《线性代数》综合练习题,附答案

合集下载

(完整版)线性代数习题答案综合题

(完整版)线性代数习题答案综合题

2、题型:综合题3、难度级别:34、知识点:第三章 矩阵的初等变换与线性方程组5、分值:106、所需时间:10分钟7、试题关键字:矩阵的初等变换 8、试题内容:设,A B 为两个同型矩阵,试证:,A B 的秩满足()()R A R B =是A 与B 等价的充分必要条件.9、答案内容: 证明:()()()()()()()()12121122111221.,..,,,,.~~rr n r n r r n r n r r r n r n r r n r n r A B E F E B F P P Q Q P AQ P BQ A P P BQ Q ⨯--⨯-⨯-⨯--⨯-⨯---⇒⨯O ⎛⎫= ⎪O O ⎝⎭O ⎛⎫= ⎪O O ⎝⎭∴==rc r c 必要性与等价则存在可逆矩阵P,Q,使PAQ=B R(A)=R(B).充分性.设A,B 为m n 矩阵,R(A)=R(B)=r.则A 存在可逆矩阵使即.A B ⇒与等价10、评分细则:由题设()()PAQ B R A R B =⇒=(2分);将A 经初等变换化为标准形(2分) 将B 经初等变换化为标准形(2分);得出11221122,,,,P AQ P BQ P Q P Q =均可逆(2分);所以得出A 与B 等价(2分)._____________________________________________________________________________ 1、试题序号:347 2、题型:综合题 3、难度级别:44、知识点:第三章 矩阵的初等变换与线性方程组5、分值:106、所需时间:12分钟7、试题关键字:方程组的解与矩阵的秩 8、试题内容:已知四元非齐次线性方程组的系数矩阵的秩为3,123,,ααα是其解,且()()12231,1,0,2,1,0,1,3T Tαααα+=+=,求方程组的通解.9、答案内容: 解:412231312231223.() 3.0.()0.()(0,1,1,1)0,(0,1,1,1)0.111115()(2,1,1,5)(,,,)442444.12141454s T T T T A x b R A Ax Ax Ax Ax b Ax b αααααααααααααα⨯===+-+=-=+-+=--≠∴--=+++===⎛ ∴=⎝设方程组为对于其基础解系含4-3=1个解.是的解可以作为的一个基础解系为的一个解的通解为01,.11c c ⎫⎪⎪⎛⎫ ⎪ ⎪⎪⎪+ ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭ ⎪ ⎪⎭为任意数 10、评分细则:由题设说明0Ax =的基础解系含一个解向量(2分);()122313αααααα+-+=-是0Ax =的一个解(2分);说明13αα-可以作为0Ax = 的一个基础解系(2分);说明()123414αααα+++为Ax b =的一个解(2分);所以得出Ax b =的通解(2分)._____________________________________________________________________________ 1、试题序号:348 2、题型:综合题 3、难度级别:44、知识点:第五章 相似矩阵及二次型5、分值:106、所需时间:15分钟7、试题关键字:初等矩阵及矩阵的相似与合同 8、试题内容:设1111400011110000,1111000011110000A B ⎛⎫⎛⎫⎪⎪⎪⎪== ⎪ ⎪⎪⎪⎝⎭⎝⎭试判断A 与B 是否合同,是否相似.若是,则求出使它们合同的矩阵. 9、答案内容:()()()()()()()()()()()()()()()()()()()()()()()()()()1234:4113112112113114112111010021131141100100001,211101000010000100,40143,T A B E E E E E E B P E E E P P AP BA E R A E R A A λλλλλ------=---⎛⎫ ⎪⎪=---= ⎪ ⎪⎝⎭=---⎛⎫ ⎪⎪∴ ⎪ ⎪⎝⎭-=⇒====-===-∴解与合同且相似.E 12E 12令E 12则可逆且使A 与B 合同的矩阵为且一定可以40000000,.00000000A B ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭对角化即与相似10、评分细则:判断出A 与B 合同且相似(2分);将A 进行初等行变换与列变换化为B 的过程以左乘及右乘初等矩阵的形式写出来(3分);因而写出使A 与B 合同的可逆矩阵P (2分);计算A 的特征值(2分);写出与A 相似的对角矩阵(1分)._____________________________________________________________________________1、试题序号:3492、题型:综合题3、难度级别:44、知识点:第四章 向量组的线性相关性5、分值:106、所需时间:15分钟7、试题关键字:向量组的线性关系与矩阵的秩 8、试题内容:设向量组12:,,,r B b b b L 能由向量组12:,,,s A a a a L 线性表示为()()1212,,,,,,r s b b b a a a K =L L ,其中K 为s r ⨯矩阵,且A 组线性无关.证明B 组线性无关的充分必要条件是()R K r =. 9、答案内容:()()()()()()()()()1212122121212122.,...,,,0..0.,00.,,,.0,,00.,r r r r r r r s R K r R b b b R K r R b b b r R b b b r b b x xb b b x x xx Bx B AK AKx A Kx x a a a S Kx R K r Kx x b =≥=≤∴=⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭⎛⎫ ⎪ ⎪====⇒= ⎪⎪⎝⎭∴=∴==∴=⇒=∴L L LL LL Q L Q L 11证充分性则有同时,则b 线行无关.必要性.设令则则有线行无关,R A b ,,r b L 线行无关.10、评分细则:充分性,由题设推出()12,,,r R b b b L r =()R K r ⇒≥,且有()()R K r R K r ≤⇒=(4分).必要性,令()12r B b b b =L ,设0Bx =,则有0AKx =(2分),由题设推出0Kx =0x ⇒=(2分);所以12,,,r b b b K 线性无关(2分)._____________________________________________________________________________ 1、试题序号:350 2、题型:综合题 3、难度级别:34、知识点:第二章 矩阵及其运算5、分值:106、所需时间:8分钟7、试题关键字:可逆矩阵及分块运算 8、试题内容:已知3阶矩阵A 与3维列向量x 满足323A x Ax A x =-,且向量组2,,x Ax A x 线性无关.(1) 记()2,,P x Ax A x =,求3阶矩阵B ,使AP PB =;(2)问A 是否可逆,说明理由. 9、答案内容:2232222()()(3)000()103.011000103.011(2).,,,.0..A x AxA x Ax A xA x AxA xAx A x x Ax A x B AP PB A P P B x Ax Ax P A B A ⇒=-⎛⎫⎪ ⎪ ⎪-⎝⎭⎛⎫ ⎪∴= ⎪ ⎪-⎝⎭=⇒=∴==∴Q 解:(1)AP=PB =线性无关可逆则不可逆10、评分细则:由题设及矩阵的分块运算法,计算出B (6分);由AP PB A B =⇒=(2分);所以0A B A ==⇒不可逆(2分)._____________________________________________________________________________ 1、试题序号:351 2、题型:综合题 3、难度级别:44、知识点:第三章 矩阵的初等变换与线性方程组5、分值:106、所需时间:12分钟7、试题关键字:方程组的解与矩阵的秩 8、试题内容:设4元非齐次线性方程组Ax b =的系数矩阵A 的秩为3,123,,ηηη是它的3个解向量,且()()1232,3,4,5,1,2,3,4T Tηηη=+=,求该方程组的通解.9、答案内容:1312131131:.() 3.0,2()()0.34200.562334,.4556Ax b R A Ax Ax Ax Ax b c c ηηηηηηηηηη===+-=-+-=-⎛⎫ ⎪- ⎪+-=≠= ⎪- ⎪-⎝⎭-⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪∴=+ ⎪ ⎪- ⎪ ⎪-⎝⎭⎝⎭解设方程组为且对于其基础解系只含一个解.为的一个解而可以作为一个基础解系的通解为为任意常数 10、评分细则:由题设推出0Ax =的基础解系含一个解向量(2分);由题设得出0Ax =的一个非零解(2分);说明这非零解可以作为0Ax =的一个基础解系(2分);求出Ax b =的一个解(2分);得出Ax b =的通解(2分)._____________________________________________________________________________ 1、试题序号:352 2、题型:综合题 3、难度级别:44、知识点:第三章 矩阵的初等变换与线性方程组5、分值:106、所需时间:10分钟7、试题关键字:矩阵的秩与方程组的解 8、试题内容:设()()()123123123,,,,,,,,TTTa a ab b bc c c αβγ===,证明三直线11112222:0;0l a x b y c l a x b y c ++==++=;3333:0,l a x b y c ++=其中220,1,2,3i i a b i +≠=,相交于一点的充分必要条件为:向量组,αβ线性无关,而向量组,,αβγ线性相关. 9、答案内容:()()()()11122233333.2,,,2,,,2,;b b c R b R b c b b c R R R R αβαβγαβαβγαβα⎧⎪⇔⎨⎪⎩-⎧⎛⎫⎛⎫⎪ ⎪ ⎪⇔=-=⎨ ⎪ ⎪⎪⎪ ⎪-⎩⎝⎭⎝⎭⇔=-=⇔==⇔1112223331111122222333证明:a x+b y+c =0三直线交于一点a x+b y+c =0有唯一解a x+b y+c =0a x+b y+c =0a a a x+b y+c =0有唯一解a a a x+b y+c =0a a 线性无关,,βγ线性相关.10、评分细则:由题设得出111222333000a xb yc a x b y c a x b y c ++=⎧⎪++=⎨⎪++=⎩有唯一解(2分)1111122222333332a b a b c R a b R a b c a b a b c -⎛⎫⎛⎫⎪ ⎪⇔=-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭(2分)()()()()22R R R R αβαβγαβαβγ⇔=-=⇔==(4分),αβ⇔线性无关,,,αβγ线性相关(2分)._____________________________________________________________________________1、试题序号:3532、题型:综合题3、难度级别:44、知识点:第三章 矩阵的初等变换与线性方程组5、分值:106、所需时间:12分钟7、试题关键字:方程组的解与矩阵的秩 8、试题内容:设矩阵()1234,,,A αααα=,其中234,,ααα线性无关,1232ααα=-.向量1234βαααα=-+-,求方程组Ax β=的通解.9、答案内容:()()()()12123412343412342341231234123412123434.11.11,,,2,,,,3,0x xx x x x Ax x x R R A Ax x x x x βααααααααββαααααααααααααααααα⎛⎫⎪ ⎪=-+-= ⎪ ⎪⎝⎭⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪∴== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭=-⇒===⎛ ⎝Q Q 解:,且为的一个解又线性无关且线性相关则有所以,的基础解系只含一个非零解。

线性代数--综合测试答案

线性代数--综合测试答案

一、单项选择题1、已知3阶行列式D第1行的元素依次为1,2,-1,它们的余子式依次为2,-2,1,则D=A.-5B.-3C.3D.5D2、A.第1行的3倍加到第2行B.第2行的3倍加到第1行C.第1列的3倍加到第2列D.第2列的3倍加到第1列正确答案:C3、A.1B.2C.3D.4正确答案:B4、A.-2B.-1C.0D.1A5、A.-3B.-2C.2D.3正确答案:B6、已知3×4矩阵A的行向量组线性无关,则r(A)A.1B.2C.3D.4正确答案:C7、A.-1B.-2/3C.2/3D.1正确答案:A8、A.0B.1C.2D.3C 9、A.-108B.-12C.12D.108正确答案:D10、A.0B.1C.2D.-1正确答案:B11、A.2B.4C.8D.12正确答案:C12、A.-7B.-4C.4B13、A.1B.2C.3D.4正确答案:B14、A.13B.6C.5D.-5正确答案:D15、A.a=0,b=0B.a=0,b=1C.a=1,b=0D.a=1,b=1正确答案:D16、A.-2C.1D.2A17、齐次线性方程组Ax=0仅有零解的充分必要条件是矩阵A的A.列向量组线性相关B.列向量组线性无关C.行向量组线性相关D.行向量组线性无关B18、设非齐次线性方程组Ax=b,其中A为m*n阶矩阵,r(A)=r,则A.当r=n时,Ax=b有惟一解B.当r<n时,ax=b有无穷多解< p="" style="box-sizing: border-box;">C.当r=m时,Ax=b有解D.当m=n时,Ax=b有惟一解C19、设2阶矩阵A满足|2E+3A|=0,|E-A|=0,则|A+E|=A.-3/2B.-2/3C.2/3D.3/2C20、A.相似但不合同B.合同但不相似C.合同且相似D.不合同也不相似C21、A.相似且合同B.相似但不合同C.不相似但合同D.不相似且不合同正确答案:A22、A.1B.2C.3D.4正确答案:D 23、A.10B.2C.-10D.-2正确答案:A24、A.27B.243C.216D.81C25、A.3B.6C.9D.12正确答案:D26、若A,B为5阶方阵,且Ax=0只有零解,且r(B)=3,则r(AB)=A.5B.4C.3D.2正确答案:C27、A.6B.-6C.24D.-24正确答案:D28、A.m-nB.-m-nC.m+nD.-(m+n)正确答案:B29、A.-32B.-2C.2D.32正确答案:A30、A.1/2B.2C.4D.8正确答案:C31、A.8B.-8C.32D.-32正确答案:C32、A.a=4,b=0,c=1,d=4B.a=0,b=4,c=1,d=4C.a=4,b=0,c=4,d=1D.a=0,b=4,c=4,d=1正确答案:A33、设A,B,C均为n阶方阵,AB=BA,BC=CB,则BAC=A.ACBB.CABC.CBAD.BCA正确答案:A34、A.A=EB.B=OC.A=BD.AB=BA正确答案:D35、A.4B.8C.12D.16正确答案:D36、A.-5B.-2C.2D.5正确答案:A37、A.1/nB.-1/nC.nD.-n正确答案:D 38、A.PAB.APC.QAD.AQ正确答案:B 39、A.(2,1,1)B.(0,-3,2)C.(1,1,0)D.(0,-1,0)B 40、A.a=0,b=0B.a=0,b=1C.a=1,b=0D.a=1/2,b=2正确答案:D41、A.2B.-2C.4D.-4正确答案:B 42、A.1B.2C.3D.4正确答案:C 43、A.4B.3C.2D.1A 44、A.1B.2C.3D.4正确答案:D 45、A.3B.2C.1D.0正确答案:B 46、A.-2B.2C.-1D.1正确答案:A47、A.4B.3C.2D.1正确答案:B48、设A为5阶方阵,且r(A)=2,则线性空间W={x|Ax=0}的维数是A.5B.4C.3D.2正确答案:C49、A.4B.3C.2D.1正确答案:C50、A.1B.2C.3D.4C。

线性代数考试练习题带答案

线性代数考试练习题带答案

线性代数试题集与答案解析一、单项选择题(只有一个选项正确,共8道小题)1. 设向量组α1,α2,α3 线性无关,则下列向量组中线性无关的是 ( )。

(A) α 1 −α 2 ,α 2 −α 3 ,α 3 −α 1(B) α 1 ,α 2 ,α 3 + α 1(C) α 1 ,α 2 ,2 α 1 −3 α 2(D) α 2 ,α 3 ,2 α 2 + α 3正确答案:B解答参考:A中的三个向量之和为零,显然A线性相关;B中的向量组与α1,α2,α3等价, 其秩为3,B向量组线性无关;C、D中第三个向量为前两个向量的线性组合,是线性相关向量组。

2.(A) 必有一列元素全为0;(B) 必有两列元素对应成比例;(C) 必有一列向量是其余列向量的线性组合;(D) 任一列向量是其余列向量的线性组合。

你选择的答案:未选择[错误]正确答案:C解答参考:3. 矩阵 ( 0 1 1 −1 2 ,0 1 −1 −1 0 ,0 1 3 −1 4 ,1 1 0 1 −1 ) 的秩为( )。

(A) 1(B) 2(C) 3(D) 4你选择的答案:未选择[错误]正确答案:C解答参考:4. 若矩阵 ( 1 a −1 2, 1 −1 a 2 ,1 0 −1 2 ) 的秩为2,则 a的值为。

(A) 0(B) 0或-1(C) -1(D) -1或1正确答案:B解答参考:5. 二次型 f( x 1 , x 2 , x 3 )=2 x 1 2 +5 x 2 2 +5 x 3 2 +4 x 1 x 2 −8 x 2 x 3,则 f的矩阵为。

(A) ( 2 4 0 0 5 −8 0 0 5 )(B) ( 2 4 0 0 5 −4 0 −4 5 )(C) ( 2 2 0 2 5 −4 0 −4 5 )(D) ( 2 4 0 4 5 −4 0 −4 5 )正确答案:C解答参考:6. 设 A、 B为 n阶方阵,且 A与 B等价, | A |=0 ,则 r(B)(A) 小于n(B) 等于n(C) 小于等于n(D) 大于等于n正确答案:A解答参考:7. 若矩阵 [ 1 2 2 −3 ,1 −1 λ−3 ,1 0 2 −3 ] 的秩为2,则λ的取值为(A) 0(B) -1(C) 2(D) -3正确答案:C8. 设α 1 , α 2 , α 3 是齐次方程组 Ax=0 的基础解系,则下列向量组中也可作为 A x=0 的基础解系的是(A) 2(B) -2(C) 1(D) -1正确答案:B解答参考:二、判断题(判断正误,共6道小题)9.设A ,B 是同阶方阵,则AB=BA 。

线性代数综合练习题

线性代数综合练习题

线性代数综合练习题时间:120分钟一、选择题(每小题3分,共15分):1.设A 是三阶矩阵,将A 的第一列与第二列交换得B ,再把B 的第二列加到第三列得C ,则满足AQ=C 的可逆矩阵Q 为( )。

(A )⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010; (B )⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010; (C )⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010; (D )⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110。

2.设A 、B 为满足AB=0的任意两个非零矩阵,则必有( )。

(A )A 的列向量组线性相关,B 的行向量组线性相关; (B )A 的列向量组线性相关,B 的列向量组线性相关; (C )A 的行向量组线性相关,B 的行向量组线性相关; (D )A 的行向量组线性相关,B 的列向量组线性相关。

3.下列向量集按R n 的加法和数乘构成R 上一个线性空间的是( )。

(A )R n 中,坐标满足x 1+x 2+…+x n =0的所有向量; (B )R n 中,坐标是整数的所有向量;(C )R n 中,坐标满足x 1+x 2+…+x n =1的所有向量;(D )R n 中,坐标满足x 1=1,x 2,…, x n 可取任意实数的所有向量。

4.设λ=2是非奇异矩阵A 的一个特征值,则矩阵(31A 2)-1有一个特征值等于( )。

(A )34; (B )43; (C )21; (D )41。

5.任一个n 阶矩阵,都存在对角矩阵与它( )。

(A )合同; (B )相似; (C )等价; (D )以上都不对。

二、填空题(每小题3分,共15分)1.设矩阵A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100021012,矩阵B 满足:ABA *=2BA *+E ,其中A *为A 的伴随矩阵,E 是三阶单位矩阵,则|B|= 。

2.已知线性方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+21232121a a ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛031321x x x 无解,则a = 。

线性代数试题及其答案(综合测试题)

线性代数试题及其答案(综合测试题)

综合测试题线性代数(经管类)综合试题一(课程代码 4184)一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设D =111213212223313233a a a a a a a a a =M ≠0,则D 1=111112132121222331313233232323a a a a a a a a a a a a ------= ( ).A.-2MB.2MC.-6MD.6M2.设 A 、B 、C 为同阶方阵,若由AB = AC 必能推出 B = C ,则A 应满足 ( ).A. A ≠ OB. A = OC.|A |= 0D. |A |≠0 3.设A ,B 均为n 阶方阵,则 ( ).A.|A +AB |=0,则|A |=0或|E +B |=0B.(A +B )2=A 2+2AB +B 2C.当AB =O 时,有A =O 或B =OD.(AB )-1=B -1A -14.二阶矩阵A a b c d ⎛⎫= ⎪⎝⎭,|A |=1,则A -1= ( ). A. d b ca ⎛⎫⎪⎝⎭ B.d b c a -⎛⎫ ⎪-⎝⎭ C.a b c d -⎛⎫ ⎪-⎝⎭ D.a b c d ⎛⎫ ⎪⎝⎭5.设两个向量组s ,12,,ααα与t ,12,,βββ,则下列说法正确的是( ).A.若两向量组等价,则s = t .B.若两向量组等价,则r (s ,12,,ααα)= r (t ,12,,βββ)C.若s = t ,则两向量组等价.D.若r (s ,12,,ααα)= r (t ,12,,βββ),则两向量组等价.6.向量组s ,12,,ααα线性相关的充分必要条件是 ( ).A. s ,12,,ααα中至少有一个零向量B. s ,12,,ααα中至少有两个向量对应分量成比例C. s ,12,,ααα中至少有一个向量可由其余向量线性表示D. s α可由-1s ,12,,ααα线性表示7.设向量组12,,...,m ααα有两个极大无关组12,,...,i i ir ααα与12,,...,j j js ααα,则下列成立的是( ).A. r 与s 未必相等B. r + s = mC. r = sD. r + s > m8.对方程组Ax = b 与其导出组Ax = o ,下列命题正确的是( ).A. Ax = o 有解时,Ax = b 必有解.B. Ax = o 有无穷多解时,Ax = b 有无穷多解.C. Ax = b 无解时,Ax = o 也无解.D. Ax = b 有惟一解时,Ax = o 只有零解.9.设方程组12323122000x x x x kx x x +-=⎧⎪+=⎨⎪+=⎩有非零解,则k = ( ). A. 2 B. 3 C. -1 D. 1 10.n 阶对称矩阵A 正定的充分必要条件是( ).A. |A |>0B.存在n 阶方阵C 使A =C T CC.负惯性指标为零D.各阶顺序主子式均为正数 二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

(完整版)线性代数习题集(带答案)

(完整版)线性代数习题集(带答案)

第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A )k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A ) 0 (B )2-n (C) )!2(-n (D ) )!1(-n4.=0001001001001000( )。

(A) 0 (B )1- (C) 1 (D) 25。

=0001100000100100( ).(A) 0 (B)1- (C) 1 (D ) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B ) 4- (C ) 2 (D ) 2-8.若a a a a a =22211211,则=21112212ka a ka a ( )。

(A )ka (B)ka - (C )a k 2 (D )a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( )。

(A) 0 (B)3- (C) 3 (D) 210。

若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( )。

(A )1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ).(A)1- (B)2- (C)3- (D )012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解. ( )(A )1- (B )2- (C)3- (D)0二、填空题1。

线性代数练习题及答案10套

线性代数练习题及答案10套

1 0 1 14.设矩阵 A= 0 2 0 ,矩阵 B A E ,则矩阵 B 的秩 r(B)= __2__. 0 0 1 0 0 1 B A E = 0 1 0 ,r(B)=2. 0 0 0
15.向量空间 V={x=(x1,x2,0)|x1,x2 为实数}的维数为__2__. 16.设向量 (1,2,3) , (3,2,1) ,则向量 , 的内积 ( , ) =__10__. 17.设 A 是 4×3 矩阵,若齐次线性方程组 Ax=0 只有零解,则矩阵 A 的秩 r(A)= __3__. 18 . 已 知 某 个 3 元 非 齐 次 线 性 方 程 组 Ax=b 的 增 广 矩 阵 A 经 初 等 行 变 换 化 为 :
三、计算题(本大题共 6 小题,每小题 9 分,共 54 分)
Ibugua
交大打造不挂女神的领跑者
123 23 3 21.计算 3 阶行列式 249 49 9 . 367 67 7 123 23 3 100 20 3 解: 249 49 9 200 40 9 0 . 367 67 7 300 60 7
线代练习题及答案(一)
一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)
1.设 A 为 3 阶方阵,且 | A | 2 ,则 | 2 A 1 | ( D A.-4 B.-1 C. 1 ) D.4
| 2 A 1 | 2 3 | A | 1 8
1 4. 2

1 2 3 1 2 2. 设矩阵 A= (1, 2) , B= C= 则下列矩阵运算中有意义的是 ( B 4 5 6 , 3 4 ,
行成比例值为零.
a1b2 a 2 b2 a 3 b2

线性代数试题(完整试题与详细答案)

线性代数试题(完整试题与详细答案)

线性代数试题(完整试题与详细答案)一、单项选择题(本大题共10小题,每小题2分,共20分)1.行列式111101111011110------第二行第一列元素的代数余子式21A =( )A .-2B .-1C .1D .22.设A 为2阶矩阵,若A 3=3,则=A 2( ) A .21 B .1 C .34 D .23.设n 阶矩阵A 、B 、C 满足E ABC =,则=-1C ( ) A .AB B .BA C .11--B AD .11--A B4.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 的行列式1-=A ,则=-1*)(A ( ) A .⎪⎪⎭⎫⎝⎛----d c b aB .⎪⎪⎭⎫⎝⎛--a c b dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛d c b a5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设A 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 有非零解的充分必要条件是( )A .n r =)(AB .m r =)(AC .n r <)(AD .m r <)(A 7.已知3阶矩阵A 的特征值为-1,0,1,则下列矩阵中可逆的是( ) A .A B .AE - C .A E -- D .A E -2 8.下列矩阵中不是..初等矩阵的为( )A .⎪⎪⎪⎭⎫ ⎝⎛101010001B .⎪⎪⎪⎭⎫⎝⎛-101010001C .⎪⎪⎪⎭⎫⎝⎛100020001D .⎪⎪⎪⎭⎫⎝⎛1010110019.4元二次型4332412143212222),,,(x x x x x x x x x x x x f +++=的秩为( ) A .1B .2C .3D .410.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=001010100A ,则二次型Ax x T 的规范形为( )A .232221z z z ++ B .232221z z z ---C .232221z z z --D .232221z z z -+二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

线性代数试题(试题与答案)

线性代数试题(试题与答案)

线性代数试题(试题与答案)一、选择题(每题5分,共25分)1. 设矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4\end{bmatrix} \),则 \( A^2 \) 的特征值是()A. 5, 9B. 1, 16C. 5, -5D. 10, -102. 设 \( \alpha_1, \alpha_2, \alpha_3 \) 是线性无关的向量组,则下列向量组线性无关的是()A. \( 2\alpha_1 + \alpha_2 - \alpha_3 \)B. \( \alpha_1 + 2\alpha_2 + 3\alpha_3 \)C. \( \alpha_1 - \alpha_2 + \alpha_3 \)D. \( 3\alpha_1 - 2\alpha_2 + \alpha_3 \)3. 设 \( A \) 是一个 \( n \) 阶可逆矩阵,则 \( A^{-1} \) 的行列式等于()A. \( \frac{1}{|A|} \)B. \( |A| \)C. \( |A^{-1}| \)D. \( -|A| \)4. 设 \( A \) 是一个 \( n \) 阶实对称矩阵,则下列结论正确的是()A. \( A \) 的特征值都是实数B. \( A \) 的特征值都是正数C. \( A \) 的特征值都是负数D. \( A \) 的特征值既有正数也有负数5. 设 \( A \) 是一个 \( n \) 阶矩阵,且 \( A \) 的秩为\( n \),则下列结论正确的是()A. \( A \) 是可逆矩阵B. \( A \) 的行列式不为0C. \( A \) 的特征值不全为0D. \( A \) 的任意一行都可以作为主行二、填空题(每题5分,共25分)6. 若 \( A \) 是一个 \( n \) 阶矩阵,且 \( |A| = 0 \),则称 \( A \) 为________矩阵。

线性代数第4,5章综合练习题和答案

线性代数第4,5章综合练习题和答案

第4,5章 综合练习题 一、填空题1.已知211A 121112⎡⎤⎢⎥=⎢⎥⎣⎦,100B 01000a ⎡⎤⎢⎥=⎢⎥⎣⎦且A 与B 相似,则_______________a =.2.设可逆阵A 的一个特征值是2,且-4detA =,则A 的伴随阵*A 的一个特征值为__________.3.设A 与B 相似,B 与112⎡⎤⎢⎥-⎢⎥⎣⎦相似,则A 的特征值是_______.4.已知211A 121112⎡⎤⎢⎥=⎢⎥⎣⎦有二重特征值1,则A 的另一个特征值是______.5.二元二次型()112122x 13f (x ,x )x x 52x ⎛⎫⎡⎤= ⎪⎢⎥⎣⎦⎝⎭的矩阵是_______. 6.若矩阵A 的一个特征值为0,则A =7. 二次型()2221231231223,,3524f x x x x x x x x x x =++++的矩阵A =8.设A 为3阶矩阵,其特征值分别为1,2,-1,则A = , 2A 的特征值是__________,1A -的特征值分别为 , *A 的特征值分别为 ,.9.已知矩阵20000101A x ⎛⎫ ⎪= ⎪⎝⎭与20000001B y ⎛⎫⎪= ⎪-⎝⎭相似,则x = , y =10. 已知三阶矩阵11020421A x -⎛⎫⎪= ⎪⎝⎭的特征值为1、2、3,则x =11. 设向量组:(),0,1,11T=α ()T 1,0,12=α ,则与21,αα 等价的正交向量组为___________.12. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=300020001A 的特征值为:_______, 2A 的特征值为:_______.13. 用配方法把二次型32312123222162252x x x x x x x x x +++++化成标准形为 .二、单项选择题1. 设12,αα都是n 阶矩阵A 的属于不同特征值的特征向量,则( ) (A) 02T 1=αα; (B) 12T 1=αα ; (C) 线性相关与21αα ;(D) 线性无关与21αα2. 设n 阶矩阵A 与B 相似,则( )(A) (A)(B)r r =; (B)A 与B 和同一个对角矩阵相似; (C) B E A E -=-λλ; (D) A 与B 的特征向量相同. 3. 设A 为n 阶可逆矩阵,与A 有相同特征值的是( ) (A) -1A ; (B) TA ; (C) *A ; (D) 2A . 4.以下四个矩阵,正定的是( )(A) 1-10-120003⎡⎤⎢⎥⎢⎥⎣⎦ ;(B)120210002⎡⎤⎢⎥⎢⎥⎣⎦ ;(C)120240001⎡⎤⎢⎥⎢⎥⎣⎦; (D)200012023⎡⎤⎢⎥⎢⎥⎣⎦.5.A 与B 都是n 阶矩阵,且都可逆,则( )(A) 必存在可逆n 阶矩阵P ,使B AP P =-1; (B) 必存在可逆n 阶矩阵C ,使TC AC B =; (C) 必存在可逆n 阶矩阵P 与Q ,使B PAQ =; (D) A 与B 都与同一个对角矩阵相似.6. 设4-52A 5-736-94⎡⎤⎢⎥=⎢⎥⎣⎦,则A 的属于特征值00λ=的特征向量是( )(A) T )2,1,1(1=α ; (B) T )3,2,1(2=α ;(C) T)1,0,1(3=α ; (D) T )1,1,1(4=α .7. 二次型2123222132162-6-2)x ,x ,x (f x x x x x +-=是( ) (A)正定的; (B)负定的; (C) 半正定的; (D) 半负定的.8. 设001A 010100⎡⎤⎢⎥=⎢⎥⎣⎦,则以下四个向量中是A 的特征向量者是( )(A) T )1,0,1(; (B) T )1,1,1(-; (C) T )2,0,0( ; (D) T)2,1,0(.9. 设A 为n 阶实对称阵,B 为n 阶可逆阵,Q 为n 阶正交阵,则矩阵 ( )与A 有相同的特征值(A )1T-B Q AQB ; (B) ()11TT --BQ AQB ; (C )T T B Q AQB ; (D) T T BQ AQB10. 设矩阵A 与B 相似,则必有( )(A)A 、B 都不可逆 ; (B)A 、B 有相同的特征值 ; (C )A 、B 均与同一个对角矩阵相似 ; (D)矩阵A E λ-与B E λ-相等 11. 设A 是三阶矩阵,10λ=,21λ=,31λ=-是A 的三个特征值,对应的特征向量分别为123,,ααα,则使得1100000001P AP --⎛⎫⎪= ⎪⎝⎭成立的P 是( )(A )(123,,ααα) (B)(132,,ααα) (C)(321,,ααα) (D)(312,,ααα) 12. A 与B 是两个相似的n 阶矩阵,则( )(A)存在非奇异矩阵P ,使1P AP B -= (B)存在对角矩阵D ,使A 与B 都相似与D (C)0AB = (D)E A E B λλ-=-13.如果( ),则矩阵A 与B 相似(A)A B = (B)()()r A r B = (C)A 与B 有相同的特征多项式 (D)n 阶矩阵A 与B 有相同的特征值,且n 个特征值各不相同 14.A 是n 阶正定矩阵的充分必要条件是( )(A)0A > (B)存在n 阶矩阵C ,使TA C C = (C)负惯性指数为零 (D)各阶顺序主子式均为正数 15. 若矩阵A 与B 相似,则下列结论不成立的为( )A. A B =B. ()()r A r B =C. A 与B 有相同的特征值D. A B = 16. 若A 为设n 阶矩阵,则下列结论正确的是( )A. A 的任n 个特征向量线性无关B. A 的属于不同特征值的特征向量线性无关C. A 的属于不同特征值的特征向量正交D. A 的任n 个特征向量线性相关17. 若n 阶方阵A 与B 的特征值完全相同,且A 与B 都有n 个线性无关的特征向量,则( )A. A B =B. A B ≠ 但0A B -=C. A 相似于BD. A 与B 不一定相似,但A B =18.设矩阵a b A b a -⎛⎫=⎪⎝⎭,其中0a b >>,221a b +=,则A 为( ) A. 正定矩阵 B. 初等矩阵 C. 正交矩阵 D. 以上都不对 19. 下列各矩阵中,不是正交矩阵的为( )(A)⎛⎫ ⎪ ⎪⎝⎭;(B)cos sin sin cos θθθθ-⎛⎫ ⎪⎝⎭;(C )1001⎛⎫ ⎪⎝⎭;(D)11222⎛⎫⎪-⎝⎭ 20. 设矩阵A 与B 相似,则必有( )(A)A 、B 同时可逆或不可逆 ; (B)A 、B 有相同的特征向量 ; (C )A 、B 均与同一个对角矩阵相似 ; (D)矩阵E A λ-与E B λ-相等21. 设三阶方阵A 的特征值分别为 -1,0,2.则下列结论正确的是( )。

(完整word版)线性代数试题和答案(精选版)

(完整word版)线性代数试题和答案(精选版)

线性代数习题和答案第一部分选择题(共28分)、单项选择题(本大题共 14小题,每小题2分,共28分)在每小题列出①四个选项中只有 一个是符合题目要求◎,请将其代码填在题后①括号内。

错选或未选均无分。

A. -6 C. 24. 设A 是方阵,如有矩阵关系式 AB =AC ,则必有( A. A = 0C. A =0 时 B =C5. 已知3X 4矩阵A O 行向量组线性无关,则秩( A. 1 C. 3 D.46.设两个向量组a 1, a 2,…,a s 和B 1, 3 2,…,3 s 均线性相关,则()A. 有不全为0 O 数入1,入2,…,入s 使入1 a 什入2 a 2+…+入s a s =0和入1 3什入2 3 2+…入s 3 s =0B. 有不全为0 O 数入1,入2,…,入s 使入1 ( a 1+ 3 1) +入2 ( a 2+ 3 2) +…+入s ( a s + 3 s ) =0C. 有不全为0 O 数入1,入2,…,入s 使入1 ( a 1- 3 1) +入2 ( a 2- 3 2)+…+入s ( a s - 3 s ) =0D. 有不全为0 O 数入1,入2,…,入s 和不全为0 O 数卩1 ,卩2,…,卩s 使入1 a 计入2a 2+…+入 s a s =0 和卩 1 3 1+ 卩 2 3 2+ …+ 卩 s 3 s =0 7. 设矩阵A O 秩为r ,则A 中( )A. m+n C. n-a11a12a13a11=m ,a 21 a 22a 23 a 21a11 a 12 ' a13a 21 a 22 亠a 23B. - (m+n)D. m- n等于(2•设矩阵A =3.设矩阵 ■‘3 -1 21 0 -1 V-2 14丿中位于 (1 , 2)0兀素是(B. 6 D.-)B. B = C 时 D. | A0 时 B =C A T)等于( )B. 2 1•设行列=n ,则行列式(10 2 VP 0 A. C.0,则A -1等于(3丿,A *是A ①伴随矩阵,则 A A =A.所有r- 1阶子式都不为0C.至少有一个r阶子式不等于08.设Ax=b是一非齐次线性方程组,n 1,A. n什n 2是Ax=0 O—个解B.所有r- 1阶子式全为0D.所有r阶子式都不为0n 2是其任意2个解,则下列结论错误O是1 1B. —n 1+ n 2是Ax=b O—个解C. n i -n 2 是 Ax=O ①一个解D.2 n 1- n 2 是 Ax=b ①一个解 9•设n 阶方阵A 不可逆,则必有( ) A.秩(A )<n B.秩(A )=n- 1 C. A=0 D.方程组Ax=0只有零解 10•设A 是一个n (>3)阶方阵,下列陈述中正确①是( )A. 如存在数入和向量a 使A a =入a,则a 是A ①属于特征值 入①特征向量B. 如存在数入和非零向量a,使(入E - A ) a =0,则入是A ①特征值C. A O 2个不同①特征值可以有同一个特征向量D. 如入1,入2,入3是A O 3个互不相同①特征值, a 1, a 2, a 3依次是A ①属于入i ,入2,入3①特征向量,贝U a 1, a 2, a 3有可能线性相关 11. 设入o 是矩阵A ①特征方程①3重根,A ①属于入°①线性无关①特征向量①个数为 k ,则必有( ) A. k < 3B. k <3C. k=3表示|A |中元素a j ①代数余子式(i,j=1,2,3 ),则2 218. 设向量(2, -3, 5)与向量(-4, 6, a )线性相关,贝y a= 一 . 19. ______________ 设A 是3X 4矩阵,其秩为3,若n 1, n 2为非齐次线性方程组 Ax=b O 2个不同①解,则它 ◎通解为 .20.设A 是m x n 矩阵,A ①秩为r (<n ),则齐次线性方程组 Ax=0①一个基础解系中含有解①个 数为D. k>312. 设A 是正交矩阵,则下列结论错误①是(A.| A|2必为 1 -1 ■ T C. A = A13. 设A 是实对称矩阵,C 是实可逆矩阵,A. A 与B 相似B. A 与B 不等价C. A 与B 有相同①特征值D. A 与B 合同 14.下列矩阵中是正定矩阵①为()i'2 3:A. I I 母4丿'1 0 0C. 0 2-3©-35」)B.| A 必为1D. A ①行(列)向量组是正交单位向量组 B =C AC .则()4 6」、1 12 0第二部分 、填空题(本大题共 10小题,每小题 小题①空格内。

线性代数题库及答案

线性代数题库及答案

《线性代数》题库及答案(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《线性代数》题库及答案一、选择题1.如果D=333231232221131211a a a a a a a a a ,则行列式33323123222113121196364232a a a a a a a a a 的值应为: A . 6D B .12D C .24D D .36D 2.设A 为n 阶方阵,R (A )=r<n,那么:A .A 的解不可逆B .0=A中所有r 阶子式全不为零 D. A 中没有不等于零的r 阶子式 3.设n 阶方阵A 与B 相似,那么:A .存在可逆矩阵P ,使B AP P =-1 B .存在对角阵D ,使A 与B 都相似于DC .E B E A λλ-=-D .B A ≠4.如果3333231232221131211==a a a a a a a a a D ,则131211332332223121333231323232a a a a a a a a a a a a ---等于A . 6B . -9C .-3D .-6 5.设矩阵n m ij a A ⨯=)(,m<n,且R (A )=r,那么:A .r<mB .r<nC .A 中r 阶子式不为零D .A 的标准型为⎪⎪⎭⎫⎝⎛0E ,其中E 为r 阶单位阵。

6.A 为n 阶可逆矩阵,λ是A 的一个特征根,则A 的伴随矩阵*A 的特征根之一是:A .nA1-λ B .A λ C .A 1-λ D .nA λ7.如果⎪⎩⎪⎨⎧=--=+=++050403z y kx z y z ky x 有非零解,则k 应为:____________。

A . k =0B . k =1C . k =2D . k =-28.设A 是n 阶方阵,3≥n 且2)(-=n A R ,*A 是A 的伴随阵,那么:___________。

线性代数综合练习题10答案

线性代数综合练习题10答案

线性代数综合练习题(十)参考答案一、选择题1. A2. B3. C4. D5. D 二、填空题 1. 3- 2. ⎪⎪⎪⎭⎫⎝⎛10100010001 3. ⎪⎪⎪⎪⎭⎫ ⎝⎛105104103010210200101 4. 21-或 5. 321,,ααα 6. 04321=+++a a a a 7. 3 三、计算题1. 解:由B A E AB +=+2,得))(()(2E A E A E A B E A +-=-=-又01≠-=-E A ,所以⎪⎪⎪⎭⎫⎝⎛=+=201030102E A B 2. 解:⎪⎪⎪⎭⎫⎝⎛--==73130212111),,,(4321ααααA r →⎪⎪⎪⎭⎫⎝⎛-21010101001(1)因为3),,(321=αααr ,所以321,,ααα线性相关;(2)因为3),,,(),,(4321321==αααααααr r ,所以4α可由321,,ααα线性表示,且32142αααα+-=3. 解:方程组对应的齐次线性方程组的基础解系含134=-个解向量ξ,则所求方程组的通解为ξηk x +=1 其中k 为任意常数。

⎪⎪⎪⎪⎪⎭⎫⎝⎛=+-=-+-=6543)(2)()(3213121ηηηηηηηξ,因此,方程组的通解为 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=65435432k x 。

4. 解:A 的特征多项式)5()1(2λλλ++-=-E AA 的特征值为 121-==λλ,53-=λ,121-==λλ所对应的线性无关的特征向量为⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=101,01121αα,正交单位化得⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-=21161,0112121p p ; 53-=λ所对应的线性无关的特征向量为⎪⎪⎪⎭⎫ ⎝⎛=1113α,单位化得⎪⎪⎪⎭⎫⎝⎛=111313p ,令正交矩阵),,(321p p p P =,则⎪⎪⎪⎭⎫⎝⎛---=-5111AP P 。

线性代数练习题及答案

线性代数练习题及答案

线性代数练习题及答案线性代数是数学中的一个重要分支,它在工程、物理、计算机科学等多个领域都有广泛应用。

下面是一些线性代数的练习题及答案,供同学们学习和参考。

练习题1:向量空间的基与维数设向量空间V由以下向量构成:{(1, 0, 0), (0, 1, 0), (0, 0, 1)}。

请确定这个向量空间的基和维数。

答案1:这个向量空间的基就是给定的向量集合{(1, 0, 0), (0, 1, 0), (0, 0, 1)}。

因为这些向量线性无关,并且任何向量空间中的向量都可以表示为这些向量的线性组合。

所以,这个向量空间的维数是3。

练习题2:矩阵的行列式给定矩阵A如下:\[ A = \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix} \]计算矩阵A的行列式。

答案2:矩阵A的行列式可以通过公式\( \text{det}(A) = a_{11} \cdota_{22} - a_{12} \cdot a_{21} \)来计算。

将矩阵A的元素代入公式,得到:\[ \text{det}(A) = (2)(3) - (1)(4) = 6 - 4 = 2 \]练习题3:线性方程组的解解线性方程组:\[ \begin{cases} x + y = 5 \\ 2x - y = 1 \end{cases} \]答案3:使用消元法,我们可以将第二个方程乘以2,然后从第一个方程中减去得到:\[ 3x = 9 \]解得 \( x = 3 \)。

将 \( x \) 的值代入第一个方程,得到 \( y = 2 \)。

所以,方程组的解为 \( (x, y) = (3, 2) \)。

练习题4:特征值与特征向量给定矩阵B:\[ B = \begin{bmatrix} 4 & 1 \\ 0 & 3 \end{bmatrix} \]求矩阵B的特征值和对应的特征向量。

答案4:设特征值为λ,特征向量为 \( \begin{bmatrix} a \\ b\end{bmatrix} \)。

经济数学基础线性代数部分综合练习及答案

经济数学基础线性代数部分综合练习及答案

经济数学基础线性代数部分综合练习及答案一、单项选择题1.设A 为23⨯矩阵,B 为32⨯矩阵,则下列运算中( A )可以进行.A .AB B .AB TC .A +BD .BA T2.设B A ,为同阶可逆矩阵,则下列等式成立的是(B )A . T T T )(B A AB =B .T T T )(A B AB =C .1T 11T )()(---=B A ABD .T 111T )()(---=B A AB3.以下结论或等式正确的是( C ).A .若B A ,均为零矩阵,则有B A =B .若AC AB =,且O A ≠,则C B =C .对角矩阵是对称矩阵D .若O B O A ≠≠,,则O AB ≠4.设A 是可逆矩阵,且A AB I +=,则A -=1( C ).A .B B .1+BC .I B +D .()I AB --15.设)21(=A ,)31(-=B ,I 是单位矩阵,则I B A -T =( D ). A .⎥⎦⎤⎢⎣⎡--6231 B .⎥⎦⎤⎢⎣⎡--6321 C .⎥⎦⎤⎢⎣⎡--5322 D .⎥⎦⎤⎢⎣⎡--5232 6.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=314231003021A ,则r (A ) =(C ). A .4 B .3C .2D .17.设线性方程组b AX =的增广矩阵通过初等行变换化为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--00000120004131062131,则此线性方程组的一般解中自由未知量的个数为(A ).A .1B .2C .3D .48.线性方程组⎩⎨⎧=+=+012121x x x x 解的情况是( A ). A . 无解 B . 只有0解 C . 有唯一解 D . 有无穷多解9.若线性方程组的增广矩阵为⎥⎦⎤⎢⎣⎡=01221λA ,则当λ=( B )时线性方程组无解.A .0B .12C .1D .2 10. 设线性方程组b X A n m =⨯有无穷多解的充分必要条件是( D ).A .m A r A r <=)()(B .n A r <)(C .n m <D .n A r A r <=)()(11.设线性方程组AX=b 中,若r (A , b ) = 4,r (A ) = 3,则该线性方程组(B ).A .有唯一解B .无解C .有非零解D .有无穷多解12.设线性方程组b AX =有唯一解,则相应的齐次方程组O AX =(C ).A .无解B .有非零解C .只有零解D .解不能确定二、填空题1.若矩阵A = []21-,B = []132-,则A T2.设矩阵⎥⎦⎤⎢⎣⎡-=3421A ,I 为单位矩阵,则T )(A I - 3.设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条4.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=13230201a A ,当a A 是对称矩阵. 5.设B A ,均为n 阶矩阵,且)(B I -可逆,则矩阵X BX A =+的解X =. 应该填写:A B I 1)(--6.设A 为n 阶可逆矩阵,则r (A )=.应该填写:n7.若r (A , b ) = 4,r (A ) = 3,则线性方程组AX = b .应该填写:无解8.若线性方程组⎩⎨⎧=+=-002121x x x x λ有非零解,则λ9.设齐次线性方程组01=⨯⨯n n m X A ,且秩(A ) = r < n ,则其一般解中的自由未知量的个数等于10.O AX =中A 为53⨯矩阵,且该方程组有非0解,则)(A r11.齐次线性方程组0=AX 的系数矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=000020103211A 则此方程组的一其中43,x x 是自由未知量)12.设线性方程组b AX =,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-→010*********t A ,则有唯一解.三、计算题1.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-012411210,求逆矩阵1-A . 解 因为(AI ) =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-120001010830210411100010001012411210 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→123124112200010001123001011200210201 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→21123124112100010001 所以 A -1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----21123124112 2.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121511311,求逆矩阵1)(-+A I .解 因为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+021501310A I 且 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-110520001310010501100021010501001310 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→112100001310010501⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→1121003350105610001 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=+-1123355610)(1A I 3.设矩阵 A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011,B =⎥⎦⎤⎢⎣⎡--210321,计算(BA )-1. 解 因为BA =⎥⎦⎤⎢⎣⎡--210321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011=⎥⎦⎤⎢⎣⎡--2435 (BAI )=⎥⎦⎤⎢⎣⎡--→⎥⎦⎤⎢⎣⎡--1024111110240135 ⎥⎦⎤⎢⎣⎡---→54201111⎥⎥⎦⎤⎢⎢⎣⎡--→2521023101 所以(BA )-1=⎥⎥⎦⎤⎢⎢⎣⎡--252231 4.设矩阵⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=3221,5321B A ,求解矩阵方程B XA =. 解:因为⎥⎦⎤⎢⎣⎡10530121⎥⎦⎤⎢⎣⎡--→13100121⎥⎦⎤⎢⎣⎡--→13102501 即 ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-132553211所以,X =153213221-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡13253221= ⎥⎦⎤⎢⎣⎡-1101 5.设线性方程组 ⎪⎩⎪⎨⎧=+-=-+--=+052231232132131x x x x x x x x ,求其系数矩阵和增广矩阵的秩,并判断其解的情况.解 因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=211011101201051223111201A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→300011101201 所以 r (A ) = 2,r (A ) = 3.又因为r (A )≠r (A ),所以方程组无解.6.求线性方程组⎪⎩⎪⎨⎧=-+-=+-+-=-+03520230243214321431x x x x x x x x x x x 的一般解.解 因为系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=111011101201351223111201A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→000011101201 所以一般解为⎩⎨⎧-=+-=4324312x x x x x x (其中3x ,4x 是自由未知量) 7.求线性方程组⎪⎩⎪⎨⎧=-+-=-+-=+-126142323252321321321x x x x x x x x x 的一般解.解 因为增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=1881809490312112614231213252A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→0000194101101 所以一般解为 ⎪⎪⎩⎪⎪⎨⎧+=+=1941913231x x x x (其中3x 是自由未知量) 8.设齐次线性方程组⎪⎩⎪⎨⎧=+-=+-=+-0830352023321321321x x x x x x x x x λ问λ取何值时方程组有非零解,并求一般解.解 因为系数矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---61011023183352231λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→500110101λ 所以当λ = 5时,方程组有非零解. 且一般解为⎩⎨⎧==3231x x x x (其中3x 是自由未知量) 9.当λ取何值时,线性方程组⎪⎩⎪⎨⎧=+-=-+=++1542131321321x x x x x x x x λ有解?并求一般解.解 因为增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=26102610111115014121111λλA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→λ00026101501 所以当λ=0时,线性方程组有无穷多解,且一般解为:⎩⎨⎧+-=-=26153231x x x x (x 3是自由未知量〕。

线性代数考试练习题带答案大全

线性代数考试练习题带答案大全

线性代数考试练习题带答案一、单项选择题(每小题3分,共15分)1.设A 为m n ⨯矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。

(A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222123123(,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型.(A )1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥.4.初等矩阵(A );(A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,,,n ααα线性无关,则(C )A. 12231,,,n n αααααα-+++必线性无关;B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关;C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关;D. 以上都不对。

二、填空题(每小题3分,共15分)6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t7.设矩阵020003400A ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A -=8.设A 是n 阶方阵,*A 是A 的伴随矩阵,已知5A =,则*AA 的特征值为 。

9.行列式111213212223313233a b a b a b a b a b a b a b a b a b =______ ____;10. 设A 是4×3矩阵,()2R A =,若102020003B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()R AB =_____________;三、计算题(每小题10分,共50分)11.求行列式111213212223313233a b a b a b D a b a b a b a b a b a b +++=++++++的值。

《线性代数》习题集(含答案)

《线性代数》习题集(含答案)

《线性代数》习题集(含答案)第一章【1】填空题(1) 二阶行列式2a abbb=___________。

(2) 二阶行列式cos sin sin cos αααα-=___________。

(3) 二阶行列式2a bi b aa bi+-=___________。

(4) 三阶行列式xy zzx y yzx =___________。

(5) 三阶行列式a bc c a b c a bbc a+++=___________。

答案:1.ab(a-b);2.1;3.()2a b -;4.3333x y z xyz ++-;5.4abc 。

【2】选择题(1)若行列式12513225x-=0,则x=()。

A -3;B -2;C 2;D 3。

(2)若行列式1111011x x x=,则x=()。

A -1,; B 0, C 1, D 2,(3)三阶行列式231503201298523-=()。

A -70;B -63;C 70;D 82。

(4)行列式00000000a ba b b a ba=()。

A 44a b -;B ()222a b-;C 44b a -;D 44a b 。

(5)n 阶行列式0100002000100n n -=()。

A 0;B n !;C (-1)·n !;D ()11!n n +-∙。

答案:1.D ;2.C ;3.A ;4.B ;5.D 。

【3】证明33()by az bz ax bx ay x y z bx ay by az bz ax a b zx y bz ax bx ay by azyzx++++++=++++ 答案:提示利用行列式性质将左边行列式“拆项”成八个三阶行列式之和,即得结果。

【4】计算下列9级排列的逆序数,从而确定他们的奇偶性: (1)134782695;(2)217986354;(3)987654321。

答案:(1)τ(134782695)=10,此排列为偶排列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《线性代数》综合练习题一、选择题1. 设A ,B 都是n 阶方阵,且AB=0,则必有( ).A.0=A 或0=BB.0=+B AC. 0||=A 或0||=BD. 0||||=+B A2. 设A ,B ,C 都是n 阶方阵,且ABC=E,其中E 为n 阶单位方阵,则必有( ).A. ACB=EB. BC A =EC. CBA=ED. BAC=E3. 设A ,B 都是n 阶方阵,且A 与B 等价,则( ).A. R(A)=R(B)B. )det()det(B A =C. )det()det(B E A E -=-λλD. 存在可逆矩阵P,使B AP P =-14. 设A 是n 阶可逆矩阵,*A 是A 的伴随矩阵,则=-1*)(A ( ). A.A A )det(1 B. 1)det(1-A A C.*)det(1A A D. A A *)det(1 5. 设方阵A 满足A 2-A -2E=0, 则必有( ).A.E A -=B. E A 2=C. A 可逆D. A 不可逆6. 设A 是n 阶可逆矩阵,*A 是A 的伴随矩阵,则=⋅|*|||A A ( ).A. 1B. n A ||C. 1||-n AD. 1||+n A7. 设A,B 为n 阶方阵,则必有( ).A. AB=BAB. │A+B│=│A│+│B│C. │A -B│=│A│-│B│D. │AB│=│A││B│8.设B A ,都是n 阶可逆矩阵,则下列结论不正确的是( ).A. B A +一定可逆B. AB 一定可逆C . 11--B A 一定可逆 D. TT B A 一定可逆.9.下列矩阵中,与矩阵⎪⎪⎭⎫ ⎝⎛1011可交换的是( ). A. ⎪⎪⎭⎫ ⎝⎛2011 B. ⎪⎪⎭⎫ ⎝⎛1111 C. ⎪⎪⎭⎫ ⎝⎛2032 D. ⎪⎪⎭⎫ ⎝⎛--121110.矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 为非奇异矩阵的充要条件是( ). A. 0=-bc ad B. 0=-cd abC. 0≠-bc adD. 0≠-cd ab11.设A 为n 阶方阵,k 为非零常数,则必有( ).A. ||||A kA =B. ||||A k kA =C. ||||1A k kA n -=D. ||||A k kA n =12.下列说法正确的是( ).A. 设A 为n 阶方阵,且A 2=A ,则A=E 或A=0.B. 设A,B,C 为n 阶方阵, AB=AC 且A≠0,则B=C.C. 设A ,B ,C 都是n 阶方阵,且AB=E ,CA=E ,则B=C.D. 设A 为n 阶方阵,且A 2=0,则A=0.13.矩阵⎪⎪⎭⎫ ⎝⎛5321的逆矩阵是( ). A. ⎪⎪⎭⎫ ⎝⎛--5321B. ⎪⎪⎭⎫ ⎝⎛--1325 C. ⎪⎪⎭⎫ ⎝⎛--5321 D. ⎪⎪⎭⎫ ⎝⎛--5231 14.设A 为3阶方阵,|A|=3,则|3A -1|= ( ).A. 1B. -1C. 9D. -915. 设C B A ,,都是n 阶可逆矩阵,则=-1)(ABC ( ). A. 111---C B A B. 111---A C BC. 111---B A CD. 111---A B C16. 设A 是一个3阶的反对称矩阵,则|A|= ( ).A. -1B. 0C. 1D. 无法确定17.设α⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321a a a ,β],,[321b b b =,)3,2,1(0,0=≠≠i b a i i ,则方阵A=αβ的秩为( ).A. 0B. 1C. 2D. 318.如果向量组线性相关,那么( ).A. 这个向量组中至少有一个零向量.B. 这个向量组中至少有两个向量成比例.C. 这个向量组中至少有一个向量可以由其余向量线性表示.D. 这个向量组中所有向量都可以由其余向量线性表示.19.下列说法正确的是( ).A. 等价的向量组含有相同的向量个数.B. 如果向量组线性相关,那么这个向量组中至少有一个零向量.C. 如果向量组线性相关,那么这个向量组中至少有两个向量成比例.D. n 维单位向量组是线性无关的.20.设向量组α1],0,0,1[=α2],1,0,0[=则β=( )时,它是α1, α2的线性组合.A. ]2,1,0[B. ]0,2,1[C. ]2,0,1[D. ]0,1,2[21.向量组α1,α2,… ,αm 的秩不为0的充要条件是( ).A. 向量组α1,α2,… ,αm 中至少有一个非零向量.B. 向量组α1,α2,… ,αm 中至多有一个非零向量.C. 向量组α1,α2,… ,αm 中全部是非零向量.D. 向量组α1,α2,… ,αm 线性无关.22.设向量组α1,α2,… ,αm 的秩为)2(-≤m r r ,则下列说法错误的是( ).A. 向量组α1,α2,… ,αm 中至少有一个含r 个向量的部分组线性无关.B. 向量组α1,α2,… ,αm 中含r 个向量的部分组都线性无关.C. 向量组α1,α2,… ,αm 中含1+r 个向量的部分组都线性相关.D. 向量组α1,α2,… ,αm 中含2+r 个向量的部分组都线性相关.23.设α1,α2,α3为3阶方阵A 的列向量组,则α1,α2,α3线性无关的充要条件是( ).A. │A│0≠B. A 的秩3)(<A RC. 方阵A 不可逆D. 方阵A 是奇异的24. 下列说法错误的是( ).A.1+n 个n 维向量必相关.B. 等价的向量组有相同的秩.C. 任一n 维向量一定可由n 维单位向量组线性表示.D. 零向量不可以由n 维单位向量组线性表示.25. 若R (A )=2,则5元齐次线性方程组A x =0的基础解系中有( )个向量。

A. 1B. 2C. 3D. 426. n 元线性方程组A x =b ,A 为其增广矩阵,该方程组有唯一解的充分必要条件是( ). A. )()(A R A R = B. )()(A R A R ≠ C. n A R A R ==)()( D. n A R A R ≠=)()(27.设321,,ξξξ是齐次线性方程组A x =0的基础解系,则下列( )也是该方程组的基础解系.A. 与321,,ξξξ等价的一个向量组B. 与321,,ξξξ等秩的一个向量组C. 21ξξ+, 32ξξ+, 13ξξ+D. 21ξξ-, 32ξξ-, 13ξξ-28. 设A x =b 为n 元线性方程组, A x =0为其导出组,关于这两个方程组,下列说法中,正确的是( )A. 如果A x=0只有零解,则A x =b 必有唯一解.B. 如果A x=0有非零解,则A x =b 必有无穷多解.C. 如果A x =b 无解,则A x=0也无解.D. 如果A x =b 有唯一解,则A x=0一定只有零解.29. 设A ,B 为n 阶方阵,如果( ) ,则A 与B 相似.A. R(A)=R(B)B. )det()det(B A =C. )det()det(B E A E -=-λλD. A ,B 有相同的特征值,且这n 个特征值互不相等.30. 设A ,B 为n 阶方阵,且A 与B 相似,则下列不一定成立的是( )A. R(A)=R(B)B. )det()det(B A =C. )det()det(B E A E -=-λλD. A ,B 都有n 个互不相等的特征值.31. 设A ,B 为n 阶方阵,且A 与B 相似,则 ( )A. )det()det(B A =B. B E A E -=-λλC. 存在可逆矩阵P ,使B AP P T =D. R(A)+R(B)=n.32. 设A 为n 阶方阵,且|A|=0,则A 的特征值( )A.全是0B. 全不是0C.至少有一个是0D. 可以是任意数33. 设A 为n 阶方阵,则A 的不同特征值的个数( )A.小于等于nB. 大于等于nC. 等于nD. 不等于n34. 设A ,B 为n 阶方阵,且A 与B 相似,则必有 ( )A. A 与B 等价B. A 与B 不等价C. A 与B 合同D. A 与B 不合同35. 设A 是n 阶可逆矩阵,E 是n 阶单位矩阵,则必有( )A. A 与E 相等B. A 与E 相似C. A 与E 合同D. A 与E 等价36. 设A 为n 阶方阵,且|2A+5E|=0,则A 必有一个特征值为()A.52B. 25C. 52- D. 25-37.矩阵⎪⎪⎪⎭⎫⎝⎛-=123A 可以合同于( )A. ⎪⎪⎪⎭⎫ ⎝⎛123 B. ⎪⎪⎪⎭⎫ ⎝⎛-123 C. ⎪⎪⎪⎭⎫ ⎝⎛--123 D.⎪⎪⎪⎭⎫ ⎝⎛---123 38.设实对称矩阵A 与矩阵⎪⎪⎪⎭⎫ ⎝⎛-=123B 合同,则二次型x T A x 的规范型为( )A.23222123z z z +-B. 232221z z z +-C. 232221z z z --D. 232221z z z -+39. 设n 阶实对称矩阵A ,B 都是正定矩阵,则( )也一定是正定矩阵。

A. A+BB. A -BC. ABD. 3A -B40. 设A 为n 阶实对称矩阵,且A 的所有特征值都大于0,则二次型x T A x 为( )A. 正定二次型B. 半正定二次型C. 负定二次型D. 不定二次型二、填空题1. 设矩阵⎪⎪⎭⎫ ⎝⎛=1432A ,则行列式=||A A T 。

2.设A 为3阶方阵,|A|=3,则=-|2|A 。

3.设A 为3阶方阵,且9|3|=-A ,则=||A 。

4.设A 、B 都是n 阶方阵,且|A|= -2,|B|=3,则|AB|= .5.矩阵⎪⎪⎭⎫ ⎝⎛-1102的逆矩阵为 。

6. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛-=200010001A ,则A 的逆矩阵=-1A .7.设矩阵⎪⎪⎭⎫ ⎝⎛--=102123A , ⎪⎪⎭⎫ ⎝⎛--=321312B ,则=-B A 32 . 8. 14设矩阵⎪⎪⎪⎭⎫ ⎝⎛=312A ,则='A A .9.设A 为3阶方阵,R (A )=1,A *是A 的伴随矩阵,则R (A *)= 。

10.设A 为4阶方阵,R (A )=3,A *是A 的伴随矩阵,则R (A *)= 。

11. 设矩阵⎪⎪⎭⎫ ⎝⎛=3201A ,A *是A 的伴随矩阵,则=A A * 。

12. 设矩阵⎪⎪⎭⎫ ⎝⎛=4321A ,则=||*A . 13. 设向量)1,2,2(),3,2,1(=-=βα,则向量βα,的内积=),(βα 。

14. 设向量)1,1,2(),0,2,1(-=-=βα,且023=+-γβα, 则=γ .15. 若向量)0,1,2,1(-与)0,,4,2(k --线性相关,则=k .16. 若向量)0,2,3(-与),2,3(k -线性相关,则=k .17. 若R (A )=3,则4元齐次线性方程组A x=0的基础解系中有 个向量。

相关文档
最新文档