戴维南定理的解析与练习

合集下载

戴维南定理讲解附实物图(1)

戴维南定理讲解附实物图(1)
超量程告警灯(红) 复位按钮
恒流 源
Return Return
五、实验设备(续)
端口特性用固定电阻
各种阻值的
分立电阻
可调电阻器
实验电 路
Return半压法用可调电阻
五、实验设备(续)
戴维南定理实验箱(DG05)
第一种:有插孔和小开关K
第二种:无插孔、无小开关
Return
五、实验设备(续)
电源(两路电压源,一路恒流源)
4、验证戴维南定理-自行连接等效电路,测量等效电路的 外特性 电路 ( 电压源= UOC, R0用变阻箱,串接电流表, 负载RL接分立电阻。)
四、实验电路
A
R2
R4
A
IS

R3
u
R1

B
- US +
有源网络
含源
+
二端 网络
V -
B
图2 半压法测量等效电阻
含源 二端 网络
图1 含源二端网络
A
mA
+
V -
RL
分立电阻(Ω):30,51,200,510,…
UOC
R0

等效
网络

mA
RL
+
V -
RL (Ω):30,51,200,510,…
ห้องสมุดไป่ตู้
B
图3 含源二端网络负载实验
图4 戴维南等效电路 负载实验
五、实验设备
分合闸按钮
实验台电源总开关
五、实验设备(续)
分合闸按钮
实验台电源总开关
五、实验设备(续)
稳压电 源(2路)
一、实验目的
1、验证戴维南定理的正确性,加深对该定理的理解。 2、掌握测量含源二端网络等效参数的一般方法。

戴维宁定理七种例题

戴维宁定理七种例题

戴维宁定理例题例1 运用戴维宁定理求下图所示电路中的电压U0图1剖析:断开待求电压地址的支路(即3Ω电阻地址支路),将剩下一端口网络化为戴维宁等效电路,需恳求开路电压U oc和等效电阻R eq。

(1)求开路电压U oc,电路如下图所示由电路联接联络得到,U oc=6I+3I,求解得到,I=9/9=1A,所以U oc=9V(2)求等效电阻R eq。

上图电路中含受控源,需求用第二(外加电源法(加电压求电流或加电流求电压))或第三种(开路电压,短路电流法)办法求解,此刻独立源应置零。

法一:加压求流,电路如下图所示,依据电路联接联络,得到U=6I+3I=9I(KVL),I=I0´6/(6+3)=(2/3)I0(并联分流),所以U=9´(2/3)I0=6I0,R eq=U/I0=6Ω法二:开路电压、短路电流。

开路电压前面已求出,U oc=9V,下面需恳求短路电流I sc。

在求解短路电流的进程中,独立源要保存。

电路如下图所示。

依据电路联接联络,得到6I1+3I=9(KVL),6I+3I=0(KVL),故I=0,得到I sc=I1=9/6=1.5A(KCL),所以R eq=U oc/I sc=6Ω终究,等效电路如下图所示依据电路联接,得到留心:核算含受控源电路的等效电阻是用外加电源法仍是开路、短路法,要详细疑问详细剖析,以核算简练为好。

戴维南定理典型例子戴维南定理指出,等效二端网络的电动势E等于二端网络开路时的电压,它的串联内阻抗等于网络内部各独立源和电容电压、电感电流都为零时,从这二端看向网络的阻抗Zi。

设二端网络N中含有独立电源和线性时不变二端元件(电阻器、电感器、电容器),这些元件之间可以有耦合,即可以有受控源及互感耦合;网络N的两端ɑ、b接有负载阻抗Z(s),但负载与网络N内部诸元件之间没有耦合,U(s)=I(s)/Z(s)。

当网络N中所有独立电源都不工作(例如将独立电压源用短路代替,独立电流源用开路代替),所有电容电压和电感电流的初始值都为零的时候,可把这二端网络记作N0。

戴维南定理例题 -回复

戴维南定理例题 -回复

戴维南定理例题 -回复戴维南定理是一个在数学中常见的定理,它有许多不同的应用和例题。

我将从不同的角度给出一些例题来帮助你更好地理解这个定理。

例题1,在直角三角形ABC中,角A的对边长为3,角B的对边长为4。

求角C的对边长。

解:根据戴维南定理,我们可以利用公式a/sinA = b/sinB = c/sinC来求解。

首先,我们可以利用已知的信息计算出sinA和sinB的值,然后代入公式中进行求解。

计算过程如下:sinA = 对边长/斜边长 = 3/5。

sinB = 对边长/斜边长 = 4/5。

然后我们可以利用sinC = c/sinB来求解角C的对边长c:sinC = c/sinB.sinC = c/(4/5)。

c = 4sinC/5。

由此我们可以得出角C的对边长为4sinC/5。

例题2,在三角形ABC中,已知角A的度数为30°,角B的度数为60°,且边a的长度为5。

求边b和边c的长度。

解:根据戴维南定理,我们可以利用公式a/sinA = b/sinB = c/sinC来求解。

首先,我们可以利用已知的信息计算出sinA和sinB的值,然后代入公式中进行求解。

计算过程如下:sinA = sin30° = 1/2。

sinB = sin60° = √3/2。

然后我们可以利用a/sinA = b/sinB来求解边b的长度:5/1/2 = b/√3/2。

b = 5√3/2。

同样的方法,我们可以利用a/sinA = c/sinC来求解边c的长度:5/1/2 = c/sinC.c = 5/sinC.由此我们可以得出边b的长度为5√3/2,边c的长度为10/√3。

这些例题展示了戴维南定理在不同情况下的应用,希望能帮助你更好地理解和掌握这个定理。

(完整版)复杂直流电路习题戴维南专题

(完整版)复杂直流电路习题戴维南专题

复杂直流电路戴维宁定理专题1.利用戴维南定理求解如题83图中的电流I。

(1)断开待求支路,则开路电压U O=V;(5分)(2)等效电阻R O=Ω;(4分)(3)电流I= A。

(3分)题83图83.如图如示,试求:(1)用电源模型的等效变换求ab支路电流I;(6分,要有解题过程)(2)电压源端电压U;(3分)(3)3A恒流源的功率(2分),判断它是电源还是负载(1分)。

第83题图84.(12分)如题84图所示,试分析计算:(1)断开R,利用戴维南定理求有源二端网络的等效电压源模型。

(6分)(2)若a、b两端接上负载R,则R可获得最大功率是多少?(3分)(3)若负载R两端并接一个4μF的电容C,则C储存的电场能量是多少?(3分)第84题图解:(1)利用戴维南定理求解过程:第一步,开路电压U ab=_____V。

第二步,将题84图电路除源,画出无源二端网络如下:则无源二端网络的等效电阻R ab=____Ω.第三步,画出题84图的等效电路如下:(2)负载R L可获得最大功率的计算如下:(3)电容C储存的电场能量的计算如下:84.有源二端网络如图(a)所示,试分析计算:(1)利用戴维南定理求其等效电压源。

(8分)(2)若a、b两端接如图(b)所示电路图,则R L可获得的最大功率是多少?(4分)解:(1)利用戴维南定理求解过程:第一步,开路电压U ab=_____V。

(3分)第二步,将图(a)电路除源,画出无源二端网络如下:(2分)则无源二端网络的等效电阻R ab=____Ω.(1分)第三步,画出图(a)的等效电路如下:(2分)(2)如图(b)所示,负载R L可获得最大功率的计算如下:(4分)84、如题84(a)图所示电路中,用戴维宁定理求6Ω电阻中的电流I的大小,并计算30V 电压源的功率Pus,并说明是吸收功率还是产生功率。

解:第一步:将待求之路和3A电流源一起移开后如题84(b)图所示,求有源线性二端网络的开路电压U ab= V。

大学物理_戴维南定理

大学物理_戴维南定理

解:标出开路电压uoc的参考方向,
uoc (10) (2A 4e t A) 10V (5) (4e t A) (30 60et )V
Ro 10 5 15
例3、求图(a)单口网络的戴维南等效电路。
u
12 18V 12 V 解: uoc 12 6
'
"
例1、求图(a)所示单口网络的戴维南等效电路。 i
解:在端口标明开路电压uoc参考方向,注意到i=0,
u oc 1V (2) 2A 3V
将单口网络内电压源短路,电流源开路,得图(b)
Ro 1 2 3 6
例2、 求图(a)所示单口网络的戴维南等效电路。
49
T— 变换(Y—△变换) (不考)
① ①
一、引例 I
30V
① 30
+ _
20 ② 8 15
50
3 ④



③ ②

I
+
30V
R1
R2

R3

_
8

3
二、无源三端网络的等效 u12 _ + i i2 1
① ②

i1 + u1 _

i2 u2

+ u13
+
_

+
i3 u23 _
说明:
并非任何含源线性电阻单口网络都能找到戴维 南等效电路或诺顿等效电路。 当R0=0时,没有诺顿等效电路;
当R0= ,没有戴维南等效电路。
例3、 求图(a)所示单口网络向外传输的最大功率。
解:求uoc,按图(b)网孔电流参考方向,

戴维南定理_2

戴维南定理_2
根据戴维南定理:等效电压UAB=US 等效电阻RAB=RS
2、确定含源二端网络的等效电压US
电流 I U1 U 2 R1 R2
30 15 2.5A 33
电压 U s UAB U2 IR2 15 2.53 22.5V
3、确定去源二端网络的等效电阻RS
具体做法:电压源短路,电流源开路。
含源二端 网络:至少含 有一个电源的 二端网络。
例题1: 已知电路中各元件参数如下: U1=30V,U2=15V,R1=3,
R2=3,R3=6。求解图中R3支路的电流I3。 (说明戴维南定理的解题步骤和解题方法。)
使用戴维南定理求解电路问题,正确的步骤十分重要。
戴维南定理解题步骤
1、把待求支路(R3)从原电路中移开
任何含有电源的二端线性电阻网络,都可以用一个 理想电压源US与一个等效电阻RS串联组成。其中,电压 源的等效电压US等于原二端网络的开路电压,等效内阻 RS等于原二端网络电源移去后的等效电阻。
二端网络:一个任意复杂的电路,当与外电路连接处有且只有 两个接线端,就称为二端网络。
无源二端 网络:不含任 何电源的二端 网络。
步骤
1、把待求支路从原电路中移开,应用戴维南 定理分析等效电压与等效电阻;
2、确定含源二端网络的等效电压US ; 3、确定去源二端网络的等效电阻RS ; 4、把待求支路放回戴维南等效电源电路中,
求解所需参数。


重点:熟悉戴维南定理的解题步骤, 掌握戴维南定理的解题方法。
难点:利用戴维学习奠定良好的基础!
感谢聆听
THANKS FOR YOUR
WATCH
感 谢 阅 读
感 谢 阅 读
2023最 新 整 理 收 集 do

戴维南定理的解析与练习

戴维南定理的解析与练习

戴维宁定理一、知识点:1、二端(一端口) 网络的概念:二端网络:具有向外引出一对端子的电路或网络。

无源二端网络:二端网络中没有独立电源。

有源二端网络:二端网络中含有独立电源。

2、戴维宁(戴维南)定理任何一个线性有源二端网络都可以用一个电压为 U OC 的理想电压源和一个电阻 R0 串联的等效电路来代替。

如图所示:等效电路的电压 U OC 是有源二端网络的开路电压,即将负载 R L 断开后 a 、b 两端之间的电压。

等效电路的电阻 R0 是有源二端网络中所有独立电源均置零(理想电压源用短路代替,理想电流源用开路代替)后 , 所得到的无源二端网络 a 、b 两端之间的等效电阻。

二、例题:应用戴维南定理解题:戴维南定理的解题步骤:1.把电路划分为待求支路和有源二端网络两部分,如图 1 中的虚线。

2.断开待求支路,形成有源二端网络(要画图) ,求有源二端网络的开路电压 UOC 。

3.将有源二端网络内的电源置零,保留其内阻(要画图) ,求网络的入端等效电阻 Rab。

4.画出有源二端网络的等效电压源,其电压源电压 US=UOC (此时要注意电源的极性),内阻 R0=Rab 。

5.将待求支路接到等效电压源上,利用欧姆定律求电流。

例 1:电路如图,已知 U1=40V, U2=20V, R1=R2=4, R3=13 ,试用戴维宁定理求电流I3。

解: (1) 断开待求支路求开路电压UOCU U 40 20I = 1 2 = = 2.5 AR + R 4 +41 2UOC = U2 + I R2 = 20 +2.5 4 =30V或: UOC = U1 – I R1 = 40 –2.5 4 = 30VUOC 也可用叠加原理等其它方法求。

(2) 求等效电阻 R0将所有独立电源置零(理想电压源用短路代替,理想电流源用开路代替)R RR = 1 2 = 20 R + R1 2(3) 画出等效电路求电流 I3U OC 30I = = = 2 A3 R + R 2 +130 3例 2:试求电流 I1解: (1) 断开待求支路求开路电压 UOCUOC = 10 – 3 1 = 7V(2) 求等效电阻 R0R0 =3(3) 画出等效电路求电流 I3 a327V _ b 解得: I1 = 1. 4 A【例 3】 用戴维南定理计算图中的支路电流 I 3。

戴维南定理及解题技巧

戴维南定理及解题技巧

I R5
+

US1
R6
R4
.
整理ppt
13
将US1支路移开,原图变为.如下形式:
R1
+ U
S2

R2
. A
+ U0
R5
.
为使I=0,必取U0=US1。即:
R3
- .B
R4
U 0= R 1 R R 2 5 R 5 U S 2 R 1 R R 3 4 R 4 U S 2= U S 1
解得:R1=6
整理ppt
1
为使计算简便些,这里介绍等效电源的方法之一:戴维南 定理。
等效电源方法,就是将复杂电路分成两部分。①待求支 路、②有源二端网络。
二端网络的概念:
二端网络:具有两个出线端的部分电路。 无源二端网络:不含有电源的二端网络。 有源二端网络:即是其中含有电源的二端口电路,它只是 部分电路,而不是完整电路。
整理ppt
14
整理ppt
15
I1 R1 I2 R2
I3
b
从a、b两端看进去, R1 和 R2 并联:
a
R1
R2
R0
b
R0
R1R2 R1 R2
2
求内阻R0时,关键要弄清从a、b两端看进去时各电阻之间的串并联 关系。
整理ppt
9
解:(3) 画出等效电路求电流I3
a
E1
+ –
+ E2–
R3
I1 R1 I2 R2
I3
b
a
R0 +
E_
整理ppt
6
例: 如图电路,已知E1=40V,E2=20V,R1=R2=4,R3=13 ,试用

戴维南定理例题.

戴维南定理例题.

叠加原理: 对于线性电路,任何一条支路的电流,都可以看 成是由电路中各个电源(电压源或电流源)分别 作用时,在此支路中所产生的电流的代数和。 + E– R1 + E = – R2 R1
IS I1
I2
I1'
I2'
+ R2 R1
IS
I1'' (c)
I2''
R2
(a) 原电路
(b) E 单独作用
叠加原理
无源 二端 网络
a R
b + _E
a
ቤተ መጻሕፍቲ ባይዱ
无源二端网络可 化简为一个电阻
b
a
电压源 (戴维南定理) b a 有源二端网络可 化简为一个电源 电流源 (诺顿定理) b
总目录 章目录 返回 上一页 下一页
有源 二端 网络
a b
R0
IS
R0
戴维南定理 任何一个有源二端线性网络都可以用一个电动势 为E的理想电压源和内阻 R0 串联的电源来等效代替。 a I a I + 有源 + R0 RL U 二端 U RL + – E _ 网络 – b 等效电源 b 等效电源的电动势E 就是有源二端网络的开路电 压U0,即将负载断开后 a 、b两端之间的电压。 等效电源的内阻R0等于有源二端网络中所有电源 均除去(理想电压源短路,理想电流源开路)后所 得到的无源二端网络 a 、b两端之间的等效电阻。
IS单独作用
总目录 章目录 返回 上一页 下一页
应用戴维南定理求解的步骤:
1、将电路分成待求支路和有源二端网络两部分;
2、把待求支路断开,画出有源二端网络求有源二端网络的 开路电压Uoc;画出无源二端网络(即有源二端网络中的所 有独立电源不工作,非独立电源保留)求等效电阻Req; 3、画出有源二端网络的等效电路,E= Uoc R0= Req。然后 在等效电路两端接入待求支路,求出待求支路的电流。 必须注意:代替有源二端网络的电源的极性应与开路电压 Uoc一致,若Uoc为负值,则电动势的方向与图中相反。

戴维南定理小结

戴维南定理小结

i
us 10V 6V 2Ω N
图4
图3
5.如图7所示一端口电路,则图中所示电流I的值为 ( )A。 6.如图8所示一端口电路,则端口a、b的输入电阻为( )Ω 。
2A 3A U 2Ω 3Ω 5Ω b 图7 图8 5Ω I a 3Ω 3Ω
7.如图9所示电路中2Ω电阻的吸收功率P等于( )W 8.如图10所示一端口电路,则端口电压U的值为( )V
练习1、下图电路中求电流i 。
例题2、求图示电路的戴维南等效电路。
解:①求开路电压uoc : 端口开路时,i =0, 所以, uoc =10V。
②求戴维南等效电阻Re q :见右上图。端口加电源激励u,产生电流i’。
u 2000 i'500 i 1500 i' u Req 1500 i'
uoc 2 1 un 6 V
回路法:
uoc 1 2 10 (1 1) 1 6 V
2o 求戴维南等效电阻Re q : 一端口内所有独立源置零后,可得: Re q =3Ω 所以,原电路可等效为右图电路。 ②接上外电路,求i L : 6 iL 1.2 A 3 2 很显然,戴维南定理非常适合求某一条支路的电压或电流。
20Ω
图6
1.电路如图1所示,则: U _____V (1 ) (2)元件吸收的功率为_________。
AB
2. 电路如图2所示,则a、b两端间等效电阻Rab=___。
3.电路如图3所示,则电流源吸收功率为 电压源发出功率为 W。
4.电路如图4所示,网络N吸收的功率为

W,
W。
Is
4A 2A
2Ω 2A
U
2V

戴维南定理

戴维南定理

戴维南定理测试题
例题1.电路如图所示,(1)用戴维南定理求I;(2)求3A电流源的功率。

例题2.电路和各元件参数如图所示,试求
(1)当RL=3时,电流I为1A,求此时的US的值;
(2)当RL为何值时可获得最大功率,此时获得的最大功率Pmax为多少;
(3)当电压源US调至何值时,RL两端的电压始终为零且与RL的值无关。

例题3.如图所示电路中,当开关打在2位置时,电流表读数为2A,当开关打在1位置时,电流表读数为1A,试求:
(1)ab虚线左侧部分电路的等效电源参数;
(2)电流源IS2的电流为多少?
(3)要使开光打在1位置时,电流表读数为0,电流源IS2的电流为多少?
例题4.电路如图所示,(1)用戴维南定理求电流I1;(2)计算电阻R4消耗的功率;(3)求恒流源IS的功率。

例题5.开关S置位置1时电压表读数为4V,求开关S置位置2时电压表的读数。

例题6.将图(a)所示电路等效成图(b)所示的电压源。

要求
(1)计算等效电压源的Uou,Rab;
(2)若在ab之间接入一个电流表,计算电流表读数(不考虑电流表内阻对电路的影响);
(3)若在ab之间接入一个电阻R,当R获得最大功率时,计算R的值和最大功率Pmax。

例题7.电路如图(a)所示。

已知图(b)所示电路中,电流表的读数是2A;图(c)(d)所示电路中的电流I1、I2分别是0.5A和1A。


(1)A部分电路的等效电源参数Uso、Ro的值;
(2)R和Is的值;
(3)图(a)电路中5欧姆电阻的功率。

戴维南定理例题及答案

戴维南定理例题及答案

戴维南定理例题及答案1、解:将电阻R从电路中断开,如上左图。

显然,3Ω电阻和右侧的1A电流源变化为串联关系,所以3Ω电阻电流为1A。

对于节点n,KCL得到2Ω电阻电流:1+1=2(A)。

Uoc=Uab=Uan+Unb=1×3+2×2=7(V)。

将电压源短路、电流源开路,如上右图。

Req=Rab=3+2=5(Ω)。

最大功率传输定理:当R=Req=5Ω时,R获得最大功率,PLmax=Uoc²/(4R)=7²/(4×5)=2.45(W)。

解:原电路叠加定理:1、电压源作用时,电流源开路。

左上图。

电路电阻:R3+(R1+R2)∥R4=R+(R+R)∥2R=2R。

回路电流:I=(12-4)/2R=4/R,所以:U'=R×4/R=4(V)。

2、叠加定理的到:U"=U-U'=6-4=2(V)。

3、电流源单独激励,电压源短路,上中图,等效为上右图。

R1电压也为2V,则其电流为2/R,R4电流为1/R,KCL得到R2的电流为:2 /R+1/R=3/R,R2的电压为:R×3/R=3(V)。

R3两端电压:3+2=5V,电流为:5/R;Is=5/R+3/R=8/R。

电流源改变方向后的叠加:1、电压源作用时,响应不变:U'=4V。

2、电流源作用时,如右下图。

电流源外部总电阻:R3∥(R2+R1∥R4)=R∥(R +R∥2R)=5R/8。

端电压:(5R/8)×Is=(5R/8)×8/R=5(V),注意此时为下正上负。

并联支路的电流(即R2的电流):5/(R+R∥2R)=3/R,方向为从下向上。

所以:U"=-(3/R)×(R∥2R)=-2(V)。

实际上,这一步不用这么复杂的计算;包括原电路的Is(上面的步骤3、)也不用计算。

因为根据线性电路激励与相应的性质关系,直接可得到:Is反向后,新的U"等于原来U"的相反数。

戴维宁定理七种例题

戴维宁定理七种例题

对于任何一个含源二端网络都可以用一个电源来代替,其电源电动势E等于其含源二端网络的开路电压,其内阻R等于含源二端网络内所有电动势为零时的输入电阻,这就是戴维南定理.","force_purephv":"0","gnid":"92556239629d7cecd","highlight":{"ab_ta g_A":{"src":"kuaizixun_keywords_A","words":[{"index":50,"word":"内阻"},{"index":39,"word":"二端网络"},{"index":30,"word":"电动势"},{"index":21,"word":"电源"}]},"ab_tag_B":{"src":"kuaizixun_keywords_B","words":[{"index":50,"word ":"内阻"},{"index":39,"word":"二端网络"},{"index":30,"word":"电动势"},{"index":21,"word":"电源"}]}},"img_data":[{"flag":2,"img":[]}],"pat":"mass_model_adver,art_src_6,fts 2,sts0","powerby":"pika","pub_time":1574885731610,"rawurl":"http://zm. /ece8b7f69391c355ce27de98cb114a3b","redirect":0,"rptid": "611f0af7fbc1e915","src":"文学旅游生活","tag":[],"title":"戴维南定理的内容是什么?戴维南定理的例题_ :可将任一复杂的集总参数含源线性时不变二端网络等效为一个简单的二端网络的定理. 对于任意含独立源,线性电阻和线性受控源的单口网络(二端网络),都可以用一个电压源与电阻相串联的单口网络(二端网络)来等效.这个电压源的电压...戴维南定理例题:戴维南定理是一个很实用的定理.虽然这样的题,你可以一步一步简化这个电路图,最终得到最简的形式求得所需的电压值.(这题这样做样还简单一些)但是如果这个电路更复杂类似桥式电路,就无法用化简的方法直接求答案了,只能用戴维...用戴维南定理求习题7-20图所示电路中的电流I0. - 上学吧找答案:首先,找Rth(也就是R0)当找Rth时.所有线性时不变的电压源,视为短路(一条直线).R不考虑,因为R是负载,戴维南定律只看出了负载以外的电路.所以,当把48V和60V 换成直线之后,可以看到12ohm和6ohm的电阻成并联,并联求出...求助.戴维南定理解题步骤._ :运用戴维南定理解题的步骤概括为:1、分2、求E 3、求r 4、合分别配以相应的图形步骤(1) 把电路分为待求支路和有源二端网络两部分.(2) 把待求支路移开,求出有源二端网络的开路电压Uab (3) 将网络内各电源除去,仅保留电源内阻,求出网络两端的等效电阻Rab (4) 画出有源二端网络的等效电路,等效电路中电源的电动势E0=Uab,电源的内阻r0=Rab,然后在等效电路两端接入待求支路,则待求支路的电流为I= E0/( r0+R)【戴维南定理的内容以及解题步骤】:在计算戴维南等效电路时,必须联立两个由电阻及电压两个变量所组成的方程式,这两个方程式可经由下列步骤来获得: 1. 在AB两端开路(在没有任往外电流输出,亦即当AB点之间的阻抗无限大)的状况下计算输出电压VAB,此...戴维南定理是什么,解题步骤是哪些_ :戴维南等效是关于电压源的等效:故此:第一步:将待求电路与外电路断开,求待求电路等效端口处的开路电压;第二步:将待求电路中所有电压源短路(直接用导线短接代替),将所有电流源开路(直接断开),化解纯电阻电路,求得内阻.(注:含受控源可参考百度文档:应用戴维南定理求解线性含受控源电路) 第三步:根据求得的开路电压和内阻画出等效电路即可.戴维南定理题?_ :开路电压就是R0与R1分压, Uo=Us*R1/(R0+R1),等效电阻就是R0//R1,有了这个戴维南等效,计算I2和U就太容易了.。

戴维南定理教案演示文稿课件

戴维南定理教案演示文稿课件

与其他定理的关联
戴维南定理与诺顿定理的关系
诺顿定理是戴维南定理的逆定理,两者在电路分析中常常互为补充,共同应用于电路的简化与分析。
戴维南定理与基尔霍夫定律的关系
基尔霍夫定律是电路分析的基本原理,而戴维南定理是在其基础上进一步简化电路的方法。
定理的深化理解
等效电压源模型的理解
戴维南定理中的等效电压源模型是理解定理的关键,通过该模型可以直观地理解等效电 路的特点和性质。
教学评估与反馈
课堂小测验
教学反馈
通过简单的题目,检查学生对戴维南 定理的理解程度。
鼓励学生提出对教学的建议和意见, 以便教师不断改进教学方法和内容。
课后作业
布置相关练习题,让学生巩固所学知 识,提高解题能力。
THANKS
在等效电路的构建中,需要将原 电路划分为两部分,一部分是线 性电阻网络,另一部分是独立源 和受控源。
在等效电路的求解中,需要应用 基尔霍夫定律和线性代数方法求 解等效电路的电压和电流。
定理证明的实例
为了更好地理解戴维南定理的证明过程,可以通过具体的实例进行演示。例如, 可以选取一个简单的电路作为示例,将其划分为两部分,然后进行等效电路的构 建、求解和验证。
通过实例演示,可以让学生更加深入地理解戴维南定理的证明过程和应用方法, 从而更好地掌握该定理。
03
戴维南定理的应用
在电路分析中的应用
1 2
3
简化电路分析
戴维南定理可以将复杂电路简化为简单的一端口网络,方便 进行计算和分析。
确定电源功率
利用戴维南定理可以计算出电源的功率,从而了解电路的能 耗情况。
实际应用中的注意事项
在应用戴维南定理时,需要注意电路的结构和元件的性质,以确保等效电路的准确性和 适用性。同时,还需要注意等效电路与原电路在性能上的差异和联系,以便更好地理解

戴维南习题

戴维南习题

戴维南定理
1、二端网络:具有两个向外电路接线的接线端的网络。
有源二端网络:二端网络中含有电源。如电路图中的① 无源二端网络:二端网络中没有电源。如电路图中的②
适用:只需计算电路中某一支路的电流
戴维南定理:指的是任一线性有源二端网络,对其外电 路来说,都可以用一个理想电压源和内阻相串联的有源支路 来等效代替。即将有源二端网络用电压源等效,故又称电压 源定理。 注意:等效是对端口外等效。 其中,等效电压源的电动势E等于有源二端网络的开路 电压Uo,内阻Ro等于网络中所有理想电源均除去时(理想电 压源短路,理想电流源开路),二端网络中的等效电阻。
即等效电路中的电源电动势E=UO=2V
(2)求有源二端网络变无源二端网络时的开路等效电阻Ro,如下图: Ro= R1∥R2=1Ω Rth=Ro
(3)根据戴维南等效电路中,求 I 和U,如下图: I=E/(Ro+ R)=1A U=IR=1V
1Ω Ω 1Ω 2V
例2:电路如图,已知IS=4A,R1= R2= R3 = R= 1Ω, 试用戴维南定律求I
例1:电路如图,已知E1=4V,R1= R2=2Ω,R=1Ω,试用戴 维南定律求 I 和 U
解:用戴维南定理求解,就是将电路等效为电压源电路,然后求 相应的未知量。
将原电路等效为戴维南等效电路,如下图:
(1)将待求支路断开,求有源二端网络的开路电压Uo,如下图:
Uo=[R2/(R1+R2)]*E1=2V
解:(1)将R支路开路,求有源二端网络的开路电压Uo,如图:
Io=[R1/ [R1+(R2+ R3)]]* IS=1A Uo=Io R3=2V=E
(2)除去电流源(开路),求等效电阻Ro,如下图

戴维南定理基础练习题(打印版)

戴维南定理基础练习题(打印版)

戴维南定理基础练习题(打印版)# 戴维南定理基础练习题## 一、理论回顾戴维南定理(Thevenin's Theorem)是电路理论中的一个重要定理,它提供了一种将复杂电路简化为等效电路的方法。

根据戴维南定理,任何线性双端网络都可以用一个电压源和内阻串联的等效电路来代替。

### 1. 定理内容戴维南定理指出,对于任何线性双端网络,当其两端开路时,等效电压源的电压等于开路电压;当其两端短路时,等效内阻等于短路电流除以开路电压。

### 2. 应用条件- 电路必须是线性的。

- 电路两端可以是任意的两个节点。

## 二、基础练习题### 练习题1:开路电压与短路电流的计算题目描述:给定一个简单的电路,包含一个电压源Vs,一个电阻R1,和一个并联电阻R2。

计算开路电压和短路电流。

电路参数:- Vs = 10V- R1 = 1kΩ- R2 = 2kΩ解答:开路电压等于电压源的电压,即Voc = Vs = 10V。

短路电流Isc可以通过计算总电阻Rt得到:\[ R_t = \frac{R_1 \times R_2}{R_1 + R_2} = \frac{1k\Omega \times 2k\Omega}{1k\Omega + 2k\Omega} = 0.6667k\Omega \]\[ I_{sc} = \frac{V_s}{R_t} = \frac{10V}{0.6667k\Omega}\approx 15.01mA \]### 练习题2:等效电路的构建题目描述:在练习题1的基础上,构建等效电路,并计算当负载电阻RL = 3kΩ时的输出电压。

解答:等效电路由10V的电压源和0.6667kΩ的内阻串联组成。

当连接负载电阻RL时,总电阻为:\[ R_{total} = R_{th} + R_L = 0.6667k\Omega + 3k\Omega = 3.6667kΩ \]输出电压Vout可以通过欧姆定律计算:\[ V_{out} = I_{load} \times R_{total} \]\[ I_{load} = \frac{V_{oc}}{R_{total}} =\frac{10V}{3.6667k\Omega} \approx 2.73mA \]\[ V_{out} = 2.73mA \times 3.6667k\Omega \approx 10V \]### 练习题3:电路参数的调整题目描述:如果将练习题1中的R1改为2kΩ,重新计算开路电压和短路电流。

戴维南定理经典例题解析

戴维南定理经典例题解析

戴维南定理经典例题解析
戴维南定理是数论中的一个重要定理,它给出了一种判断一个整数是否为素数的方法。

该定理由英国数学家戴维南于1950年提出。

戴维南定理的表述为:如果一个整数N能够表示为N=a^2+b^2,其中a和b均为整数,那么N是素数的充分必要条件是N不能被4整除。

下面我们来看一个经典的例题解析。

例题:判断整数13是否为素数。

解析:根据戴维南定理,我们需要找到两个整数a和b,使得
13=a^2+b^2。

我们可以尝试不同的a和b的取值来验证。

当a=1时,b=3。

则13=1^2+3^2,符合定理的要求。

再来看另一个例子,当a=2时,b=3。

则13=2^2+3^2,依然符合定理的要求。

根据戴维南定理,我们得到13不能被4整除,因此13是素数。

总结:通过戴维南定理,我们可以判断一个整数是否为素数。

这个定理的证明较为复杂,需要使用到其他数学定理和方法。

在实际应用中,我们可以利用该定理来简化素数的判断过程。

戴维宁定理七种例题

戴维宁定理七种例题

戴维宁定理戴维宁定理(又译为戴维南定理)又称等效电压源定律,是由法国科学家L < ・戴维南于1883年提出的一个电学定理。

由于早在1853 年,亥姆霍兹也提出过本定理,所以又称亥姆霍兹-戴维南定理。

其内容是:一个含有独立电压源、独立电流源及电阻的线性网络的两端, 就其外部型态而言,在电性上可以用一个独立电压源V和一个松弛二端网络的串联电阻组合来等效。

在单频交流系统中,此定理不仅只适用于电阻,也适用于广义的阻抗。

戴维南定理在多电源多回路的复杂直流电路分析中有重要应用。

戴维宁定理(Thevenin,s theorem):含独立电源的线性电阻单口网络工就端口特性而言,可以等效为一个电压源和电阻串联的单口网络。

电压源的电压等于单口网络在负载开路时的电压uoc;电阻R0是单口网络内全部独立电源为零值时所得单口网络NO的等效电阻。

例题:例1利月辘宁B求下图所示旗中的回玉%分析:断开得求电断在的琥(即股电阻断在支路),杼剩余■端口网络化为懿宁等效后路,需要求开路电压%C和等效电附将中(1)求开触5% -电雕下图标由醺联燃螺副I,恢二6开3,,求解得到,上9/95,瞅(依二9V(2)求等效电阻&便上图曲格受控源,需要用第二(夕卜加您法(加电压转掴加息流求电玉))舞三种(开路视,醺电髓 历潮灌,此晚垃融g 零S-:顺求温电唧下图标I瞬蹒筋喟到仇6K3即(WL ),必碰+3)=(2/3%]谶僦)斯以上9@3%城, 崛=姬=6。

法二:开融压、短珞电流。

开珞电压前面已求出,%19V,下面寄要求短整电瞅s 在求解短路电流的过程犍目路蹄糅,得到鲂+3£9 (KVL) , 643E0 (KVL),屿0 ,售匾=4=9匠1.5A (KCL) f 斫以 &q=%c/4二6。

计算含受控源用路的等效用阻是月外加电源法还是开路、短路法.要具体问题具体分忻,以计算着便为好。

中,独立3 保留。

电档如下图所示。

戴维南定理补充练习

戴维南定理补充练习

回路法:
uoc 1 2 10 (1 1) 1 6 V
2o 求戴维南等效电阻Re q : 一端口内所有独立源置零后,可得: Re q =3Ω 所以,原电路可等效为右图电路。 ②接上外电路,求i L : 6 iL 1.2 A 3 2 很显然,戴维南定理非常适合求某一条支路的电压或电流。
A
E2 R2 I (图二)
E2 UAB R2
E2 – E1 42 – 24 = = 2A R1+R2 3+6
E0=UAB=–E3+E2–I1R2= –50+ 42 – 2×6= –20V R1R2 3×6 R0 =RAB =R3 + =8+ =10Ω R1+R2 3+6 E0 – 20 I= = = – 2A R0+R 10+10
20Ω
图6
1.电路如图1所示,则: U (1 ) _____V (2)元件吸收的功率为_________。 AB
2. 电路如图2所示,则a、b两端间等效电阻Rab=___。
3.电路如图3所示,则电流源吸收功率为 电压源发出功率为 W。
4.电路如图4所示,网络N吸收的功率为

W,
W。
Is
4A 2A
例3、在图三所示电路中,已知:IS =2A,E1=8V,R1=2Ω, R2 =10Ω,试用戴 维南定理求流过R2的电流。
A
E IS (图三) R1 R2 IS E UAB R1 (a) B A R1 UAB B (c)
A
RAB R1 B E0 I R0
A R2
IS
IS1
(b)
(d) B
解:
E 8 IS1 = R1 = 2 = 4A E0 =UAB =(IS +IS1)R1 =(2+4)×2 =12V R0 =RAB =R1 =2Ω E0 I= = 12 =1A R0+R2 2+10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

戴维宁定理
一、知识点:
1、二端(一端口) 网络的概念:
二端网络:具有向外引出一对端子的电路或网络。

无源二端网络:二端网络中没有独立电源。

有源二端网络:二端网络中含有独立电源。

2、戴维宁(戴维南)定理
任何一个线性有源二端网络都可以用一个电压为U OC的理想电压源和一个电阻R0串联的等效电路来代替。

如图所示:
等效电路的电压U OC是有源二端网络的开路电压,即将负载R L断开后a 、b两端之间的电压。

等效电路的电阻R0是有源二端网络中所有独立电源均置零(理想电压源用短路代替,理想电流源用开路代替)后, 所得到的无源二端网络 a 、b两端之间的等效电阻。

二、 例题:应用戴维南定理解题:
戴维南定理的解题步骤:
1.把电路划分为待求支路和有源二端网络两部分,如图1中的虚线。

2.断开待求支路,形成有源二端网络(要画图),求有源二端网络的开路电压UOC 。

3.将有源二端网络内的电源置零,保留其内阻(要画图),求网络的入端等效电阻Rab 。

4.画出有源二端网络的等效电压源,其电压源电压US=UOC (此时要注意电源的极性),内阻R0=Rab 。

5.将待求支路接到等效电压源上,利用欧姆定律求电流。

例1:电路如图,已知U 1=40V ,U 2=20V ,R 1=R 2=4Ω,R 3=13 Ω,试用戴维宁定理求电流I 3。

解:(1) 断开待求支路求开路电压
U OC
U OC = U 2 + I R 2 = 20 +2.5 ⨯ 4 =
30V
或: U OC = U 1 – I R 1 = 40 –2.5 ⨯ 4 = 30V
U OC 也可用叠加原理等其它方法求。

(2) 求等效电阻R 0
将所有独立电源置零(理想电压源
用短路代替,理想电流源用开路代替)
(3) 画出等效电路求电流I 3
例2:试求电流 I 1
A 5.24420402121
=+-=+-=R R U U I Ω=+⨯=22
1210R R R R R A 213
23030OC 3=+=+=R R U I
解:(1) 断开待求支路求开路电压U OC
U OC = 10 – 3 ⨯ 1 = 7V
(2) 求等效电阻R 0
R 0 =3 Ω
(3) 画出等效电路求电流I 3
解得:I 1 = 1. 4 A
【例3】 用戴维南定理计算图中的支路电流I 3。

解:① 等效电源的电动势E 可由图1-58(b)求得
于是

② 等效电源的内阻R O 可由图1-58(c)求得
因此 3Ω +
_ 2Ω a
b I 1 7V
③ 对a和b两端讲,R1和R2是并联的,由图1-58(a)可等效于图1-58(d)。

所以
【例4】电路如图所示,R=2.5KΩ,试用戴维南定理求电阻R中的电流I。

解:图1-59(a)的电路可等效为图1-59(b)的电路。

将a、b间开路,求等效电源的电动势E,即开路电压U ab0。

应用结点电压法求a、b间开路时a和b两点的电位,即
将a、b间开路,求等效电源的内阻R0
R0=3KΩ//6KΩ+2KΩ//1KΩ//2KΩ=2.5KΩ
求电阻R中的电流I
三、应用戴维宁定理应注意的问题:
应用戴维南定理必须注意:
①戴维南定理只对外电路等效,对内电路不等效。

也就是说,不可应用该定理求出等效电源电动势和内阻之后,又返回来求原电路(即有源二端网络内部电路)的电流和功率。

②应用戴维南定理进行分析和计算时,如果待求支路后的有源二端网络仍为复杂电路,可再次运用戴维南定理,直至成为简单电路。

③使用戴维南定理的条件是二端网络必须是线性的,待求支路可以是线性或非线性的。

线性电路指的是含有电阻、电容、电感这些基本元件的电路;非线性电路指的是含有二极管、三极管、稳压管、逻辑电路元件等这些的电路。

当满足上述条件时,无论是直流电路还是交
流电路,只要是求解复杂电路中某一支路电流、电压或功率的问题,就可以使用戴维南定理。

四、练习题:
1、用戴维南定理求图中5Ω电阻中的电流I ,并画出戴维南等效电路
2、试用戴维南定理计算图示电路中3欧电阻中的电流I.(-35/31(A ))
3、试用戴维南定理计算图示电路中6欧电阻中的电流I 。

(0.75A )
4、如图中已知US1=140V US2=90V R1=20欧姆 R2=5欧姆 R3=6欧姆,用戴维宁定律计算电流 I 3 值 (10A )
5、计算图示电路中的电流I 。

(用戴维南定理求解)(2A )
- 10V + 6Ω

3Ω 5A 2A - 20V +
题3图
6、计算图示电路中的电流I。

(用戴维南定理求解)(-1A)
7、计算图示电路中的电流I。

(用戴维南定理求解)
(1.6A)
7、用戴维南定理计算图中的支路电流I3。

(10A)
8、电路如图所示,R=2.5KΩ,试用戴维南定理求电阻R中的电流I。

(0.35 mA)
9、用戴维南定理求下图所示电路中的电流I(2A)。

相关文档
最新文档