医学统计学第3版 第9章 方差分析

合集下载

医学统计学之方差分析(pdf 10页)

医学统计学之方差分析(pdf 10页)

回顾t检验、秩和检验„ t检验应用条件及特 点:„ 小样本 „ 正态性 „ 方差齐性„ 秩和检验应用条件及 特点:„ 不符合t检验条件时•多组之间的样本均数比较例:有身高发育低下的儿童20名,应用 五种不同膳食进 行治疗,每组4名,一个疗程后各组儿童身高增加值如下 表,问五种不同膳食组身高增长的平均数间有无差别?膳食 X 第一组 第二组 第三组 第四组 第五组3.3 5.1 5.5 8.3 8.5在不同的 个体间值 存在差异6.8 6.3 7.3 7.7 7.82.2 3.2 7.6 6.2 10.4 5.5 3.1 7.2 9.1 6.8X =6.395X i 4.450 4.425 6.900 7.825 8.375同一种膳食(组内) 的四个儿童值不同膳食组间身高增长 值平均数存在不同能否将五组分别进行t检验呢?„ 按排列组合5组两两比较,共进行10次t检验。

„ 若每次t检验犯第1类错误的概率为0.05,则不犯 第1类错误的概率为0.95,10次检验独立进行, 10次都不犯第1类错误的概率应为 0.9510=0.5987 ,故在10次t检验中至少有一次犯 第1类错误的概率为:•P:1-0.9510=0.4013>>0.05不能将五组分别两两进行t检验!方差分析!第九章 方差分析1.方差分析的基本思想和应用条件 2.完全随机设计 3.随机区组设计资料的方差分析 4.多个均数间的两两比较 5.交叉设计资料的方差分析 6.析因设计的方差分析 7.重复测量资料的方差分析 8.多个样本的方差齐性检验第一节 方差分析的基本思想和应用条件1第一节 完全随机设计的方差分析1. 方差分析的概念 „ 方差分析(ANOVA)又称变异数分析或F检验,其目的是推断两组或多组资料的总体均数是否相 同,检验两个或多个样本均数的差异是否有统计 学意义。

应用条件: • 各样本相互独立 • 均来自总体方差具有齐性的正态分布方差分析的基本思想„ 将全部观察值的总变异按影响实验结果的诸 因素分解为若干变异,构造出反映各部分变 异作用的统计量(SS),之后构造假设检验 统计量(F),实现对总体均数的推断。

医学统计学:方差分析课件

医学统计学:方差分析课件

H1:
各组样本的总体均数不等或不全相等;
如果H0 成立,即各处理组的样本来自相同的总体,无 处理因素的作用,则组间变异同组内变异一样,只反
映随机误差作用的大小。
F值接近于l,就没有理由拒绝H0;反之,F值越大, 拒绝H0的理由越充分。
数理统计理论证明,当H0成立时,F统计量服从F分布。
F 分布曲线
方差分析步骤
单因素方差分析
1. 建立检验假设,确定检验水准 H0:4组家兔的血清ACE浓度总体均数相等,
H1:4组家兔的血清ACE浓度总体均数不等或不 全相等,各 不等或不全相等
2. 计算统计量 F 值
单因素方差分析 计算步骤
方差分析步骤
单因素方差分析 计算步骤
方差分析表
3. 确定P值,并做出统计推断
设计方法
拉丁方设计
(四)优缺点
Байду номын сангаас
拉丁方设计
❖ 优点 1、精确性高
拉丁方设计在不增加试验单位的情况下,比随机 单位组设计多设置了一个单位组因素,能将横行和 直列两个单位组间的变异从试验误差中分离出来, 因而试验误差比随机单位组设计小,试验的精确性 比随机单位组设计高。
2、试验结果的分析简便
拉丁方设计
两因素方差分析
配伍组设计资料的方差分析
例 某医师研究A、B和C 3种药物治疗肝炎的效果, 将32只大白鼠感染肝炎后,按性别相同、体重接 近的条件配成8个配伍组,然后将各配伍组中4只 大白鼠随机分配到4个组。对照组不给药物,其余3 组为实验组,分别给予A、B和C药物治疗。一定 时间后,测定大白鼠血清谷丙转氨酶浓度(IU/L), 见下表。问4组大白鼠的血清谷丙转氨酶浓度是否 相同?
7
方差分析基本思想

医学统计学第九章方差分析课件PPT

医学统计学第九章方差分析课件PPT

17.40
25.61 19.12
21.36
19.53 15.31
21.75
12.65
19.47
18.48
15.51
19.83
10.86
23.12
27.81
19.22
21.65
19.22
16.32
16.72
20.75
27.90
22.11
11.74
13.17
24.66
17.55
14.18
19.26
16.52
SS组间 SS B ni ( X i X )
i 1
k
2
组间 k 1
2.组间变异:各组均数与总均数的离均差平方和,反
映处理因素的作用和随机误差的影响
SS组间 21(9.1952 6.8650)2 19(5.8000 6.8650)2 20(5.4300 6.850)2 176.7612
MS 909.8723 / 57 15.9627
三种变异的关系:
SS总 SS组间 SS组内
总 组间 组内
检验统计量:
MS组间 F , 1 组间 , 2 组内 MS组内 如果 1 2 k ,则 MS 组间 ,MS 组内 都为
进行多次(k)假设检验,犯第一类错误的概率: 1-(1-)k 组数为4, k=6, 1-(1-0.05)k=0.2649 组数为5, k=10, 1-(1-0.05)k=0.4013 组数为6, k=15, 1-(1-0.05)k=0.5400
第九章 方差分析
analysis of variance, ANOVA
1412ff100806040200?1?1?2?5?1?5?2?5?1?10?2?1012f34f分布曲线0变异分解c??xn2完全随机设计资料的方差分析表变异来源总变异自由度n1k1ssms2f?x?c2组间?nixi?xiss组间?组间ss组内ms组间ms组内组内nkss总?ss组间?组内引例某医生为研究一种四类降糖新药的疗效以统一的纳入标准和排除标准选择了60名2型糖尿病患者按完全随机设计方案将患者分为三组进行双盲临床试验

医学统计学 方差分析

医学统计学 方差分析

100.66
110.31
4
367.60
5
80.57
97.90
115.76
103.56
4
397.79
6
102.77
81.20
90.30
138.54
4
412.81
ni
6
6
6
6
24( n )
Xi
550.01
537.30
618.19
726.28
2431.78( X )
Xi
91.67
89.55
103.03
2 =32 得: F0.05(2,32) 3.30, F0.01(2,32) 5.34 ,P<0.01。按 =0.05 水准,拒绝 H0 ,
差别有统计学意义,可以认为喂养三种不同饲料的大鼠红细胞数的总体均数不 全相同。
随机区组设计的两因素方差分析
例9.2 利用随机区组设计研究不同温
度对家兔血糖浓度的影响,某研究者进行 了如下实验:将 24只家兔按窝别配成6个 区组, 每组 4 只, 分别随机分配到温度 15℃、 20℃、 25℃、 30℃的4个处理组 中,测量家兔的血糖浓度值(mmol/L),结 果如下表9.4所示,分析4种温度下测量家 兔的血糖浓度值是否不同?
23
3742.5521
3
1247.5174 8.2717
1491.2744
5
298.2549 1.9776
2262.2511
15
150.8167
P
<0.01 >0.05
3. 确定 P 值,作出统计推断
根据处理组 F 值的分子的自由度处理 ,分母的自由度 误差 ;区组 F 值的分子的 自由度区组 ,分母的自由度 误差 查 F 界值表(附表 4),得到处理组和区组的 P 值。 根据表 9.6,按 =0.05 水准,对于不同区组间,不拒绝 H0 ,尚不能认为不同窝 别家兔血糖浓度值不同;对于不同处理组间,拒绝 H0 ,接受 H1 ,差异具有统 计学意义,可以认为 4 种温度下家兔血糖浓度值不全相同,即处理组 4 个总体 均数中至少有 2 个不同。

卫生统计学课程第九篇方差分析

卫生统计学课程第九篇方差分析

添加标题
原假设和备择假设,并进行假设 检验。
结果解释:根据方差分析的结果, 解释各组之间的差异是否具有统 计学显著性。
05
方差分析的实例解析
实例选择与数据来源
实例选择:选择具有代 表性的数据集
数据来源:确保数据真 实可靠,避免数据污染
数据量:样本量要足够 大,以提高分析的准确
模型建立
确定研究因素和水平
收集数据并整理
确定实验设计和样本量
建立方差分析模型并进行 统计分析
模型检验
方差分析的前提假设 模型拟合度检验 模型诊断与检验 模型预测与评估
结果解释与推断
描述性统计:对数据进行描述性 统计,包括平均数、标准差等。
方差分析:利用方差分析的方法, 比较不同组之间的差异。
添加标题
添加标题
添加标题
添加标题
农业试验:分析不同品种、肥料 等对农作物产量的影响
市场调研:比较不同地区、不同 营销策略对销售额的影响
03
方差分析的数学模型
方差分析的数学表达
方差分析的基本思想是通过数学 模型将不同组别的数据转化为可 比较的形式,从而进行统计分析。
在方差分析中,因变量的变异被分 解为组间变异和组内变异,组间变 异反映了不同组别之间的差异,组 内变异则反映了随机误差。
方差分析与相关分析的比较
目的:比较方差分析和相关分析的异同点
方差分析:用于比较不同组之间的差异,要求数据满足独立性、正态性和方差齐性
相关分析:用于研究变量之间的相关关系,不要求数据满足独立性、正态性和方差 齐性
适用范围:方差分析适用于组间比较,相关分析适用于变量间关系研究
感谢您的观看
汇报人:XX
方差分析的基本假设 方差分析的数学模型 方差分析的数学推导过程 方差分析的数学意义

医学统计学(课件)方差分析

医学统计学(课件)方差分析

要点二
原理
通过将因变量和协变量之间的关系线 性化,进行线性回归分析,并控制其 他因素的影响。
要点三
应用
医学研究中用于研究疾病与基因型、 环境因素之间的关系,社会科学中用 于研究收入和教育水平的关系等。
多重比较方法
01
定义
多重比较方法是方差分析的一种补充 方法,用于比较多个组之间的差异。
02
原理
通过比较每个组与对照组或其他组之 间的差异,推断各组之间的差异是否 具有统计学显著性。
重复测量方差分析
定义
重复测量方差分析是方差分析的另一种拓展,用于比较多次测量或重复观测的差异。
原理
通过将多次测量视为不同的观察对象,对测量误差进行控制和调整。
应用
医学研究中常用于比较不同治疗方案的效果,以及社会科学中研究时间序列数据的变化等。
协方差分析
要点一
定义
协方差分析是方差分析与其他统计方 法的结合,通过控制一个或多个协变 量对因变量的影响。
偏度检验
检查数据分布的偏斜程度。
峰度检验
检查数据分布的峰态。
正态性检验
通过图形和统计量判断数据是否符合正态分布。
方差齐性检验
• 方差齐性检验:通过Levene's Test或Bartlett's Test检验各组方差是否相等。
主效应检验
将数据按照分组变量进行分组,并 对每个分组变量的平均值进行计算 。
方差分析还可以与其他统计方法结合 使用,例如与回归分析结合可进行协 方差分析和混合线性模型分析等。
02
方差分析基本原理
数学模型
数学模型的假设
假定每个总体均数之间有差异,且每个总体均数与模型中其他变量的关系已知。

医学统计学方差分析

医学统计学方差分析
方差分析基于以下假设:观察值之间相互独立;每个组内的观察值服从正态分布;每个组内的观察值具有相同的方差。
定义与原理
方差分析适用于多个组间的均值比较。当数据不符合正态分布或方差不齐时,可以经过适当的转换或采用非参数方法进行比较。
方差分析可以用于实验设计中的多因素分析,例如研究不同药物、剂量、时间等因素对生物指标的影响。
方差分析的数学模型与假设
02
线性模型
方差分析常用于处理一个或多个分组间的均值差异,因此需要构建线性模型来描述数据。线性模型中,每个组的观察值与该组的均值呈线性关系。
随机误差项
在方差分析中,每个观察值被认为是由固定效应(组均值)和随机效应(随机误差项)组成的。随机误差项是随机变量,且独立同分布,服从正态分布。
《医学统计学方差分析》
xx年xx月xx日
CATALOGUE
目录
方差分析概述方差分析的数学模型与假设方差分析的步骤与实例方差分析的优缺点与注意事项方差分析在医学中的应用与案例方差分析的发展趋势与未来展望
方差分析概述
01
方差分析(ANOVA)是一种统计方法,用于比较三个或更多组数据的均值差异。其原理是通过将数据的总变异分解为组间变异和组内变异,然后比较这两部分的变异是否具有显著性。
要点一
要点二
精度高
方差分析通过将每个观察值与各组均值进行比较,能够更准确地确定组间差异。
适用于多因素分析
方差分析可以同时考虑多个因素对实验结果的影响,适用于多因素的研究设计。
要点三
缺点
对数据正态性和独立性要求较高
方差分析要求数据符合正态分布,且各组观察值独立,否则可能导致分析结果的偏差。
对样本含量要求较高
方差分析对样本含量要求较高,样本含量过小可能导致统计效能较低。

医学统计学教学课件-方差分析 PPT

医学统计学教学课件-方差分析 PPT

B 组(24h)
11.14 11.60 11.42 13.85 13.53 14.16 6.94 13.01 14.18 17.72
C 组(96h)
合计
10.85
8.58
7.19
9.36 i为组的编号,A,B,C
9.59
8.81 j为组内为个体编号,
8.22 1,2,…,10
9.95
11.26
8.68
与总均数 X 间的差别
2. 组间变异( between group variation ) 各
组的均数
X
与总均数
i
X
间的差异
3. 组内变异(within group variation )每组的
10个原始数据与该组均数X i 的差异
下面先用离均差平方和(sum of squares of
deviations from mean,SS)表示变异的大小
3. 组内变异
在同一处理组内,虽
然每个受试对象接受的处
理相同,但测量值仍各不
相同,这种变异称为组内
变异。SS组内仅仅反映了随
mi
机误差的影响。也称SS误差
k ni
k
SS组内
(XijXi)2 (ni 1)Si2
i1 j1
i1
组间 =Nk
S 组 = ( 7 S . 7 内 8 . 0 6 ) 2 ( 7 4 . 7 8 . 0 1 ) 2 4 ( 8 . 6 9 . 2 8 ) 2 1 5 . 0 1
ni
T3 X 3 j j 1
k ni
X X ij i1 j1
ni
Qi
X
2 ij
j 1
ni

医学统计学方差分析

医学统计学方差分析

医学统计学方差分析方差分析是一种统计学方法,用于比较三个或三个以上的组之间的平均值是否存在显著差异。

在医学研究中,方差分析常用于比较不同治疗方法或不同个体群体之间的差异,以确定是否存在统计学上的显著差异。

方差分析的基本原理是比较组间离散程度与组内离散程度的比值,即组间均方与组内均方的比值。

组间方差表示不同组之间的差异性,组内方差表示同一组内个体之间的变异程度。

如果组间离散程度显著大于组内离散程度,即组间均方大于组内均方,就可以得出组间存在显著差异的结论。

在医学研究中,方差分析可以应用于很多不同的情况。

举例来说,我们可以使用方差分析来比较不同药物对同一疾病的治疗效果,或者比较不同药物剂量对同一疾病的治疗效果。

我们还可以使用方差分析比较不同年龄组、性别组或不同地区患者之间的其中一种疾病发病率。

方差分析的核心是比较组间差异与组内差异。

组间差异可以通过计算组间均方来得到。

组间均方的计算公式为组间平方和除以组间自由度。

组间平方和是每个组内数据与该组均值之差的平方的总和。

组间自由度等于组数减1、组内差异可以通过计算组内均方来得到。

组内均方的计算公式为组内平方和除以组内自由度。

组内平方和是每个组内数据与该组均值之差的平方的总和。

组内自由度等于总体样本量减去组数。

计算得到组间均方和组内均方之后,即可计算F值。

F值等于组间均方除以组内均方。

F值的计算结果可以与F分布的临界值进行比较,以判断组间均方是否显著大于组内均方。

如果F值大于F分布的临界值,就可以得出组间存在显著差异的结论。

除了F值,方差分析还可以计算一些其他的统计量。

例如,可以计算每个组的均值和标准差,以了解不同组之间的差异程度。

还可以计算方差分析表,其中包含了组间平方和、组间自由度、组间均方、组内平方和、总平方和、总自由度、组内自由度和组内均方等统计量。

需要注意的是,在进行方差分析之前,需要检验数据的正态性和方差齐性。

正态性检验可通过绘制正态概率图、Shapiro-Wilk检验或Kolmogorov-Smirnov检验进行。

医学统计学第9章作业

医学统计学第9章作业

第九章方差分析三、综合分析题1. 某医生研究不同方案治疗缺铁性贫血的效果,将36名缺铁性贫血患者随机等分为3组,分别给予一般疗法、一般疗法+药物A低剂量,一般疗法+药物A高剂量三种处理,测量一个月后患者红细胞的升高数(102/L),结果如表9-1所示。

问三种治疗方案有无差异?表9-1 三种方案治疗一个月后缺铁性贫血患者红细胞的升高数(102/L)编号一般疗法一般疗法+A1 一般疗法+A21 0.81 1.32 2.352 0.75 1.41 2.503 0.74 1.35 2.434 0.86 1.38 2.365 0.82 1.40 2.446 0.87 1.33 2.467 0.75 1.43 2.408 0.74 1.38 2.439 0.72 1.40 2.2110 0.82 1.40 2.4511 0.80 1.34 2.3812 0.75 1.46 2.402. 在药物敏感试验中,欲比较三种弥散法的抑菌效果,每种方法均采用三种药物,观察其抑菌效果,以抑菌环的直径为观察指标,结果如表9-2所示,试比较三种方法的抑菌效果。

表9-2 三种药物在不同弥散法下的抑菌效果(mm)药物弥散法纸片挖洞钢圈黄芪27.5 24.3 20.0 27.6 24.6 21.026.9 25.0 20.627.3 27.7 20.8大黄20.9 24.6 19.121.2 24.7 19.3 20.5 23.9 18.721.3 24.8 18.5青霉素27.4 22.0 29.6 27.6 21.7 30.2 26.9 21.8 29.5 26.7 22.3 30.43. 某试验研究饮食疗法和药物疗法降低高胆固醇血症患者胆固醇的效果有无差别,随机选取14名高胆固醇血症患者,随机等分为两组,分别采用饮食疗法和药物疗法治疗一个疗程,测量试验前后患者血胆固醇含量,结果如表9-3所示,请问两种疗法降胆固醇效果有无差异。

医学统计学方差分析课件

医学统计学方差分析课件

协方差分析
实验设计
协方差分析用于研究两个独立变量对因变量的影响,同时控制一个或多个协变量对结果的影响。
数据要求
各组样本量需相等,且满足方差齐性和正态性假设。
统计软件实现
一般使用SPSS、SAS、R等统计软件进行计算和分析。
01
02
03
区别
方差分析主要研究独立变量对因变量的影响,而相关性分析主要研究两个变量之间的相关关系;方差分析需要满足随机化和对照原则,而相关性分析不需要;方差分析可以控制协变量对结果的影响,而相关性分析不能。
方差分析的基本思想是将数据的总变异分解为不同来源的变异,包括组间变异和组内变异。
组间变异是由于不同因素或分组的影响导致的,可以用方差来度量;组内变异是由于随机误差或其他未知因素导致的,可以用组内均方来度量。
方差分析的目的是比较不同因素或分组对因变量的影响是否显著,即组间变异与组内变异之间的差异是否有统计学意义。
方差分析在药物疗效研究中的应用
总结词
医学遗传学研究中应用方差分析可以研究基因型与表型之间的关系,分析遗传因素对疾病等表型特征的影响。
详细描述
通过收集患者的基因型和表型数据,研究人员可以使用方差分析来比较不同基因型患者之间的表型特征是否存在显著性差异。例如,研究人员可以比较不同基因型精神分裂症患者的症状严重程度是否有所不同。
效应大小
效应大小是指各因素对结果的影响程度。在方差分析中,应注意效应大小的评估,以便更好地了解各因素对结果的贡献程度。通常,可以通过计算因素贡献率、标准化均方差等指标来评估效应大小。
样本量大小与效应大小
VS
在方差分析中,如果因素水平存在差异,会对结果产生影响。因此,需要对因素水平进行调整,以消除其对结果的影响。例如,可以通过采用配对或配伍设计来平衡各组间的因素水平。

医学统计学(课件)方差分析

医学统计学(课件)方差分析
医学统计学(课件)方 差分析
汇报人:
日期:
目录
• 方差分析概述 • 方差分析的数学模型与步骤 • 方差分析在医学中的应用 • 方差分析的局限性及注意事项 • 方差分析的软件实现 • 方差分析案例解析
01
方差分析概述
定义与原理
方差分析(ANOVA)是一种统计方法,用于比较三个或更多组间的均值差异,以此确定因素对 因变量的影响。
案例三
总结词
通过方差分析,可以比较不同品牌疫苗接种后不良反 应发生率的差异,为选择安全可靠的疫苗提供参考。
详细描述
在疫苗接种研究中,不同品牌疫苗接种后不良反应发 生率可能存在差异。方差分析可以用于比较不同品牌 疫苗接种后不良反应发生率的差异,以评估不同疫苗 的安全性。结果可以为疫苗选择提供参考依据,以最 大程度地减少不良反应的发生。
VS
例如,研究不同治疗方案对某疾病患 者疗效的影响、不同地区居民收入差 异等。
02
方差分析的数学模型与步骤
数学模型
方差分析(ANOVA)的数学模型
F = MS组间 / MS组内。其中,MS组间是各组间的均方,MS组内是各组内的均方。
方差分析的基本思想
将总的变异分解为组间变异和组内变异两部分,并计算它们的比值,即F值。
03 多重比较
在多个因素之间进行多重比较,确定各因素之间 的差异以及治疗效果的差异。
方差分析的局限性及注意事
04

样本量与效应指标的选择
样本量
方差分析对样本量有一定的要求,过小的样本量可能导致统计结果不稳定。在实验设计时,应充分考虑样本量对 结果的影响,并合理选取样本量。
效应指标
方差分析主要关注多个组间的均值差异,因此应选择合适的效应指标,如均数、中位数等,来反映各组的平均水 平。

医学统计学:第九章 方差分析

医学统计学:第九章 方差分析
第九章 方差分析
目 录
第一节 方差分析的基本思想


第二节
第三节
单因素方差分析
双因素方差分析

第四节
多个样本均数间的两两比较
学习要求
1、掌握方差分析的基本思想; 2、掌握单因素方差分析的应用条件、意义
及计算方法;
第一节 方差分析的基本思想
一、方差分析的用途及应用条件 1. 方 差 分 析 ( analysis of variance ,

即要求检验假设为 H 0 : 1 2 k 此假设的意义为,在某处理因素的不同水平下,各样本的 总体均数相等。
3、设某因素有多个水平,即试验数据产生多个样本。由
多个样本的全部数据可以计算出总变异,称为总的离均差 平方和。即SS总。
4、数理统计证明,SS总可以由几个部分构成。单因素方差
该结论的意义为,至少有两种组织的 PCNA 表达指数不 同。如果想确切了解哪两个组织的PCNA表达指数有差异, 可进一步作多个样本均数的两两比较。
表4-3 方差分析表
变异来 源
(1) SS ( 2) 自由度 (3) 均方 (4) F值 (5) F0.05 (6) F0.01 P值
(7) (8)
SS总
PCNA在三种不同胃组织中的表达结果
不同胃组织Xi
A 56 46 39 57 61 54 70 64 50 B 30 37 20 17 37 36 16 13 15 221 9 24.56 6273 100 8 12.5 1672 874 (∑X) 27 ( N) 32.37(总均值) 39236( ∑X2) C 21 14 27 8 9 6 10 5
ANOVA)是常用的统计分析方法之一。其应
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


23 1 1 11 10
MS
F
P
0.54 0.015 0.1698 0.3475
1.554 0.0432 0.4886
Байду номын сангаас
>0.05 >0.05 >0.05
例9.6 为研究某降血糖药物对糖尿病及正常 大鼠心肌磺脲类药物受体SUR1的mRNA的 影响,某研究者进行了如下实验:将24只 大鼠随机等分成4组:两组正常大鼠,另两 组制成糖尿病模型,糖尿病模型的两组分 别进行给药物和不给药物处理,剩余两组 正常大鼠也分别进行给药物和不给药物处 理,测得各组mRNA吸光度的值(%)结果见 表9.14。
方差分析
(Analysis of Variance, ANOVA) 多总体均数比较
多重t检验:在检验过程中增大了I型错误的概 率
多因素设计的均数比较 交互效应的分析 重复测量的均数比较
例9.1
为研究大豆对缺铁性贫血的恢复作用,选 取已做成贫血模型的大鼠36只,随机等分 为3组,分别用三种不同的饲料喂养:不含 大豆的普通饲料、含10%大豆饲料和含 15%大豆饲料,喂养一周后,测定大鼠红 细胞数(1012/L)。试分析喂养三种不同饲料 的大鼠贫血恢复情况是否不同。
变异的比较
F1的原因
处理作用无意义,抽样误差造成 处理作用有意义, MS组间>MS组内
检验方法:F分布的基础上,小概率反证法
F分布
f (F) 1.0 0.8
0.6
1 =10,2 =10
0.4
0.2

2


2
0.0 0 1 2 3 4 5
F/2,, ( 1, 2) (双)
F,( 1, 2) (单) F/2,( 1, 2)(双)
表9.11 失眠患者睡眠时间增加量(小时)
用药顺序 患者编号 1 2 3 A B 4 5 6 合计 7 8 9 B A 10 11 12 合计 第一阶段 2.7 3.1 2.9 2.2 2.6 1.6 15.1 2.7 1.9 1.8 1.4 2.5 2.4 12.7 第二阶段 1.6 2.1 1.6 2.3 2.3 3.1 13.0 2.7 1.7 2.6 2.3 2.9 2.0 14.2
变异解释
组间变异 总变异 组内变异 误差 处理效应
变异的比较
构造F 统计量
MS B F ~ F ( 1 , 2 ) MSW
若处理效应无意义,处理效应=0,即各样本均 数来自同一总体,则组间变异与组内变异均只 反映随机误差
理论上:F=1 抽样误差的影响:F1
若处理效应0,则MS组间>MS组内,F>1
F
基本思想
分解:根据资料的设计类型,即变异的不 同来源将全部观察值总的离均差平方和及 自由度分解为两个或多个部分 解释:除随机误差外,其余每个部分的变 异可由某个因素的作用相联系。 比较:通过不同变异来源的均方与随机误 差均方的比较,借助 F 分布作出统计推断, 从而了解该因素对观测指标有无影响。
例9.5 某医师研究A、B两种药物对失眠患 者改善睡眠的效果,将12名患者按交叉设 计方案随机分为两组,观察两种药物、两 个阶段睡眠时间增加量(小时),每个阶段治 疗两周,间隔两周。第一组患者为A→B顺 序,即第一阶段服用A药,第二阶段服用B 药;第二组为B→A顺序,即第一阶段服用 B药,第二阶段服用A药。结果见表9.11。
2 1 2 2
, n1 n2 2
XA XB q SX A XB
XA XB , MSe 1 1 ( ) 2 nA nB
= e
XT X C tD S XT X C
XT X C 1 1 MSe ( ) nT nC
,
= e
应用条件
正态 独立 方差齐
变异的分解
组间变异(between groups variation) :每组 各样本均数也不等
SSB = ni ( X i X )
i 2
B k 1
MS B
SS B
B
表9.1 喂养三种不同饲料的大鼠红细胞数(×1012/L)
普通饲料 4.78 4.65 3.98 4.04 3.44 x1 3.77 3.65 4.91 4.79 5.31 4.05 5.16 10%大豆饲料 4.65 6.92 4.44 6.16 5.99 x2 6.67 5.29 4.70 5.05 6.01 5.67 4.68 15%大豆饲料 6.80 5.91 7.28 7.51 7.51 x 3 7.74 8.19 7.15 8.18 5.53 7.79 8.03
阶段
H0:两阶段药物对失眠患者改善睡眠的效果相同 H1:两阶段药物对失眠患者改善睡眠的效果不同
个体
H0:患者个体间药物改善睡眠的效果相同 H1:患者个体间药物改善睡眠的效果不同
表9.13 资料的方差分析表
变异来源 总变异 药 物 阶 段 个 体 误 差 SS 5.8983 0.54 0.015 1.8683 3.475
变异的分解
组内变异(Within group variation):表示每 个组内各观测值不等,也称为误差
2 SSW= ( X X ) ij i i j
W n k
MSW
SSW
W
变异的分解
三种变异的关系:线性可加性(SS可相加)
SST SSB SSW vT vB vW
2
┆ n1 1 2 ┆ n2
交叉设计的特点
优点:
可比性强:优于一般的自身对照,控制了时间 因素的影响 节约样本 照顾了医德
缺点:
分阶段实施不同的处理,比较效应的差别
不适用于可以在短时间内痊愈或根治的疾病
适用范围
来源较困难、个体差异较大的动物(如牛、 猴等) 临床上多用于评价可缓解症状但无根治作 用药物的疗效,如止痛、镇静、抗风湿、 降血压、抗失眠药物等的疗效比较
表9.11 失眠患者睡眠时间增加量(小时)
用药顺序 患者编号 1 2 3 A B 4 5 6 合计 7 8 9 B A 10 11 12 合计 第一阶段 2.7 3.1 2.9 2.2 2.6 1.6 15.1 2.7 1.9 1.8 1.4 2.5 2.4 12.7 第二阶段 1.6 2.1 1.6 2.3 2.3 3.1 13.0 2.7 1.7 2.6 2.3 2.9 2.0 14.2
方差分析的基本思想
分解:根据资料的设计类型,即变异的不 同来源将全部观察值总的离均差平方和及 自由度分解为两个或多个部分 解释:除随机误差外,其余每个部分的变 异可由某个因素的作用相联系 比较:通过不同变异来源的均方与随机误 差均方的比较,借助 F 分布作出统计推断, 从而了解该因素对观测指标有无影响
个体
Xn
变异的分解
处理因素 个体因素 总变异 阶段因素


变异分解的统计表达
SS总 SS处理 SS阶段 SS个体 SS误差
总 处理 阶段 个体 误差
处理
H0:A、B两种药物对失眠患者改善睡眠的效果相同 H1:A、B两种药物对失眠患者改善睡眠的效果不同
SNK检验:又称q检验,两两比较 Dunnet-t检验:某一对或某几对在专业上有特 殊意义的均数间的比较
t检验、 q检验、 Dunnet-t检验的比较
X1 X 2 t S X1 X 2 X1 X 2 s (n1 1) s (n2 1) 1 1 ( ) n1 n2 2 n1 n2
F 42.9231
P <0.01
3. 确定值,作出统计推断
根据分子自由度1=2,分母自2=33,查F界 值表,得P<0.01,按=0.05水准,拒绝H0,接受 H1,差别有统计学意义,可以认为喂三种不同饲 料的大鼠红细胞数的总体均数不同。
多个样本均数的两两比较
当总的方差分析结果P时,说明多个总体 均数不全等基础上的进一步分析 在于明确到底哪两个总体均数不等或全不 等
特殊的自身配对设计
二阶段(2×2)交叉设计模式
受试对象 1 准备阶段 (run in) ┆ ┆ 准备阶段 (run in) ┆ ┆ → → 阶段I 处理A ┆ ┆ ┆ 处理B ┆ ┆ ┆ → → 清洗期 清除阶段 (wash out) ┆ ┆ 清除阶段 (wash out) ┆ ┆ → → 阶段II 处理B ┆ ┆ ┆ 处理A ┆ ┆ ┆
完整步骤
1. 建立检验假设,确定检验水准 H0: 1=2 =3 H1 :1、2 、3不全相等
=0.05
2. 计算检验统计量
表9.3 例9.1资料的方差分析表 变异来源 组间变异 组内变异 总变异 SS 52.1258 20.0381 72.1639

2 33 35
MS 26.0629 0.6072
变异的分解
总变异(total variation):36个受试对象的观 测值各不相等
SST ( X ij X )
i j 2
T n 1
MST
SST
T
表9.1 喂养三种不同饲料的大鼠红细胞数(×1012/L)
普通饲料 4.78 x1 x1 4.65 x1 3.98 4.04 x1 x1 3.44 x1 3.77 3.65 x1 x1 4.91 x1 4.79 5.31 x1 4.05 x1 x1 5.16 10%大豆饲料 4.65 x2 x2 6.92 x2 4.44 6.16 x2 x2 5.99 x2 6.67 5.29 x2 x2 4.70 x2 5.05 6.01 x2 5.67 x2 x2 4.68 15%大豆饲料 6.80 x3 x3 5.91 x3 7.28 7.51 x2 x3 7.51 x3 7.74 8.19 x3 x3 7.15 x3 8.18 5.53 x3 7.79 x3 x3 8.03
相关文档
最新文档