x f x k =-有两个不同的零点,则实数k 的取值范围是____________.10. 某部门有8位员工,其中6位员工的月工资分别为8200,8300,8500,9100,9500,9600(单位:元),另两位员工的月工资数据不清楚,但两人的月工资和为17000元,则这8位员工月工资的中位数可能的最大值为____________元.11. 如图:在ABC ∆中,M 为BC 上不同于,B C 的任意一点,点N 满足2AN NM =.若AN x AB y AC =+,则229x y +的最小值为____________.12. 设单调函数()y p x =的定义域为D ,值域为A ,如果单调函数()y q x =使得函数(())y p q x =的值域也是A ,则称函数()y q x =是函数()y p x =的一个“保值域函数”. 已知定义域为[],a b 的函数2()3h x x =-,函数()f x 与()g x 互为反函数,且()h x 是()f x 的一个“保值域函数”,()g x 是()h x 的一个“保值域函数”,则b a -=___________.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13. “1x >”是“11x<”的( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件 14. 《九章算术》是我国古代数学著作,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积及堆放的米各为多少?”已知一斛米的体积约为1.62立方尺,由此估算出堆放的米约有( )(A )21斛 (B )34斛 (C )55斛 (D )63斛 15. 将函数1y x=-的图像按向量(1,0)a =平移,得到的函数图像与函数2sin (24)y x x π=-≤≤的图像的所有交点的横坐标之和等于( )(A )2 (B )4 (C )6 (D )816. 过椭圆221(4)4x y m m m +=>-右焦点F 的圆与圆22:1O x y +=外切,则该圆直径FQ 的端点Q 的轨迹是( )(A )一条射线 (B )两条射线 (C )双曲线的一支 (D )抛物线三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17. (本题满分14分,第1小题满分6分,第2小题满分8分)如图:在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是正方形,2PA AD ==. (1)求异面直线PC 与AB 所成角的大小(结果用反三角函数值表示); (2)若点E 、F 分别是棱AD 和PC 的中点,求证:EF ⊥平面PBC .18. (本题满分14分,第1小题满分6分,第2小题满分8分)已知函数41()2x xm f x ⋅+=是偶函数.(1)求实数m 的值;(2)若关于x 的不等式22()31k f x k ⋅>+在(,0)-∞上恒成立,求实数k 的取值范围.19. (本题满分14分,第1小题满分7分,第2小题满分7分)如图所示:湖面上甲、乙、丙三艘船沿着同一条直线航行,某一时刻,甲船在最前面的A 点处,乙船在中间的B 点处,丙船在最后面的C 点处,且:3:1BC AB =.一架无人机在空中的P 点处对它们进行数据测量,在同一时刻测得030APB ∠=,090BPC ∠=.(船只与无人机的大小及其它因素忽略不计)(1)求此时无人机到甲、丙两船的距离之比;(2)若此时甲、乙两船相距100米,求无人机到丙船的距离.(精确到1米)FEA P20.(本题满分16分,第1小题满分4分,第2小题满分7分,第3小题满分5分)如图:椭圆2212x y +=与双曲线22221(0,0)x y a b a b-=>>有相同的焦点12F F 、,它们在y 轴右侧有两个交点A 、B ,满足220F A F B +=.将直线AB 左侧的椭圆部分(含A ,B 两点)记为曲线1W ,直线AB 右侧的双曲线部分(不含A ,B 两点)记为曲线2W .以1F 为端点作一条射线,分别交1W 于点(,)p p P x y ,交2W 于点(,)M M M x y (点M 在第一象限),设此时M F 1=1m F P ⋅. (1)求2W 的方程; (2)证明:1p x m=,并探索直线2MF 与2PF 斜率之间的关系; (3)设直线2MF 交1W 于点N ,求1MF N ∆的面积S 的取值范围.21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)现有正整数构成的数表如下: 第一行: 1 第二行: 1 2 第三行: 1 1 2 3第四行: 1 1 2 1 1 2 3 4第五行: 1 1 2 1 1 2 3 1 1 2 1 1 2 3 4 5 …… …… ……第k 行:先抄写第1行,接着按原序抄写第2行,然后按原序抄写第3行,⋯,直至按原序抄写第1k -行,最后添上数k .(如第四行,先抄写第一行的数1,接着按原序抄写第二行的数1,2,接着按原序抄写第三行的数1,1,2,3,最后添上数4).将按照上述方式写下的第n 个数记作n a (如11a =,21a =,32a =,41a =,⋯,73a =,⋯,14153,4,a a ==).(1)用k t 表示数表第k 行的数的个数,求数列{}k t 的前k 项和k T ;(2)第8行中的数是否超过73个?若是,用0n a 表示第8行中的第73个数,试求0n 和 0n a 的值;若不是,请说明理由; (3)令123n n S a a a a =++++,求2017S 的值.参考答案一、填空题:(共54分,第1~6题每题4分;第7~12题每题5分)1. {}1,42. (1,0)3. []1,34. 15. 86. 7107. |2,3x x k k Z ππ⎧⎫=±∈⎨⎬⎩⎭8. 2- 9. 5(,1)9 10. 8800 11. 25 12. 1 二、 选择题:(共20分,每题5分)13. A 14. A 15. D 16. C 三、 解答题 17、解:(1)以点A 为原点,以AB 方向为x 轴正方向,AD 方向为y 轴正方向,建立空间直角坐标系,则(0,0,2),(0,0,0),(2,0,0),(2,2,0),(0,2,0)P A B C D ,--------2分所以,(2,2,2),(2,0,0)PC AB =-=,--------4分 设,PC AB 的夹角为α,则4cos 2PC AB PC ABα⋅===⋅分 所以,,PC AB的夹角为arccos3, 即异面直线PC 与AB 所成角的大小为arccos3.--------6分 (2)因为点E 、F 分别是棱AD 和PC 的中点, 可得(0,1,0)E ,(1,1,1)F ,所以(1,0,1)EF =,--------8分 又(0,2,0)BC =,(2,2,2)PC =-,--------10分 计算可得0,0EF PC EF BC ⋅=⋅=,--------12分 所以,,EF PC EF BC ⊥⊥,又PCBC C =,所以EF ⊥平面PBC .--------14分18、(1) 因为函数41()2x xm f x ⋅+=是定义域为R 的偶函数,所以有()()f x f x -=,-2分即414122x x x xm m --⋅+⋅+=,即44122x x x xm m +⋅+=, ------------------------------4分 故m =1. -----------------------------------------6分(2)241()0,3102x xf x k +=>+>,且22()31k f x k ⋅>+在(,0)-∞上恒成立,故原不等式等价于22131()k k f x >+在(,0)-∞上恒成立,--------------------8分 又x ∈(,0)-∞,所以()()2,f x ∈+∞, -------------------------------------10分 所以110,()2f x ⎛⎫∈ ⎪⎝⎭,----------------------------11分 从而221312k k ≥+,----------------------------12分因此,1,13k ⎡⎤∈⎢⎥⎣⎦. -------------------------------------------------------------------14分19、(1)在APB ∆中,由正弦定理,得1sin sin 2AP AB ABABP APB==∠∠,-----------2分 在BPC ∆中,由正弦定理,得sin sin 1CP BC BCCBP CPB ==∠∠,-----------4分 又31BC AB =,sin sin ABP CBP ∠=∠,--------------------------------------------6分故23AP CP =.即无人机到甲、丙两船的距离之比为23.-----------------------7分(2)由:3:1BC AB =得AC =400,且0120APC ∠=, ------------------------------9分由(1),可设AP =2x ,则CP =3x , ---------------------------------------------10分 在APC ∆中,由余弦定理,得160000=(2x )2+(3x )2-2(2x )(3x )cos1200,------12分 解得x 19=, C B A P即无人机到丙船的距离为CP =3x=27519≈米. ----14分 20、解:(1)由条件,得2(1,0)F ,根据220F A F B +=知,F 2、A 、B 三点共线,且由椭圆与双曲线的对称性知,A 、B 关于x 轴对称, 故AB 所在直线为x =1,从而得(1,2A ,(1,)2B -.--------------2分 所以,221112a b-=,又因为2F 为双曲线的焦点,所以221a b +=, 解得2212a b ==. ---------------------------------------------------------------3分因此,2W 的方程为2211122x y -=(1x >). ------------4分 (2) 由P (x p ,y p )、M (x M ,y M ),得1F P =(x p +1,y p ),1F M =(x M +1,y M ),由条件,得1(1)M p M p x m x y my +=+⎧⎪⎨=⎪⎩,即1M p Mp x mx m y my =+-⎧⎪⎨=⎪⎩, ---------------5分由P (x p ,y p )、M (x M ,y M )分别在曲线1W 和2W 上,有2222122(1)2()1p p p p x y mx m my ⎧+=⎪⎨⎪+--=⎩,消去y p ,得2234(1)140p p m x m m x m +-+-= (*) ---------------7分将1m 代入方程(*),成立,因此(*)有一根1p x m =,结合韦达定理得另一根为143p m x m-=,因为1m >,所以143p mx m-=<-1,舍去. 所以,1p x m=. -----------------------------------------------------8分 从而P 点坐标为(1m,所以,直线2PF的斜率2PF k =,-------------------------------------9分由1M p x mx m m =+-=,得M (m所以,直线2MF的斜率2MF k =.--------------------10分因此,2MF 与2PF 斜率之和为零. ---------------------------------11分(3)由(2)知直线2PF 与2NF 关于x 轴对称,结合椭圆的对称性知点P 与点N 关于x 轴对称,故N (m 1,1m-212-m ), -----------------------------12分 因此,S=21⨯|F 1F 2|(|y M |+|y N |)=21⨯2(212-m +m 1212-m ) =212-m +2211m -,-----------14分 因为S 在()1,+∞上单调递增, ----------------------------------15分 所以,S的取值范围是)+∞.----------------------------------------------------16分21、解:(1)当2k ≥时,1211k k t t t t -=+++,----------------------------------------------------------------2分 1121k k t t t t +=+++,于是1k k k t t t +-=,即12k k t t +=,又2112,1t t t ==, ---------------------3分所以12k k t -=, 故21122221k k k T -=++++=-. ---------------4分(2)由12k k t -=得第8行中共有27=128个数,所以,第8行中的数超过73个,-------6分70773*******n T =+=-+=,-----7分从而,020073n a a a ==,由26-1=63<73,27-1=127>73,所以,按上述顺序依次写下的第73个数应是第7行的第73-63=10个数,同上过程知7310a a ==2,--------------------------------------------------------9分所以,02n a =.--------------------------------------------------------------10分(3)由于数表的前n 行共有21n -个数,于是,先计算21n S -.方法一:在前21n -个数中,共有1个n ,2个1n -,22个2n -,……,2n -k 个k ,……,2n-1个1, ---------------------------------------------------12分 因此21n S -=n ×1+(n -1)×2+…+ k ×2n -k +…+2×2n -2+1×2n -1 则2×21n S -=n ×2+(n -1)×22+…+ k ×2n-k+1+…+2×2n-1+1×2n两式相减,得21n S -=n -+2+22+…+2n-1+2n =2n+1-n -2. ------------15分方法二:由此数表构成的过程知,121212n n S S n ---=+,---------------12分 则21n S -+n +2=2(121n S --+n +1),即数列{21n S -+n +2}是以S 1+1+2=4为首项,2为公比的等比数列, 所以21n S -+n +2=4×2n-1,即21n S -=2n+1-n -2. ------------------------------15分 S 2017=1021S -+S 994 -----------------------------------------------------------------16分=1021S -+921S -+S 483=1021S -+921S -+821S -+S 228=1021S -+921S -+821S -+721S -+S 101 =1021S -+921S -+821S -+721S -+621S -+S 38 =1021S -+921S -+821S -+721S -+621S -+521S -+S 7=(211-12)+(210-11)+(29-10)+(28-9)+(27-8)+(26-7)+(24-5)=3986. ------------------------------------------------------------------------18分。

相关文档
最新文档