应用多元统计分析第八章习题解答
应用多元统计分析课后习题答案详解北大PPT文档共40页

6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡 北大
1、战鼓一响,法律无声。——英国 2、任何法律的根本;不,不成文法本 身就是 讲道理 ……法 律,也 ----即 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲纪不正,其国风一 定颓败 。—— 塞内加 5、法律不能使人人平等,但是在法律 面前人 人是平 等的。 ——波 洛克
应用多元统计分析答案详解汇总_高惠璇[1]
![应用多元统计分析答案详解汇总_高惠璇[1]](https://img.taocdn.com/s3/m/5f0eb38784868762caaed582.png)
e
1 2 ( x2 2 x1 x2 14 x2 ) 2
dx2
1 e 2
1 2 ( 2 x1 22 x1 65 ) 2
e
1 2 ( x2 2 x2 ( x1 7 ) ( x1 7 ) 2 ) 2
比较上下式相应的系数,可得:
1 2 1 12 2 2 2 12 1 1 2 1 2 2 2 22 1 2 1 2 2 2 2 2 1 2 1 2 1 14 2 2 2 2 2 1 2 1 2 1 2 1 2
x1 y2 (2)第二次配方.由于 x2 y1 y2
14
第二章
2 1 2 2 2 1 2 1 2 2
多元正态分布及参数的估计
2 x x 2 x1 x2 22 x1 14 x2 65 y y 22 y2 14( y1 y2 ) 65 y 14 y1 49 y 8 y2 16 ( y1 7) ( y2 4)
由定理2.3.1可知X1 +X2 和X1 - X2相互独立.
4
第二章
(2) 因
多元正态分布及参数的估计
1 2 2 2(1 ) 0 X1 X 2 ~ N2 , Y 2(1 ) 0 X1 X 2 1 2
O 2(1 2 ) O 2(1 2 )
由定理2.3.1可知X(1) +X(2)和X(1) -X(2) 相 互独立.
7
第二章
(2) 因
(1) (2)
(完整word版)应用多元统计分析习题解答主成分分析

主成分分析6.1 试述主成分分析的基本思想。
答:我们处理的问题多是多指标变量问题,由于多个变量之间往往存在着一定程度的相关性,人们希望能通过线性组合的方式从这些指标中尽可能快的提取信息。
当第一个组合不能提取止。
这就是主成分分析的基本思想。
6.2 主成分分析的作用体现在何处?答:一般说来,在主成分分析适用的场合,用较少的主成分就可以得到较多的信息量。
以各个主成分为分量,就得到一个更低维的随机向量;主成分分析的作用就是在降低数据“维数”6.3 简述主成分分析中累积贡献率的具体含义。
答:主成分分析把p 个原始变量12,,,p X X X 的总方差()tr Σ分解成了p 个相互独立的变量p 个主成分的,忽略一些带有较小方差的主成分将不会给总方差带来太大的影响。
这里我们()m p <个主成分,则称11pmm kkk k ψλλ===∑∑ 为主成分1,,m Y Y 的累计贡献率,累计贡献率表明1,,m Y Y 综合12,,,p X X X 的能力。
通常取m ,使得累计贡献率达到一个较高的百分数(如85%以上)。
答:这个说法是正确的。
即原变量方差之和等于新的变量的方差之和6.5 试述根据协差阵进行主成分分析和根据相关阵进行主成分分析的区别。
答:从相关阵求得的主成分与协差阵求得的主成分一般情况是不相同的。
从协方差矩阵出发的,其结果受变量单位的影响。
主成分倾向于多归纳方差大的变量的信息,对于方差小的变量就可能体现得不够,也存在“大数吃小数”的问题。
实际表明,这种差异有时很大。
我6.6 已知X =()’的协差阵为 试进行主成分分析。
解:=0计算得当时,同理,计算得时,易知相互正交单位化向量得,,综上所述,第一主成分为第二主成分为第三主成分为6.7 设X=()’的协方差阵(p为, 0<p<1证明:为最大特征根,其对应的主成分为。
证明:==,为最大特征根当时,=所以,6.8利用主成分分析法,综合评价六个工业行业的经济效益指标。
多元应用统计第八章答案

多元应用统计第八章答案1、对某高中一年级男生38人进行体力测试(共7项指标)及运动能力测试(共5项指标),试对两组指标做典型相关分析。
体力测试指标:x1-反复横向跳(次),x 2-纵跳(cm),x 3-臂力(kg),x 4-握力(kg),x 5-台阶试验(指数),x 6-立定体前屈(cm),x 7-俯卧上体后仰(cm)。
运动能力测试指标: x8-50米跑(秒),x 9-跳远(cm),x 10-投球(m),x11-引体向上(次),x12-耐力跑(秒)。
矩阵Run MATRIX procedure:一、两组变量间的相关系数Correlations for Set-1X1 X2 X3 X4 X5 X6 X7X1 1.0000 .2701 .1643 -.0286 .2463 .0722 -.1664X2 .2701 1.0000 .2694 .0406 -.0670 .3463 .2709X3 .1643 .2694 1.0000 .3190 -.2427 .1931 -.0176X4 -.0286 .0406 .3190 1.0000 -.0370 .0524 .2035X5 .2463 -.0670 -.2427 -.0370 1.0000 .0517 .3231X6 .0722 .3463 .1931 .0524 .0517 1.0000 .2813X7 -.1664 .2709 -.0176 .2035 .3231 .2813 1.0000Correlations for Set-2X8 X9 X10 X11 X12X8 1.0000 -.4429 -.2647 -.4629 .0777X9 -.4429 1.0000 .4989 .6067 -.4744X10 -.2647 .4989 1.0000 .3562 -.5285X11 -.4629 .6067 .3562 1.0000 -.4369X12 .0777 -.4744 -.5285 -.4369 1.0000Correlations Between Set-1 and Set-2X8 X9 X10 X11 X12X1 -.4005 .3609 .4116 .2797 -.4709X2 -.3900 .5584 .3977 .4511 -.0488X3 -.3026 .5590 .5538 .3215 -.4802X4 -.2834 .2711 -.0414 .2470 -.1007X5 -.4295 -.1843 -.0116 .1415 -.0132X6 -.0800 .2596 .3310 .2359 -.2939X7 -.2568 .1501 .0388 .0841 .1923首先给出的是Correlations for Set-1、Correlations for Set-2为两组变量的内部各自相关矩阵。
《应用多元分析》第三版(第八章 因子分析)

因此,因子载荷矩阵A不是惟一的,在实际应用中常常利用
这一点,通过因子的旋转(见稍后的§8.4),使得新的因子
有更好的实际意义。
三、因子载荷矩阵的统计意义
❖
1.A的元素aij
m
2
2
h
a
❖ 2.A的行元素平方和 i
ij
j 1
p
2
2
g
a
❖ 3.A的列元素平方和 j
ij
i 1
❖ 二、正交因子模型的性质
❖ 三、因子载荷矩阵的统计意义
一、数学模型
❖
设有p维可观测的随机向量 x ( x1 , x2 , , x p ),其均值
为 μ ( 1 , 2 , , p ),协差阵为Σ=(σij)。因子分析的
一般模型为
x1 1 a11 f1 a12 f 2 a1m f m 1
有什么实际意义的,故实践中m也不应选得过小。
2.模型不受单位的影响
❖
将x的单位作变化,通常是作一变换x*=Cx,这里
C=diag(c1,c2,⋯,cp),ci>0,i=1,2,⋯,p,于是
x*=C μ+CAf+C ε
令μ*=C μ,A*=CA,ε*=C ε,则有
x*=μ*+A*f+ε*
这个模型能满足类似于前述因子模型的假定,即
x a f a f a f
2
2
21 1
22 2
2m m
2
x p p a p1 f1 a p 2 f 2
a pm fm p
其中f1, f2, ⋯, fm为公共因子,ε1, ε2, ⋯, εp为特殊因子,
应用多元统计分析课后题答案

c) c)2
2( x1
a)( x2
c)]
其中 a x1 b , c x2 d 。求 (1)随机变量 X1 和 X 2 的边缘密度函数、均值和方差; (2)随机变量 X1 和 X 2 的协方差和相关系数; (3)判断 X1 和 X 2 是否相互独立。
(1)解:随机变量 X1 和 X 2 的边缘密度函数、均值和方差;
12
2 2
1/
2
exp
1 2
(x
μ)
12 21
12
2 2
1
(x
μ)
。
2.3 已知随机向量 ( X1 X 2 ) 的联合密度函数为
f
( x1 ,
x2 )
2[(d
c)( x1
a)
(b a)(x2 (b a)2 (d
μ)
1 n 1
n i 1
E(Xi
-
μ)(
X i
-
μ)
nE(X
μ)(X
μ)
Σ
。
故 S 为 Σ 的无偏估计。 n 1
2.9.设 X(1) , X(2) , ..., X(n) 是从多元正态分布 X ~ N p (μ, Σ) 抽出的一个简单随机样本,试求 S
c) 2(x1 a)(x2 a)2(d c)2
c)]
dx2
2(d c)(x1 a)x2 d dc 2[(b a)t 2(x1 a)t] dt
(b a)2 (d c)2
应用多元统计分析课后的答案解析_朱建平版

2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。
2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=--其中1ax b ≤≤,2c x d ≤≤。
求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数;(3)判断1X 和2X 是否相互独立。
(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()dx cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd c c d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 121222202()()2[()2()]()()()()dd c c d c x a x b a t x a t dt b a d c b a d c ------=+----⎰ 2212122222()()[()2()]1()()()()d cdc d c x a x b a t x a t b a d c b a d c b a------=+=----- 所以 由于1X 服从均匀分布,则均值为2b a+,方差为()212b a -。
应用多元统计分析课后答案 (2).doc

2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=L 的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=L 的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。
2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=--其中1ax b ≤≤,2c x d ≤≤。
求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数;(3)判断1X 和2X 是否相互独立。
(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()dx cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd c c d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 121222202()()2[()2()]()()()()dd c c d c x a x b a t x a t dt b a d c b a d c ------=+----⎰ 2212122222()()[()2()]1()()()()d cdc d c x a x b a t x a t b a d c b a d c b a------=+=----- 所以 由于1X 服从均匀分布,则均值为2b a+,方差为()212b a -。
应用多元统计分析试题及答案

一、填空题:1、多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法.2、回归参数显著性检验是检验解释变量对被解释变量的影响是否著.3、聚类分析就是分析如何对样品(或变量)进行量化分类的问题。
通常聚类分析分为 Q型聚类和 R型聚类。
4、相应分析的主要目的是寻求列联表行因素A 和列因素B 的基本分析特征和它们的最优联立表示。
5、因子分析把每个原始变量分解为两部分因素:一部分为公共因子,另一部分为特殊因子。
6、若()(,), Px N αμα∑=1,2,3….n且相互独立,则样本均值向量x服从的分布为_x~N(μ,Σ/n)_。
二、简答1、简述典型变量与典型相关系数的概念,并说明典型相关分析的基本思想。
在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。
选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此下去直到两组之间的相关性被提取完毕为止。
被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。
2、简述相应分析的基本思想。
相应分析,是指对两个定性变量的多种水平进行分析。
设有两组因素A和B,其中因素A包含r个水平,因素B包含c个水平。
对这两组因素作随机抽样调查,得到一个rc的二维列联表,记为。
要寻求列联表列因素A和行因素B的基本分析特征和最优列联表示。
相应分析即是通过列联表的转换,使得因素 A 和因素B具有对等性,从而用相同的因子轴同时描述两个因素各个水平的情况。
把两个因素的各个水平的状况同时反映到具有相同坐标轴的因子平面上,从而得到因素A、B的联系。
3、简述费希尔判别法的基本思想。
从k个总体中抽取具有p个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数系数:确定的原则是使得总体之间区别最大,而使每个总体内部的离差最小。
将新样品的p 个指标值代入线性判别函数式中求出 值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。
应用多元统计分析课后习题答案详解北大高惠璇第八章习题解答

所以
Q(m)
i 1 j 1 2 ij
p
p
j m1
(
2 j i 1
p
2 2 i
)
j m 1
,
2 j
16
p
第八章 因子分析
8-5 试比较主成分分析和因子分析的 (1) 主成分分析不能作为一个模型来描述,它只 是通常的变量变换,而因子分析需要构造因子模型; (2) 主成分分析中主成分的个数和变量个数p相 同,它是将一组具有相关关系的变量变换为一组互 不相关的变量(注意应用主成分分析解决实际问题 时,一般只选取前m(m<p)个主成分),而因子分析的 目的是要用尽可能少的公共因子,以便构造一个结 构简单的因子模型;
(2) ( AA D) 1 D 1 D 1 A( I AD 1 A) 1 A1 D 1 ; (3) A( AA D) 1 ( I m AD 1 A) 1 AD 1. 解:利用分块矩阵求逆公式求以下分块矩阵的逆:
记B221 I m AD A,
17
第八章 因子分析
(3) 主成分分析是将主成分表示为原变量的线 性组合,而因子分析是将原始变量表示为公因子 和特殊因子的线性组合,用假设的公因子来“解 释”相关阵的内部依赖关系. 这两种分析方法又有一定的联系.当估计方法 采用主成分法,因子载荷阵A与主成分的系数相 差一个倍数;因子得分与主成分得分也仅相差一 个常数.这种情况下可把因子分析看成主成分分 析的推广和发展. 这两种方法都是降维的统计方法,它们都可用 来对样品或变量进行分类.
18
2 11 2 21 2 3 2 31
a 1
2 31 2 3
a11a21 0.63 a11a31 0.45 a31a21 0.35
应用多元统计分析章节后习题答案详解北大高惠璇习题解答市公开课金奖市赛课一等奖课件

第10页 10
第八章 因子分析
8-3 验证下列矩阵关系式(A为p×m阵)
(1) (I AD1A)1 AD1A I (I AD1A)1;
(2) ( AA D)1 D1 D1A(I AD1A)1 A1D1;
(3) A( AA D)1 (Im AD1A)1 AD1.
解:利用分块矩阵求逆公式求下列分块矩阵逆:
(3) 主成份分析是将主成份表示为原变量线性 组合,而因子分析是将原始变量表示为公因子和 特殊因子线性组合,用假设公因子来“解释”相 关阵内部依赖关系.
这两种分析办法又有一定联系.当预计办法采 用主成份法,因子载荷阵A与主成份系数相差一 个倍数;因子得分与主成份得分也仅相差一个常 数.这种情况下可把因子分析当作主成份分析推 广和发展.
并计算误差平方和Q(2).
解 : m 2的因子模型的主成分解为:
0.8757 0.1802
A(
1l1,
2
l2
)
0.8312
0.4048,
0.7111 0.6950
第7页
7
第八章 因子分析
D
0.2007 0 0
0 0.1452
0
0.0100131
则m 2的正交因子模型为
X1 0.8757F1 0.1802F2 1 X 2 0.8312F1 0.4048F2 2 X 3 0.7111F1 0.6950F2 3
p
m
p
S ilili ilili ilili
i 1
i 1
i m 1
其中1 2 p 0 为S特性值,li为相应原则
特性向量。
第14页 14
第八章 因子分析
设A,D是因子模型主成份预计,即
(约翰逊版)实用多元统计分析第八章课后答案

第八章作业8.10解:首先对数据进行标准化处理,消除不同的度量带来的差异标准化的数据如下表:表1对处理的数据做主成分分析样本相关系数矩阵即为相应的样本协方差矩阵S即相应的协方差矩阵为:表2从表3可以得出,五个主因子解释的总体方差比重表3五个主因子间的协方差矩阵如下表4:表4从表4可以看出,这两个因子之间的相关程度比较低表5从表5可以得出五个主成分的表达式:F1=0.302X1+0.403X2+0.342X3+0.277X4+0.242X5F2=(-0.245)X1+(-0.14)X2+(-0.339)X3+0.46X4+0.492X5F3=1.016X1+(-0.517)X2+(-0.365)X3+0.005X4+0.102X5F4=(-0.163)X1+(-1.058)X2+1.096X3+0.216X4+0.169X5F5=(-0.044)X1+0.056X2+0.1X3+(-1.157)X4+1.144X5(b)五个特征值分别为:λ1,λ2,λ3,λ4,λ5,从表三可以得出: 第一主成分的总方差贡献为:λ1λ1+λ2+λ3+λ4+λ5=39.502% 第二主成分的总方差贡献为:λ2λ1+λ2+λ3+λ4+λ5=30.879% 第三主成分的总方差贡献为:λ3λ1+λ2+λ3+λ4+λ5=13.856%(c )第一主成分的特征值λ1对应的庞弗罗尼联合置信区间为【0.00106,0.00195】第二主成分的特征值λ2对应的庞弗罗尼联合置信区间为【0.00054,0.001】第三主成分的特征值λ3对应的庞弗罗尼联合置信区间为【0.00019,0.00036】 (d )从(a )~(c )的结果,前三个主成分的方差贡献超过80%,我们可以得出,综合股票回报率数据能在小于五维的空间中得到解释。
8.13(a )变量的相关系数矩阵如下表:(b)有相应的相关系数表可以求出相应的特征值及特征向量表1从表1可以得出相应的特征值表2从上表可以得出相应的特征向量e1=(0.872,0.903,0.659,0.79,0.977,0.134)ˋe2=(0.361,-0.151,-0.23,-0.128,-0.037,0.955)ˋe3=(-0.382, -0.372,0.576, 0.246,0.044, 0.259)ˋe4=(0.189,0.071,0.423,-0.541,-0.068,-0.033)ˋe5=(-0.016,0.128,0.042,0.065 ,-0.191,0.038)ˋe6=(-0.061,0.049,-0.01,-0.028,0.032,0.026)ˋ第一主成分的总方差贡献为:λ1=58.846%λ1+λ2+λ3+λ4+λ5+λ6=18.925%第二主成分的总方差贡献为:λ2λ1+λ2+λ3+λ4+λ5+λ6=12.433%第三主成分的总方差贡献为:λ3λ1+λ2+λ3+λ4+λ5+λ6第四主成分的总方差贡献为:λ4=8.641%λ1+λ2+λ3+λ4+λ5+λ6=1.010%第五主成分的总方差贡献为:λ5λ1+λ2+λ3+λ4+λ5+λ6=0.145%第六主成分的总方差贡献为:λ6λ1+λ2+λ3+λ4+λ5+λ6(c)从(b)的结果可以看出,第一个主成解释了总方差的58.846%,低于80%,所以用一个指标来反映综合放射法数据是不合理的(d)从(b的结果可以得出,提取前三个主成分比较合适,前三个主成分的的累积方差贡献超过80%,前三个主成分与x1,x2,x3,x4.x5及x6的相关系数表如下:表3第九章作业9.20(a)空气污染变量X1,X2,X5,X6的样本协方差矩阵如表1:表1(a)先求出m=1时的因子矩阵,然后计算响应的主成分得分,再利用公式Xi=∝F1 其中∝为第一主成分的方差贡献,由此可以得到m=1的因子模型的主成分解如表2:表2m=2表3。
应用多元统计分析试题及答案

一、填空题:1、多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法.2、回归参数显著性检验是检验解释变量对被解释变量的影响是否著.3、聚类分析就是分析如何对样品(或变量)进行量化分类的问题。
通常聚类分析分为 Q型聚类和R型聚类。
4、相应分析的主要目的是寻求列联表行因素A 和列因素B 的基本分析特征和它们的最优联立表示。
5、因子分析把每个原始变量分解为两部分因素:一部分为公共因子,另一部分为特殊因子。
6、若()(,), Px N αμα∑=1,2,3….n且相互独立,则样本均值向量x服从的分布为_x~N(μ,Σ/n)_。
二、简答1、简述典型变量与典型相关系数的概念,并说明典型相关分析的基本思想。
在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。
选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此下去直到两组之间的相关性被提取完毕为止。
被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。
2、简述相应分析的基本思想。
相应分析,是指对两个定性变量的多种水平进行分析。
设有两组因素A和B,其中因素A包含r个水平,因素B包含c个水平。
对这两组因素作随机抽样调查,得到一个rc的二维列联表,记为。
要寻求列联表列因素A和行因素B 的基本分析特征和最优列联表示。
相应分析即是通过列联表的转换,使得因素A 和因素B具有对等性,从而用相同的因子轴同时描述两个因素各个水平的情况。
把两个因素的各个水平的状况同时反映到具有相同坐标轴的因子平面上,从而得到因素A 、B 的联系。
3、简述费希尔判别法的基本思想。
从k 个总体中抽取具有p 个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数 系数:确定的原则是使得总体之间区别最大,而使每个总体内部的离差最小。
将新样品的p 个指标值代入线性判别函数式中求出 值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。
(完整版)多元统计分析课后练习答案

第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。
在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
其中最典型的就是0-1标准化和Z 标准化。
2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。
在二维和三维空间中的欧氏距离的就是两点之间的距离。
缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。
每个坐标对欧氏距离的贡献是同等的。
当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。
当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。
它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。
没有考虑到总体变异对距离远近的影响。
马氏距离表示数据的协方差距离。
为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。
由标准化数据和中心化数据计算出的二点之间的马氏距离相同。
马氏距离还可以排除变量之间的相关性的干扰。
缺点:夸大了变化微小的变量的作用。
受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。
3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。
如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。
应用多元统计分析习题解答第八章

第八章 相应分析8.1 什么是相应分析?它与因子分析有何关系?答:相应分析也叫对应分析,通常意义下,是指两个定性变量的多种水平进行相应性研究。
其特点是它所研究的变量可以是定性的。
相应分析与因子分析的关系是: 在进行相应分析过程中,计算出过渡矩阵后,要分别对变量和样本进行因子分析。
因此,因子分析是相应分析的基础。
具体而言,Σr (Zu j )=λj (Zu j )式表明Zu j 为相对于特征值λj 的关于因素A 各水平构成的协差阵Σr 的特征向量。
从而建立了相应分析中R 型因子分析和Q 型因子分析的关系。
8.2试述相应分析的基本思想。
答:相应分析,是指对两个定性变量的多种水平进行分析。
设有两组因素A 和B ,其中因素A 包含r 个水平,因素B 包含c 个水平。
对这两组因素作随机抽样调查,得到一个r c ⨯的二维列联表,记为()ij r c k ⨯=K 。
要寻求列联表列因素A 和行因素B 的基本分析特征和最优列联表示。
相应分析即是通过列联表的转换,使得因素A 和因素B 具有对等性,从而用相同的因子轴同时描述两个因素各个水平的情况。
把两个因素的各个水平的状况同时反映到具有相同坐标轴的因子平面上,从而得到因素A 、B 的联系。
8.3 试述相应分析的基本步骤。
答:(1)建立列联表设受制于某个载体总体的两个因素为A 和B ,其中因素A 包含r 个水平,因素B 包含c 个水平。
对这两组因素作随机抽样调查,得到一个r c ⨯的二维列联表,记为()ij r c k ⨯=K 。
(2)将原始的列联资料K =(kij) r ⨯c 变换成矩阵Z =(zij) r ⨯c ,使得zij 对因素A 和列因素B 具有对等性。
通过变换Z ij =k −k i.k .jr k k 。
得c '=ΣZ Z ,r '=ΣZZ 。
(3)对因素B 进行因子分析。
计算出c '=ΣZ Z 的特征向量λ1,λ2⋯,λm 及其相应的特征向量 t 1,t 2,⋯t m 计算出因素B 的因子 U 1,U 2⋯U =( λ1t 1, λ2t 2,⋯ λm t m )(4)对因素A 进行因子分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 因子分析
(3) 主成分分析是将主成分表示为原变量的线 性组合,而因子分析是将原始变量表示为公因子 和特殊因子的线性组合,用假设的公因子来“解 释”相关阵的内部依赖关系.
这两种分析方法又有一定的联系.当估计方法 采用主成分法,因子载荷阵A与主成分的系数相 差一个倍数;因子得分与主成分得分也仅相差一 个常数.这种情况下可把因子分析看成主成分分 析的推广和发展.
(D AA)1 D 1 D 1 A(I m AD 1 A)1 AD 1 (2) A(D AA)1 (I m AD 1 A)1 AD 1 (3) I m A(D AA)1 A (I m AD 1 A)1
由第三式和第二式即得 Im (Im AD1A)1 A(D AA)1 A
I
mA
p m
记B22•1 Im AD1 A, B11•2 D AA,
利用附录中分块求逆的二个公式(4.1)和(4.2)有:
11
第八章 因子分析
B 1
D A
I
A
m
1
B11 B 21
B12 B 22
D 1
D
1A
B1 22•1
AD
1
B 1 22•1
AD
1
D
1A
B1 22•1
B 1 22•1
则 D diag(BB)
E S (AA D) BB D,即BB E D.
15
第八章 因子分析
因
BB
m1lm 1
(
p lp
m1lm1, ,
p
l
p
)
m1
0
0
p
p
故 2j tr(BB BB) tr(BB BB)
j m 1
tr[(E D)(E D)] tr[EE ED DE DD]
解 : m 2的因子模型的主成分解为:
0.8757 0.1802
A(
1l1,
2
l2
)
0.8312
0.4048,
0.7111 0.6950
7
第八章 因子分析
D
0.2007 0 0
0 0.1452
0
0.0100131
则m 2的正交因子模型为
X1 0.8757F1 0.1802F2 1 X 2 0.8312F1 0.4048F2 2 X 3 0.7111F1 0.6950F2 3
是通常的变量变换,而因子分析需要构造因子模型; (2) 主成分分析中主成分的个数和变量个数p相
同,它是将一组具有相关关系的变量变换为一组互 不相关的变量(注意应用主成分分析解决实际问题 时,一般只选取前m(m<p)个主成分),而因子分析的 目的是要用尽可能少的公共因子,以便构造一个结 构简单的因子模型;
(1)取公因子个数m 1时,求因子模型的主成分解,
并计算误差平方和Q(1).
解 : m 1的因子模型的主成分解为:
0.8757 0.2331 0
0
A(
1
l1
)
0.8312 0.7111
,
D
0 0
0.3091 0
0.40943
5
第八章 因子分析
记 E1 R (AA D)
1
0.63 1
这两种方法都是降维的统计方法,它们都可用 来对样品或变量进行分类.
18
D
0.0019
0 0.51 0
0.0075
4
第八章 因子分析
8 2 已知8 1中R的特征值和特征向量为
1 1.9633 l1 (0.6250,0.5932,0.5075), 2 0.6795 l2 (0.2186,0.4911,0.8432), 3 0.3672 l3 (0.7494,0.6379,0.1772).
(Im AD1A)1 AD1A (1)
13
第八章 因子分析
8-4 证明公因子个数为m的主成分解,其误差平方
和Q(m)满足以下不等式
pp
p
Q(m)
2 ij
2j ,
i1 j1
j m1
其中E=S-(AA′+D)=(εij),A,D是因子模型的主成分估计.
解:设样本协差阵S有以下谱分解式:
p
m
p
00..13455
1
0.7279 1
00..651292171
0
0.0979 0
00..102742171
6
第八章 因子分析
33
故 Q(1)
2 ij
2 (0.09792
0.17272
0.24112 )
i1 j1
0.1951
(2)取公因子个数m 2时,求因子模型的主成分解,
并计算误差平方和Q(2).
a31 0.5, a21 0.7, a11 0.9,
2 1
1
a121
1
0.81
0.19,
2 2
1
a221
0.51,
2 3
1
a321
0.75
3
第八章 因子分析
故 m 0.7F1 2 X 3 0.5F1 3
特殊因子ε=(ε1, ε2,…,εp)'的协差阵D为:
应用多元统计分析
第八章习题解答
第八章 因子分析
2
第八章 因子分析
a121
2 1
1
a221
2 2
1
a321
2 3
1
a11a21 0.63
a11a31 0.45
a21 a31
0.63 0.45
7 5
, a21
7 5
a31
a31
7 5
a31
0.35,
a321
0.35 7
5
0.25
a31a21 0.35
9
第八章 因子分析
或者利用习题8-4的结果:
pp
p
p
p
Q(m)
2 ij
2j
(
2 i
)2
2j ,
i1 j1
j m1
i1
j m1
Q(1)
(22
32 )
[(
2 1
)
2
(
2 2
)2
(
2 3
)2 ]
0.67952 0.36722 [0.23312 0.30912 0.49432 ]
0.5966 0.3943 0.2023
8-3 验证下列矩阵关系式(A为p×m阵)
(1) (I AD1A)1 AD1A I (I AD1A)1;
(2) ( AA D)1 D1 D1A(I AD1A)1 A1D1;
(3) A( AA D)1 (Im AD1A)1 AD1.
解:利用分块矩阵求逆公式求以下分块矩阵的逆:
B
D A
S ilili ilili ilili
i 1
i 1
i m 1
其中1 2 p 0 为S的特征值,li为相应的
标准特征向量。
14
第八章 因子分析
设A,D是因子模型的主成分估计,即
A 1l1 mlm ,
若记 B l m1 m1 p lp , 有
S (A | B) BA AA BB
p
Q(m) 0 0
(
2 i
)2
所以 Q(m) p
p
i 1p
p
2 ij
2j
(
2 i
)
2
p
2j ,
i1 j1
j m1
i1
j m1
16
第八章 因子分析
8-5 试比较主成分分析和因子分析的相同之处
与不同点. 因子分析与主成分分析的不同点有: (1) 主成分分析不能作为一个模型来描述,它只
B 1 11•2
AB111•2
Im
B 1 11•2
A
AB111•2
A
由逆矩阵的对应块相等,即得:
12
第八章 因子分析
B 1 11•2
D 1
D1 AB221•1 AD 1
B11
AB111•2
B 1 22•1
AD
1
B 21
Im
AB111•2 A
B 1 22•1
B 22
把B22·1和B11·2式代入以上各式,可得:
Q(2)
32
[(
2 1
)2
(
2 2
)2
(
2 3
)
2
]
0.36722 [0.20072 0.14522 0.011312 ]
0.1348 0.06149 0.07331
(3) 试求误差平方和Q(m)<0.1的主成分解. 因Q(2)=0.07331<0.1,故m=2的主成分解满足要求.
10
第八章 因子分析
E2
R
( AA
D)
1
0.63 1
00..13455 ( AA D)
8
第八章 因子分析
AA
D
1
0.8008 1
00..341099775
E2
0
0.1708 0
00.0.00440735
故
33
Q(2)
2 ij
2 (0.17082
0.04752
0.04032 )
i1 j1
0.06611