对数型复合函数的值域 教案 高中数学人教A版
高三数学人教版A版数学(理)高考一轮复习教案对数与对数函数1
第六节 对数与对数函数对数与对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.(2)理解对数函数的概念;理解对数函数的单调性,掌握函数图象通过的特殊点. (3)知道对数函数是一类重要的函数模型.(4)了解指数函数y =a x 与对数函数y =log a x 互为反函数(a >0,且a ≠1). 知识点一 对数及对数运算 1.对数的定义一般地,如果a x =N (a >0,且a ≠1),那么数x 叫作以a 为底N 的对数,记作x =log a _N ,其中a 叫作对数的底数,N 叫作真数.2.对数的性质 (1)log a 1=0,log a a =1. (2)a log a N =N ,log a a N =N . (3)负数和零没有对数. 3.对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么 (1)log a (MN )=log a M +log a N . (2)log aMN=log a M -log a N . (3)log a M n =n log a M (n ∈R ).(4)换底公式log a b =log m blog m a (a >0且a ≠1,b >0,m >0,且m ≠1).必记结论1.指数式与对数式互化:a x =N ⇔x =log a N . 2.对数运算的一些结论:①log am b n =nm log a b .②log a b ·log b a =1.③log a b ·log b c ·log c d =log a d .易误提醒 在运算性质log a M n =n log a M 中,易忽视M >0.[自测练习]1.(2015·临川一中模拟)计算⎝⎛⎭⎫lg 1125-lg 82÷4-12=________. 解析:本题考查指数和对数的运算性质.由题意知原式=(lg 5-3-lg 23)2÷2-1=(-3lg 5-3lg 2)2×2=9×2=18.答案:18 2.lg427-lg 823+lg 75=________. 解析:原式=lg 4+12lg 2-lg 7-23lg 8+lg 7+12lg 5=2lg 2+12(lg 2+lg 5)-2lg 2=12.答案:12知识点二 对数函数定义、图象与性质定义函数y =log a x (a >0,且a ≠1)叫作对数函数图 象a >10<a <1性 质定义域:(0,+∞)值域:R当x =1时,y =0,即过定点(1,0)当0<x <1时, y ∈(-∞,0); 当x >1时, y ∈(0,+∞) 当0<x <1时, y ∈(0,+∞); 当x >1时, y ∈(-∞,0) 在(0,+∞)上为增函数在(0,+∞)上为减函数易误提醒 解决与对数函数有关的问题时易漏两点: (1)函数的定义域. (2)对数底数的取值范围. 必记结论1.底数的大小决定了图象相对位置的高低;不论是a >1还是0<a <1,在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.2.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a,1),⎝⎛⎭⎫1a ,-1,函数图象只在第一、四象限.[自测练习]3.已知a >0,a ≠1,函数y =a x 与y =log a (-x )的图象可能是( )解析:函数y =log a (-x )的图象与y =log a x 的图象关于y 轴对称,符合条件的只有B. 答案:B4.函数y =log a x (a >0,且a ≠1)在[2,4]上的最大值与最小值的差是1,则a 的值为________.解析:(1)当a >1时,函数y =log a x 在[2,4]上是增函数,所以log a 4-log a 2=1,即log a 42=1,所以a =2. (2)当0<a <1时,函数y =log a x 在[2,4]上是减函数,所以log a 2-log a 4=1,即log a 24=1,所以a =12.由(1)(2)知a =2或a =12.答案:2或12考点一 对数式的化简与求值|1.(2015·内江三模)lg51 000-823=( )A.235 B .-175 C .-185 D .4 解析:lg 51 000-823=lg 1035-(23)23=35-4=-175.答案:B2.(log 23)2-4log 23+4+log 2 13=( )A .2B .2-2log 2 3C .-2D .2log 2 3-2解析:(log 23)2-4log 23+4=(log 23-2)2=2-log 23,又log 213=-log 23,两者相加即为B.答案:B3.(2015·高考浙江卷)若a =log 43,则2a +2-a =________. 解析:原式=2log 4 3+2-log 4 3=3+13=433.答案:433对数运算的一般思路(1)首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算性质化简合并.(2)将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.考点二 对数函数图象及应用|(1)(2016·福州模拟)函数y =lg |x -1|的图象是( )[解析] 因为y =lg |x -1|=⎩⎪⎨⎪⎧lg (x -1),x >1,lg (1-x ),x <1.当x =1时,函数无意义,故排除B 、D. 又当x =2或0时,y =0,所以A 项符合题意. [答案] A(2)当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝⎛⎭⎫0,22 B.⎝⎛⎭⎫22,1C .(1,2)D .(2,2)[解析] 法一:构造函数f (x )=4x 和g (x )=log a x ,当a >1时不满足条件,当0<a <1时,画出两个函数在⎝⎛⎦⎤0,12上的图象,可知,f ⎝⎛⎭⎫12<g ⎝⎛⎭⎫12,即2<log a 12,则a >22,所以a 的取值范围为⎝⎛⎭⎫22,1.法二:∵0<x ≤12,∴1<4x ≤2,∴log a x >4x >1,∴0<a <1,排除选项C ,D ;取a =12,x =12,则有412=2,log 12 12=1,显然4x <log a x 不成立,排除选项A.[答案] B应用对数型函数的图象可求解的两类问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.1.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)解析:作出f (x )的大致图象,不妨设a <b <c ,因为a ,b ,c 互不相等,且f (a )=f (b )=f (c ),由函数的图象可知10<c <12,且|lg a |=|lg b |,因为a ≠b ,所以lg a =-lg b ,可得ab =1,所以abc =c ∈(10,12).答案:C考点三 对数函数性质及应用|已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1. (1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明; (3)当a >1时,求使f (x )>0的x 的解集. [解] (1)要使函数f (x )有意义,则⎩⎪⎨⎪⎧x +1>0,1-x >0,解得-1<x <1. 故所求函数f (x )的定义域为(-1,1).(2)由(1)知f (x )的定义域为(-1,1), 且f (-x )=log a (-x +1)-log a (1+x ) =-[log a (x +1)-log a (1-x )]=-f (x ), 故f (x )为奇函数.(3)因为当a >1时,f (x )在定义域(-1,1)内是增函数, 所以f (x )>0⇔x +11-x >1,解得0<x <1.所以使f (x )>0的x 的解集是(0,1).利用对数函数的性质研究对数型函数性质,要注意以下四点:一是定义域;二是底数与1的大小关系;三是如果需将函数解析式变形,一定确保其等价性;四是复合函数的构成,即它是由哪些基本初等函数复合而成的.2.已知函数f (x )=log a (8-ax )(a >0,a ≠1),若f (x )>1在区间[1,2]上恒成立,求实数a 的取值范围.解:当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数, 由f (x )>1恒成立, 则f (x )min =log a (8-2a )>1, 解之得1<a <83.若0<a <1时,f (x )在x ∈[1,2]上是增函数, 由f (x )>1恒成立, 则f (x )min =log a (8-a )>1, 且8-2a >0,∴a >4,且a <4,故不存在.综上可知,实数a 的取值范围是⎝⎛⎭⎫1,83. 5.插值法比较幂、对数大小【典例】 (1)设a =0.50.5,b =0.30.5,c =log 0.3 0.2,则a ,b ,c 的大小关系是( ) A .c <b <aB .a <b <cC .b <a <cD .a <c <b(2)已知a =5log 23.4,b =5log 43.6,c =⎝⎛⎭⎫15log 30.3,则( ) A .a >b >c B .b >a >c C .a >c >bD .c >a >b(3)已知函数y =f (x )的图象关于y 轴对称,且当x ∈(-∞,0)时,f (x )+xf ′(x )<0成立,a =(20.2)·f (20.2),b =(log π3)·f (log π3),c =(log 39)·f (log 39),则a ,b ,c 的大小关系是( )A .b >a >cB .c >a >bC .c >b >aD .a >c >b[思路点拨] (1)利用幂函数y =x 0.5和对数函数y =log 0.3x 的单调性,结合中间值比较a ,b ,c 的大小;(2)化成同底的指数式,只需比较log 23.4、log 43.6、-log 3 0.3=log 3 103的大小即可,可以利用中间值或数形结合进行比较;(3)先判断函数φ(x )=xf (x )的单调性,再根据20.2,log π3,log 39的大小关系求解. [解析] (1)根据幂函数y =x 0.5的单调性, 可得0.30.5<0.50.5<10.5=1,即b <a <1; 根据对数函数y =log 0.3x 的单调性, 可得log 0.30.2>log 0.30.3=1,即c >1. 所以b <a <c .(2)c =⎝⎛⎭⎫15log 3 0.3=5-log 3 0.3=5log 3 103. 法一:在同一坐标系中分别作出函数y =log 2 x ,y =log 3x ,y =log 4x 的图象,如图所示. 由图象知: log 2 3.4>log 3 103>log 43.6. 法二:∵log 3 103>log 33=1,且103<3.4, ∴log 3103<log 3 3.4<log 2 3.4. ∵log 4 3.6<log 4 4=1,log 3103>1,∴log 4 3.6<log 3 103. ∴log 2 3.4>log 3103>log 4 3.6. 由于y =5x 为增函数,∴5log 2 3.4>5log 3103>5log 4 3.6. 即5log 2 3.4>⎝⎛⎭⎫15log 3 0.3>5log 4 3.6,故a >c >b . (3)因为函数y =f (x )关于y 轴对称, 所以函数y =xf (x )为奇函数.因为[xf (x )]′=f (x )+xf ′(x ),且当x ∈(-∞,0)时, [xf (x )]′=f (x )+xf ′(x )<0,则函数y =xf (x )在(-∞,0)上单调递减; 因为y =xf (x )为奇函数,所以当x ∈(0,+∞)时,函数y =xf (x )单调递减. 因为1<20.2<2,0<log π3<1,log 39=2,所以0<log π 3<20.2<log 3 9,所以b >a >c ,选A. [答案] (1)C (2)C (3)A[方法点评] (1)比较幂、对数的大小可以利用数形结合和引入中间量利用函数单调性两种方法.(2)解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.[跟踪练习] 设a >b >0,a +b =1且x =⎝⎛⎭⎫1a b,y =log ⎝⎛⎭⎫1a +1b ab ,z =log 1b a ,则x ,y ,z 的大小关系是( )A .y <x <zB .z <y <xC .y <z <xD .x <y <z解析:用中间量比较大小.由a >b >0,a +b =1,可得0<b <12<a <1,所以1b >2>1a >1,所以x =⎝⎛⎭⎫1a b>1,y =log ⎝⎛⎭⎫1a +1b ab =log ⎝⎛⎭⎫1ab ab =-1,0>z =log 1b a >log 1bb =-1,则y<z <x ,故选C.答案:CA 组 考点能力演练1.函数f (x )=log a |x |+1(0<a <1)的图象大致为( )解析:由函数f (x )的解析式可确定该函数为偶函数,图象关于y 轴对称.设g (x )=log a |x |,先画出x >0时,g (x )的图象,然后根据g (x )的图象关于y 轴对称画出x <0时g (x )的图象,最后由函数g (x )的图象向上整体平移一个单位即得f (x )的图象,结合图象知选A.答案:A2.设a =30.5,b =0.53,c =log 0.5 3,则a ,b ,c 的大小关系为( ) A .b <c <a B .b <a <c C .c <b <aD .c <a <b解析:因为a =30.5>30=1,0<b =0.53<0.50=1,c =log 0.5 3<log 0.5 1=0,所以c <0<b <1<a ,故选C.答案:C3.(2015·郑州二检)若正数a ,b 满足2+log 2a =3+log 3b =log 6 (a +b ),则1a +1b 的值为( )A .36B .72C .108D.172解析:设2+log 2a =3+log 3b =log 6(a +b )=k ,可得a =2k -2,b =3k -3,a +b =6k ,所以1a +1b =a +b ab =6k 2k -23k -3=108.所以选C. 答案:C4.(2015·长春质检)已知函数f (x )=log a |x |在(0,+∞)上单调递增,则( ) A .f (3)<f (-2)<f (1) B .f (1)<f (-2)<f (3) C .f (-2)<f (1)<f (3) D .f (3)<f (1)<f (-2)解析:因为f (x )=log a |x |在(0,+∞)上单调递增,所以a >1,f (1)<f (2)<f (3). 又函数f (x )=log a |x |为偶函数,所以f (2)=f (-2),所以f (1)<f (-2)<f (3). 答案:B5.已知函数f (x )=log 2 ⎝⎛⎭⎫21-x +t 是奇函数,则使f (x )<0的x 的取值范围是( )A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)解析:由f (-x )=-f (x )得log 2 ⎝ ⎛⎭⎪⎫21+x +t =-log 2 ⎝ ⎛⎭⎪⎫21-x +t ,所以21+x +t =121-x +t,整理得1-x 2=(2+t )2-t 2x 2,可得t 2=1且(t +2)2=1,所以t =-1,则f (x )=log 21+x1-x<0,即⎩⎪⎨⎪⎧1+x1-x>01+x 1-x <1,解得-1<x <0.答案:A6.(2015·深圳一模)lg 2+lg 5+20+⎝⎛⎭⎫5132×35=________. 解析:lg 2+lg 5+20+⎝⎛⎭⎫5132×35=lg 10+1+523×513=32+5=132. 答案:1327.若log a (a 2+1)<log a 2a <0,则实数a 的取值范围是________. 解析:∵a 2+1>1,log a ()a 2+1<0,∴0<a <1. 又log a 2a <0,∴2a >1,∴a >12.∴实数a 的取值范围是⎝⎛⎭⎫12,1.答案:⎝⎛⎭⎫12,18.(2015·成都摸底)关于函数f (x )=lg x 2+1x,有下列结论: ①函数f (x )的定义域是(0,+∞);②函数f (x )是奇函数;③函数f (x )的最小值为lg 2;④当x >0时,函数f (x )是增函数.其中正确结论的序号是________(写出所有你认为正确的结论的序号).解析:函数f (x )=lg x 2+1x的定义域为(0,+∞),其为非奇非偶函数,即得①正确,②不正确;由f (x )=lg x 2+1x =lg ⎝⎛⎭⎫x +1x ≥lg ⎝⎛⎭⎫2 x ×1x =lg 2,得③正确;函数u =x +1x 在x ∈(0,1)时为减函数,在x ∈(1,+∞)时为增函数,函数y =lg u 为增函数,所以函数f (x )在x ∈(0,1)时为减函数,在x ∈(1,+∞)时为增函数,即得命题④不正确.故应填①③.答案:①③9.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎡⎦⎤0,32上的最大值. 解:(1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得x ∈(-1,3), ∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数,∴函数f (x )在⎣⎡⎦⎤0,32上的最大值是f (1)=log 24=2. 10.已知f (x )=log a x (a >0且a ≠1),如果对于任意的x ∈⎣⎡⎦⎤13,2都有|f (x )|≤1成立,求a的取值范围.解:由已知f (x )=log a x ,当0<a <1时,⎪⎪⎪⎪f ⎝⎛⎭⎫13-|f (2)|=log a 13+log a 2=log a 23>0, 当a >1时,⎪⎪⎪⎪f ⎝⎛⎭⎫13-|f (2)|=-log a 13-log a 2=-log a 23>0,故⎪⎪⎪⎪f ⎝⎛⎭⎫13>|f (2)|总成立.则y =|f (x )|的图象如图. 要使x ∈⎣⎡⎦⎤13,2时恒有|f (x )|≤1,只需⎪⎪⎪⎪f ⎝⎛⎭⎫13≤1,即-1≤log a 13≤1,即log a a -1≤log a 13≤log a a , 当a >1时,得a -1≤13≤a ,即a ≥3; 当0<a <1时,得a -1≥13≥a ,得0<a ≤13. 综上所述,a 的取值范围是⎝⎛⎦⎤0,13∪[3,+∞). B 组 高考题型专练1.(2014·高考福建卷)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则下列函数图象正确的是( )解析:由y =log a x 的图象可知log a 3=1,所以a =3.对于选项A :y =3-x =⎝⎛⎭⎫13x 为减函数,A 错误;对于选项B :y =x 3,显然满足条件;对于选项C :y =(-x )3=-x 3在R 上为减函数,C 错误;对于选项D :y =log 3(-x ),当x =-3时,y =1,D 错误.故选B.答案:B2.(2014·高考山东卷)已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图,则下列结论成立的是( )A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1解析:由题图可知,函数在定义域内为减函数,所以0<a <1.又当x =0时,y >0,即log a c >0,所以0<c <1.答案:D3.(2015·高考北京卷)如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2 (x +1)的解集是( )A .{x |-1<x ≤0}B .{x |-1≤x ≤1}C .{x |-1<x ≤1}D .{x |-1<x ≤2}解析:在平面直角坐标系中作出函数y =log 2(x +1)的图象如图所示.所以f (x )≥log 2 (x +1)的解集是{x |-1<x ≤1},所以选C.答案:C4.(2015·高考浙江卷)log 2 22=________,2log 2 3+log 4 3=________. 解析:log 222=log 22-12=-12,2log 2 3+log 4 3=232log 2 3=2log 2 332=27=3 3. 答案:-12 3 3 5.(2015·高考北京卷)2-3,312,log 25三个数中最大的数是________. 解析:因为2-3=123=18,312=3≈1.732,而log 24<log 25,即log 25>2,所以三个数中最大的数是log 25.答案:log 25。
高一数学人教A版必修1教案:第二章第二节对数函数第六课时含解析.doc
第二章第二节对数函数第六课时导入新课思路1.复习指数函数与对数函数的关系,那么函数与函数y=\og(l x到底还有什么关系呢?这就是本堂课的新内容——反函数,教师板书课题:对数函数及其性质(3).思路2.在比较系统地学习对数函数的定义、图彖和性质的基础上,利用对数函数的图彖和性质研究一些含有对数式的、形式上比较复杂的函数的图象和性质,特別明确了对数函数的单调性,并且我们通过对数函数的单调性解决了有关问题.因此应搞清与函数), =log沁的关系,培养学生综合运用数学知识分析问题、解决问题的能力.教师点出课题:对数函数及其性质(3).推进新课新知探究:提出问题①用列表描点法在同一个直角坐标系中画出X=log2)\ y=2x与y=log2X的函数图象.②通过图象探索在指数函数中,x为自变量,),为因变量,如果把y当成自变量,x当成因变量,那么x是歹的函数吗?③如果是,那么对应关系是什么?如果不是,请说明理由.④探索)=2"与x=log2y的图象间的关系.⑤探索)=2、与y=log2x的图象间的关系.⑥结合②与⑤推测函数>=/与函数y=log(t x的关系.X• • •-3-2-10123• • •Y• • •1814121248• • •y=log2x.Y• • •-3-2-10123• • •X• • •1814121248• • •图象如图7.②在指数函数)=2”屮,x是自变量,y是兀的函数(xeR,)€对),而且其在R上是单调递增函数.过y轴的正半轴上任意一点作兀轴的平行线,与y=2x的图象有且只有一个交点,即对任意的y都有唯一的x相对应,可以把y作为自变量,兀作为),的函数.③由指数式与对数式的关系,y=2A'得x=logM,即对于每一个y,舌关系式x=log2『的作用之下,都有唯一确定的值兀和它对应,所以,可以把y作为自变量,x作为y的函数,即x=log2y.这吋我们把函数x=log2y +°°))叫做函数y=2\x^R)的反函数,但习惯上,通常以兀表示自变量,y表示函数,对调x=\og2y中的兀,丿写成j?=log2x,这样)= log2x (xe (O, +°°))是指数函数y=2"(xWR)的反函数.由上述讨论可知,对数函数j=log2x(xe(O, +8))是指数函数y=2A(xeR)的反函数;同时,指数函数y=2\x^R)也是对数函数y=log2X (x^(0, +°°))的反函数.因此,指数函数y=2A(x^R)与对数函数y=log2x (xe(o, +-))互为反函数.以后,我们所说的反函数是X,),对调后的惭数.如y=logw兀丘(0, +呵与)=3$WR)互为反函数,y=log0.sx与y=0.5'(兀WR)互为反函数.④从我们的列表中知道,尸F与X=10gM的函数图象相同.⑤通过观察图象可知,y=2v与y=Iog2X的图象关于直线对称.⑥通过②与⑤类比归纳知道,y=c'(a>0,且aHl)的反函数是)=lo财(a>0且aHl), 且它们的图象关于直线y=x对称.由反函数的概念可知,同底的指数函数和对数函数互为反函数,它们的图象关于直线y =兀对称.提出问题(1)用计算机在同一坐标系中作出下列函数的图象:®y=log3X;②y=log3(x+l);③y= l0g3(X-l).(2)从图彖上观察它们之间有什么样的关系?(3)用计算机在同一坐标系中作出下列函数的图彖:①y=logs%;②y=logM+l;③尸log^-1.,⑷从图彖上观察它们之间有什么样的关系?(5)你能推广到一般的情形吗?活动:学生动手画出函数图象,教师点拨,学生没有思路教师可以提示.学生回忆函数作图的方法与步骤,按规定作出图象,特别是关键点.讨论结果:(1)如图&(2)观察图8可以看出,y=log共,y=log3(兀+1), y=log3(x—1)的图象间有如下关系: y=log3(x+l)的图象由y=lo g3x的图象向左移动1个单位得到;y=log?U-l)的图象由y=log秋的图象向右移动1个单位得到;J=log3(x—1)的图象由)=10g3(兀+1)的图象向右移动2个单位得到;,V = 10g3(x+l)的图象由,V = 10g3(A—1)的图象向左移动2个单位得到.(3)如图9.(4)观察图9 "J以看出,y=log3X,y=log3x+l,y=logax—1的图象间有如下关系:y=log3%+l的图彖由y=logsx的图彖向上平移1个单位得到;y=log3X—1的图彖由y=lo莎的图彖向下平移1个单位得到;)=10时一1的图象由)=logsx+l的图象向下平移2个单位得到;)=log秋+1的图象由y=log^-l的图象向上平移2个单位得到.(5)由上面的观察讨论可知,一般情况如下:①由函数y=\o^x的图象得到函数y=\og a(x+h)的图象的变化规律为:当/?>0吋,只需将函数y=log泌的图象向左平移h个单位就可得到函数y=log“(x+/2)的图象;当/?<()时,只需将函数y=\og(l x的图象向右平移|川个单位就可得到函数y=loga(x+/2)的图彖.②由函数)=1。
对数函数的图象与性质(2)课件-2022-2023学年高一上学期数学人教A版(2019)必修第一册
题型三.对数型复合函数的奇偶性
例 3 已知函数f(x)=loga(x+1)-loga(1-x)(a>0且
a≠1).
(2)判断函数f(x)的奇偶性并加以证明.
解:(2) 由(1)知函数f(x)的定义域为(-1,1),
关于原点对称.
∴f(-x)=loga(-x+1)-loga(1+x)
=-[loga(1+x)-loga(1-x)]
=-f(x),
∴函数f(x)为奇函数.
练习 3 判断函数f(x)=lg
1
2 +1
+
的奇偶性
解:函数f(x)的定义域为(-∞,+∞),关于原点对称.
1
( 2 +1 +)
又f(-x)=lg 2
=lg
+1 −
( 2+1 −)( 2+1 +)
=lg(
2
=−lg(
+ 1 + ) = lg(
方的部分保留,将在x轴下方的部分作关于x轴的对称变
换得到的.
4.y=f(x)的图象与y=f(-x)的图象关于y轴对称,
y=f(x)的图象与y=-f(x)的图象关于x轴对称.
题型五.反函数
对数函数y=logax(a>0,且a≠1)和指数函数y=ax(a>0,
且a≠1)互为反函数,它们的图象关于直线__y=x__对称
对数函数y=logax的定义域是指数函数y=ax的值域,
而y=logax的值域是y=ax的定义域.
【新知拓展】
(1)并非任意一个函数y=f(x)都有反函数,只有定义域
和值域满足“一一对应”的函数才有反函数.互为反函
数的两个函数的定义域、值域的关系如下表所示:
高中数学《对数函数》教案30 新人教A版必修1
对数与对数运算附件一:太谷二中有效课堂教学导学案2.2.1对数与对数运算教学目的:进一步使学生熟练对数的概念,使学生掌握对数的运算性质、换底公式, 会用对数的性质解决一些实际问题。
教学重点:对数性质的运算法则,换底公式。
教学难点:运算性质的推导,换底公式。
教学过程一、复习提问将23=8写成对数式___,将 log 255=2写成指数式___。
二、新课1、对数运算性质的推导: nm nmaa a +=•,设M =m a ,N =n a ,则有MN =nm a+由对数的定义,有:m Ma =log ,n Na =logn m NM a+=•log = M a log +Na log同样地,依照上述过程,由nm nma a a -=÷和mnn m aa =)(,得到对数运算的其他性质:如果a >0,且a ≠1,M >0,N >0,那么: (1))(log N M a •=M a log +Na log(2)NM a log =Ma log -Na log (3)nM alog =Man log (n ∈R )2、对数运算性质的应用:例3、用x a log ,y a log ,za log 表示下列各式:(1)zxy alog (2)32log zy x a例4、求下列各式的值: (1))24(257log ⨯(2)5100lg 3、换底公式acb c ba log log log =(a >0,且a ≠1;c >0,且c ≠1;b >0)131801.1log =01.1lg 1318lg=01.1lg 13lg 18lg -=32.883≈33(年)由此可知,如果人口年增长率控制在1%,那么从2000年开始,大约经过33年,即 到2032年底我国的人口总数可达到18亿。
3、解决一些实际问题P77例5、分析:本题题目较长,阅读要花一定的时间,对理解能力好的学生应 该不成问题,它的特点是给定公式,看懂公式中字母代表的意义即能解答。
人教A版高中数学必修一对数函数教案(2)
对数函数教案教学目标1.使学生掌握对数函数的定义,会画对数函数的图象,掌握对数函数的性质.2.通过对数函数与指数函数互为反函数的教学,学生进一步加深对反函数概念及函数和反函数图象间的关系的认识与理解.3.通过比较、对照的方法,学生更好地掌握两个函数的定义、图象及性质,认识两个函数的内在联系,提高学生对函数思想方法的认识和应用意识.教学重点与难点教学重点是对数函数的定义、图象及性质.难点是由对数函数与指数函数互为反函数这一关系,利用指数函数图象及性质得到对数函数的图象及性质.教学过程设计师:在新课开始前,我们先复习一些有关概念.什么叫对数?N=b.其中a为底数,生:若a b=N,则数b叫做以a为底N的对数,记作logaN是真数.师:各个字母的取值范围呢?生:a>0巳a≠1;N>0;b∈R,师:这个定义也为我们提供了指数式化对数式,对数式化指数式的方法.请将b p=M化成对数式.M=p.生:b p=M化为对数式是logba=q化为指数式.师:请将logc生:loga=q化为指数式是c q=a.c师;什么是指数函数?它有哪些性质?(生回答指数函数定义及性质.)师:请大家回忆如何求一个函数的反函数?生:(1)先求原来函数的定义域和值域;(2)把函数式y=f(x)x与y对换,此反函数可记作x=f-1(y);(3)把x=f-1(y)改写成y=f-1(x),并写出反函数的定义域.师:好.为什么求一个函数的反函数时,要先求出这个函数的定义域和值域呢?生:求原来函数的定义域是为了求原来函数的值域,而原来函数的值域就是其反函数的定义域.师:很好.原来函数的定义域和值域,就是其反函数的值域和定义域.根据前面复习的求反函数的方法,请同学们求函数y=a x(a>0,a≠1)的反函数.生:函数y=a x(a>0,a≠1)的定义域x∈R,值域y∈(0,+∞).将指数式y=a x化为对数式x=loga y,所以函数y=a x(a>0,a≠1)的反函数为y=logax(x>0).师:今天这节课我们介绍一下新的函数——对数函数,它是指数函数的反函数.定义函数y=logax(a>0,a≠1)叫做对数函数.因为对数函数y=logax是指数函数y=a x的反函数,所以要说明以下两点:(1)对于底数a,同样必须满足a>0且a≠1的条件.(2)指数函数的定义域为R,值域为R+.根据反函数性质可知:对数函数的定义域为R+,值域为R.同指数函数一样,在学习了函数定义之后,我们要画函数的图象.应该如何画对数函数的图象呢?生:用描点法画图.师:对.我们每学习一种新的函数都可以根据函数的解析式,列表、描点画图.再考虑一下,我们还可以用什么方法画出对数函数的图象呢?生:因为对数函数是指数函数的反函数,所以它们的图象关于直线y=x对称.因此,只要画出指数函数的图象,就可利用图象的对称性画出对数函数的图象.师:非常好.我们画对数函数图象,即可用描点法,也可用图象变换法.师:由于对数函数是指数函数的反函数,指数函数图象分a>1和0<a<1两类,因此对数函数图象也分a>1和0<a<1两类.现在我们观察对数函数图象,并对照指数函数性质来分析对数函数的性质.生:对数函数的图象都在y轴右侧,说明x>0.生:函数图象都过(1,0)点,说明x=1时,y=0.师:对.这从直观上体现了对数式的真数大于0且1的对数是0的事实.请继续分析.生:当底数是2和10时,若x>1,则y>0,若x<1,则y<师:对.由此可归纳得到:当底数a>1时,若x>1,则y>0;若0<x<1,则y<0,反之亦然.当底数0<a<1时,看x>1,则y<0;若0<x<1,则y >0,反之亦然.这体现了真数的取值范围与对数的正负性之间的紧密联系.再继续分析.生:当底数a>1时,对数函数在(0,+∞)上递增;当底数0<a<1时,对数函数在(0,+∞)上递减.师:好.下边我们看一下指数函数与对数函数性质对照表.师:今天我们所要讲的有关概念就讲完了,现在我们通过例题进一步巩固理解这些概念.例2 求下列函数的定义域:生:(1)因为x2>0,所以x≠0,即y=logax2的定义域是(-∞,0)∪(0,+∞).生:(2)因为4-x>0,所以x<4,即y=loga(4-x)的定义域是(-∞,4).师:在这个函数的解析式中,不仅有对数式,还有二次根式,因此要求定义域,既要真数大于0,还要被开方数大于或等于0,从而得到不等式组,这个不等式组如何解,问题出在log0.5(3x-1)≥0上,怎么办?生:把0看作log0.51,即log0.5(3x-1)≥log0.51,因为0<0.5<1,所以此函数是减函数,所以3x-1≤1.师:对.他是利用了对数函数的单调性.还有别的说法吗?生:因为底数0<0.5<1,而log0.5(3x-1)≥0,所以3x-1≤1.师:对.他是利用了对数函数的第三条性质,根据函数值的范围,判断了真数的范围,因此只要解0<3x-1≤1,即可得出函数定义域.例3 比较下列各组中两个数的大小:(1)log23和log23.5;(2)log0.71.6和log0.71.8.师:请同学们观察这两组数中两个数的特征,想一想应如何比较这两个数的大小.生:这两组数都是对数.每组中的对数式的底数相同,而真数不同,因此可根据函数y=log2x是增函数的性质来比较它们的大小.师:对.针对(1)中两个数的底数都是2,我们构造函数y=log2x,利用这个函数在(0,+∞)是单调递增的,通过比较真数的大小来决定对数的大小.请一名同学写出解题过程.生:(板书)解:因为函数y=log2x在(0,+∞)上是增函数,又因0<3<3.5,所以log23<log23.5.师:好.请同学简答(2)中两个数的比较过程.并说明理由.生:因为函数y=log0.7x在(0,+∞)上是减函数,又因0<1.6<1.8,所以log0.71.6>log0.71.8.师:对.上述方法仍是采用“函数法”比较两个数的大小.当两个对数式的底数相同时,我们构造对数函数.对于a>1的对数函数在定义域内是增函数;对于0<a<1的对数函数在定义域内是减函数.只要比较真数的大小,即可得到函数值的大小.例4 比较下列各组中两个数的大小:(1)log0.34和log0.20.7;(2)log23和log32.师:这两组数都是对数,但它们的底数与真数都不相同,不便于利用对数函数的单调性比较它们的大小.请大家仔细观察各组中两个数的特点,判断出它们的大小.生:在log0.34中,因为底数0<0.3<1,且4>1,所以log0.34<0;在log0.20.7中,因为0<0.2<1,且0.7<1,所以log0.20.7>0,故log0.34<log0.20.7.师:很好.根据对数函数性质,当底数0<a<1时,若x>1,则y<0;若0<x<1,则y>0.由此可以判定这两个数中,一个比零大,另一个比零小,从而比较出两个数的大小,这是采用了“中间量法”.请比较第(2)组两个数的大小.生:在log23中,底数2>1,真数3>1,所以log23>0;在log32中,底数3>1,真数2>1,所以log32>0,…师:根据对数性质可判断:log23和log32都比零大.怎么办?生:因为log23>1,log32<1,所以log23>log32.师:很好.这是根据对数函数的单调性得到的,事实上,log23>log22=1,log32<log33=1,这里利用了底数的对数为1,即log22=log33=1,从而判断出一个数大于1,而另一个数小于1,由此比较出两个数的大小.请同学们口答下列问题:练习1 求下列函数的反函数:(1)y=3x(x∈R);(2)y=0.7x(x∈R);(3)y=log5x(x>0);(4)y=log0.6x(x>0).生:y=3x(x∈R)的反函数是y=log3x(x>0).生:y=0.7x(x∈R)的反函数是y=log0.7x(x>0).生:y=log5x(x>0)的反函数是y=5x(x∈R).生:y=log0.6x(x>0)的反函数是y=0.6x(x∈R).练习2 指出下列各对数中,哪个大于零?哪个小于零?哪个等于零?并简述理由.生:在log50.1中,因为5>1,0.1<1,所以log50.1<0.生:在log27中,因为2>1,7>1,所以log27>0.生:在log0.60.1中,因为0.6<1,0.1<1,所以log0.60.1>0.生:在log0.43中,因为0.4<1,3>1,所以log0.43<0.练习3 用“<”号连接下列各数:0.32,log20.3,20.3.生:由指数函数性质可知0<0.32<1,20.3>1,由对数函数性质可知log20.3<0,所以log20.3<0.32<20.3.师:现在我们将这节课的内容小结一下,本节课我们介绍了对数函数的定义、图象及性质,请同学回答对数函数的定义及性质.生:(复述)……师:对数函数的定义,我们是通过求指数函数的反函数而得到的,从而揭示了指数函数与对数函数之间的内在联系,对于对数函数的图象及性质,都可以利用指数函数的图象及性质得到.对于对数函数的性质,可以利用对数函数图象记忆,也可以对照指数函数的性质记忆.对于函数的定义域,除了原来要求的分母不能为0及偶次根式中被开方式大于或等于0以外,还应要求对数式中真数大于零,底数大于零且不等于1.如果函数中同时出现几种情况,就要全部考虑进去,求它们共同作用的结果.例3、例4都是利用对数函数的性质,通过“函数法”和“中间量法”比较两个数大小的典型例子.补充题比较下列各题中两个数值的大小:(1)log30.7和log0.20.5;(2)log0.64和log7.11.2;(3)log0.50.6和log0.60.5;(4)log25和log34.比较下列各题中两个数值的大小:(1)log30.7和log0.20.5;(2)log0.64和log7.11.2;(3)log0.50.6和log0.60.5;(4)log25和log34.。
2019-2020学年新人教A版必修一 对数函数 教案
2019-2020学年新人教A 版必修一 对数函数 教案版块一:对数的定义和相关概念(一)知识内容<教师备案>在指数函数x y a =中,对于每个y +∈R ,存在唯一的x 与之对应,幂指数x 叫做以a 为底的y 的对数,这样从y 到x 的对应是指数运算的一个相反运算,让同学思考由函数的定义,判断这是否可以定义一种新的函数?这种运算和对应的函数有什么样的性质呢?1.对数:一般地,如果x a y =(0a >,且1)a ≠,那么数x 叫做以a 为底y 的对数,记作log a x y =,其中a 叫做对数的底数,y 叫做真数.对数恒等式及对数的性质,对数log (0,1)a N a a >≠满足: ⑴零和负数没有对数; ⑵1的对数是零,即log 10a =; ⑶底的对数等于1,即log 1a a =.2.常用对数:通常将以10为底的对数叫做常用对数,并把10log N 记为lg N . 3.自然对数:在科学技术中常使用以无理数 2.71828e =为底的对数,以e 为底的对数称为自然对数,并且把log e N 记为ln N .4.对数与指数间的关系:当0,1a a >≠时,log x a a N x N =⇔=. 5.指数和对数的互化:log b a a N N b =⇔=.log a N a N =,log N a a N =版块二:对数的运算性质和法则知识精讲(一)知识内容1.对数的运算性质:如果0a >,且1,0,0a M N ≠>>,那么:⑴log ()log log a a a M N M N ⋅=+;(积的对数等于对数的和) 推广1212log (...)log log ...log a k a a a k N N N N N N ⋅=+++ ⑵log log log aa a MM N N=-;(商的对数等于对数的差) ⑶log log (R)a a M M ααα=∈⑷1log log a a N n=(正数幂的对数,等于幂指数乘以同一底数幂的底数的对数)<教师备案>以性质⑴为例进行证明如下:已知log a M ,log a N (M 、0N >),求log ()a MN设log a M p =,log a N q =,根据对数的定义,可得p M a =,q N a = 由p q MN a a =⋅p q a +=∴log ()log log a a a MN p q M N =+=+2.换底公式:log log log a b a NN b=(,0,,1,0a b a b N >≠>) <教师备案>证明:法一:根据指数的运算性质推导 设log b N x =,则x b N =.两边取以a 为底的对数,得log log a a x b N =, 所以log log a a N x b =,即log log log a b a NN b=. 法二:根据对数恒等式及对数的运算性质推导由对数恒等式得:log log log log ()log b N b a a a N b b N ⋅==, 所以有log log log a b a NN b=. 换底公式的意义:把以一个数为底的对数换成以另一个大于0且不等于1的数为底的对数,以达到计算、化简或证明的目的.<教师备案>常见错误:log ()log log a a a M N M N ±=±;log ()log log a a a MN M N =⋅;log log log a aa MM N N=.3.关于对数的恒等式①log a N a N =②log n a a n =③1log log a b b a =④log log n n a a M M =⑤log log log log a b a b M M N N=版块三:对数函数1.对数函数:我们把函数log (0a y x a =>且1a ≠)叫做对数函数,其中x 是自变量,函数的定义域是(0,)+∞,值域为实数集R .2.对数函数的图象和性质:一般地,对数函数log (0a y x a =>且1a ≠)的图象和性质如下表所示:01a <<1a >图象定义域 (0,)+∞值域 R性质⑴过定点(1,0),即1x =时,0y =⑵在(0,)+∞上是减函数; (2)在(0,)+∞上是增函数.<教师备案>因为对数函数与指数函数密切相关,所以在学习对数函数的概念、图象与性质时,要处处与指数函数相对照.如:指数函数的值域(0,)+∞,变成了对数函数的定义域;而指数函数的定义域为实数集R ,则变成了对数函数的值域;同底的指数函数与对数函数的图象关于直线y x =对称等.【例1】 计算:26666[(1log 3)log 2log 18]log 4-+⋅÷ 【解析】 1;<教师备案>计算的前提是化简,运用对数的运算性质时,各部分变形要化到最简形式,同时注意分子和分母的联系【例2】 计算:24892(log 3log 9log 27...log 3)log 32()n n n n *++++⋅∈N例题精讲y=log a x (0<a <1)O 1yx y=log a x (a >1)O 1yx【解析】 52;【例3】 计算:lg 0.5lg30153⎛⎫⋅ ⎪⎝⎭【解析】 从对数的定义和对数的运算性质出发,结合对数恒等式可求设lg30lg0.515()3x ⋅=,则lg30lg0.511lg lg[5()]lg30lg5lg lg0.533x =⋅=⋅+⋅(1l g 3)l g 5l g 3(l g 51)l g 5=+--=+= 所以,15x =,即lg30lg0.515()153⋅=【例4】 (04-北京-模拟)已知18log 9a =,185b =. 用,a b 表示36log 45 【解析】 ∵ 18log 9a =,18log 5b =∴1818181818361818181818log 45log 9log 5log 9log 5log 4518log 36log 18log 22log 18log 9a ba+++====+-+【备选】 解方程: 2(lg )lg 10100x x x ⋅=【解析】 两边同时取对数:2(lg )lg lg lg100x x x +⋅= 22(l g )2x= ∴lg 1x =± ∴10x =或0.1x =<教师备案>将此题变为 “2(lg )lg 1020x x x +=”让学生思考作答,观察2(lg )lg 2lg10lg (lg )x x x x ==2(l g )l gl gl g102201010x x x x x xxx ⇒=⇒=⇒=⇒=或0.1x =【例5】 已知6lg lg A p q =+,其中,p q 为素数,且满足29q p -=,求证:34A << 【解析】 由于,p q 为素数,其差29q p -=为奇数,∴2,31p q ==6lg lg lg1984A p q =+=,1000198410000<< 故34A <<【备选】 (2004-3121log 202x +>的解集为_______【解析】 原不等式等价于223331log 0222log 1000x x x x -++>⎪-⎨⎪>⎪>⎪⎩≥t =,则有23122t t t ⎧-+>⎪⎨⎪≥⎩ 解得01t <≤ ,即20log 11x -<≤ ∴24x <≤板块二:对数函数及其性质1.理解对数函数的概念,底数大于0且不等于1,真数为正.根据对数的性质可知:当底数和真数同在)1,0( 上或),1(∞+ 上时,对数为正;当真数为1时,对数为0;当底数和真数一个在)1,0( 上另一个在),1(∞+ 上时,对数为负.这在对数的大小和比较中有重要应用.2.理解对数函数与指数函数互为反函数,其图象关于x y =对称,单调性一致. 3.对数函数恒过点)0,1( ,要注意这个条件的灵活应用.即这个点是与底数a 无关的,不随a 的变化而变化.例如,函数1)2(lo g 2-+-=x x y a 0(>a 且)1≠a 恒过一定点,则该点的坐标为 .我们知道01log =a ,这是与a 无关的一个等式,于是12=-x 则3=x ,从而8132=-=y ,故定点为)8,3( 4.掌握对数函数性质,在1>a 时,函数为增函数;在10<<a 时,函数减函数. 5.掌握对数函数图象的性质,在第一象限,沿着逆时针方向,a 逐渐变小.6.在对数函数的大小比较中,常见的方法是作差法、中间量法,在含绝对值的对数函数的大小比较时,还经常用到作商法和求和法(利用实数的性质),注意结合第1、第4、第五点进行大小比较时的灵活应用.7.形如)(log 2b ax x y a ++=的函数定义域为R 或值域为R 时的等价转换.【备选】 已知函数log ()x a y a a =-,其中1a >,求它的定义域和值域. 【解析】 0x x a a a a ->⇒<,又1,x a a >是增函数,1x ∴<∵x a a <,且0x a >,∴x a a a -<,log ()1x a a a ∴-<∴函数log ()x a y a a =-的定义域与值域分别是{|1}x x <,{|1}y y <<教师备案>求函数定义域、值域是一个复杂的问题,一定要引起足够的重视,求定义域时,观察、思考问题要全面,把限制条件要摆全、勿遗漏,对数函数的底、真数的允许值范围要记熟;求函数值域时,千万不要忘记函数的定义域.【例6】 已知5log 5log n m >,试确定m 和n 的关系.【解析】 这是一个真数相同底数不同的比较大小问题,应分各种情况予以讨论.令5log 1m y =,5log 2n y =,由于5log 5log n m >,它的函数图象可能有如下三种情况,如图在图⑴中n m <<1,在图⑵中10<<<n m ,在图⑶中1>m ,10<<n .<教师备案>这类题型应数形结合,充分利用函数图象的直观性.【例7】 设10<<x ,0>a 且1≠a ,试比较|)1(log |x a -与|)1(log |x a +的大小. 【解析】 这是一道典型的比较大小的题目,其中a 与1的大小未确定,对数双在绝对值内,这就增加了解题的难度和解法的灵活性,此题解法较多.下面主要介绍作差法,平方法和作比法.解法1 作差法:∵10<<x ,∴211<+<x ,110<-<x , 当10<<a 时,0)1(log >-x a ,0)1(log <+x a , ∴)1(log )1(log |)1(log ||)1(log |x x x x a a a a ++-=+-- )1(log )]1)(1[(log 2x x x a a -=+-=. ∵10<<x , ∴1102<-<x . 故0)1(log 2>-x a . 因此 |)1(log ||)1(log |x x a a +>-.当1>a 时,0)1(log <-x a ,0)1(log >+x a ,∴)1(log )1(log |)1(log ||)1(log |x x x x a a a a +---=+-- 0)1(log )]1)(1[(log 2>--=+--=x x x a a . 因此|)1(log ||)1(log |x x a a +>-.综上所述,当10<<x ,0>a 且1≠a 时,总有|)1(log ||)1(log |x x a a +>-. 解法2平方法:∵)1(log )1(log |)1(log ||)1(log |2222x x x x a a a a +--=+--)]1(log )1()][log 1(log )1([log x x x x a a a a ++-+--=)1(log 11log 2x xxa a-⋅+-= ∵10<<x ,∴1102<-<x ,10 1.1xx-<<+ 对于任意0>a 且1≠a ,)1(log 2x a -总与xxa +-11log 同号. 因此|)1(log ||)1(log |x x a a +>-.解法3 作比法: ∵10<<x ,211<+<x ,110<-<x ,xx x x x x x x a a -=--=-=+-+++11log )1(log |)1(log ||)1(log ||)1(log |1111)1(log 11log 121=+>-+=++x xxx x. 因此|)1(log ||)1(log |x x a a +>-.<教师备案>对于此题尽管同样是作差法、作比法,但过程却可千变万化,各具特色,巧妙之处常在某些“灵活”的处理上.如解析3中判断(1)1log 1x x+-与1的大小关系,处理得比较巧妙,避免了一系列的讨论.【例8】 设01a <<,,x y 满足:log 3log log 3a x x x a y +-=,如果y,求此时a 和x 的值.【解析】 由已知条件得22log 333log 3log log 3log 3(log )log log 24a a a a a a a a y x y x x x x x +-=⇒=-+=-+当3log 2a x =时,log a y 有最小值34∵01a << ∴y 有最大值34a .依题意得33334224112()()24a -===∴14a =,此时332211()48x a ===.【例9】 当a为何值时,不等式215log 1)log (6)log 30a ax ax ⋅+++≥有且只有一解【解析】 易知:0a >且1a ≠,设25u x a x =++,原不等式可化为3533log 1)1log (1)0log log u a a⋅++-≥⑴ 当01a <<时,原不等式为35log 1)log (1)1u ⋅+≥ ⑴由于当0u ≥时,3log 1)与5log (1)u +均为单调增函数,所以它们的乘积35()log 1)log (1)f u u =+⋅+也是单增函数因为35(4)log (21)log (41)1f =+⋅+=所以⑴等价于4u ≥,即254x ax ++≥此不等式有无穷多解 ⑵当1a >时,不等式化为35log 1)log (1)1u ⋅+≤⑵ 由(4)1f =知,⑵等价于04u ≤≤,即2054x ax ++≤≤从上式可知,只有当254x ax ++=有唯一解即240a ∆=-=时,不等式2054x a x ++≤≤有唯一解1x =-综上所述,当2a =时原不等式有且只有一个解.【备选】 (00-京皖春季-理T21)设函数()|lg |f x x =,若0a b <<,且()()f a f b >,证明:1ab <【解析】 证法一:由已知 lg ,[1,)()|lg |lg ,(0,1)x x f x x x x ∈+∞⎧==⎨-∈⎩∵0,()()a b f a f b <<> ∴,a b 不能同时在区间[1,)+∞上. 又由于0a b <<,故必有(0,1)a ∈若(0,1)b ∈,显然有1ab <. 若[1,)b ∈+∞,由()()0f a f b -> 有lg lg 0a b -->,故lg 0ab < 1ab ∴<证法二:有题设()()f a f b >,即|lg ||lg |a b >,上式等价于22(lg )(lg )a b >(lg lg )(lg lg )0a b a b +->,lg()lg0aab b> 由已知0b a >>,1a b ∴< l g 0ab∴<,lg()0,01ab ab ∴<<<【备选】 设124()min(3log ,log )f x x x =+,其中min(,)p q 表示p 、q 中的较小者,求()f x 的最大值【解析】 易知()f x 的定义域为(0,)+∞因为1143log y x =+在(0,)+∞上是减函数,22log y x =在(0,)+∞上是增函数,而当12y y =,即1243log log x x +=时,4x =,所以由1143log y x =+和22log y x =的图象可知1423log ()log x f x x+⎧⎪=⎨⎪⎩ (4)(04)x x <<≥ 故当4x =时,得()f x 的最大值是2另解:1241()3log 3log 2f x x x =+=-⑴2()log f x x = ⑵⑴×2+⑵消去2log x ,得()2f x = 又(4)2f =,故()f x 的最大值为2板块三:指数函数与对数函数<教师备案>1. 复习指数函数、对数函数的概念2. 反函数的概念:一般地,函数()y f x =中x 是自变量,y 是x 的函数,设它的定义域为A ,值域为C ,由()y f x =可得()x y φ=,如果对于y 在C 中的任何一个值,通过()x y φ=,x 在A 中都有唯一的值和它对应,那么()x y φ=就表示x 是自变量y 的函数. 这样的函数()x y φ=,y C ∈叫函数()y f x =的反函数,记作:1()x f y -=. 习惯上,用x 表示自变量,y 表示函数,因此()y f x =的反函数1()x f y -=2y x =通常改写成:1()y f x -=注:①明确反函数存在的条件:当一个函数是一一映射时函数有反函数,否则如等均无反函数② ()y f x =与1()y f x -=互为反函数③()y f x =的定义域、值域分别是反函数1()y f x -=的值域、定义域3. 奇函数若有反函数,则反函数仍是奇函数,偶函数若存在反函数,则其定义域为{0};若函数()y f x =是增(减)函数,则其反函数1()y f x -=是增(减)函数. 4. 求反函数的步骤:由()y f x =解出1()x f y -=,注意由原函数定义域确定单值对应;交换,x y ,得1()y f x -=;根据()y f x =的值域,写出1()y f x -=的定义域.【备选】 求下列函数的反函数:①31()y x x =-∈R ; ②31()y x x =+∈R ;③1(0)y x =+≥; ④23(,1)1x y x x x +=∈≠-R 【解析】 略.【铺垫】函数2()log 2f x x =-,则1()f x -的定义域是( ) A .R B . [)2,-+∞ C .[)1,+∞ D .()0,1 【解析】 A ;即函数2()log 2f x x =-的值域.【例10】 求函数11x x e y e +=-,()0,x ∈+∞的反函数.【解析】 ∵ 12111x e y x x e e +==+--,∴211x e y =+-, 即11x y e y +=-,∴1ln 1y x y +=-,∵0x >,∴1x e >.∴2111x y e =+>-. ∴11x x e y e +=-,()0,x ∈+∞的反函数为1ln 1x y x +=-()1x >.【例11】 已知函数21()21x f x x ⎧-=⎨-⎩,求它的反函数.【解析】1()12f x x -=⎨+⎪⎩ 11x x -<-≥<教师备案>分段函数的反函数仍是分段函数,在求其反函数时,要在每一段上分别求出它的反函数,然后分段写出,要特别注意定义域的限制作用.【例12】 已知xa x f =)(,x x gb log )(-=,且0lg lg =+b a ,1≠a ,1≠b .则)(x f y =与)(x g y =的图象 ( )A .关于直线0=+y x 对称;B .关于直线0=-y x 对称;C .关于y 轴对称;D .关于原点对称.【解析】 此题可以采用的方法有:①分情况讨论a 和b ;②给a 和b 赋特殊值;③求出两个函数的解析式.下面给出③的解析过程. 由0lg lg =+b a 得1=ab ,∴x x x x g a a b log log log )(1=-=-=-.∴)(x f y =与)(x g y =的图象关于直线0=-y x 对称,故选B .<教师备案>由0lg lg =+b a 去掉a 或者b ,再进行比较,关于直线0=+y x 对称的两点坐标为(,)x y ,),(x y -- ;关于直线0=-y x 对称的两点坐标为(,)x y 和(,)y x .【备选】 (04-全国-理15)已知函数()y f x =是奇函数,当0x ≥时,()31x f x =-,设()f x 的反函数是()yg x =,则(8)g -=【解析】 由奇函数得当0x <时,()31x f x --=-+即31()31xx f x -⎧-⎪=⎨-+⎪⎩00x x <≥又由()y f x =与()y g x =互为反函数,可知求(8)g -即求()8f x =-时的x . 由()31x f x =-(0)x ≥知值域为[0,)+∞ 由()31x f x -=--(0)x <知值域为(,0]-∞故(8)g -即为求318x ---=-,2x ∴=-,即(8)2g -=-【备选】 已知实数0,1a a ≠≠,函数1(,1x y x ax -=∈-R 且1)x a≠ 求证:函数1(,1x y x ax -=∈-R 且1)x a ≠的图象关于直线y x =成轴对称图形. 【解析】 要证明函数1(,1x y x ax -=∈-R 且1)x a≠的图象关于直线y x =成轴对称图形,只要证明该函数的反函数是其自身,即该函数与它的反函数是同一个函数.由1(,1x y x ax -=∈-R 且1)x a≠,得(1)1y ax x -=- (1)1a y x y ∴-=-若10ay -=,则1y a=,代入11x y ax -=-,得111x a ax -=-从而1ax a ax -=-1a ∴=,与已知矛盾,故10ay -≠ 于是,由(1)1ay x y -=-,得11()1y x y ay a -=≠-(1y a≠可通过变量分离法直接得到)∴函数1(,1x y x ax -=∈-R 且1)x a ≠的反函数为1(,1x y x ax -=∈-R 且1)x a≠,即为自身故函数1(,1x y x ax -=∈-R 且1)x a≠的图象关于直线y x =成轴对称图形【例13】 设,a b 分别是方程2log 30x x +-=和230x x +-=的根,求a b +及2log 2b a + 【解析】 在直角坐标系内分别作出函数2x y =和2log y x =的图象,再作直线y x =和3y x =-+,由于2x y =和2log y x =互为反函数,故它们的图象关于直线y x =对称,方程2log 30x x +-=的根a 就是直线3y x =-+与对数曲线2log y x =的交点A 的横坐标,方程230x x +-=的根b 就是直线3y x =-+与指数曲线2x y =的交点B 的横坐标设3y x =-+与y x =的交点为M ,则点M 的坐标为33,22⎛⎫ ⎪⎝⎭,所以23M a b x +== 2log 223b M a y +==习题1. 已知()2x f x =,则方程11(1)()1f x f x ---+=的解集为_________. 【解析】 12()log f x x -=,所以方程11(1)()1f x f x ---+=,即22log (1)log 1x x -+=,即(1)2x x -=,解得2x =或1x =-.又0x >,故2x =.习题2. 已知函数()3x f x =,且1(18)2f a -=+,()34ax x g x =-.家庭作业⑴求a 的值;⑵求()g x 的表达式;⑶当[1,1]x ∈-时,()g x 的值域并判断()g x 的单调性. 【解析】 ⑴13()log f x x -=,3log 182a =+,3log 2a ∴=⑵3log 2()(3)4(3)424a x x x x x x g x =-=-=-⑶令2x u =,∵11x -≤≤,则122u ≤≤,2211()()()24g x u u u u φ==-=--+当12u =时,max 1()4u φ=;当2u =时,min ()2u φ=-.∴()g x 的值域为1[2,]4-当11x -≤≤时,122u ≤≤,()u φ为减函数,而2x u =为增函数.∴ ()g x 在[1,1]-上为减函数.习题3.【解析】 32-习题4. 已知,,x y z R +∈,346x y z ==(1)求证:1112z x y-=;(2)比较3,4,6x y z 的大小;【解析】 设346x y z t ===,由0,x >知1t >故取以t 为底的对数,可得 l o g 3l o g 4l o gt t tx y z === 1l o g 3t x ∴=,1log 4t y =,1log 6t z = ⑴易证:1112z x y-=⑵64lg8134lg 0lg3lg 4x y t -=⋅<⋅ 34x y ∴< 又2lg 46(lg36lg64)0lg 4lg6ty z -=-<⋅46y z ∴< 346x y z∴<<习题5. 已知)(log )(x a a a x f -=)1(>a ,⑴求)(x f 的定义域和值域; ⑵判断函数的单调性并证明;⑶解不等12(2)()f x f x -->【解析】 ⑴(),1-∞,(),1-∞ ;⑵减函数;⑶11x -<<习题6. 如图曲线是对数函数x y a log =的图象,已知a的取值431,,3510,则相应于1C ,2C ,3C ,4C 的a 值依次是 .【解析】 C 1,C 2,C 3,C 4的a431,,3510.习题7. 设0,1,(),()x x x x a a f x a a g x a a -->≠=-=+且()()4,()()8f x f y g x g y ==.求,x y 的值【解析】 2222222211(2)(2)1611(2)(2)64x yx y x y x y a a a a a a a a ⎧+-+-=⎪⎪⎨⎪++++=⎪⎩令222211,x yx ym a n a a a =+=+解得6m n ==,即log 1)a x y ==习题8. 设}1,0{ =M ,}2lg 11{a a a N a,, , -=,是否存在a 的值,使}1{=N M . 【解析】 不存在a 的值,使}1{=N M1. 解方程:2lg [lg ]20x x --= (其中[]x 表示不大于实数x 的最大整数) 【解析】 由[]x 的定义知,[]x x ≤,故原方程可变为不等式:2lg lg 20x x --≤即1lg 2x -≤≤月测备选当1lg 0x -<≤时,[lg ]1x =-,于是原方程为2lg 1x =,lg 1x =-,110x =当0lg 1x <≤时,[lg ]0x =,原方程为2lg 2x =,lg x =均不符合[lg ]0x = 当1lg 2x <≤时,[lg ]1x =,原方程为2lg 3x =,所以lg x =,x =当lg 2x =时,100x = 所以原方程的解为1110x =,2x =,3100x =2. 方程x x 3)3(log 2=+有多少个实数根.【解析】 可用数形结合的办法,作出函数2log (3)y x =+及3x y =的图象,如图可知,两交点A 、B 的横坐标即为原方程的解,故个数为2个.3. 设]1)(2[log 225.0+-+=x x x b ab a y ,a ,b 都是正实数,求使y 取负值时x 的取值范围.【解析】 依据01log =a ,当)1,0( ∈a ,1>t ,0log <=t y a ,将对数式转化为指数不等式;再将指数式转化为一元二次不等式来求解.要使0<y ,须使11)(222>+-+x x x b ab a ,即 0)(222>-+x x x b ab a . 又因a 、b 均为正数,两边同除以x b 2,则01)(2)(2>-+x x ba b a.由ab +∈R ,所以12)(->x ba .若0>>b a ,则1>b a,)),12((log ∞+-∈ b a x . 若0>=b a ,则1=ba,不等式恒成立.所以x ∈R . <教师备案>通常对于较复杂的对数,指数运算,一方面要注意互化,另一方面还要注意等价转化,对含有字母的式子,要注意对底数的讨论.4. 设0,1,(),()x x x x a a f x a a g x a a -->≠=-=+且()()4,()()8f x f y g x g y ==.求,x y 的值.【解析】 2222222211(2)(2)1611(2)(2)64x yx y x y x y a a a a a a a a ⎧+-+-=⎪⎪⎨⎪++++=⎪⎩令222211,x yx ym a n a a a=+=+解得6m n == ,即log 1)a x y ==5. 设函数21()2ax y f x x b+==-的图象关于直线y x =对称,求,a b 应满足的条件. 【解析】 由已知得,函数21()2ax y f x x b+==-的反函数就是它自身,可以利用系数对应相等,或给x 附值法. 比较系数得2b a =,此即,a b 所满足的关系.6. 已知0a >且1a ≠,试求使方程22)log ()ax ak x a -=-有解的k 的取值范围【解析】 原方程即log ()log a a x ak -= 即0x ak <-<分别解关于xa 的不等式、方程得:212x k k a k +<= (0k ≠时)所以212k k k+<,解得1k <-或01k <<又当0k =时,代入原式可推出0a =与已知矛盾,故k 的取值范围为(,1)(0,1)-∞-。
2019-2020年高中数学《对数函数》教案12 新人教A版必修1
2019-2020年高中数学《对数函数》教案12 新人教A版必修1教学目标:知识与技能理解指数函数与对数函数的依赖关系,了解反函数的概念,加深对函数的模型化思想的理解.过程与方法通过作图,体会两种函数的单调性的异同.情感、态度、价值观对体会指数函数与对数函数内在的对称统一.教学重点:重点难两种函数的内在联系,反函数的概念.难点反函数的概念.教学程序与环节设计:由函数的观点分析例题,引出反函数的概念.关联性角度试着给指数函数、对教学过程与操作设计:2019-2020年高中数学《对数函数》教案13 新人教A版必修1教材分析:1、对数函数及其性质为必修内容,而且对数函数及其相关知识历来是高考的重点,既有中档题,又能和其它知识相结合、综合性较强、考查也比较深刻。
2、对数函数是函数中一类重要的基本初等函数,它是在学生已经学过指数函数、对数与对数运算基础上引入的,是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。
3、对数函数是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础。
4、对数函数及其性质的学习使学生的知识体系更加完整、系统,同时又是对数和函数知识的拓展与延伸。
5、本节课内容为反函数知识,应重视数学知识之间的内在联系,突出对数函数是现实世界中的重要数学模型。
教学设计:教学目标:知识与技能理解指数函数与对数函数的依赖关系,了解反函数的概念,加深对函数的模型化思想的理解.过程与方法通过作图,体会两种函数的单调性的异同.情感、态度、价值观对体会指数函数与对数函数内在的对称统一.教学重点:难两种函数的内在联系,反函数的概念.教学难点:反函数的概念.教学程序与环节设计:由函数的观点分析例题,引出反函数的概念.两种函数的内在联系,图象关系.关联性角度试着给指数函数、对教学过程与操作设计:附表1:巩固练习:1.求下列函数的反函数: y =(x ∈R ); y = (a >0,a ≠1,x >0)2.己知函数的图象过点(1,3)其反函数的图象过(2,0)点,求的表达式. 归纳小结,强化思想:本节课的目的要求是在学习了指数函数与对数函数后,以两个底数相同的指数函数与对数函数介绍反函数的概念,可以初步尝试求一个已知简单函数的反函数,但根据课程标准安排应不作过多强调。
2024春新教材高中数学4.3.1对数的概念教学设计新人教A版必修第一册
课后作业
1.请用自然语言描述对数的定义,并尝试用生活中的例子来说明对数的概念。
答案:对数的定义是:如果一个非零实数a的指数是b,那么数b叫做a的以10为底的对数,记作b=log10a。例如,如果5的指数是2,那么2叫做5的以10为底的对数,记作2=log105。
-提问与讨论:针对不懂的问题或新的想法,勇敢提问并参与讨论。
教学方法/手段/资源:
-讲授法:通过详细讲解,帮助学生理解对数的知识点。
-实践活动法:设计实践活动,让学生在实践中掌握对数技能。
-合作学习法:通过小组讨论等活动,培养学生的团队合作意识和沟通能力。
作用与目的:
-帮助学生深入理解对数的知识点,掌握对数技能。
最后,我意识到在教学过程中,我可能过于注重知识的传授,而忽视了学生的思维和创造力的发展。因此,在未来的教学中,我应该更加注重培养学生的思维能力和创造力,通过设计更多的启发性和探究性的问题,引导学生自主思考和创新。
答案:log10(2×10^4)=log10(2) + log10(10^4)=2 + 4=6。
4.请计算下面的问题:如果一个数增长20%,那么原来的数是多少?
答案:原来的数是1/1.2=0.8333...。
5.请将下面的单位转换为千克:如果一个物体重200磅,那么它的重量是多少千克?
答案:1磅=0.453592千克,所以200磅=200×0.453592=90.7184千克。
2.能力培养:学生在学习过程中,通过解决问题和实际应用,培养了数学抽象、逻辑推理、数学建模和数学运算等能力。例如,学生能够将实际问题转化为对数模型,运用对数运算公式进行计算,并能够对结果进行合理的解释和分析。
新课标人教A版高中数学必修1对数的运算性质教案
课题:对数的运算性质教材:人教A 版高中数学必修1惠州一中数学科组:赵红旭一、教学目标【知识与技能】1.进一步熟悉对数定义与幂的运算性质;2. 理解对数运算性质的推导过程;3.熟悉对数运算性质的内容;4.熟练运用对数的运算性质进行化简求值;5.明确对数运算性质与幂的运算性质的区别.【思想与方法】通过对数运算性质的学习,让学生认识到事物之间的普遍联系与相互转化,学会用转化与化归的数学思想解决实际问题。
【情感与态度】1、 学会对数式与指数式的互化,培养学生的类比、分析、归纳能力。
2、通过对数的运算性质的学习,培养学生严谨的思维品质;在学习过程中培学生探究的意识,让学生感受对数运算性质的重要性,增加学生的成功感,增强学习的积极性。
二、教学重点与难点教学重点:对数的运算性质及其应用教学难点:对数运算性质的推导及探究三、教学方法与教学手段遵循以教师为主导,以学生为主体的教学规律,充分调动学生的积极性并充分利用多媒体辅助教学,让学生自主学习。
通过教师的点拨,启发学生通过主动观察、主动思考、自主探究去发现和接受新知识。
四、教学过程分析整个教学过程分为五个阶段,即:复习旧知,提出问题 发现问题,探求新知 运用新知,加深理解 强化训练,巩固双基 小结归纳,加深印象。
五、教学过程(一)复习导入新课1)对数的定义2)指数式与对数式的互化)10( log ≠>=⇔=a a b N N a a b 且3)重要公式:⑴负数与零没有对数; ⑵01log =a ,1log =a a⑶对数恒等式N a N a =log4.指数运算法则 )()(),()(),(, R n b a ab R n m a a R n m a a a a a a n n n mn n m n m n m n m n m ∈⋅=∈=∈=÷=⋅-+(二)、新授内容:1.积、商、幂的对数运算法则:如果 a > 0,a ≠ 1,M > 0, N > 0 有:)()()(3R)M(n nlog M log 2N log M log N M log 1N log M log (MN)log a n a a a a a a a ∈=-=+= 证明:①设a log M =p , a log N =q . 由对数的定义可以得:M =p a ,N =q a . ∴MN = p a q a =q p a + ∴a log MN =p +q , 即证得a log MN =a log M + a log N .②设a log M =p ,a log N =q . 由对数的定义可以得M =p a ,N =q a . ∴q p q pa aa N M -== ∴q p N M a -=log 即证得N M N M a a a log log log -=. ③设a log M =P 由对数定义可以得M =pa ,∴n M =np a ∴a log n M =np , 即证得a log n M =n a log M . 说明:上述证明是运用转化的思想,先通过假设,将对数式化成指数式,并利用幂的运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式.①简易语言表达:“积的对数 = 对数的和”……②有时逆向运用公式:如110log 2log 5log 101010==+.③真数的取值范围必须是),0(+∞:)5(log )3(log )5)(3(log 222-+-=-- 是不成立的.)10(log 2)10(log 10210-=-是不成立的.④对公式容易错误记忆,要特别注意:N M MN a a a log log )(log ⋅≠,N M N M a a a log log )(log ±≠±.2.讲授范例:例1. 用x a log ,y a log ,z a log 表示下列各式:32log )2(;(1)log zy x z xy a a .解:(1)zxy a log =a log (xy )-a log z=a log x+a log y- a log z (2)32log zy x a =a log (2x 3log )z y a - = a log 2x +a log 3log z y a -=2a log x+z y a a log 31log 21-. 例2. 计算 (1))24(log 572⨯, (2)5100lg解:(1)2log (74×25)= 2log 74+ 2log 52= 2log 722⨯+ 2log 52 = 2×7+5=19 (2)lg 5100=52lg1052lg10512== 例3.计算: (1);50lg 2lg )5(lg 2⋅+ (2) .18lg 7lg 37lg 214lg -+- 说明:此例题可讲练结合. 解:(1) 50lg 2lg )5(lg 2⋅+=)15(lg 2lg )5(lg 2+⋅+=2lg 5lg 2lg )5(lg 2+⋅+=2lg )2lg 5(lg 5lg ++=2lg 5lg +=1;评述:此题体现了对数运算性质的灵活运用,运算性质的逆用常被学生所忽视.(2)解法一:lg14-2lg 37+lg7-lg18=lg(2×7)-2(lg7-lg3)+lg7-lg(23×2) =lg2+lg7-2lg7+2lg3+lg7-2lg3-lg2=0.解法二: lg14-2lg 37+lg7-lg18=lg14-lg 2)37(+lg7-lg18=lg 01lg 18)37(7142==⨯⨯ 评述:此例题体现对数运算性质的综合运用,应注意掌握变形技巧,各部分变形要化到最简形式,同时注意分子、分母的联系.3.巩固练习:教材第68页练习题1、2、3.提高练习:(1) =x .(2)的值为 . 21 lg lg 2lg 3lg ,x a b c =+-则661log 12log 2-23ab c(3)24.课堂小结①对数的运算性质②注意公式的逆向使用. ③真数的取值必须是()+∞,0.5、课后作业:(1)阅读教材第68~69页;(2)教材第74页习题2.2 A 组第3、5题. 22log log _____________=。
对数函数图形与性质(二)课件-2022-2023学年高一上学期数学人教A版(2019)必修第一册
&g 1
∆= 4 − 4 ≥ 0
综上所述,实数a的取值范围 0,1
值域为全体实数,真数
要取遍所有正实数
例3.求函数f(x)=log2(4x)•log2(2x), ∈
1
4
, 4 的值域
解: f(x)= log2(4x)•log2(2x),
(1)若函数f(x)的定义域为R,求实数a的取值范围.
(2)若函数f(x)的值域为R,求实数a的取值范围.
解(1)因为f(x)的定义域为R
所以ax2+2x+1>0对任意的 ∈ 恒成立
若a=0,则2x+1>0显然对任意的 ∈ 不恒成立,不合题意
>0
若 ≠ 0, 则
解得a>1
∆= 4 − 4 < 0
2 = 4 − 2 + 3 ≥ 0 从两个方面考虑
解之得: −4,4
(1)根据a与1的关系确定 在 , 上的单调性
(2) > 在 ∈ , 时恒成立,只需() >0即可
例4:若函数y = 2 (2-ax)在 ∈[0,1]上是减函数,则的取值范围是_____
2
+ 9 > 0可知函数的定义域为R
设 = 3 u, u= 2 -2x+10
∵ u= 2 -2x+10在 −∞, 1 单调递减,在(1,+∞)单调递增
又 = 3 u单调递增
∴f(x)=log3(x2﹣2x+10)在 −∞, 1 单调递减,
在(1,+∞)单调递增
[归纳提升]
变式 .已知函数f(x)=log3(x2﹣2x−10)
高中数学第4章对数函数的图象和性质第2课时对数函数的图象和性质(二)pptx课件新人教A版必修第一册
增函数 增函数 增函数
单调性 增函数 减函数 减函数 增函数 减函数 减函数
减函数 减函数 增函数
对点练习❶ 函数 f(x)=
(A ) A.(-∞,-2) C.-2,32
B.-∞,32 D.(5,+∞)
的单调递增区间为
[解析] 由题意,得x2-3x-10>0, ∴(x-5)(x+2)>0,∴x<-2或x>5. 令u=x2-3x-10, 函 数 f(x) 的 单 调 递 增 区 间 即 为 函 数 u = x2 - 3x - 10 在 ( - ∞ , - 2)∪(5,+∞)上的单调递减区间,又u=x2-3x-10在(-∞,-2)上递 减,故选A.
对点练习❷ 函数 y=log0.5x+x-1 1+1(x>1)的值域是( B )
A.(-∞,2]
B.(-∞,-2]
C.[2,+∞)
D.[-2,+∞)
[解析] 令 t=x+x-1 1+1=x-1+x-1 1+2≥4(x>1),
当 x=2 时,取得等号,又 y=log0.5t 在(0,+∞)上是减函数, 所以 y≤-2,所以函数的值域是(-∞,-2].
[归纳提升] 1.求复合函数单调性的具体步骤是:(1)求定义域;(2) 拆分函数;(3)分别求y=f(u),u=φ(x)的单调性;(4)按“同增异减”得出 复合函数的单调性.
2.复合函数y=f[g(x)]及其里层函数μ=g(x)与外层函数y=f(μ)的单 调性之间的关系(见下表).
函数 y=f(μ) μ=g(x) y=f[g(x)]
[归纳提升] 1.与对数函数有关的复合函数值域:求与对数函数有关 的复合函数的值域,一方面,要抓住对数函数的值域;另一方面,要抓 住中间变量的取值范围,利用对数函数的单调性来求其值域(多采用换元 法).
对数函数及其性质(第二课时)课件-高一上学期数学人教A版(2019)必修第一册
解,求 a 的取值范围. 解,求 a 的取值范围.
(1)求例m 的题值讲,并练判断 f (x) 的奇偶性;
(2)设 g(x) log4 2x x a (a R) ,若关于 x 的方程 f (x) g(x) 在 x [2, 2] 上有
解,求 a 的取值范围.
例题讲练
练习 例6
如3:图如,图A,, B,AC, B是,C函是数函y 数
2
①①若若f fxx的 的定定义义域域为为R ,R ,求求a 的a 的取取值值范围范围;;
例题讲练
(4)若函数 f x log 1 ax2 2x 4
2
②若
①若 f
fxx的 的定值义域域为为RR
,求 ,求
aa
的取值范围; 的取值范围;
例题讲练
【练习 1】(1)函数 f (x) log 1 (3 2x x2 ) 的值域为______________.
2
例题讲练
重庆(理2)(函2数014f (重x)庆理lo)g2函数x flo(gx)2(2loxg) 2的最x 小 lo值g为2 (_2__x_)_的___最.小值为________.
例题讲练
题型二 对数型复合函数的单调性
例 2 (1)求函数 y=log1 (1- yx
flxog1
xlo图g 12象x上图的象三上点的,三它点们,的它横们坐的标横分坐别标是分别是
2
t,t t,t
22,,tt44(t1t)设11△..ABC
的面积为
S
,求
S
g
t
;
( (11) )设 设△ △ AABB(CC2)的 的若面 面函积 积数 为 为 S SSg, ,t求 求 fSSmgg恒成tt 立; ;,求 m 的取值范围.
高中数学对数函数教案32 新人教A版必修1
数学1第2章第2.2节(对数函数及其性质)第1课时教学设计教材分析:1、对数函数及其性质为必修内容,而且对数函数及其相关知识历来是高考的重点,既有中档题,又能和其它知识相结合、综合性较强、考查也比较深刻。
2、对数函数是函数中一类重要的基本初等函数,它是在学生已经学过指数函数、对数与对数运算基础上引入的,是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。
3、对数函数是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础。
4、对数函数及其性质的学习使学生的知识体系更加完整、系统,同时又是对数和函数知识的拓展与延伸。
5、学生容易忽视函数的定义域,在进行对数函数定义教学时要结合指数式强调对数函数的定义域,加强对对数函数定义域为(0, )的理解。
在理解对数函数概念的基础上掌握对数函数的图像和性质是本节课的教学重点,而理解底数a的值对于函数值变化的影响是教学的一个难点,教学时要充分利用图像,数形结合,帮助学生理解。
教学设计:教学目标:知识与技能:理解对数函数的概念, 并通过对数函数的图象分析得出函数性质,会求解对数函数定义域及比较对数值大小;过程与方法: 通过对对数函数内容的学习, 渗透数形结合的数学思想和经历从特殊到一般的过程;情感、态度与价值观:在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力。
教学重点:对数函数的定义、图象和性质。
教学难点:底数a大小对对数函数图象与性质的影响。
教学过程:一、 引入课题1.(知识方法准备)○1 学习指数函数时,对其性质研究了哪些内容,采取怎样的方法? 设计意图:结合指数函数,让学生熟知对于函数性质的研究内容,熟练研究函数性质的方法——借助图象研究性质.○2 对数的定义及其对底数的限制. 设计意图:为讲解对数函数时对底数的限制做准备. 2.(引例)教材P 70:处理建议:在教学时,可以让学生利用计算器填写下表:然后引导学生观察上表,体会“对每一个碳14的含量P 的取值,通过对应关系logt P =,生物死亡年数t 都有唯一的值与之对应,从而t 是P 的函数”.(进而引入对数函数的概念) 二、 新课教学(一)对数函数的概念1.定义:函数0(log >=a x y a ,且)1≠a 叫做对数函数(logarithmic function )其中x 是自变量,函数的定义域是(0,+∞).注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:x y 2log 2=,5log 5xy = 都不是对数函数,而只能称其为对数型函数.○2 对数函数对底数的限制:0(>a ,且)1≠a . (二)对数函数的图象和性质问题:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗?研究方法:画出函数的图象,结合图象研究函数的性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 探索研究:○1 操作:在同一坐标系中画出下列对数函数的图象;(可用描点法,也可借助科学计算器或计算机)(1) x y 2log = (2) x y 21log =(3) x y 3log = (4) x y 31log =(5)5log y x =引申:只画第一个函数图象, 能否马上得到第二个函数图象? 利用换底公式,可以得到 122y=log log x x =-自变量相同, 函数值相反,故函数图象关于x 轴对称.(从特殊到一般,总结规律)○2探讨:类比指数函数图象和性质的研究,研究对数函数的性质并填写如下表格:图象特征部分:由学生讨论、交流,教师引导总结出函数图象的特征,完成表单.图象性质部分:由学生仿造指数函数性质完成,教师适当启发、引导,完成表单.○3 思考底数a 是如何影响函数x y a log =的.(学生独立思考或小范围内讨论,师生共同总结)规律总结:在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.(设计意图)⑴通过图象的对比,使图象直观、准确,便于学生理解图象之间的共同点和不同点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《对数型复合函数的值域》教案
一、教学目标 1.知识技能目标
(1)理解并掌握对数型复合函数的值域的求法。
(2)理解并掌握换元法的应用。
(3)理解不等式恒成立问题与最值的转化。
2.过程与方法目标
学生通过指数型复合函数的类比来学习对数型复合函数,培养学生观察、分析、类比、归纳的能力,以及化归的意识与方法迁移的能力,体会类比-猜想-归纳的思想方法,发展探究能力,渗透数学核心素养。
3.情感、态度、价值观目标
培养学生自主探究意识,合作精神,通过指数型复合函数的类比学习对数型复合函数,体会数学知识间的类比于迁移,渗透数学核心素养。
二、教学任务
1.两类对数型复合函数:)(log )(log x f y x f y a a ==与值域的求法。
2.如何利用指数型复合函数来类比学习对数型复合函数,让学生自己发现对数型复合函数值域的做法,进行知识的迁移。
三、教学方式和环节
采用小组讨论学习,让学生在相互讨论的过程中直接或间接地感受和体验知识的产生、发展和演变过程,提高学生分析解决问题的能力,渗透数学核心素养。
教学环节
对数的定义
对数的运算
对数函数的解析式
对数函数的定义域:对数函数的值域:R 对数函数的单调性
对数函数的图像。