电液伺服系统原理
电液伺服加载系统的工作原理
电液伺服加载系统的工作原理随着现代工业的发展,机械装备的质量和精度要求越来越高,而电液伺服加载系统则成为了现代工业中不可或缺的一部分。
电液伺服加载系统的工作原理是通过液压系统和电气控制系统的协同作用,实现对机械装备的精准控制和调节,从而提高机械装备的精度和稳定性。
本文将详细介绍电液伺服加载系统的工作原理和主要组成部分。
一、电液伺服加载系统的工作原理电液伺服加载系统的工作原理是将电信号转换成液压信号,通过液压传动执行机构的运动,从而实现对机械装备的控制和调节。
电液伺服加载系统的核心部件是伺服阀,伺服阀通过反馈信号来实现对机械装备的控制和调节。
电液伺服加载系统的工作过程可以分为三个阶段:信号处理阶段、液压控制阶段和执行机构运动阶段。
信号处理阶段是将输入的电信号进行处理和放大,生成控制信号。
液压控制阶段是将控制信号转换成液压信号,通过伺服阀对液压系统进行控制,使执行机构实现精准的运动。
执行机构运动阶段是执行机构根据液压信号进行运动,实现对机械装备的控制和调节。
二、电液伺服加载系统的主要组成部分1. 电气控制系统电气控制系统是电液伺服加载系统的重要组成部分,包括信号处理器、控制器、电源和信号传输线路等。
信号处理器负责将输入的电信号进行处理和放大,生成控制信号。
控制器负责对信号进行处理和解析,生成伺服阀的控制信号。
电源为整个系统提供稳定的电源。
信号传输线路负责将信号从控制器传输到伺服阀。
2. 液压系统液压系统是电液伺服加载系统的核心部分,主要由液压泵、油箱、伺服阀和执行机构等组成。
液压泵负责将液压油从油箱中抽取,并将其送入伺服阀中。
油箱负责储存液压油。
伺服阀是电液伺服加载系统中的关键部件,通过反馈信号来实现对机械装备的控制和调节。
执行机构是根据伺服阀的控制信号进行运动的部分,通常是液压缸或液压马达。
3. 反馈装置反馈装置是电液伺服加载系统中的重要组成部分,主要由传感器和反馈电路等组成。
传感器负责检测执行机构的运动状态,并将其转换成电信号。
液压伺服系统工作原理
液压伺服系统工作原理1.1 液压伺服系统工作原理液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。
电液伺服系统通过使用电液伺服阀,将小功率的电信号转换为大功率的液压动力,从而实现了一些重型机械设备的伺服控制。
液压伺服系统是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。
液压伺服系统的工作原理可由图1来说明。
图1所示为一个对管道流量进行连续控制的电液伺服系统。
在大口径流体管道1中,阀板2的转角θ变化会产生节流作用而起到调节流量qT的作用。
阀板转动由液压缸带动齿轮、齿条来实现。
这个系统的输入量是电位器5的给定值x i。
对应给定值x i,有一定的电压输给放大器7,放大器将电压信号转换为电流信号加到伺服阀的电磁线圈上,使阀芯相应地产生一定的开口量x v。
阀开口x v使液压油进入液压缸上腔,推动液压缸向下移动。
液压缸下腔的油液则经伺服阀流回油箱。
液压缸的向下移动,使齿轮、齿条带动阀板产生偏转。
同时,液压缸活塞杆也带动电位器6的触点下移x p。
当x p所对应的电压与x i所对应的电压相等时,两电压之差为零。
这时,放大器的输出电流亦为零,伺服阀关闭,液压缸带动的阀板停在相应的qT位置。
图1 管道流量(或静压力)的电液伺服系统1—流体管道;2—阀板;3—齿轮、齿条;4—液压缸;5—给定电位器;6—流量传感电位器;7—放大器;8—电液伺服阀在控制系统中,将被控制对象的输出信号回输到系统的输入端,并与给定值进行比较而形成偏差信号以产生对被控对象的控制作用,这种控制形式称之为反馈控制。
反馈信号与给定信号符号相反,即总是形成差值,这种反馈称之为负反馈。
用负反馈产生的偏差信号进行调节,是反馈控制的基本特征。
而对图1所示的实例中,电位器6就是反馈装置,偏差信号就是给定信号电压与反馈信号电压在放大器输入端产生的△u。
电液伺服系统
电液伺服系统电液伺服系统是一种将电气信号转换为液压能量的控制系统。
它通过控制液压阀的开启和关闭来调节液压执行器的工作状态,从而实现对机械装置的精确控制。
本文档将详细介绍电液伺服系统的结构、工作原理、常见问题及解决方案等内容。
一、系统结构1.1 主机部分主机部分是电液伺服系统的核心组成部分,包括电液转换器、伺服阀、传感器等。
其中,电液转换器将电信号转换为液压能量,伺服阀通过控制液压流量来控制液压执行器的运动,传感器用于监测执行器的位置和速度。
1.2 液压执行器液压执行器是电液伺服系统中的重要组成部分,主要包括液压缸和液压马达两种。
液压缸可将液压能量转换为机械能,实现直线运动;液压马达则可将液压能量转换为机械能,实现旋转运动。
1.3 控制部分控制部分由控制器和信号处理器组成,用于接收、处理和传输控制信号。
控制器可根据输入信号的变化调节伺服阀的开启度,从而实现对电液伺服系统的精确控制。
二、工作原理2.1 系统工作流程电液伺服系统的工作流程一般包括输入信号采样、信号处理、控制指令、伺服阀控制和液压执行器动作等步骤。
具体流程如下:(1)输入信号采样:传感器将液压执行器的位置和速度等信息转换为电信号,并传输给信号处理器。
(2)信号处理:信号处理器对输入信号进行滤波、放大等处理,将其转换为控制系统可识别的信号。
(3)控制指令:控制器根据输入信号的变化相应的控制指令。
(4)伺服阀控制:控制器根据控制指令调节伺服阀的开启度,控制液压系统的流量大小。
(5)液压执行器动作:伺服阀的控制信号作用于液压执行器,使其按照要求的位置和速度进行运动。
2.2 系统控制策略电液伺服系统可采用位置控制、速度控制和力控制等不同的控制策略。
其中,位置控制可实现对执行器位置的精确控制;速度控制可实现对执行器速度的精确控制;力控制可实现对执行器施加的力或扭矩的精确控制。
三、常见问题及解决方案3.1 液压系统压力不稳定可能原因:(1)供油系统压力不稳定。
单喷嘴挡板电液伺服阀工作原理
单喷嘴挡板电液伺服阀工作原理单喷嘴挡板电液伺服阀是一种常用的液压控制元件,其工作原理是通过调节喷嘴的开启和关闭来控制液压系统的流量和压力。
下面将详细介绍单喷嘴挡板电液伺服阀的工作原理。
单喷嘴挡板电液伺服阀主要由电磁铁、喷嘴、挡板和阀体等部分组成。
当电磁铁受到电流激励时,产生磁场将喷嘴上的挡板吸引,使得喷嘴打开,液压油从喷嘴中流出,进入液压系统。
当电流消失时,电磁铁的磁场消失,挡板失去吸引力,喷嘴关闭,阻止液压油的流动。
单喷嘴挡板电液伺服阀的工作原理可以通过以下几个步骤来解释:1. 初始状态下,电磁铁未受到电流激励,喷嘴关闭,液压系统中的液压油无法流动。
2. 当电磁铁受到电流激励时,产生的磁场将喷嘴上的挡板吸引,使得喷嘴打开。
此时,液压油可以从喷嘴中流出,进入液压系统。
3. 当电流消失时,电磁铁的磁场也消失,挡板失去吸引力,喷嘴关闭。
这样,液压油无法再从喷嘴中流出,液压系统停止供油。
4. 当再次给电磁铁通电时,喷嘴再次打开,液压油重新进入液压系统。
通过控制喷嘴的开启和关闭,单喷嘴挡板电液伺服阀可以实现对液压系统的流量和压力的精确控制。
当需要增加液压系统的流量和压力时,通过给电磁铁通电,喷嘴打开,液压油流入液压系统,增加流量和压力;当需要减小液压系统的流量和压力时,通过断电,喷嘴关闭,液压油停止流动,减小流量和压力。
单喷嘴挡板电液伺服阀的工作原理简单而可靠,适用于各种液压系统中的流量和压力的控制。
它具有响应速度快、控制精度高、结构简单等优点。
在工业生产中广泛应用于液压机械、工程机械、冶金设备等领域。
单喷嘴挡板电液伺服阀是一种通过控制喷嘴的开启和关闭来实现对液压系统流量和压力控制的元件。
它的工作原理简单可靠,应用广泛。
通过对其工作原理的深入了解,可以更好地应用和维护这一液压控制元件,提高液压系统的工作效率和可靠性。
电液位置伺服控制系统实验
2
s2
2.834 2 0.866 1 2 s s s 1 2 14 .726 14 .726
正常参数时的ωc=2.78, ωh=14.8,Kg=19.1
增大Ki
正常参数
C (s) 4.611 R( s) 1 2 0.866 2 s 14 .726 2 s 14 .726 s 1
斜坡输入1
正弦输入
正弦输入,幅值5,频率1
正弦输入,幅值5,频率2.95
3 液压系统原理
压力传感器2
伺服缸
压力传感器3
平衡阀 电磁换向阀
蓄能器
电液伺服阀 压力传感器1
流量计2
流量计1 精滤器 电磁溢流阀
电机泵组
M
粗滤器 精滤器
4 系统控制原理
数据采集
参考输入
控制器
数模转换
功率放大
伺服阀
伺服缸
K i 73.746 KV 2.834 K d 1 26.022
K d1 h 代入系数得到 K d 1 26 .022 14 .726 h a a 0.12 (b K d 2 ) (b K d 2 ) (0.2 2.861) h h 0.866 2 K d1 a 2 K d 1 a 2 26.022 0.12
mmax 为能量输出单元在线 性范围内的最大值
r0,ml 为输入信号在线性范 围内的最大值
阶跃输入2.5
阶跃输入5
阶跃输入9
阶跃输入12
系统开环传递函数
KV C (s) R(s) 1 2 2 h s 2 s s 1 h h
Ki KV K d1
2)阀控缸微分方程
一文详解cnc电液伺服系统组成及控制原理
一文详解cnc电液伺服系统组成及控制原理
为了提高液压系统控制精度,将传统的电液伺服控制方式改为数控液压伺服控制方式。
充分利用先进的计算机技术,采用PLC控制步进电机,不仅能够满足数控液压系统的快速性和可靠性要求,而且大大降低了成本。
本文首先介绍了数控液压伺服系统的组成,其次介绍了数控液压伺服阀的结构和工作原理,最后介绍了液压泵站,具体的跟随小编一起来了解一下。
一、数控液压伺服系统的组成系统由数控装置、数控伺服阀、数控液压缸或液马达、液压泵站4大部分组成。
系统框图如图1所示。
(1)数控装置:包括控制器、驱动器和步进电机。
之所以要采用步进电机,是由于计算机技术的飞速发展,使步进电机的性能在快速性和可靠性方面能够满足数控液压系统的要求,而其价格低廉,又由于数控液压系统结构的改进,所需步进电机功率较小,不需采用宽调速伺服电机等大功率伺服电机系统,就能大大降低成本。
(2)液压缸、液马达和液压泵站是液压行业的老产品,只要按数控液压伺服系统的要求选取精度较高的即可应用。
(3)伺服控制元件是液压伺服系统中最重要、最基本的组成部分,它起着信号转换、功率放大及反馈等控制作用。
所以整个数控液压伺服系统的关键部件就是数控伺服阀,它必需将电脉冲控制的步进电机的角位移精确地转换为液压缸的直线位移(或液马达的角位移)。
也可以说,只要有了合格的数控伺服阀,就能获得不同的数控液压伺服系统。
二、数控液压伺服阀的结构和工作原理1、数控液压伺服阀的结构
数控液压伺服阀的结构如图2所示,数控液压缸的结构如图3所示
2、工作原理
1)数控液压伺服阀和液压缸匹配工作原理。
液压伺服系统工作原理
液压伺服体系工作道理1.1 液压伺服体系工作道理液压伺服体系以其响应速度快.负载刚度大.控制功率大等奇特的长处在工业控制中得到了广泛的应用.电液伺服体系经由过程应用电液伺服阀,将小功率的电旌旗灯号转换为大功率的液压动力,从而实现了一些重型机械装备的伺服控制.液压伺服体系是使体系的输出量,如位移.速度或力等,能主动地.快速而精确地追随输入量的变更而变更,与此同时,输出功率被大幅度地放大.液压伺服体系的工作道理可由图1来解释.图1所示为一个对管道流量进行中断控制的电液伺服体系.在大口径流体管道1中,阀板2的转角θ变更会产生撙节感化而起到调撙节量qT的感化.阀板迁移转变由液压缸带动齿轮.齿条来实现.这个体系的输入量是电位器5的给定值x i.对应给定值x i,有必定的电压输给放大器7,放大器将电压旌旗灯号转换为电流旌旗灯号加到伺服阀的电磁线圈上,使阀芯响应地产生必定的启齿量x v.阀启齿x v使液压油进入液压缸上腔,推进液压缸向下移动.液压缸下腔的油液则经伺服阀流回油箱.液压缸的向下移动,使齿轮.齿条带动阀板产生偏转.同时,液压缸活塞杆也带动电位器6的触点下移x p.当x p所对应的电压与x i所对应的电压相等时,两电压之差为零.这时,放大器的输出电流亦为零,伺服阀封闭,液压缸带动的阀板停在响应的qT地位.图1 管道流量(或静压力)的电液伺服体系1—流体管道;2—阀板;3—齿轮.齿条;4—液压缸;5—给定电位器;6—流量传感电位器;7—放大器;8—电液伺服阀在控制体系中,将被控制对象的输出旌旗灯号回输到体系的输入端,并与给定值进行比较而形成误差旌旗灯号以产生对被控对象的控制造用,这种控制情势称之为反馈控制.反馈旌旗灯号与给定旌旗灯号符号相反,即老是形成差值,这种反馈称之为负反馈.用负反馈产生的误差旌旗灯号进行调节,是反馈控制的根本特点.而对图1所示的实例中,电位器6就是反馈装配,误差旌旗灯号就是给定旌旗灯号电压与反馈旌旗灯号电压在放大器输入端产生的△u.图2 给出对应图1实例的方框图.控制体系经常应用方框图暗示体系各元件之间的接洽.上图方框顶用文字暗示了各元件,后面将介绍方框图采取数学公式的表达情势.图2 伺服体系实例的方框图液压伺服体系的构成液压伺服体系的构成由上面举例可见,液压伺服体系是由以下一些根本元件构成;输入元件——将给定值加于体系的输入端的元件.该元件可所以机械的.电气的.液压的或者是其它的组合情势.反馈测量元件——测量体系的输出量并转换成反馈旌旗灯号的元件.各类类形的传感器经常应用作反馈测量元件.比较元件——将输入旌旗灯号与反馈旌旗灯号比拟较,得出误差旌旗灯号的元件.放大.能量转换元件——将误差旌旗灯号放大,并将各类情势的旌旗灯号转换成大功率的液压能量的元件.电气伺服放大器.电液伺服阀均属于此类元件;履行元件——将产生调节动作的液压能量加于控制对象上的元件,如液压缸或液压马达.控制对象——各类临盆装备,如机械工作台.刀架等.液压伺服数学模子2.1 数学模子为了对伺服体系进行定量研讨,应找出体系中各变量(物理量)之间的关系.不单要搞清晰其静态关系,还要知道其动态特点,即各物理量随时光而变更的进程.描写这些变量之间关系的数学表达式称之为数学模子.2.1.1 微分方程伺服体系的动态行动可用各变量及其各阶导数所构成的微分方程来描写.当微分方程各阶导数为零时,则变成暗示各变量间静态关系的代数方程.有了体系活动的微分方程就可知道体系各变量的静态和动态行动.该微分方程就是体系的数学模子.2.1.2 拉氏变换与传递函数拉氏变换全称为拉普拉斯变换.它是将时光域的原函数f(t)变换成复变量s域的象函数F(s),将时光域的微分方程变换成s域的代数方程.再经由过程代数运算求出变量为s的代数方程解.最后经由过程拉氏反变换得到变量为t的原函数的解.数学大将时域原函数f(t)的拉氏变换界说为如下积分:而拉氏逆变换则记为现实应用中其实不须要对原函数一一作积分运算,与查对数表类似,查拉氏变换表(表1)即可求得.拉氏变换在解微分方程进程中有如下几共性质或定理:(1)线性性质设则有式中 B——随意率性常数.(2)迭加道理这一性质极为重要,它使我们可以不作拉氏逆变换就能预感体系的稳态行动.(6)初值定理微分方程表征了体系的动态特点,它在经由拉氏变换后生成了代数方程,仍然表征了体系的动态特点.假如所有肇端前提为零,设体系(或元件)输出y(t)的拉氏变换为Y(s)和输入x(t)的拉氏变换为X(s),则经由代数运算得(1)G(s)为一个以s为变量的函数,我们称这个函数为体系(或元件)的传递函数.故体系(或元件)的动态特点也可用其传递函数来暗示.传递函数是经典控制理论中一个重要的概念.用常系数线性微分方程暗示的体系(或元件),在初始前提为零的前提下,经拉氏变换后,微分方程中n阶的导数项响应地变换为s n项,而系数不变.即拉氏变换后所得代数方程为一系数与原微分方程雷同,以s n代替n阶导数的多项式,移项后就是其传递函数.故一个体系(或元件)的传递函数极易求得.表1 拉氏变换表(部分)原函数ƒ(t)拉氏变换函数F(s)原函数图形(t≥0)1 单位脉冲函数δ(t)= 1单位阶跃函数=1(t>0) 2=0(t≤0)3 t4 t n56 (1-)7 sinωt8 cosωt9 sin(ωt+θ)10 cos(ωt+θ)11 cosbt12131415 sinhωt16 coshωt例如图3所示为一个质量-弹性-油阻尼体系,该体系的力均衡微分方程为(2)式中 M——质量;x——质量的位移;B C——阻尼系数;k——弹簧刚度.图3 质量-弹性-油阻尼体系经拉氏变换得(3)写成传递函数为(4)方框图及其等效变换图4 所示是一种文字情势的方框图,它暗示体系构造中各元件的功用及它们之间的互相贯穿连接和旌旗灯号传递线路.这种方框图又称作构造方框图.另一种方框图即“函数方块图”,就是将元件或环节的传递函数写在响应的方框中,用箭头线将这些方框衔接起来,如图4所示.指向方框图的箭头暗示对其输入旌旗灯号;从方框图出来的箭头暗示输出.图中圆圈暗示比较点,亦称加减点,它对二个以上旌旗灯号根据其正.负进行代数运算.同一旌旗灯号线上的各引出旌旗灯号,数值与性质完整雷同.方框图输出旌旗灯号的因次,等于输入旌旗灯号的因次与方程中传递函数因次的乘积.图4 体系方框图1—输入旌旗灯号;2—比较点;3—引出旌旗灯号;4—输出旌旗灯号方框图等效变换.简化轨则见表2.表2 方块图变换轨则序号原方块图等效方块图1234567891011121314电液伺服阀电液伺服阀电液伺服阀既是电液转换元件,又是功率放大元件,它可以或许把渺小的电气旌旗灯号转换成大功率的液压能(流量和压力)输出.它的机能的好坏对体系的影响很大.是以,它是电液控制体系的焦点和症结.为了可以或许精确设计和应用电液控制体系,必须控制不合类型和机能的电液伺服阀.伺服阀输入旌旗灯号是由电气元件来完成的.电气元件在传输.运算和参量的转换等方面既快速又轻便,并且可以把各类物理量转换成为电量.所以在主动控制体系中广泛应用电气装配作为电旌旗灯号的比较.放大.反馈检测等元件;而液压元件具有体积小,构造紧凑.功率放大倍率高,线性度好,逝世区小,敏锐度高,动态机能好,响应速度快等长处,可作为电液转换功率放大的元件.是以,在一控制体系中常以电气为“神经”,以机械为“骨架”,以液压控制为“肌肉”最大限度地施展机电.液的长处.因为电液伺服阀的种类许多,但各类伺服阀的工作道理又基底细似,其剖析研讨的办法也大体雷同,故今以经常应用的力反馈两级电液伺服阀和地位反馈的双级滑阀式伺服阀为重点,评论辩论它的根本方程.传递函数.方块图及其特点剖析.其它伺服阀只介绍其工作道理,同时也介绍伺服阀的机能参数及其测试办法电液伺服阀的构成电液伺服阀在电液控制体系中的地位如图27所示.电液伺服阀包含电力转换器.力位移转换器.前置级放大器和功率放大器等四部分.3.1.1 电力转换器包含力矩马达(迁移转变)或力马达(直线活动),可把电气旌旗灯号转换为力旌旗灯号.3.1.2 力位移转换器包含钮簧.弹簧管或弹簧,可把力旌旗灯号变成位移旌旗灯号而输出.3.1.3 前置级放大器包含滑阀放大器.喷嘴挡板放大器.射流管放大器.3.1.4 功率放大器——滑阀放大器由功率放大器输出的液体流量则具有必定的压力,驱动履行元件进行工作.图27 电液控制体系方块图电液伺服阀的分类电液伺服阀的分类电液伺服阀的种类许多,根据它的构造和机能可作如下分类:1)按液压放大级数,可分为单级伺服阀.两级伺服阀和三级伺服阀,个中两级伺服阀应用较广.2)按液压前置级的构造情势,可分为单喷嘴挡板式.双喷嘴挡板式.滑阀式.射流管式和偏转板射流式.3)按反馈情势可分为地位反馈.流量反馈和压力反馈.4)按电-机械转换装配可分为动铁式和动圈式.5)按输出量情势可分为流量伺服阀和压力控制伺服阀.6)按输入旌旗灯号情势可分为中断控制式和脉宽调制式.伺服阀的工作道理伺服阀的工作道理下面介绍两种重要的伺服阀工作道理.力反馈式电液伺服阀的构造和道理如图28所示,无旌旗灯号电流输入时,衔铁和挡板处于中央地位.这时喷嘴4二腔的压力p a=p b,滑阀7二端压力相等,滑阀处于零位.输入电流后,电磁力矩使衔铁2连同挡板偏转θ角.设θ为顺时针偏转,则因为挡板的偏移使p a>p b,滑阀向右移动.滑阀的移动,经由过程反馈弹簧片又带动挡板和衔铁反偏向扭转(逆时针),二喷嘴压力差又减小.在衔铁的原始均衡地位(无旌旗灯号时的地位)邻近,力矩马达的电磁力矩.滑阀二端压差经由过程弹簧片感化于衔铁的力矩以及喷嘴压力感化于挡板的力矩三者取得均衡,衔铁就不再活动.同时感化于滑阀上的油压力与反馈弹簧变形力互相均衡,滑阀在分开零位一段距离的地位上定位.这种依附力矩均衡来决议滑阀地位的方法称为力反馈式.假如疏忽喷嘴感化于挡板上的力,则马达电磁力矩与滑阀二端不服衡压力所产生的力矩均衡,弹簧片也只是受到电磁力矩的感化.是以其变形,也就是滑阀分开零位的距离和电磁力矩成正比.同时因为力矩马达的电磁力矩和输入电流成正比,所以滑阀的位移与输入的电流成正比,也就是经由过程滑阀的流量与输入电流成正比,并且电流的极性决议液流的偏向,如许便知足了对电液伺服阀的功效请求.图28 力反馈式伺服阀的工作道理1—永远磁铁;2—衔铁;3—扭轴;4—喷嘴;5—弹簧片;6—过滤器;7—滑阀;8—线圈;9—轭铁因为采取了力反馈,力矩马达根本上在零位邻近工作,只请求其输出电磁力矩与输入电流成正比(不象地位反馈中请求力矩马达衔铁位移和输入电流成正比),是以线性度易于达到.别的滑阀的位移量在电磁力矩必定的情形下,决议于反馈弹簧的刚度,滑阀位移量便于调节,这给设计带来了便利.采取了衔铁式力矩马达和喷嘴挡板使伺服阀构造极为紧凑,并且动特点好.但这种伺服阀工艺请求高,造价高,对于油的过滤精度的请求也较高.所以这种伺服阀实用于请求构造紧凑,动特点好的场合.力反馈式电液伺服阀的方框图如图29.图29 力反馈式伺服阀方框图3.3.2 地位反馈式伺服阀图30为二级滑阀式地位反馈伺服阀构造.该类型电液伺服阀由电磁部分,控制滑阀和主滑阀构成.电磁部分是一只力马达,道理如前所述.动圈靠弹簧定位.前置放大器采取滑阀式(一级滑阀).如图所示,在均衡地位(零位)时,压力油从P腔进入,分别经由过程P腔槽,阀套窗口,固定撙节孔3.5到达上.下控制窗口,然后再经由过程主阀(二级阀芯)的回油口回油箱.输入正向旌旗灯号电流时,动圈向下移动,一级阀芯随之下移.这时,上控制窗口的过流面积减小,下控制窗口的过流面积增大.所以上控制腔压力升高而下控制腔的压力下降,使感化在主阀芯(二级阀芯)两头的液压力掉去均衡.主阀芯在这一液压力感化下向下移动.主阀芯下移,使上控制窗口的过流面积逐渐增大,下控制窗口的过流面积逐渐缩小.当主阀芯移动到上.下控制窗口过流面积从新相等的地位时,感化于主阀芯两头的液压力从新均衡.主阀芯就逗留在新的均衡地位上,形成必定的启齿.这时,压力油由P腔经由过程主阀芯的工作边到A腔而供应负载.回油则经由过程B腔,主阀芯的工作边到T腔回油箱.输入旌旗灯号电流反向时,阀的动作进程与此相反.油流反向为P→B,A→T.上述工作进程中,动圈的位移量,一级阀芯(先导阀芯)的位移量与主阀芯的位移量均相等.因动圈的位移量与输入旌旗灯号电流成正比,所以输出的流量和输入旌旗灯号电流成正比.图30 地位反馈伺服阀构造1—阀体;2—阀套;3—固定撙节口;4—二级阀芯;5—固定撙节口;6—一级阀芯;7—线圈;8—下弹簧;9—上弹簧;10—磁钢二级滑阀型地位反馈式伺服阀的方框图如图31所示.该型电液伺服阀具有构造简略,工作靠得住,轻易保护,可在现场进行调剂,对油液干净度请求不太高.图31 地位反馈式电液伺服阀方框图电液伺服阀的根本特点空载时输出流量和输入旌旗灯号电流之间的关系,经常应用空载流量特点曲线来暗示(图32).由这一曲线可得到该阀的额定值.线性度.滞环.流量增益等特点.额定电流I R——在这一电流规模内,阀的输出流量与输入旌旗灯号电流成正比.额定空载流量——在额定压力与额定电流下阀的空载流量.线性度——q-I曲线直线性的器量.图32 空载流量特点曲线I R——额定电流;q0——最大空载流量;tanθ——流量增益滞环——重要用来标明旌旗灯号电流转变偏向时,由摩擦力.磁滞等原因使I-q曲线不重合的程度.常以曲线上同一流量下电流最大差值△I max与阀的额定电流I R之比来暗示.流量增益——q L与I之比值,即q-I曲线的平均斜率.3.4.2 压力增益特点在必定供油压力下,在输入电流I和负载压力p L=p1-p2曲线上,比值△p L/△I称为压力增益.当负载流量保持为零时,在零位(中央均衡地位)邻近的压力增益称为零位压力增益.零位压力增益与主滑阀的启齿情势有关,以零启齿情势最高.进步供油压力p s也可进步零位压力增益.但这一特点重要与阀的制造质量有关.进步零位压力增益,对于减小不敏锐区.进步精度有感化,但对稳固性起相反的感化.图33是零启齿伺服阀的零位压力增益特点曲线.图33 零位压力增益特点曲线3.4.3 负载压力.流量特点这一特点往往是选用伺服阀的重要根据.图34即为负载压力-流量特点曲线.3.4.4 对数频率特点它暗示电液伺服阀的动态特点.幅频曲线中一3dB时频率为该阀的频宽.其值越大则该阀的工作频率规模越大.对数频率特点也是剖析伺服体系动特点以及设计.分解电液伺服体系的根据.图35即为阀的对数频率特点曲线.3.4.5 零飘与零偏伺服阀因为供油压力的变更和工作油温度的变更而引起的零位(Q L=p L=0的几何地位)变更称为零飘.零飘一般用使其恢复位所需加的电流值与额定电流值之比来权衡.这一比值越小越好.别的,因为制造.调剂.装配的不同,控制线圈中不加电流时,滑阀不必定位于中位.有时必须加必定的电流才干使其恢复中位(零位).这一现象称为零偏.零偏以使阀恢复零位所需加之电流值与额定电流值之比来权衡.图34 负载压力-流量特点曲线图35 对数频率特点曲线3.4.6 不敏锐度因为不敏锐区的消失,伺服阀只有在输入旌旗灯号电流达必定值时才会转变状况.使伺服阀产生状况变更的最小电流与额定电流之比称为不敏锐度.其值愈小愈好.液压伺服体系设计液压伺服体系设计在液压伺服体系中采取液压伺服阀作为输入旌旗灯号的转换与放大元件.液压伺服体系能以小功率的电旌旗灯号输入,控制大功率的液压能(流量与压力)输出,并能获得很高的控制精度和很快的响应速度.地位控制.速度控制.力控制三类液压伺服系同一般的设计步调如下:1)明白设计请求:充分懂得设计义务提出的工艺.构造实时体系各项机能的请求,并应具体剖析负载前提.2)拟定控制计划,画出体系道理图.3)静态盘算:肯定动力元件参数,选择反馈元件及其它电气元件.4)动态盘算:肯定体系的传递函数,绘制开环波德图,剖析稳固性,盘算动态机能指标.5)校核精度和机能指标,选择校订方法和设计校订元件.6)选择液压能源及响应的从属元件.7)完成履行元件及液压能源施工设计.本章的内容主如果按照上述设计步调,进一步解释液压伺服体系的设计原则和介绍具体设计盘算办法.因为地位控制体系是最根本和应用最广的体系,所以介绍将以阀控液压缸地位体系为主.4.1 周全懂得设计请求4.1.1 周全懂得被控对象液压伺服控制体系是被控对象—主机的一个构成部分,它必须知足主机在工艺上和构造上对其提出的请求.例如轧钢机液压压下地位控制体系,除了应可以或许推却最大轧制负载,知足轧钢机轧辊辊缝调节最大行程,调节速度和控制精度等请求外,履行机构—压下液压缸在外形尺寸上还受轧钢机牌楼窗口尺寸的束缚,构造上还必须包管知足改换轧辊便利等请求.要设计一个好的控制体系,必须充分看重这些问题的解决.所以设计师应周全懂得被控对象的工况,并分解应用电气.机械.液压.工艺等方面的理论常识,使设计的控制体系知足被控对象的各项请求.4.1.2 明角设计体系的机能请求1)被控对象的物理量:地位.速度或是力.2)静态极限:最大行程.最大速度.最大力或力矩.最大功率.3)请求的控制精度:由给定旌旗灯号.负载力.干扰旌旗灯号.伺服阀及电控体系零飘.非线性环节(如摩擦力.逝世区等)以及传感器引起的体系误差,定位精度,分辩率以及许可的飘移量等.4)动态特点:相对稳固性可用相位裕量和增益裕量.谐振峰值和超调量等来划定,响应的快速性可用载止频率或阶跃响应的上升时光和调剂时光来划定;5)工作情形:主机的工作温度.工作介质的冷却.振动与冲击.电气的噪声干扰以及响应的耐高温.防水防腐化.防振等请求;6)特别请求;装备重量.安然呵护.工作的靠得住性以及其它工艺请求.4.1.3 负载特点剖析精确肯定体系的外负载是设计控制体系的一个根本问题.它直接影响体系的构成和动力元件参数的选择,所以剖析负载特点应尽量反应客不雅现实.液压伺服体系的负载类型有惯性负载.弹性负载.粘性负载.各类摩擦负载(如静摩擦.动摩擦等)以及重力和其它不随时光.地位等参数变更的恒值负载等.4.2 拟定控制计划.绘制体系道理图在周全懂得设计请求之后,可根据不合的控制对象,按表6所列的根本类型选定控制计划并拟定控制体系的方块图.如对直线地位控制系同一般采取阀控液压缸的计划,方块图如图36所示.图36 阀控液压缸地位控制体系方块图表6 液压伺服体系控制方法的根本类型伺服体系控制旌旗灯号控制参数活动类型元件构成机液电液气液电气液模仿量数字量位移量地位.速度.加快度.力.力矩.压力直线活动摆动活动扭转活动1.阀控制:阀-液压缸,阀-液压马达2.容积控制:变量泵-液压缸;变量泵-液压马达;阀-液压缸-变量泵-液压马达3.其它:步近式力矩马达4.3 动力元件参数选择动力元件是伺服体系的症结元件.它的一个重要感化是在全部工作轮回中使负载按请求的速度活动.其次,它的重要机能参数能知足全部体系所请求的动态特点.此外,动力元件参数的选择还必须斟酌与负载参数的最佳匹配,以包管体系的功耗最小,效力高.动力元件的重要参数包含体系的供油压力.液压缸的有用面积(或液压马达排量).伺服阀的流量.当选定液压马达作履行元件时,还应包含齿轮的传动比.4.3.1 供油压力的选择选用较高的供油压力,在雷同输出功率前提下,可减小履行元件——液压缸的活塞面积(或液压马达的排量),因而泵和动力元件尺寸小重量轻,装备构造紧凑,同时油腔的容积减小,容积弹性模数增大,有利于进步体系的响应速度.但是随供油压力增长,因为受材料强度的限制,液压元件的尺寸和重量也有增长的趋向,元件的加工精度也请求进步,体系的造价也随之进步.同时,高压时,泄露大,发烧高,体系功率损掉增长,噪声加大,元件寿命下降,保护也较艰苦.所以前提许可时,平日照样选用较低的供油压力.经常应用的供油压力等级为7MPa到28MPa,可根据体系的要乞降构造限制前提选择恰当的供油压力.4.3.2 伺服阀流量与履行元件尺寸的肯定如上所述,动力元件参数选择除应知足拖动负载和体系机能两方面的请求外,还应斟酌与负载的最佳匹配.下面侧重介绍与负载最佳匹配问题.(1)动力元件的输出特点将伺服阀的流量——压力曲线经坐标变换绘于υ-F L平面上,所得的抛物线即为动力元件稳态时的输出特点,见图37.图37 参数变更对动力机构输出特点的影响a)供油压力变更;b)伺服阀容量变更;c)液压缸面积变更。
电液控制-机液伺服系统
四、液压转矩放大器
Hale Waihona Puke 反馈机构为 螺杆、螺母 液压马达轴完全跟 踪阀芯输入转角而 转动。但输出力矩 比输入力矩要大得 多,故称液压转矩 放大器。
电液步进马达
以惯性负载为主时,可分析得
方框图为:
则系统方框图为:
§系统稳定性分析
液压伺服系统的动态分析和设计一般都是以稳定性要求为 中心进行的。
令G(s)为前向通道的传递函数,H(s)为反馈通道的传递函 数,由以上的方框图可得系统的开环传递函数为:
含有一个积分环节,故系统为Ⅰ型系统。
可绘制开环系统伯德图,如下图所示:
对伯德图的分析
幅值穿越频率ωc≈Kv 相位穿越频率ωc=ωg 为了使系统稳定, 必须有足够的相位裕 量和增益裕量。 由图可见,相位裕 度已为正值,为使幅 值裕度为正值,可计 算求得要求: K 2
与全闭环系统相比,半闭环系统的稳定性好得多,但精度较低。
综上所述,由于结构柔度的影响,产生了结构谐振和液压谐 振的耦合,使系统出现了频率低、阻尼比小的综合谐振,综合谐 振频率ωn和综合阻尼比ξn常常成为影响系统稳定性和限制系统频 宽的主要因素,因此提高具有重要意义。 提高ωn 就需要提高结构谐振频率ωs,就要求负载惯量减小 (但已由负载特性决定),结构刚度增大(提高安装固定刚度和 传动机构刚度,尤其是靠近负载处的传动机构的结构刚度)。 增大执行元件到负载的传动比,可提高液压固有频率;提高 液压弹簧刚度的方法也可提高液压固有频率,从而提高综合谐振 频率。
反馈从活塞输出端Xp取出时,构成为半闭环系统,其方框图 为:
此时系统开环传函中含有二阶微分环节,当ωs2和ωn靠得很 近时,会有零极点相消现象,使综合谐振峰值减小,从而改善 系统稳定性,如曲线b所示。 系统闭环传函为:
电液伺服系统的原理及应用
电液伺服系统的原理及应用一.电液伺服系统概述电液伺服系统在自动化领域是一类重要的控制设备,被广泛应用于控制精度高、输出功率大的工业控制领域.液体作为动力传输和控制的介质,跟电力相比虽有许多不甚便利之处且价格较贵,但其具有响应速度快、功率质量比值大及抗负载刚度大等特点,因此电液伺服系统在要求控制精度高、输出功率大的控制领域占有独特的优势。
电液伺服控制系统是以液压为动力,采用电气方式实现信号传输和控制的机械量自动控制系统。
按系统被控机械量的不同,它又可以分为电液位置伺服系统、电液速度伺服控制系统和电液力控制系统三种。
我国的电液伺服发展水平目前还处在一个发展阶段,虽然在常规电液伺服控制技术方面,我们有了一定的发展。
但在电液伺服高端产品及应用技术方面,我们距离国外发达国家的技术水平还有着很大差距。
电液伺服技术是集机械、液压和自动控制于一体的综合性技术,要发展国内的电液伺服技术必须要从机械、液压、自动控制和计算机等各技术领域同步推进。
二.电液伺服的组成电液控制系统是电气液压控制系统简称,它由电气控制及液压两部分组成。
在电子-液压混合驱动技术里,能量流是由电子控制,由液压回路传递,充分结合了电子控制和液压传动两者混合驱动技术的优点避免了它们各自的缺陷。
⑴电子驱动技术的特点①高精度、高效率,低能耗、低噪音②高性能动态能量控制③稳定的温度性能④能量再生及反馈电网⑤在循环空闲的时间没有能量损失⑵液压驱动技术的特点①高(力/功)密度②结构紧凑③液压马达(油缸)是大功率且经济的执行元件④在液压系统做压力控制的时候有明显的能量流失液压部分:以液体为传动介质,靠受压液体的压力能来实现运动和能量传递。
基于液压传动原理,系统能够根据机械装备的要求,对位置、速度、加速度、力等被控量按一定的精度进行控制,并且能在有外部干扰的情况下,稳定、准确的工作,实现既定的工艺目的。
(工控网)液压伺服阀是输出量与输入量成一定函数关系,并能快速响应的液压控制阀,是液压伺服系统的重要元件。
电液伺服系统在数控机床中的应用
电液伺服系统在数控机床中的应用伺服系统是一种通过感应和响应外部信号来调整输出的自动控制系统。
电液伺服系统是一种使用电力和液压传动技术的伺服系统,被广泛应用于数控机床中。
本文将探讨电液伺服系统在数控机床中的应用,并介绍其优势和发展趋势。
一、电液伺服系统的工作原理电液伺服系统主要由电液伺服阀、液压伺服缸、传感器、执行器和控制器等组成。
其工作原理是:控制器通过传感器获得外部输入信号,然后将信号传递给电液伺服阀。
电液伺服阀根据接收到的信号来控制油路的开闭,调节液压伺服缸的运动。
液压伺服缸将运动转化为力或位移输出,从而实现对机械装置的精确控制。
二、1. 位置控制:电液伺服系统通过精确的位置控制能够实现数控机床的高精度加工。
通过传感器获得工作台或刀具的位置信号,控制器根据设定值对电液伺服阀进行控制,使得机械装置按照预定的路径和速度进行准确定位。
2. 速度控制:电液伺服系统能够实现数控机床的平稳加速和减速操作。
控制器根据设定值对电液伺服阀进行控制,调节液压伺服缸的运动速度,从而实现对机械加工的平滑速度控制。
3. 力控制:电液伺服系统能够实现数控机床的精确力控制。
通过传感器获取工作台或刀具的力信号,控制器根据设定值对电液伺服阀进行控制,调节液压伺服缸的输出力,确保机械装置对工件施加恰当的力。
4. 自动化操作:电液伺服系统能够实现数控机床的自动化操作。
通过控制器中预设的程序,可以实现自动切换刀具、自动换夹具、自动调整加工参数等功能,提高了数控机床的生产效率和加工质量。
三、电液伺服系统的优势1. 高精度:电液伺服系统具有响应速度快、位置控制精度高的特点,可以满足数控机床对于精密加工的要求。
2. 高可靠性:电液伺服系统由于采用了液压传动技术,具有承受高负载和冲击的能力,能够适应数控机床长时间、高负荷运行的需求。
3. 高适应性:电液伺服系统能够适应不同的加工需求,通过调整控制器中的参数实现不同的运动模式和控制策略。
4. 易于维护:电液伺服系统的设计相对简单,维修和更换零部件相对容易,能够降低机床维护成本和停机时间。
电液伺服阀的原理分类和应用简介
电液伺服阀的原理分类和应用简介一.电液伺服阀的工作原理电液伺服阀由力矩马达和液压放大器组成。
力矩马达工作原理磁铁把导磁体磁化成N、S极,形成磁场。
衔铁和挡板固连由弹簧支撑位于导磁体的中间。
挡板下端球头嵌放在滑阀中间凹槽内;线圈无电流时,力矩马达无力矩输出,挡板处于两喷嘴中间;当输入电流通过线圈使衔铁3左端被磁化为N极,右端为S极,衔铁逆时针偏转。
弹簧管弯曲产生反力矩,使衔铁转过θ角。
电流越大θ角就越大,力矩马达把输入电信号转换为力矩信号输出。
前置放大级工作原理压力油经滤油器和节流孔流到滑阀左、右两端油腔和两喷嘴腔,由喷嘴喷出,经阀9中部流回油箱力矩马达无输出信号时,挡板不动,滑阀两端压力相等。
当力矩马达有信号输出时,挡板偏转,两喷嘴与挡板之间的间隙不等,致使滑阀两端压力不等,推动阀芯移动。
功率放大级工作原理当前置放大级有压差信号使滑阀阀芯移动时,主油路被接通。
滑阀位移后的开度正比于力矩马达的输入电流,即阀的输出流量和输入电流成正比;当输入电流反向时,输出流量也反向。
滑阀移动的同时,挡板下端的小球亦随同移动,使挡板弹簧片产生弹性反力,阻止滑阀继续移动;挡板变形又使它在两喷嘴间的位移量减小,实现了反馈。
当滑阀上的液压作用力和挡板弹性反力平衡时,滑阀便保持在这一开度上不再移动。
二.电液伺服阀的分类1 按液压放大级数可分为单级电液伺服阀,两级电液伺服阀,三级电液伺服阀。
2 按液压前置级的结构形式,可分为单喷嘴挡板式,双喷嘴挡板式,滑阀式,射流管式和偏转板射流式。
3 按反馈形式可分为位置反馈式,负载压力反馈式,负载流量反馈式,电反馈式等。
4 按电机械转换装置可分为动铁式和动圈式。
5 按输出量形式可分为流量伺服阀和压力控制伺服阀。
三.电液伺服阀的发展趋势1/新型结构的设计在20 世纪90 年代,国外研制直动型电液伺服阀获得了较大的成就.现形成系列产品的有Moog 公司的D633,D634 系列的直动阀,伊顿威格士(EatonVickers)公司的LFDC5V 型,德国Bosch 公司的NC10 型,日本三菱及KYB 株式会社合作开发的MK 型阀及Moog 公司与俄罗期沃斯霍得工厂合作研制的直动阀等.该类型的伺服阀去掉了一般伺服阀的前置级, 利用一个较大功率的力矩马达直接拖动阀芯, 并由一个高精度的阀芯位移传感器作为反馈.该阀的最大特点是无前置级,提高了伺服阀的抗污染能力.同时由于去掉了许多难加工零件,降低了加工成本,可广泛使用于工业伺服控制的场合.国内有些单位如中国运载火箭技术研究院第十八研究所, 北京机床研究所, 浙江工业大学等单位也研制出了相关产品的样机. 特别是北京航空航天大学研制出转阀式直动型电液伺服阀. 该伺服阀通过将普通伺服阀的滑阀滑动结构转变为滑阀的转动, 并在阀芯与阀套上相应开了几个与轴向有一定倾角的斜槽.阀芯阀套相互转动时,斜槽相互开通或相互封闭,从而控制输出压力或流量.由于在工作时阀芯阀套是相互转动的,降低了阀工作时的摩擦阻力,同时污染物不容易在转动的滑阀内堆积,提高了抗污染性能.此外,Park 公司开发了"音圈驱动(Voice Coil Drive)"技术(VCD),以及以此技术为基础开发的DFplus 控制阀.所谓音圈驱动技术, 顾名思义, 即是类似于扬声器的一种驱动装置, 其基本结构就是套在固定的圆柱形永久磁铁上的移动线圈,当信号电流输入线圈时,在电磁效应的作用下,线圈中产生与信号电流相对应的轴向作用力,并驱动与线圈直接相连的阀芯运动,驱动力很大.线圈上内置了位移反馈传感器,因此,采用VCD 驱动的DFplus 阀本质上是以闭环方式进行控制的,线性度相当好.此外,由于VCD 驱动器的运动零件只是移动线圈,惯量极小,相对运动的零件之间也没有任何支承,DFplus 阀的全部支承就是阀芯和阀体间的配合面,大大减小了摩擦这一非线性因素对控制品质的影响.综合上述的技术特点,配合内置的数字控制模块,使DFplus 阀的控制性能佳,尤其在频率响应方面更是优越,可达400Hz.从发展趋势来看,新型直动型电液伺服阀在某些行业有替代传统伺服阀特别是喷嘴挡板式伺服阀的趋向, 但它的最大问题在于体积大, 重量重, 只适用于对场地要求较低的工业伺服控制场合. 如能减轻其重量, 减小其体积,在航空,航天等军工行业亦具有极大的发展潜力.另外,近年来伺服阀新型的驱动方式除了力矩马达直接驱动外,还出现了采用步进电机,伺服电机,新型电磁铁等驱动结构以及光-液直接转换结构的伺服阀.这些新技术的应用不仅提高了伺服阀的性能, 而且为伺服阀发展开拓了思路, 为电液伺服阀技术注入了新的活力.2/新型材料的采用当前在电液伺服阀研制领域的新型材料运用,主要是以压电元件,超磁致伸缩材料及形状记忆合金等为基础的转换器研制开发.它们各具有其自己的优良特性.2.1 压电元件压电元件的特点是"压电效应":在一定的电场作用下会产生外形尺寸的变化,在一定范围内,形变与电场强度成正比.压电元件的主要材料为压电陶瓷(PZT),电致伸缩材料(PMN)等.比较典型的压电陶瓷材料有日本TOKIN 公司的叠堆型压电伸缩陶瓷等.PZT 直动式伺服阀的原理是: 在阀芯两端通过钢球分别与两块多层压电元件相连. 通过压电效应, 使压电材料产生伸缩驱动阀芯移动.实现电-机械转换.PMN 喷嘴挡板式伺服阀则在喷嘴处设置一与压电叠堆固定连接的挡板,由压电叠堆的伸,缩实现挡板与喷嘴间的间隙增减,使阀芯两端产生压差推动阀芯移动.目前压电式电-机械转换器的研制比较成熟并已得到较广泛的应用.它具有频率响应快的特点,伺服阀频宽甚至能达到上千赫兹,但亦有滞环大,易漂移等缺点,制约了压电元件在电液伺服阀上的进一步应用.2.2 超磁致伸缩材料液压与电气论坛超磁致伸缩材料(GMM)与传统的磁致伸缩材料相比,在磁场的作用下能产生大得多的长度或体积变化. 利用GMM 转换器研制的直动型伺服阀是把GMM 转换器与阀芯相连,通过控制驱动线圈的电流,驱动GMM 的伸缩,带动阀芯产生位移从而控制伺服阀输出流量.该阀与传统伺服阀相比不仅有频率响应高的特点,而且具有精度高,结构紧凑的优点.目前,在GMM 的研制及应用方面,美国,瑞典和日本等国处于领先水平.国内浙江大学利用GMM 技术对气动喷嘴挡板阀和内燃机燃料喷射系统的高速强力电磁阀, 进行了结构设计和特性研究.从目前情况来看GMM 材料与压电材料和传统磁致伸缩材料相比,具有应变大,能量密度高,响应速度快,输出力大等特点.世界各国对GMM 电-机械转换器及相关的技术研究相当重视,GMM 技术水平快速发展,已由实验室研制阶段逐步进入市场开发阶段.今后还需解决GMM 的热变形,磁晶各向异性,材料腐蚀性及制造工艺, 参数匹配等方面的问题,以利于在高科技领域得到广泛运用.2.3 形状记忆合金形状记忆合金(SMA)的特点是具有形状记忆效应.将其在高温下定型后,冷却到低温状态,对其施加外力.一般金属在超过其弹性变形后会发生永久变形,而SMA 却在将其加热到某一温度之上后, 会恢复其原来高温下的形状. 利用其特性研制的伺服阀是在阀芯两端加一组由形状记忆合金绕制的SMA 执行器, 通过加热和冷却的方法来驱动SMA 执行器, 使阀芯两端的形状记忆合金伸长或收缩, 驱动阀芯作用移动, 同时加入位置反馈来提高伺服阀的控制性能.从该阀的情况来看,SMA 虽变形量大,但其响应速度较慢,且变形不连续, 也限制了其应用范围.与传统伺服阀相比,采用新型材料的电-机械转换器研制的伺服阀,普遍具有高频响, 高精度,结构紧凑的优点.虽然目前还各自呈在某些关键技术需要解决,但新型功能材料的应用和发展,给电液伺服阀的技术发展发展提供了新的途径.3/电子化,数字化技术的运用液压与电气论坛目前电子化, 数字化技术在电液伺服阀技术上的运用主要有两种方式: 其一,在电液伺服阀模拟控制元器件上加入D/A 转换装置来实现其数字控制.随着微电子技术的发展,可把控制元器件安装在阀体内部,通过计算机程序来控制阀的性能,实现数字化补偿等功能.但存在模拟电路容易产生零漂,温漂,需加D/A 转换接口等问题.其二, 为直动式数字控制阀. 通过用步进电机驱动阀芯, 将输入信号转化成电机的步进信号来控制伺服阀的流量输出.该阀具有结构紧凑,速度及位置开环可控及可直接数字控制等优点,被广泛使用.但在实时性控制要求较高的场合,如按常规的步进方法,无法兼顾量化精度及响应速度的要求.浙江工业大学采用了连续跟踪控制的办法,消除了两者之间的矛盾,获得了良好的动态特性. 此外还有通过直流力矩电机直接驱动阀芯来实现数字控制等多种控制方式或伺服阀结构改变等方法来形成众多的数字化伺服阀产品.随着各项技术水平的发展,通过采用新型的传感器和计算机技术研制出机械,电子, 传感器及计算机自我管理(故障诊断,故障排除)为一体的智能化新型伺服阀.该类伺服阀可按照系统的需要来确定控制目标:速度,位置,加速度,力或压力.同一台伺服阀可以根据控制要求设置成流量控制伺服阀, 压力控制伺服阀或流量/ 压力复合控制伺服阀. 并且伺服阀的控制参数,如流量增益,流量增益特性,零点等都可以根据控制性能最优化原则进行设置.伺服阀自身的诊断信息,关键控制参数(包括工作环境参数和伺服阀内部参数)可以及时反馈给主控制器;可以远距离对伺服阀进行监控,诊断和遥控.在主机调试期间,可以通过总线端口下载或直接由上位机设置伺服阀的控制参数, 使伺服阀与控制系统达到最佳匹配,优化控制性能.而伺服阀控制参数的下载和更新,甚至在主机运转时也能进行.而在伺服阀与控制系统相匹配的技术应用发展中, 嵌入式技术对于伺服阀已经成为现实. 按照嵌入式系统应定义为:"嵌入到对像体系中的专用计算机系统"."嵌入性","专用性"与"计算机系统"是嵌入式系统的三个基本要素.它是在传统的伺服阀中嵌入专用的微处理芯片和相应的控制系统, 针对客户的具体应用要求而构建成具有最优控制参数的伺服阀并由阀自身的控制系统完成相应的控制任务(如各控制轴同步控制),再嵌入到整个的大控制系统中去.从目前的技术发展和控制系统对伺服阀的要求看, 伺服阀的自诊断和自检测功能应该有更大的发展. 结束语当前的液压伺服控制技术已经能将自动控制技术, 液压技术与微电子有机的结合起来, 形成新一代的伺服阀产品.而随着电子设备,控制策略,软件及材料等方面的发展与进步, 电液控制技术及伺服阀产品将在机,电,液一体化获得长足的进步.四 .电液伺服阀的发展历程液压控制技术的历史最早可追溯到公元前240 年,当时一位古埃及人发明了人类历史上第一个液压伺服系统――水钟. 然而在随后漫长的历史阶段, 液压控制技术一直裹足不前, 直到18 世纪末19 世纪初,才有一些重大进展.在二战前夕,随着工业发展的需要,液压控制技术出现了突飞猛进地发展,许多早期的控制阀原理及专利均是这一时代的产物.如: Askania 调节器公司及Askania-Werke 发明及申请了射流管阀原理的专利.同样, Foxboro 发明了喷嘴挡板阀原理的专利.而德国Siemens 公司发明了一种具有永磁马达及接收机械及电信号两种输入的双输入阀,并开创性地使用在航空领域.在二战末期,伺服阀是用螺线管直接驱动阀芯运动的单级开环控制阀.然随着控制理论的成熟及军事应用的需要, 伺服阀的研制和发展取得了巨大成就. 1946 年, 英国Tinsiey 获得了两级阀的专利;Raytheon 和Bell 航空发明了带反馈的两级阀;MIT 用力矩马达替代了螺线管使马达消耗的功率更小而线性度更好.1950 年,W.C.Moog 第一个发明了单喷嘴两级伺服阀.1953 年至1955 年间,T.H.Carson发明了机械反馈式两级伺服阀; W.C.Moog 发明了双喷嘴两级伺服阀; Wolpin 发明了干式力矩马达, 消除了原来浸在油液内的力矩马达由油液污染带来的可靠性问题.1957 年R.Atchley 利用Askania 射流管原理研制了两级射流管伺服阀.并于1959 年研制了三级电反馈伺服阀.1959 年 2 月国外某液压与气动杂志对当时的伺服阀情况作了12 页的报道, 显示了当时伺服阀蓬勃发展的状况.那时生产各种类型的伺服阀的制造商有20 多家.各生产厂家为了争夺伺服阀生产的霸权地位展开了激烈地竞争. 回顾历史, 可以看到最终取胜的几个厂家, 大多数生产具有反馈及力矩马达的两级伺服阀.我们可以看到, 1960 年的伺服阀已具有现代伺服阀的许多特点.如:第二级对第一级反馈形成闭环控制;采用干式力矩马达;前置级对功率级的压力恢复通常可达到50%;第一级的机械对称结构减小了温度,压力变化对零位的影响. 同时, 由早期的直动型开环控制阀发展变化而来的直动型两级闭环控制伺服阀也已出现.当时的伺服阀主要用于军事领域,随着太空时代的到来,伺服阀又被广泛用于航天领域,并研制出高可靠性的多余度伺服阀等尖端产品.与此同时,随着伺服阀工业运用场合的不断扩大,某些生产厂家研制出了专门使用于工业场合的工业伺服阀. Moog 公司就在1963 年推出了第一款专为工业场合使用的73 如系列伺服阀产品.随后,越来越多的专为工业用途研制的伺服阀出现了.它们具有如下的特征:较大的体积以方便制造;阀体采用铝材(需要时亦可采用钢材);独立的第一级以方便调整及维修;主要使用在14MPa 以下的低压场合;尽量形成系列化,标准化产品.然而Moog 公司在德国的分公司却将其伺服阀的应用场合主要集中在高压场合, 一般工作压力在21MPa,有的甚至到35MPa,这就使阀的设计专重于高压下的使用可靠性.而随着伺服阀在工业场合的广泛运用, 各公司均推出了各自的适合工业场合用的比例阀. 其特点为低成本, 控制精度虽比不上伺服阀, 但通过先进的控制技术和先进的电子装置以弥补其不足, 使其性能和功效逼近伺服阀.1973 年,Moog 公司按工业使用的需要,把某些伺服阀转换成工业场合的比例阀标准接口.Bosch 研制出了其标志性的射流管先导级及电反馈的平板型伺服阀.1974 年,Moog 公司推出了低成本,大流量的三级电反馈伺服阀.Vickers 公司研制了压力补偿的KG 型比例阀.Rexroth,Bosch 及其他公司研制了用两个线圈分别控制阀芯两方向运动的比例阀等等五. 电液伺服阀运转不良引起的故障1 油动机拒动在机组启动前做阀门传动试验时,有时出现个别油动机不动的现象,在排除控制信号故障的前提下,造成上述现象的主要原因是电液伺服阀卡涩。
电液伺服系统工作原理
电液伺服系统工作原理
电液伺服系统是一种通过电气信号控制液压执行机构的系统。
它利用电液转换装置将电能转换为液压能,并通过液压传动将能量传递到执行机构上,从而实现机械装置的运动控制。
电液伺服系统具有快速、准确、可靠的特点,在工业自动化控制领域得到广泛应用。
电液伺服系统的工作原理主要包括信号处理、电液转换、液压传动和执行机构四个部分。
信号处理部分将控制信号转换为电压或电流信号,经过调节后送至电液转换部分。
电液转换部分由电液转换器和液压放大器组成,其主要功能是将电信号转换为液压信号,并放大转换后的液压信号,以便驱动液压执行机构。
液压传动部分是电液伺服系统的核心部分,通过液压传动装置将液压能量传递到执行机构上。
液压传动装置通常由液压泵、液压阀、液压缸等组成。
液压泵负责产生压力油液,液压阀用于控制液压油液的流动方向和流量,液压缸则是执行机构的核心部件,它根据液压信号产生的压力油液推动活塞运动,从而实现机械装置的运动控制。
执行机构接收液压信号并进行相应的动作。
执行机构通常由液压马达、液压缸或液压伺服阀等组成,它们根据液压信号产生的力或位移来控制机械装置的运动。
总的来说,电液伺服系统的工作原理是通过将控制信号转换为液压信号,并通过液压传动装置将液压能量传递到执行机构上,从而实现对机械装置的运动控制。
这种系统具有快速、准确、可靠的特点,广泛应用于工业自动化控制领域。
微机控制电液伺服万能试验机工作原理
微机控制电液伺服万能试验机工作原理1. 引言电液伺服万能试验机是一种常用的测试仪器,用于测量和评估材料的力学性能。
它可以进行拉伸、压缩、弯曲等多种力学测试,并能够实时获取测试数据并进行分析。
微机控制电液伺服万能试验机是在传统电液伺服万能试验机的基础上,引入了微机控制系统,实现了自动化控制、数据采集和分析处理等功能。
本文将详细解释微机控制电液伺服万能试验机的工作原理,包括其基本原理、组成部分和工作流程等内容。
2. 基本原理2.1 传感器原理微机控制电液伺服万能试验机中的传感器起到了关键作用,它们用于测量和检测试验过程中产生的各种物理量。
常见的传感器有负荷传感器、位移传感器、应变传感器等。
•负荷传感器:负责测量试件所受到的力。
它通常采用应变片或压阻式传感器来转换力信号为电信号。
•位移传感器:负责测量试件的位移。
常见的位移传感器有拉线式、电容式、激光干涉式等。
•应变传感器:负责测量试件的应变。
它通常采用电阻应变片或光纤光栅等技术。
2.2 控制系统原理微机控制电液伺服万能试验机的控制系统由硬件和软件两部分组成。
•硬件部分包括主控制器、执行机构和传感器。
主控制器负责接收来自传感器的信号,并根据预设的控制算法生成相应的控制信号。
执行机构通过调节液压系统的工作状态,实现对试件施加力和位移的控制。
•软件部分是微机控制系统的核心,它运行在主控制器上,负责数据采集、处理和分析。
软件可以通过人机界面与用户进行交互,实现对测试过程和结果的监视和管理。
2.3 液压系统原理液压系统是微机控制电液伺服万能试验机中最重要的组成部分之一,它负责为执行机构提供动力,并实现对试件施加力和位移的控制。
液压系统由液压泵、液压缸、阀门和传动介质等组成。
其工作原理如下:1.液压泵通过旋转运动将机械能转化为液压能,将液体从油箱中吸入并加压后送入液压缸。
2.液压缸是执行机构的核心部件,它根据控制信号的调节,通过改变液体的流量和压力来实现对试件的力和位移控制。
电液一体伺服电机工作原理
电液一体伺服电机工作原理
嘿,朋友们!今天咱们来聊聊电液一体伺服电机的工作原理,这可真是个超级有趣的东西呢!
你想想看,电液一体伺服电机就像是一个超级大力士!比如说吧,你抬一个很重的东西,自己使了半天劲也抬不起来,但是有了这个“大力士”,它就能轻松帮你搞定。
它是怎么做到的呢?
其实啊,电液一体伺服电机里面有两个重要部分,一个是电的部分,就像人的大脑,负责指挥;另一个是液的部分,像是人的肌肉,提供力量。
当我们给它一个信号,就好比我们对大力士说:“嘿,把这个东西举起来!”电的部分就快速响应,像大脑下达指令一样,然后液的部分就开始行动啦,像肌肉发力一样,齐心协力完成任务。
比如说在工厂的生产线上,那些大型机械设备不就全靠它嘛!它能那么精准、迅速地工作,可不就像个训练有素的运动员。
想象一下,要是没有电液一体伺服电机,这些复杂的操作得有多难搞啊!这不就体现出它的重要性了吗?
咱再说说它工作起来的那个协调啊,就像是一个舞蹈团队在完美配合跳舞一样。
每一个动作都那么恰到好处,丝毫不差。
这可都是因为它各部分之间的紧密配合呀。
电液一体伺服电机真的是太神奇啦!它能在各种各样的地方大显身手,为我们的生活和工作带来便利和高效。
我觉得这简直就是科技的魅力所在啊,让人不得不感叹人类的智慧真的是无穷无尽的呀!这就是我对电液一体伺服电机工作原理的理解,你们觉得怎么样呢?是不是也对它充满了好奇和兴趣呀!。
电液伺服试验机的原理
电液伺服试验机的原理电液伺服试验机是一种用来进行材料力学性能测试的设备,具有高精度、高稳定性和高自动化程度等特点。
其工作原理是将电能转化为液压能,通过压力传感器、液压缸和位置测量器等组成的反馈系统,使试验机可以实现对材料的拉伸、压缩、弯曲等多种试验方式,并对试验数据进行准确测量和分析。
1.电液伺服系统的组成电液伺服试验机主要由电动机、液压变压器、液体和机械部分等组成。
其中电动机负责将电能转换为机械能,驱动液体经液压变压器增压后传递到机械部分;液压变压器主要用于增加液体的压力,使其可以达到所需的试验压力;液体则作为传递介质,传递力量和动力;机械部分则包括试样架、液压缸、压力传感器、位移传感器以及计算机控制系统。
2.电液伺服系统的工作原理电液伺服试验机在进行力学性能测试时,首先将待测试样放置于试验架上,然后通过压力传感器测定试验机施加在试样上的负荷大小,并将试验负荷通过液压系统传递到液压缸。
随着试验负荷的逐渐升高,试样会发生相应的形变,位移传感器将其测定值传递到反馈系统中,反馈系统会将位移误差信号转化为控制信号,控制液体流量从而调整液压缸的位置,使试样位移误差减至最小。
通过这种方式,电液伺服系统可以实现试验负荷和位移的自动控制,有效保证试验数据的准确性和可重复性。
3.电液伺服系统的应用电液伺服试验机广泛应用于材料力学性能测试、结构强度测试、动态疲劳测试等多个领域,可以对各种材料进行强度、韧性、耐久性等性能测试。
电液伺服系统具有高精度、高自动化程度和高稳定性等优点,能够满足不同领域对试验数据准确性、稳定性和可重复性的要求。
总之,电液伺服试验机是一种高精度力学性能测试设备,具有较高的自动化程度和稳定性,能够为力学性能测试提供可靠的数据支持。
液压伺服系统电液伺服系统课件
随着科技的不断发展,液压伺服系统也在不断创新和完善。未来,液压伺服系统将朝着智能化、数字 化、网络化方向发展,实现更高效、更精准的控制。同时,液压伺服系统还将更加注重环保和节能, 推动绿色制造和可持续发展。
02 电液伺服系统基础知识
电液转换元件
01
02
03
伺服阀
将电气信号转换为液压流 量或压力,实现液压执行 机构的精确控制。
速度同步
采用液压伺服系统实现多工位、多执行机构的速 度同步,优化生产流程。
航空航天领域中的应用
飞机起落架收放系统
通过电液伺服系统实现飞机起落架的平稳收放,确保飞行安全。
发动机推力控制
利用液压伺服系统对航空发动机进行精确的推力控制,提高飞行 性能。
飞行姿态调整
采用电液伺服系统实现飞行姿态的快速、精确调整,满足复杂飞 行需求。
仿真分析
在系统模型的基础上,进行仿真分析,包括系统动态响应、控制精度、稳定性等方面的评估,以验证设计的合理性。
优化设计
根据仿真分析结果,对系统进行优化设计,包括调整元件参数、改进控制策略等,以提高系统性能。
04 电液伺服系统实现技术
硬件平台搭建
控制器选择
根据系统需求,选用合适的控制器,如PLC、DSP等,确保控制精 度和实时性。
元件选型与计算
元件选型
根据规格书要求,选择合适的液压泵 、马达、阀等元件,确保系统性能达 标。
元件计算
对所选元件进行详细的计算和分析, 包括流量、压力、功率等参数,确保 元件之间的匹配性和系统的稳定性。
系统仿真与优化
系统建模
利用AMESim、MATLAB/Simulink等仿真软件,建立液压伺服系统的数学模型,为后续仿真分析提供基础。
电液伺服疲劳试验机工作原理
电液伺服疲劳试验机工作原理液压系统是电液伺服疲劳试验机的核心部分,它包括油源系统、油路系统和液压执行机构。
油源系统由油箱、油泵、油箱滤清器等组成,主要负责提供液压系统所需的压力和流量。
油路系统将液压流体从油源系统传输到加载系统中的液压执行机构。
液压执行机构通常由伺服液压缸组成,它通过控制液压缸的工作宽度和频率,可以实现对试验加载的精确控制。
控制系统是电液伺服疲劳试验机的大脑,它包括计算机、控制卡、传感器和执行器。
计算机作为主控制单元,接收用户输入的试验参数,通过控制卡将控制信号传递给液压执行机构实现加载操作。
传感器主要用于监测试样的力和位移,将监测到的数据传输给计算机进行处理和分析。
执行器根据计算机发出的指令,控制液压执行机构的运动。
加载系统是电液伺服疲劳试验机的实际施加载载体,它主要由液压缸和加载夹具组成。
液压缸作为液压执行机构,通过液压系统提供的液压力将加载应用到试样上。
加载夹具则用于固定试样,保证试样在加载过程中的稳定性和安全性。
试验夹具是电液伺服疲劳试验机的配件之一,它可以根据试样的形状和尺寸进行设计和制作。
试验夹具的主要作用是将试样安装在加载系统上,保证试样在疲劳过程中的稳定性和可靠性。
控制卡接收到控制信号后,将信号转换为相应的控制指令,通过控制线路传输给液压执行机构。
液压执行机构接收到控制指令后,调整液压缸的工作宽度和频率,实现试验加载。
在加载过程中,传感器会监测试样的力和位移,并将监测到的数据传输给计算机。
计算机根据传感器数据进行实时分析和处理,判断试样是否达到疲劳寿命或其他所需的试验目标。
当试样达到预设的疲劳寿命或其他目标时,控制系统会自动停止加载,并将测试结果显示在计算机上。
用户可以通过计算机界面查看和分析测试数据,以评价试样的性能和寿命。
总之,电液伺服疲劳试验机利用液压系统提供动力,通过控制系统对试样施加加载,以模拟实际使用环境下的疲劳情况。
通过加载系统和试验夹具的配合,可以实现对不同材料的疲劳性能和寿命进行准确的测试和评估。
液压伺服控制系统
当液压缸运动速度降低时,调节过程相反。
1.2 伺服阀
1.2.1液压伺服阀
1.滑阀 根据滑阀的工作边数不同,有单边滑阀、双边滑阀和四边滑阀。
其中,四边滑阀有四个可控节流口,控制性能最好;双边滑阀有两 个可控节流口,控制性能一般;单边滑阀有一个可控节流口,控制 性能最差。四边滑阀性能虽好,但结构工艺复杂,生产成本较高; 单边滑阀容易加工,生产成本较低。
图10.6-10.8分别为单边滑阀,双边滑阀和四边滑阀控制液压 缸的原理图。
四边滑阀在平衡状态下,根据初始开口量的不同,有负开口 (图10.9(a))、零开口(图10.9(b))和正开口(图10.9 (c))之分。
2.喷嘴挡板阀 如图1.10所示为双喷嘴挡板阀由两个单喷嘴挡板阀组成,可
以控制双作用液压缸。它由挡板、左右喷嘴、固定节流孔组成。 挡板与左右喷嘴的环形面积形成两个可变节流孔,分别为δ1和δ2, 挡板绕轴旋转,可以改变两个可变节流孔的大小。挡板处于图中 所示位置时,即δ1=δ2。此时两节流口的节流阻力相同,使左右 喷嘴的压力相同,即p1= p2,液压缸两腔受力平衡,保持原来位 置不动。
3
1.1.3 液压伺服控制系统的分类
1.按系统输入信号的变化规律分类 液压伺服控制系统按输入信号的变化规律不同可分为:定值控
制系统、程序控制系统和伺服控制系统。 2.按被控物理量的名称分类 按被控物理量的名称不同,可分为:位置伺服控制系统、速度
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电液伺服系统原理
电液伺服系统是一种通过控制液压油流来实现位置、速度和力的精确控制的系统。
它由液压系统、电气系统和机械执行部分组成。
液压系统是电液伺服系统的核心部分,它包括液压泵、液压缸、液压阀和液压油箱。
液压泵通过压力油将液压油推送给液压缸,从而产生力或运动。
液压阀用于控制液压油的流动方向和流量。
液压油箱用于储存液压油,并保持其温度和清洁度。
电气系统通过控制电信号来控制液压系统。
它包括传感器、控制器和执行器。
传感器用于检测被控对象的位置、速度和力,并将其转化为电信号。
控制器接收传感器反馈的电信号,经过计算和处理后,输出控制信号给执行器。
执行器接收控制信号,并控制液压阀的开关状态,从而控制液压系统的运动和力。
机械执行部分将液压系统的力和运动传递给被控对象。
它包括液压缸、阀门、连接杆等元件。
液压缸接收液压油的力,并将其转化为线性运动。
阀门用于控制液压油流的方向和流量。
连接杆将液压缸的运动传递给被控对象,实现位置、速度和力的控制。
总之,电液伺服系统通过控制液压油流来实现位置、速度和力的精确控制。
液压系统、电气系统和机械执行部分相互配合,完成对被控对象的精确控制。