人教版高一数学必修一综合测试题

合集下载

人教版A版高中数学必修第一册 第一章综合测试01试题试卷含答案 答案在前

人教版A版高中数学必修第一册 第一章综合测试01试题试卷含答案 答案在前

第一章综合测试答案解析一、 1.【答案】A【解析】A 显然正确;0不是集合,不能用符号“⊆”,B 错误;∅不是M 中的元素,C 错误;M 为无限集,D 错误. 2.【答案】D【解析】{}=0469B ,,,,B ∴的子集的个数为42=16. 3.【答案】D【解析】对于①,当=4a 为正整数;对于②,当=1x 时,为正整数;对于③,当=1y 时,为正整数,故选D .4.【答案】A【解析】由1231x --<<,得12x <<,即{}|12x x x ∈<<,由30x x -()<,得03x <<,即{}|03x x x ∈<<,{}|12x x <<是{}|03x x <<的真子集,{}|03x x <<不是{}|12x x <<的子集,故选A .5.【答案】D【解析】两个集合的交集其实就是曲线和直线的交点,注意结果是两对有序实数对. 6.【答案】B【解析】{=|=0A B x x 或}1x ≥,A 错误;{}=12A B ,,B 正确;{}{}R =|1=0A B x x B ()< ,C 错误;{}R =|0A B x x ()≠ ,D 错误.7.【答案】B【解析】方法一:11a a ⇒⇒>,1011a a ⇒-⇒)>>,∴甲是乙的充要条件,故选B .方法二:20a a a a ⎧⇔⎨⎩>,>,,1a ∴>,故选B .8.【答案】C【解析】由题意得N M ⊆,由Venn 图(图略)可知选C . 9.【答案】C【解析】由题意知,0=2bx a-为函数2=y ax bx c ++图象的对称轴方程,所以0y 为函数y 的最小值,即对所有的实数x ,都有0y y ≥,因此对任意x ∈R ,0y y ≤是错误的,故选C .10.【答案】D【解析】{}=|1U B x x - > ,{}=|0U A B x x ∴ > .{}=|0U A x x ≤ ,{}=|1U B A x x ∴- ≤ .{=|0U U A B B A x x ∴ ()()> 或}1x -≤.11.【答案】A【解析】一元二次方程2=0x x m ++有实数解1=1404m m ⇔∆-⇔≥≤.当14m <时,14m ≤成立,但14m ≤时,14m <不一定成立.故“14m <”是“一元二次方程2=0x x m ++有实数解”的充分不必要条件.12.【答案】C【解析】A C A B ⊇ ()(),U U A C A B∴⊆ ()() ,∴①为真命题.A C A B ⊆ ()(),U U A C A B∴⊇ ()() ,即U U U U A C A B ⊇ ()() ,∴②为真命题.由Venn 图(图略)可知,③为假命题.故选C . 二、13.【答案】x ∀∈R ,210x +≥【解析】存在量词命题的否定是全称量词命题. 14.【答案】0【解析】依题意得,23=3m m ,所以=0m 或=1m .当=1m 时,违反集合中元素的互异性(舍去). 15.【答案】充分不必要【解析】由=2a 能得到1)(2)0(=a a --,但由1)(2)0(=a a --得到=1a 或=2a ,而不是=2a ,所以=2a 是1)(2)0(=a a --的充分不必要条件. 16.【答案】12【解析】设全集U 为某班30人,集合A 为喜爱篮球运动的15人,集合B 为喜爱乒乓球运动的10人,如图.设所求人数为x ,则108=30x ++,解得=12x . 三、17.【答案】(1)命题的否定:有的正方形不是矩形,假命题(2.5分) (2)命题的否定:不存在实数x ,使31=0x +,假命题.(5分) (3)命题的否定:x ∀∈R ,2220x x ++>,真命题.(7.5分)(4)命题的否定:存在0x ,0y ∈R ,00110x y ++-<,假命题.(10分)18.【答案】(1){=|1U A x x - < 或1x ≥,{=|12U A B x x ∴()≤≤ .(6分) (2){}=|01A B x x <<,{=|0U A Bx x ∴ ()≤ 或}1x ≥.(12分) 19.【答案】①若=A ∅,则2=240p ∆+-()<,解得40p -<<.(4分)②若方程的两个根均为非正实数,则12120=200.10.=x x p p x x ∆⎧⎪+-+⎨⎪⎩≥,()≤,解得≥>(10分) 综上所述,p 的取值范围是{}|4p p ->.(12分) 20.【答案】证明:①充分性:若存在0x ∈R ,使00ay <,则2220004=4b ab b a y ax bx ----() 222000=444b abx a x ay ++-200=240b ax ay +-()>,∴方程=0y 有两个不等实数根.(6分)②必要性:若方程=0y 有两个不等实数根. 则240b ab ->,设0=2bx a-, 则20=22b b ay a a b c a a ⎡⎤-+-+⎢⎥⎣⎦()() 2224==0424b b ac b ac --+<(10分) 由①②知,“方程=0y 有两个不等实根”的充要条件是“存在0x ∈R ,使00ay <”.(12分) 21.【答案】(1)当=2a 时,{}=|17A x x ≤≤,{}=|27AUB x x -≤≤,(3分){R =|1A x x < 或}7x >,{}R =|21A B x x - ()≤< .(6分)(2)=A B A ,A B ∴⊆.①若=A ∅,则123a a -+>,解得4a -<;(8分)②若A ∅≠,则12311212234.a a a a a -+⎧⎪⎪---⎨⎪+⎪⎩≤,≥,解得≤≤≤,(10分)综上可知,a 的取值范围是1|412a a a ⎧⎫--⎨⎬⎩⎭<或≤≤.(12分)22.【答案】设选修甲、乙、丙三门课的同学分别组成集合A ,B ,C ,全班同学组成的集合为U ,则由已知可画出Venn 图如图所示.(2分)选甲、乙而不选丙的有2924=5-(人), 选甲、丙而不选乙的有2824=4-(人), 选乙、丙而不选甲的有2624=2-(人),(6分) 仅选甲的有382454=5---(人), 仅选乙的有352452=4---(人), 仅选丙的有312442=1---(人),(8分)所以至少选一门的人数为24542541=45++++++,(10分) 所以三门均未选的人数为5045=5-.(12分)第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}=|23M x x -<<,则下列结论正确的是( ) A .2.5M ∈ B .0M ⊆C .M ∅∈D .集合M 是有限集2.已知集合{}=023A ,,,{}=|=B x x ab a b A ∈,,,则集合B 的子集的个数是( ) A .4B .8C .15D .163.下列存在量词命题中,真命题的个数是( )①存在一个实数a 为正整数;②存在一个实数x ,使为正整数;③存在一个实数y 为正整数. A .0B .1C .2D .34.已知1231p x --:<<,30q x x -:()<,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.设集合{}2=|=+M x y y x x (,),{}N=|=+16x y y x (,),则M N 等于( ) A .416(,)或412-(,)B .{420,,}412-, C .{412(,),}420-(,)D .{420(,),}412-(,)6.若集合{}=|1A x x ≥,{}=012B ,,,则下列结论正确的是( ) A .{}=|0A B x x ≥B .{}=12A B ,C .{}R =01A B (),D .{}R =|1A B x x()≥7.甲:“1a >”是乙:“a ”的( ) A .既不充分也不必要条件 B .充要条件 C .充分不必要条件D .必要不充分条件8.已知全集*=U N ,集合{}*=|=2M x x n n ∈N ,,{}*=|=4N x x n n ∈N ,,则( )A .=U M NB .=U U M N ()C .=U U M N ()D .=U U M N ()9.已知0a >,函数2=++y ax bx c .若0x 满足关于x 的方程2+b=0ax ,则下列选项中的命题为假命题的是( )A .存在x ∈R ,y y 0≤B .存在x ∈R ,0y y ≥C .对任意x ∈R ,y y 0≤D .对任意x ∈R ,0y y ≥10.已知=U R ,{}=|0A x x >,{}=|1B x x -≤,则U U A B B A ()() 等于( )A .∅B .{}|0x x ≤C .{}|1x x ->D .{|0x x >或}1x -≤11.“14m <”是“一元二次方程2++=0x x m 有实数解”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件12.已知U 为全集,A ,B ,C 是U 的子集,A C A B ⊆ ()(),A C A B ⊇ ()(),则下列命题中,正确的个数是( )①U U A C A B ⊆ ()() ; ②U U U U A C A B ⊇ ()() ;③C B ⊆. A .0B .1C .2D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.命题:“0x ∃∈R ,2+10x <”的否定是________.14.设集合{}2=33A m ,,{}=33B m ,,且=A B ,则实数m 的值是________. 15.若a ∈R ,则“=2a ”是“(1)(2)=0a a --”的________条件.16.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)写出下列命题的否定并判断其真假. (1)所有正方形都是矩形;(2)至少有一个实数0x 使3+1=0x ;(3)0x ∃∈R ,2+2+20x x ≤;(4)任意x ,y ∈R ,+1+10x y -≥.18.(本小题满分12分)设全集=U R ,集合{}=|11A x x -≤<,{}=|02B x x <≤.(1)求U A B () ;(2)求U A B() .19.(本小题满分12分)已知{}2=|+2++1=0A x x p x x ∈Z (),,若{}|0=A x x ∅ >,求p 的取值范围.20.(本小题满分12分)已知2=0y ax bx c a b c a ++∈R (,,,且≠).证明:“方程=0y 有两个不相等的实数根”的充要条件是“存在0x ∈R ,使00ay <”.21.(本小题满分12分)已知集合{}=|12+3A x a x a -≤≤,{}=|24B x x -≤≤,全集=.U R(1)当=2a 时,求A B 和R A B () ;(2)若=A B A ,求实数a 的取值范围.22.(本小题满分12分)某班有学生50人,学校开设了甲、乙、丙三门选修课,选修甲的有38人,选修乙的有35人,选修丙的有31人,兼选甲、乙两门的有29人,兼选甲、丙两门的有28人,兼选乙、丙两门的有26人,甲、乙、丙三门均选的有24人,那么这三门均未选的有多少人?。

最新高中数学必修1综合测试卷(三套+含答案)教学教材

最新高中数学必修1综合测试卷(三套+含答案)教学教材
一、选择题:
1、设全集 集合 从 到 的一个映射为 ,其中 则 _________________。
2、已知 是方程 的根, 是方程 的根,则 值为______________。
3、已知函数 的图象关于直线 对称,且当 时 则当 时
________________。
4、函数 的反函数 的图像与 轴交于点 (如图所示),则方程 在 上的根是
5、设
A、0B、1 C、2D、3
6、从甲城市到乙城市 分钟的电话费由函数 给出,其中 , 表示不大于 的最大整数(如 ),则从甲城市到乙城市 分钟的电话费为______________。
7、函数 在区间 上为增函数,则 的取值范围是______________。
8、函数 的值域为______________。
令 (0≤t≤ ),则x=t2+1,
∴ …………………………………………………8分
故当t= 时,可获最大利润 万元.……………………………………………………10分
此时,投入乙种商品的资金为 万元,
投入甲种商品的资金为 万元.……………………………………………………12分
21、(1)证明: ,令x=y=1,则有:f(1)=f(1)-f(1)=0,…2分
22、解:(1) 是R上的奇函数 ,
即 ,即
即 ∴
或者 是R上的奇函数
,解得 ,然后经检验满足要求。…………………………………3分(2)由(1)得
设 ,则

,所以 在 上是增函数…………………………………7分
(3) ,
所以 的值域为(-1,1)
或者可以设 ,从中解出 ,所以 ,所以值域为(-1,1)…12分
高中数学必修1综合测试卷(三套+含答案)

高中数学人教A版必修第一册综合检测试题

高中数学人教A版必修第一册综合检测试题

综合检测试题选题明细表一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|2x-1≥1},B={y|y=log3x,x∈A},则∁B A等于( B )A.(0,1)B.[0,1)C.(0,1]D.[0,1]解析:由题得A={x|2x-1≥20}={x|x≥1},B={y|y≥0},所以∁B A={x|0≤x<1}.故选B.2.若a=0.60.7,b=0.70.6,c=lg 3,则下列结论正确的是( D )A.b>c>aB.c>a>bC.a>b>cD.b>a>c解析:因为y=x0.6为增函数,y=0.6x为减函数,所以0.70.6>0.60.6>0.60.7>0.61,c=lg 3<lg √10=0.5, 所以b>a>c.故选D.3.已知正实数x ,y 满足x+2y=2xy ,则x+y 的最小值为( D ) A.4 B.√2 C.√3 D.√2+32解析:因为正实数x ,y 满足x+2y=2xy , 所以x+2y xy=2,即1y +2x =2,所以x+y=(x+y 2)·(1y +2x )=x 2y +1+12+y x ≥32+2√x 2y ·y x =32+√2,当且仅当x 2=2y 2时,等号成立. 故选D.4.已知函数f(x)为奇函数,当x>0时,f(x)=log 2(x+1)+ax ,且f(-3)=a ,则f(7)等于( B ) A.12B.-12C.log 23D.2解析:因为函数f(x)为奇函数,当x>0时,f(x)=log 2(x+1)+ax ,且f(-3)=-f(3)=a ,所以f(3)=-a ,即2+3a=-a ,所以a=-12,则f(7)=log 28+7a=3-72=-12.故选B.5.已知2sin 2α=1+cos 2α,则tan 2α等于( D ) A.-43 B.43C.-43或0 D.43或0解析:因为{2sin2α=1+cos2α,sin 22α+cos 22α=1,所以{sin2α=0,cos2α=-1或{sin2α=45,cos2α=35.所以tan 2α=0或tan 2α=43.故选D.6.将函数f(x)=sin(2x+π6)的图象分别向左、向右平移ϕ(ϕ>0)个单位长度后,所得的图象都关于y 轴对称,则ϕ的最小值分别为( A ) A.π6,π3B.π3,π6C.2π3,5π6D.π6,π12解析:函数f(x)的图象向左平移ϕ个单位长度得到函数g(x)= sin(2x+2ϕ+π6)的图象,因为g(x)图象关于y 轴对称,则2ϕ+π6=π2+k π,k ∈Z ,即ϕ=π6+kπ2,k∈Z ,而ϕ>0, 则ϕmin =π6;函数f(x)的图象向右平移ϕ个单位长度得函数h(x)=sin(2x-2ϕ+π6)的图象,因为函数h(x)关于y 轴对称,则有-2ϕ+π6=π2+k π,k ∈Z ,即ϕ=-π6-kπ2,k ∈Z ,而ϕ>0,则ϕmin =π3,所以ϕ的最小值分别为π6,π3.故选A.7.如图所示,其对应的函数解析式可能是( B )A.f(x)=1|x -1|B.f(x)=1||x |-1|C.f(x)=11-x2D.f(x)=11+x 2解析:函数的定义域为{x|x ≠±1},排除选项A 和D ,当x ∈(1,+∞)时,f(x)>0,可排除选项C.故选B. 8.已知函数f(x)=ln(1+x 2)-11+|x |,若实数a 满足f(log 3a)+f(lo g 13a)≤2f(1),则a 的取值范围是( D ) A.[1,3] B.(0,13)C.(0,3]D.[13,3]解析:函数f(x)=ln(1+x 2)-11+|x |,故函数f(x)在(0,+∞)上单调递增,且f(x)为偶函数,若实数a 满足f(log 3a)+f(lo g 13a)≤2f(1),即f(log 3a)+f(-log 3a)≤2f(1),f(log 3a)≤f(1),所以|log 3a|≤1,即-1≤log 3a ≤1,故13≤a ≤3.故选D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知f(x)={log 3x ,x >0,2x ,x ≤0,角α的终边经过点(1,2√2),则下列结论正确的是( AC )A.f(cos α)=-1B.f(sin α)=1C.f(f(cos α))=12D.f(f(sin α))=2解析:因为角α的终边经过点(1,2√2), 所以sin α=2√23,cos α=13, 所以f(cos α)=f(13)=log 313=-1, f(sin α)=f(2√23)=log 32√23<0, 所以f(f(cos α))=f(-1)=2-1=12, f(f(sin α))=2log 32√23.故选AC.10.下列命题正确的是( ABD ) A.函数f(x)=x+1x (x>0)的最小值为2B.函数y=2-x-4x(x>0)的最大值为-2C.函数f(x)=2x+1x的最小值为2√2D.函数f(x)=2√x 2+1的最小值为3解析:因为x>0,所以f(x)=x+1x≥2√1=2,当且仅当x=1x,即x=1时,取等号,所以函数的最小值为2,所以A 正确;因为x>0,所以f(x)=x+4x≥2√4=4,当且仅当x=4x,即x=2时,取等号,所以函数f(x)的最小值为4,所以函数y 的最大值为-2,所以B 正确;当x=-1时,f(-1)=-3,所以C 错误; 设√x 2+1=t(t ≥1),则x 2=t 2-1,则f(t)=2t 2+1t=2t+1t,在[1,+∞)上任取t 1,t 2.令t 1<t 2,则f(t 1)-f(t 2)=2(t 1-t 2)+(1t 1-1t 2)=(t 1-t 2)·(2-1t 1t 2).因为1≤t 1<t 2,所以t 1-t 2<0,2-1t 1t 2>0,所以f(t 1)<f(t 2).则f(t)=2t+1t在[1,+∞)上为增函数,所以当t=1时,f(t)的最小值为f(1)=3, 所以D 正确.故选ABD.11.已知直线x=π8是函数f(x)=sin(2x+ϕ)(0<ϕ<π)的一条对称轴,则( ACD ) A.f(x+π8)是偶函数B.x=3π8是f(x)的一条对称轴C.f(x)在[π8,π2]上单调递减D.y=f(x)与g(x)=sin(2x-π4)的图象关于直线x=π4对称解析:直线x=π8是函数f(x)=sin(2x+ϕ)(0<ϕ<π)的一条对称轴,所以2×π8+ϕ=k π+π2,k ∈Z ,所以ϕ=π4,所以f(x+π8)=sin(2x+π2)=cos 2x ,是偶函数,故A 正确;由2x+π4=k π+π2(k ∈Z),解得x=kπ2+π8(k ∈Z),所以f(x)的对称轴方程为x=kπ2+π8(k ∈Z),而x=3π8不能满足上式,故B 错误;当x ∈[π8,π2],2x+π4∈[π2,5π4],此时函数f(x)单调递减,故C 正确;显然,f(x)=sin(2x+π4)与g(x)=sin(2x-π4)的图象关于直线x=π4对称,故D 正确.故选ACD.12.高斯是德国著名的数学家,用其名字命名的“高斯函数”为设 x ∈R ,用[x]表示不超过x 的最大整数,则y=[x]称为高斯函数,例如:[-1.5]=-2,[2.1]=2.已知函数f(x)=2x -11+2x,则关于函数g(x)=[f(x)]的叙述正确的是( BCD ) A.g(x)是奇函数 B.f(x)是奇函数 C.f(x)在R 上是增函数 D.g(x)的值域是{-1,0}解析:因为函数g(x)=[f(x)],且f(x)=2x -11+2x ,所以g(1)=[f(1)]=0, g(-1)=[f(-1)]=-1, 所以g(-1)≠-g(1),则g(x)不是奇函数,故选项A 错误; 因为f(x)=2x -11+2x,则f(-x)=2-x -11+2-x =1-2x2x +1=-f(x),所以f(x)为奇函数,故选项B 正确; 因为f(x)=2x -11+2x=1+-22x +1,又y=2x +1在R 上为单调递增函数, 则y=-22x +1在R 上为单调递增函数,所以f(x)在R 上为单调递增函数,故选项C 正确; 因为2x >0,则-1<1+-22x +1<1,所以-1<f(x)<1,当-1<f(x)<0时,则g(x)=[f(x)]=-1;当0≤f(x)<1时,则g(x)=[f(x)]=0,所以g(x)∈{-1,0},则g(x)的值域为{-1,0},故选项D正确.故选BCD.三、填空题:本题共4小题,每小题5分,共20分.13.已知函数f(x)=(m2+m-1)x m+1是幂函数,且该函数在第一象限是增函数,则m的值是.解析:由函数f(x)=(m2+m-1)x m+1是幂函数,则m2+m-1=1,解得m=-2或m=1;当m=-2时,f(x)=x-1在第一象限内不是增函数,不符合题意;当m=1时,f(x)=x2在第一象限内是增函数,满足题意.所以m的值是1.答案:114.已知函数y=2x,当x>0时,函数值的取值范围构成集合A,函数y=x k,在x∈A时,函数值的取值范围构成集合B,则A∩B=∅的充要条件是.解析:已知函数y=2x,当x>0时,函数值的取值范围构成集合A=(1,+∞),当x∈(1,+∞)时,函数y=x k∈(0,+∞),由于A∩B=∅,故x k≤1=x0,故k≤0.故A ∩B= 的充要条件是k ≤0. 答案:k ≤015.已知函数y=f(x)满足f(2)>5,且以(1,1)点为对称中心,写出一个符合条件的函数y= . 解析:因为函数的对称中心为(1,1), 所以不妨设为分式函数f(x)=a x -1+1,因为f(2)>5,所以f(2)=a+1>5,解得a>4, 不妨取a=5,即y=5x -1+1.答案:y=5x -1+1(答案不唯一)16.已知f(x)=2sin(2x+π3),若∃x 1,x 2,x 3∈[0,3π2],且x 1<x 2<x 3,使得f(x 1)=f(x 2)=f(x 3),则x 1+x 2+x 3的最小值为 ,最大值为 .解析:作出f(x)图象如图所示,当f(x)图象与y=√3图象相交时,前三个交点横坐标依次为x 1,x 2,x 3,此时x 1+x 2+x 3最小;x 1+x 2=π12×2=π6,f(π)=2sin(2π+π3)=√3,x 3=π,所以最小值为π6+π=7π6;当f(x)图象与y=-√3图象相交时,交点横坐标依次为x 1,x 2,x 3,此时x 1+x 2+x 3最大,x 1+x 2=7π12×2=7π6,f(3π2)=2sin(3π+π3)=-√3,x 3=3π2,最大值为7π6+3π2=8π3.答案:7π68π3四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)若函数y=lg(√3-2sin x)+√1-x 2的定义域为A. (1)求集合A;(2)当x ∈A 时,求函数y=cos 2x+sin x 的最大值. 解:(1)由题意可得{√3-2sinx >0,1-x 2≥0, 解得-1≤x ≤1, 即集合A=[-1,1].(2)y=cos 2x+sin x=-sin 2x+sin x+1,x ∈[-1,1], 令t=sin x ∈[-sin 1,sin 1], 则y=-t 2+t+1=-(t -12)2+54,故当t=12时,函数取得最大值为54.18.(本小题满分12分)某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形OAD 挖去扇形OBC 后构成的).已知OA=10,OB= x(0<x<10),线段BA ,CD 与BC ⏜,AD ⏜的长度之和为30,圆心角为θ弧度.(1)求θ关于x 的函数表达式;(2)记铭牌的截面面积为y ,试问:x 取何值时,y 的值最大?并求出最 大值.解:根据题意,可得BC ⏜=x ·θ,AD ⏜=10θ. 又BA+CD+BC⏜+AD ⏜=30, 所以10-x+10-x+x ·θ+10θ=30, 所以θ=2x+10x+10(0<x<10).(2)y=S 扇形OAD -S 扇形OBC =12θ×102-12θx 2=12θ×(102-x 2)=12θ×(10+x) (10-x),化简得y=-x 2+5x+50=-(x -52)2+2254.于是,当x=52(满足条件0<x<10)时,y max =2254.所以当x=52时,铭牌的截面面积最大,且最大面积为2254.19.(本小题满分12分) 已知函数f(x)=log 3(3x+1)-12x.若不等式f(x)-12x-a ≥0对x ∈(-∞,0]恒成立,求实数a 的取值范围.解:因为不等式f(x)-12x-a ≥0在区间(-∞,0]上恒成立,即a ≤log 3(3x +1)-x 在区间(-∞,0]上恒成立, 令g(x)=log 3(3x +1)-x=log 3(1+13x ),因为x ∈(-∞,0],所以1+13x ≥2,所以g(x)=log 3(1+13x )≥log 32,所以a ≤log 32,所以a 的取值范围是(-∞,log 32]. 20.(本小题满分12分)已知α∈(0,π2),β∈(π2,π),cos β=-13,sin(α+β)=79.(1)求tan β2的值;(2)求sin α的值.解:(1)因为cos β=cos 2β2-sin 2β2=cos 2β2-sin 2β2cos 2β2+sin 2β2=1-tan 2β21+tan 2β2,且cos β=-13,所以1-tan 2β21+tan 2β2=-13,解得tan 2β2=2,因为β∈(π2,π),所以β2∈(π4,π2),所以tan β2>0,所以tan β2=√2.(2)因为β∈(π2,π),cos β=-13,所以sin β=√1-cos 2β=√1-(-13) 2=2√23, 又α∈(0,π2), 故α+β∈(π2,3π2),又sin(α+β)=79,所以cos(α+β)=-√1-sin 2(α+β)=-√1-(79)2=-4√29.所以sin α=sin[(α+β)-β] =sin(α+β)cos β-cos(α+β)sin β =79×(-13)-(-4√29)×2√23=13.21.(本小题满分12分)在①f(x)的图象关于直线x=5π6对称,②f(x)的图象关于点(5π18,0)对称,③f(x)在[-π4,π4]上单调递增,这三个条件中任选一个,补充在下面的问题中,若问题中的正实数a 存在,求出a 的值;若a 不存在,说明理由.已知函数f(x)=4sin(ωx+π6)+a(ω∈N *)的最小正周期不小于π3,且 ,是否存在正实数a ,使得函数f(x)在[0,π12]上有最大值3?解:由于函数f(x)的最小正周期不小于π3,所以2πω≥π3,所以1≤ω≤6,ω∈N *,若选择①,即f(x)的图象关于直线x=5π6对称,有5π6ω+π6=k π+π2(k ∈Z),解得ω=65k+25(k ∈Z),由于1≤ω≤6,ω∈N *,k ∈Z ,所以k=3,ω=4, 此时,f(x)=4sin(4x+π6)+a ,由x ∈[0,π12],得4x+π6∈[π6,π2],因此当4x+π6=π2,即x=π12时,f(x)取得最大值4+a ,令4+a=3,解得a=-1<0,不符合题意.故不存在正实数a ,使得函数f(x)在[0,π12]上有最大值3.若选择②,即f(x)的图象关于点(5π18,0)对称,则有5π18ω+π6=k π(k ∈Z),解得ω=185k-35(k ∈Z),由于1≤ω≤6,ω∈N *,k ∈Z ,所以k=1,ω=3. 此时,f(x)=4sin(3x+π6)+a.由x ∈[0,π12],得3x+π6∈[π6,5π12],因此当3x+π6=5π12,即x=π12时,f(x)取得最大值4sin 5π12+a=√6+√2+a ,令√6+√2+a=3,解得a=3-√6-√2<0,不符合题意. 故不存在正实数a ,使得函数f(x)在[0,π12]上有最大值3.若选择③,即f(x)在[-π4,π4]上单调递增,则有{-ωπ4+π6≥2kπ-π2,ωπ4+π6≤2kπ+π2(k ∈Z),解得{ω≤-8k +83,ω≤8k +43(k ∈Z), 由于1≤ω≤6,ω∈N *,k ∈Z ,所以k=0,ω=1. 此时,f(x)=4sin(x+π6)+a.由x ∈[0,π12],得x+π6∈[π6,π4],因此,当x+π6=π4,即x=π12时,f(x)取得最大值2√2+a ,令2√2+a=3,解得a=3-2√2,符合题意.故存在正实数a=3-2√2,使得函数f(x)在[0,π12]上有最大值3.22.(本小题满分12分)设函数f(x)=ka x -a -x (a>0,且a ≠1)是定义域为R 上的奇函数. (1)求k 的值;(2)若f(1)>0,试求不等式f(x 2+2x)+f(x-4)>0的解集;(3)若f(1)=32,且g(x)=a 2x +a -2x -2mf(x)在[1,+∞)上的最小值为-2,求m 的值.解:(1)因为f(x)是定义域为R 上的奇函数,所以f(0)=0,所以k-1=0,所以k=1,经检验k=1符合题意. (2)因为f(1)>0,所以a-1a >0,又a>0,且a ≠1,所以a>1, 易知f(x)在R 上单调递增, 原不等式化为f(x 2+2x)>f(4-x), 所以x 2+2x>4-x ,即x 2+3x-4>0, 所以x>1或x<-4,所以不等式的解集为{x|x>1或x<-4}. (3)因为f(1)=32,所以a-1a =32,即2a 2-3a-2=0,解得a=2或a=-12(舍去),所以g(x)=22x +2-2x -2m(2x -2-x )=(2x -2-x )2-2m(2x -2-x )+2.令t=f(x)=2x -2-x ,因为x ≥1,所以t ≥f(1)=32,所以g(t)=t 2-2mt+2=(t-m)2+2-m 2, 当m ≥32时,当t=m 时,g(t)min =2-m 2=-2,所以m=2,符合题意; 当m<32时,当t=32时,g(t)min =174-3m=-2,解得m=2512>32,舍去.综上可知,m=2.。

2023-2024学年高一上数学必修一综合测试卷(附答案解析)

2023-2024学年高一上数学必修一综合测试卷(附答案解析)

解析:当 c=0 时,A 不成立;当 a=-1,b=-2 时,B 不成立;
由不等式的性质知 C 不成立;若 a> b,则一定能推出 a>b,故 D 成
立.
3.命题“∃x∈R,x3-x2+1>0”的否定是( A )
A.∀x∈R,x3-x2+1≤0 B.∀x∈R,x3-x2+1>0
C.∃x∈R,x3-x2+1≤0 D.不存在 x∈R,x3-x2+1≤0
的取值范围是( A )
A.[2,6)
B.(2,6)
C.(-∞,2]∪(6,+∞)
D.(-∞,2)∪(6,+∞)
解析:①当 a=2 时,1>0 成立,故 a=2 符合条件;②当 a≠2 时,
a-2>0,
必须满足 Δ=a-22-4a-2<0,
解得 2<a<6.由①②可知,a∈
[2,6).故选 A.
二、多项选择题(本题共 4 小题,每小题 5 分,共 20 分.在每小
2
4
sinx

1π,3π 22
上单调递减,故
y=
π,3π 2sin2x 在 4 4 上单调递减,故
题给出的四个选项中,有多个选项符合题目要求.全部选对的得 5 分,
部分选对的得 3 分,有选错的得 0 分)
9.下列函数是偶函数的是( CD )
A.f(x)=tanx B.f(x)=sinx C.f(x)=cosx D.f(x)=lg|x|
解析:根据题意,依次分析选项:对于 A,f(x)=tanx,是正切函
解析:存在量词命题“∃x∈M,p(x)”的否定为全称量词命题“∀
x∈M,綈 p(x)”,故选 A.
4. 22cos375°+ 22sin375°的值为( A )

高中数学新教材必修第一册期末综合测试题(基础,含多选题、完美、值得收藏)

高中数学新教材必修第一册期末综合测试题(基础,含多选题、完美、值得收藏)

人教版高中数学新教材必修第一册综合测试题第一部分选择题(共60分)一、单项选择题:(共8小题,每题5分,共40分. 在每个小题给出的四个选项中,只有一项是符合题目要求的 )1、全集U ={0,1,3,5,6,8},集合A ={ 1,5, 8 }, B ={2},则集合)A B =U (C ( )A .{0,2,3,6}B .{ 0,3,6}C . {2,1,5,8}D . ∅2、下列各式中,值为12的是 ( )A 、1515sin cosB 、221212cos sin ππ- C 、22251225tan .tan .- D3、函数1)4(cos 22--=πx y 是 ( )A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数C. 最小正周期为2π的奇函数 D. 最小正周期为2π的偶函数4、函数()2log (1)f x x =+的定义域为 ( )A .[)1,3-B .()1,3-C .(1,3]-D .[]1,3-5、已知3tan =α,23παπ<<,那么ααsin cos -的值是( ) A 231+-B 231+-C 231-D 231+ 6、若110a b <<,则下列不等式:①a b ab +<;②||||a b >;③a b <;④2b a a b+>中,正确的不等式是( ) A .①④B .②③C .①②D .③④7、若“2340x x -->”是“223100x ax a -->”的必要不充分条件,则实数a 的取值范围是( )A .635⎡⎤-⎢⎥⎣⎦, B .425⎡⎤-⎢⎥⎣⎦, C .(][)635-∞-+∞,, D .][425⎛⎫-∞-+∞ ⎪⎝⎭,, 8、已知函数()f x 是定义在R 上的偶函数,且()f x 在[0,)+∞上单调递增,若f (2)3=,则满足(1)3f x +<的x 的取值范围是( )A .(-∞,2)(0-⋃,2)B .(2,2)-C .(-∞,3)(0-⋃,1)D .(3,1)- 二、 多项选择题: (共4题,每题5分,共20分. 在每个小题给出的四个选项中,有多个项 符合题目要求. 全部选对的得5分,选对但不全的得3分,未选或有选错的得0分) 9、下列函数中,最小值为2的是( )A .y =x 2+2x +3B .y =e x +e ﹣x C 、)2,0(,sin 1sin π∈+=x x x y D .y =3x +2 10、下列各选项中,值为1的是( ) A .26log 6log 2 B .66log 2log 4+C .1122(23)(23)+-D .1122(2(2-11、已知函数()sin 2sin(2)3f x x x π=++,则( )A .()f x 的最小正周期为πB .曲线()y f x =关于(,0)3π对称C .()f xD .曲线()y f x =关于6x π=对称12、定义:在平面直角坐标系xOy 中,若存在常数(0)ϕϕ>,使得函数()y f x =的图象向右平移ϕ个单位长度后,恰与函数()y g x =的图象重合,则称函数()y f x =是函数()y g x =的“原形函数”.下列四个选项中,函数()y f x =是函数()y g x =的“原形函数”的是( ) A .f 2()x x =,2()21g x x x =-+ B .f ()sin x = x ,()cos g x = xC .f ()x ln = x ,()g x ln =2x D .f 1()()3x x =,1()2()3x g x =第二部分非选择题(90分)二、填空题(本大题共5小题,每小题4分,共20分)13、已知幂函数()()257mf x m m x =-+是R 上的增函数,则m 的值为______.14、已知角α的终边经过点P(5,-12),则ααcos sin +的值为_。

人教版数学必修一综合测试题(含答案)

人教版数学必修一综合测试题(含答案)

数学 必修一 (1)1.已知集合{}{12}A x x a B x x =<=<<,,且,则实数a 的取值范围是( ) A.1≤a B.1a < C.2≥a D.2a >2.满足X ⊆}1{}5,4,3,2,1{的集合X 有 ( )A .15个B .16个C .18个D .31个3.已知集合A ={}01x x <<,{}c x x B <<=0,若=AB B ,则实数c 的取值范围是( )A. [1,+)∞B. (0,1]C. )1,0(D. ),1(+∞ 4.函数223y x x =--的单调减区间是 ( )A.(,1]-∞B. [1,)+∞C. [3,)+∞D. (,1]-∞-5.设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f 则不等式)1()(f x f >的解集是 ( )A.),3()1,3(+∞⋃-B.),2()1,3(+∞⋃-C.),3()1,1(+∞⋃-D.)3,1()3,(⋃--∞6.已知函数2)1(22+-+=x a x y 在]4,(-∞上是减函数,则a 的取值范围是( ) A .),3[+∞- B .]3,(--∞ C .]5,(-∞ D .),3[+∞ 7.已知偶函数()f x 满足(1)0f -=,且在区间[)0,+∞上单调递增.不等式()210f x -<的解集为( )A. ()0,1B. 1,12⎡⎫⎪⎢⎣⎭ C. (),1-∞ D. 10,2⎛⎫ ⎪⎝⎭8.函数22+-=x y 在]3,1[-上的最大值和最小值分别是( ) A .2,1 B .2,-7 C .2,-1 D .-1,-79.已知{15},{4}或A x x x B x a x a =<->=<<+,若A ⊃≠B,则实数a 的取值范围是_________.10.集合{}2,1,2,A x x =--{}22,21,1B x x x =--+,若{}2A B =-,则实数x =_________11.已知集合{|1}A x x =≤,{|0}B x x =>,则A B =_________.12.若1()21x f x a =+-是奇函数,则a = . 13.函数x x y +-=21的值域为 .14.关于x 的二次方程01)2()1(22=+---x m x m 的两个实数根互为倒数,则m = _____.15.已知全集U ={|4}x x ≥-,集合{|12}A x x =-≤,B ={|0}5xx x≥-,求A ∩B , (∁U A)∪B ,A∩(∁U B).16.集合{|10}A x ax =-=,{1,2}B = ,且A B B =,求实数a 的值.17.已知函数2()(21)3f x x a x =+-- (1)当1a =时,求函数()f x 在3[,2]2-上的最值; (2)若函数()f x 在3[,2]2-上的最大值为1,求实数a 的值.18.已知函数()f x 的定义域为()(),00,-∞+∞,且满足条件:①()()()f xy f x f y =+;②(2)1f =;③当1x >时,()0f x >.(1)求证:()f x 为偶函数;(2)讨论函数的单调性;(3)求不等式()(3)2f x f x +-≤的解集.19.已知函数21)(x b ax x f ++=是定义在()1,1-上的奇函数,且5221=⎪⎭⎫ ⎝⎛f .(1)确定函数)(x f 的解析式;(2)用定义证明)(x f 在()1,1-上是增函数; (3)解不等式()0)1(<+-t f t f20.已知)(x f y =在定义域)1,1(-上是减函数,且),13()1(-<-a f a f 求实数a 的取值范围.试卷答案1.C2.A3.A 略4.D5.A6.B7.A 略8.B 略9.略10.略 11.略 12.2113.(-∞,1] 14.2-15.A=[-1,3] ,B=[0,5) A ∩B=[0,3]CuA=[-4,-1) ∪(3,+ ∞) (CuA) ∪B=[-4,-1) ∪[0,+ ∞)A ∩(CuB)=[-1,0)16.略 17.(1)当a=1时413)21(3)(22-+=-+=x x x x f3)2()(2413)21()(21max min ===-=-=-=f x f x f x f x 时当时当(2)对称轴212--=a x 121211211343323)12(49)23()(41,41212221114)2()(41,412121max0max 0-==∴-=∴=-=-⋅--=-=<>--=∴=-==≥≤--a or a a a a f x f a a a a f x f a a 时即当时即当18.(1)证明:令x=y=1 有f(1)=f(1)+f(1) ∴f(1)=0 令x=y=-1 有f(1)=f(-1)+f(-1) ∴f(-1)=0令y=-1 有f(-x)=f(x)+f(-1) ∴f(x)=f(-x)且定义域关于原式对称 ∴f(x)是偶函数 法二:f(x 2)=f(x)+f(x) =f(-x)+f(-x) ∴f(x)=f(-x) 法三:令y=-1f(-x)=f(x)+f(-1) ① x=-x y=-1 f(x)=f(-x)+f(-1) ② ①-② ∴f(x)=f(-x)(2)任取x 1,x 2∈(0,+ ∞)且x 1<x 2,则112>x x 单调递减在是偶函数又上单调递增在时又当)0,()()(),0()(0)()()(0)(0)(,1,1)()()()(121212121121122-∞∴+∞∴>=-∴>∴>>>+=⋅=x f x f x f x x f x f x f x x f x f x x x x f x xf x x x f x f(3))4()]3([)4()3()(2)2()2()22(f x x f f x f x f f f f ≤-≤-+∴=+=⋅ ∵f(x)是偶函数 ∴f(|x(x-3)|) ≤f(4)3041043043304|)3(|03022≠≠≤≤-⇒⎪⎩⎪⎨⎧≤--≥+-≠≠⇒⎪⎩⎪⎨⎧≤-≠-≠∴x x x x x x x x x x x x x 且且或 ∴解集为[-1,0)∪(0,3)∪(3,4]19.略20.略。

最新人教A版高中数学必修第一册综合测试题及答案

最新人教A版高中数学必修第一册综合测试题及答案

最新人教A版高中数学必修第一册综合测试题及答案模块综合测评(满分:150分,时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=()A.{x|-2<x<-1}B.{x|-2<x<3}C.{x|-1<x<1} D.{x|1<x<3}A[在数轴上表示出集合A,B,如图所示.由图知A∩B={x|-2<x<-1}.]2.已知命题p:x为自然数,命题q:x为整数,则p是q的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件A[若x为自然数,则它必为整数,即p⇒q.但x为整数不一定是自然数,如x=-2,即q p.故p是q的充分不必要条件.]3.若cos α=-1010,sin 2α>0,则tan(π-α)等于()A.-3B.3 C.-34 D.34A[∵sin 2α=2sin αcos α>0,cos α=-10 10,∴sin α=-31010,∴tan α=sin αcos α=3,∴tan(π-α)=-tan α=-3,故选A.]4.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1B.3 C.4D.8C[根据题意,满足条件的集合B可以为{3},{1,3},{2,3},{1,2,3}中的任意一个.] 5.若a<b<0,则下列不等式不能成立的是()A.1a-b>1a B.1a>1bC .|a |>|b |D .a 2>b 2 A [取a =-2,b =-1,则1a -b>1a 不成立.] 6.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是( ) A .(0,4) B .[0,4) C .(0,4]D .[0,4]D [当a =0时,满足条件;当a ≠0时,由题意知a >0且Δ=a 2-4a ≤0,得0<a ≤4,所以0≤a ≤4.]7.已知x >0,y >0,且x +2y =2,则xy ( ) A .有最大值为1 B .有最小值为1 C .有最大值为12D .有最小值为12C [因为x >0,y >0,x +2y =2,所以x +2y ≥2x ·2y ,即2≥22xy ,xy ≤12, 当且仅当x =2y ,即x =1,y =12时,等号成立. 所以xy 有最大值,且最大值为12.] 8.函数f (x )=x 12-⎝ ⎛⎭⎪⎫12x的零点个数是( )A .0B .1C .2D .3B [函数f (x )=x 12-⎝ ⎛⎭⎪⎫12x的零点个数是方程x 12-⎝ ⎛⎭⎪⎫12x =0的解的个数,即方程x 12=⎝ ⎛⎭⎪⎫12x的解的个数,也就是函数y =x 12与y =⎝ ⎛⎭⎪⎫12x 的图象的交点个数,在同一坐标系中作出两个函数的图象如图所示,可得交点个数为1.]9.若函数y =a +sin bx (b >0且b ≠1)的图象如图所示,则函数y =log b (x -a )的图象可能是( )C [由题图可得a >1,且y =a +sin bx 的最小正周期T =2πb <π,所以b >2,则y =log b (x -a )是增函数,排除A 和B ;当x =2时,y =log b (2-a )<0,排除D ,故选C.]10.已知a =log 29-log 23,b =1+log 27,c =12+log 213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >a >bD .c >b >aB [a =log 29-log 23=log 233,b =1+log 27=log 227,c =12+log 213=log 226, 因为函数y =log 2x 在(0,+∞)上是增函数, 且27>33>26,所以b >a >c .]11.已知函数①y =sin x +cos x ,②y =22sin x cos x ,则下列结论正确的是( ) A .两个函数的图象均关于点⎝ ⎛⎭⎪⎫-π4,0成中心对称图形B .两个函数的图象均关于直线x =-π4成轴对称图形 C .两个函数在区间⎝ ⎛⎭⎪⎫-π4,π4上都是单调递增函数D .两个函数的最小正周期相同C [①y =2sin ⎝ ⎛⎭⎪⎫x +π4,图象的对称中心为⎝ ⎛⎭⎪⎫-π4+k π,0,k ∈Z ,对称轴为x =π4+k π,k ∈Z ,单调递增区间为⎣⎢⎡⎦⎥⎤-3π4+2k π,π4+2k π,k ∈Z ,最小正周期为2π;②y =2sin 2x 图象的对称中心为⎝ ⎛⎭⎪⎫12k π,0,k ∈Z ,对称轴为x =π4+12k π,k ∈Z ,单调递增区间为⎣⎢⎡⎦⎥⎤-π4+k π,π4+k π,k ∈Z ,最小正周期为π.故选C.]12.函数y =sin x 与y =tan x 的图象在[-2π,2π]上的交点个数为( ) A .3 B .5 C .7 D .9 B [由⎩⎨⎧y =sin x ,y =tan x ,得sin x =tan x ,即sin x ⎝ ⎛⎭⎪⎫1-1cos x =0.∴sin x =0或1-1cos x =0, 即x =k π(k ∈Z ),又-2π≤x ≤2π,∴x =-2π,-π,0,π,2π, 从而图象的交点个数为5.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.命题p :“∀x ∈{x |x 是三角形},x 的内角和是180°”的﹁p 是________. ∃x 0∈{x |x 是三角形},x 0的内角和不是180° [因为p 是全称量词命题,则﹁p 为存在量词命题.]14.已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3},∁U B ∩A ={9},则A =________.{3,9} [由题意画出Venn 图,如图所示.由图可知,A ={3,9}.]15.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt (其中k 为常数,t 表示时间,单位:小时,y 表示病毒个数),则经过5小时,1个病毒能繁殖为________个.1 024 [当t =0.5时,y =2,所以2=e k 2, 所以k =2ln 2,所以y =e 2t ln 2, 当t =5时,y =e 10ln 2=210=1 024.] 16.已知函数f (x )=⎩⎪⎨⎪⎧kx +3,x ≥0,⎝ ⎛⎭⎪⎫12x,x <0,若方程f (f (x ))-2=0恰有三个实数根,则实数k的取值范围是________.⎝ ⎛⎦⎥⎤-1,-13 [∵f (f (x ))-2=0,∴f (f (x ))=2, ∴f (x )=-1或f (x )=-1k (k ≠0).① ② ③(1)当k =0时,作出函数f (x )的图象如图①所示, 由图象可知f (x )=-1无解,∴k =0不符合题意; (2)当k >0时,作出函数f (x )的图象如图②所示, 由图象可知f (x )=-1无解且f (x )=-1k 无解, 即f (f (x ))-2=0无解,不符合题意;(3)当k <0时,作出函数f (x )的图象如图③所示, 由图象可知f (x )=-1有1个实根, ∵f ((x ))-2=0有3个实根, ∴f (x )=-1k 有2个实根, ∴1<-1k ≤3,解得-1<k ≤-13. 综上,k 的取值范围是⎝ ⎛⎦⎥⎤-1,-13.]三、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知函数f (x )=x +mx ,且f (1)=3. (1)求m 的值;(2)判断函数f (x )的奇偶性.[解] (1)∵f (1)=3,即1+m =3,∴m =2.(2)由(1)知,f (x )=x +2x ,其定义域是{x |x ≠0},关于坐标原点对称,又f (-x )=-x +2-x =-⎝ ⎛⎭⎪⎫x +2x =-f (x ),∴函数f (x )是奇函数.18.(本小题满分12分)已知p :A ={x |x 2-2x -3≤0,x ∈R },q :B ={x |x 2-2mx +m 2-9≤0,x ∈R ,m ∈R }.(1)若A ∩B =[1,3],求实数m 的值;(2)若﹁q 是p 的必要条件,求实数m 的取值范围. [解] (1)A ={x |-1≤x ≤3,x ∈R }, B ={x |m -3≤x ≤m +3,x ∈R ,m ∈R }, ∵A ∩B =[1,3],∴m =4. (2)∵﹁q 是p 的必要条件 ∴p 是﹁q 的充分条件, ∴A ⊆∁R B ,∴m >6或m <-4.19.(本小题满分12分)设α,β是锐角,sin α=437,cos(α+β)=-1114,求证:β=π3. [证明] 由0<α<π2,0<β<π2,知0<α+β<π,又cos(α+β)=-1114, 故sin(α+β)=1-cos 2(α+β) =1-⎝ ⎛⎭⎪⎫-11142=5314. 由sin α=437,可知 cos α=1-sin 2α=1-⎝⎛⎭⎪⎫4372=17, ∴sin β=sin [(α+β)-α]=sin(α+β)cos α-cos(α+β)sin α =5314×17-⎝ ⎛⎭⎪⎫-1114×437=32,∴β=π3.20.(本小题满分12分)已知函数f (x )=ax 2+2x +c (a ∈N *,c ∈N *)满足: ①f (1)=5;②6<f (2)<11. (1)求函数f (x )的解析式;(2)若对任意x ∈[1,2],都有f (x )≥2mx +1成立,求实数m 的取值范围. [解] (1)∵f (1)=5,∴5=a +c +2,∴c =3-a .又6<f (2)<11,∴6<4a +c +4<11,∴-13<a <43. 又a ∈N *,∴a =1,c =2,∴f (x )=x 2+2x +2.(2)设g (x )=f (x )-2mx -1=x 2-2(m -1)x +1,x ∈[1,2],则由已知得 当m -1≤1,即m ≤2时,g (x )min =g (1)=4-2m ≥0,此时m ≤2.当1<m -1<2,即2<m <3时,g (x )min =g (m -1)=1-(m -1)2≥0,此时无解. 当m -1≥2,即m ≥3时,g (x )min =g (2)=9-4m ≥0,此时无解. 综上所述,实数m 的取值范围是(-∞,2].21.(本小题满分12分)已知函数f (x )=cos(πx +φ)⎝ ⎛⎭⎪⎫0<φ<π2的部分图象如图所示.(1)求φ及图中x 0的值;(2)设g (x )=f (x )+f ⎝ ⎛⎭⎪⎫x +13,求函数g (x )在区间⎣⎢⎡⎦⎥⎤-12,13上的最大值和最小值.[解] (1)由题图得f (0)=32,所以cos φ=32, 因为0<φ<π2,故φ=π6. 由于f (x )的最小正周期等于2, 所以由题图可知1<x 0<2, 故7π6<πx 0+π6<13π6.由f (x 0)=32,得cos ⎝ ⎛⎭⎪⎫πx 0+π6=32,所以πx 0+π6=11π6,x 0=53.(2)因为f ⎝ ⎛⎭⎪⎫x +13=cos ⎣⎢⎡⎦⎥⎤π⎝⎛⎭⎪⎫x +13+π6=cosπx +π2=-sin πx , 所以g (x )=f (x )+f ⎝ ⎛⎭⎪⎫x +13=cos ⎝ ⎛⎭⎪⎫πx +π6-sin πx =cos πx cos π6-sin πx sin π6-sin πx=32cos πx -32sin πx =3sin ⎝ ⎛⎭⎪⎫π6-πx .当x ∈⎣⎢⎡⎦⎥⎤-12,13时,-π6≤π6-πx ≤2π3.所以-12≤sin ⎝ ⎛⎭⎪⎫π6-πx ≤1,故π6-πx =π2,即x =-13时,g (x )取得最大值3; 当π6-πx =-π6,即x =13时,g (x )取得最小值-3222.(本小题满分12分)已知f (x )=log 4(4x +1)+kx (k ∈R )为偶函数. (1)求k 的值;(2)若方程f (x )=log 4(a ·2x -a )有且只有一个根,求实数a 的取值范围. [解] (1)∵f (x )是偶函数,∴f (-x )=f (x ), 即log 4(4-x +1)-kx =log 4(4x +1)+kx ,化简得log 44-x +14x +1=2kx ,log 44-x =-x =2kx ,则有(2k +1)x =0.对任意的x ∈R 恒成立,于是有2k +1=0,k =-12.(2)∵f (x )=log 4(4x +1)-12x ,f (x )=log 4(a ·2x -a )有且只有一个根, ∴log 4(4x +1)-12x =log 4(a ·2x -a ), 即(1-a )(2x )2+a ·2x +1=0有唯一实根.令t =2x ,则关于t 的方程(1-a )t 2+at +1=0有唯一的正根.①当1-a =0即a =1时,方程(1-a )t 2+at +1=0,则t +1=0,即t =-1,不符合题意.②当1-a ≠0即a ≠1时,Δ=a 2-4(1-a )=a 2+4a -4=(a +2)2-8. 若Δ=0,则a =-2±22, 此时,t =a2(a -1).当a =-2+22时,则有t =a2(a -1)<0,方程(1-a )t 2+at +1=0无正根,不符合题意;当a =-2-22时,则有t =a 2(a -1)>0,且a ·2x-a =a (t -1)=a ·⎣⎢⎡⎦⎥⎤a 2(a -1)-1=a (2-a )2(a -1)>0,方程(1-a )t 2+at +1=0有两个相等的正根,符合题意.若Δ>0,则方程(1-a )t 2+at +1=0有两个不相等的实根,则只需其中有一正根即可满足题意.于是有⎩⎪⎨⎪⎧Δ>0,11-a <0,由此解得a >1.综上所述,a >1或a =-2-2 2.。

人教版高中数学选择性必修第一册-综合检测卷(含解析)

人教版高中数学选择性必修第一册-综合检测卷(含解析)

人教版高中数学选择性必修第一册综合检测卷(原卷版)[时间:120分钟满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线过点(1,3),(4,3+3),则此直线的倾斜角是()A.π6B.π4C.π3D.2π32.(2019·北京,理)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,则()A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b3.如图,在三棱锥O -ABC 中,D 是棱AC 的中点,若OA →=a ,OB →=b ,OC →=c ,则BD →=()A.12a -b +12c B .a +b -c C .a -b +cD .-12a +b -12c4.直线y =x -1被抛物线y 2=4x 截得的线段AB 的中点坐标是()A .(2,6)B .(3,2)C .(6,4)D .(4,6)5.已知正四面体ABCD 的棱长为a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为()A .a 2 B.14a 2C.12a 2 D.34a 26.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线3x +4y +4=0与圆C 相切,则圆C 的方程为()A .x 2+y 2-2x -3=0B .x 2+y 2+4x =0C .x 2+y 2+2x -3=0D .x 2+y 2-4x =07.四棱锥P -ABCD 中,底面ABCD 为直角梯形,AB ⊥AD ,BC ∥AD ,且AB =BC =2,AD =3,PA ⊥平面ABCD 且PA =2,则PB 与平面PCD 所成角的正弦值为()A.427B.77C.33D.638.(2019·课标全国Ⅱ)设F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为()A.2B.3C .2 D.5二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列说法正确的是()A .在两坐标轴上截距相等的直线可以用方程x a +ya=1表示B .存在实数m ,使得方程x +my -2=0能表示平行于y 轴的直线C .经过点P (1,1),倾斜角为θ的直线方程为y -1=tan θ(x -1)D .点(0,2)关于直线y =x +1的对称点为(1,1)10.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是A 1D 1和C 1D 1的中点,则下列结论正确的是()A .A 1C 1∥平面CEFB .B 1D ⊥平面CEF C.CE →=12DA →+DD 1→-DC→D .若正方体ABCD -A 1B 1C 1D 1边长为2,点B 1到平面CEF 的距离为111.已知P 是椭圆C :x 26+y 2=1上的动点,Q 是圆D :(x +1)2+y 2=15上的动点,则()A .C 的焦距为5B .C 的离心率为306C .圆D 在C 的内部D .|PQ |的最小值为25512.已知动点P 到两定点M (-2,0),N (2,0)的距离乘积为常数16,其轨迹为C ,则()A .C 一定经过原点B .C 关于x 轴、y 轴对称C .△MPN 的面积的最大值为43D .C 在一个面积为64的矩形内三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,PA →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG →=________.14.已知点P 是圆C :x 2+y 2=4上的动点,点A (4,2),则线段AP 中点M 的轨迹方程是________________;点M 的轨迹与圆C 相交,则过交点的直线方程是________.(本题第一空2分,第二空3分)15.已知点F2为双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点,直线y=kx交双曲线C于A,B两点,若∠AF2B=2π3,S△AF2B=23,则双曲线C的虚轴长为________.16.已知椭圆x2a2+y2b2=1(a>b>0)的右焦点为F1(1,0),离心率为e.设A,B为椭圆上关于原点对称的两点,AF1的中点为M,BF1的中点为N,原点O在以线段MN为直径的圆上.设直线AB的斜率为k,若0<k≤3,则e的取值范围为________.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知三角形的顶点A(2,3),B(0,-1),C(-2,1).(1)求直线AC的方程;(2)从①,②这两个问题中选择一个作答.①求点B关于直线AC的对称点D的坐标.②若直线l过点B且与直线AC交于点E,|BE|=3,求直线l的方程.18.(12分)已知圆C经过三点O(0,0),A(1,3),B(4,0).(1)求圆C的方程;(2)求过点P(3,6)且被圆C截得弦长为4的直线的方程.19.(12分)(2019·课标全国Ⅱ,文)已知F1,F2是椭圆C:x2a2+y2b2=1(a>0,b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.20.(12分)如图,在四棱锥P-ABCD中,平面PCD⊥平面ABCD,且△PCD是边长为2的等边三角形,四边形ABCD是矩形,BC=22,M为BC的中点.(1)求证:AM⊥PM;(2)求二面角P-AM-D的大小;(3)求点D到平面AMP的距离.21.(12分)如图,三棱柱ABC-A1B1C1中,AB=AC=AA1=BC1=2,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1与A1C相交于点D.(1)求证:BD⊥平面AA1C1;(2)设点E是直线B1C1上一点,且DE∥平面AA1B1B,求平面EBD与平面ABC1夹角的余弦值.22.(12分)已知定点F(1,0),动点P在y轴上运动,过点P作PM交x轴于点M,并延长MP 到点N ,且PM →·PF →=0,|PM →|=|PN →|.(1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A ,B 两点,若OA →·OB →=-4,且46≤|AB →|≤430,求直线l 的斜率k 的取值范围.1.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的离心率为()A.54B.52C.32D.542.已知四面体顶点A (2,3,1),B (4,1,-2),C (6,3,7)和D (-5,-4,8),则顶点D 到平面ABC 的距离为()A .8B .9C .10D .113.如图,在四棱锥S -ABCD 中,底面ABCD 是边长为1的正方形,SA =SB =SC =SD =2.下列结论中正确的是()A.SA →+SB →+SC →+SD →=0B.SA →-SB →+SC →-SD →=0C.SA →·SB →+SC →·SD →=0D.SA →·SC →=04.已知A 是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左顶点,F 是抛物线C :y 2=-8ax 的焦点.若在双曲线的渐近线上存在点P ,使得AP →⊥FP →,则E 的离心率的取值范围是()A .(1,2),324D .(2,+∞)5.如图,在正四棱锥P -ABCD 中,PA =AB ,点M 为PA 的中点,BD →=λBN →.若MN ⊥AD ,则实数λ为()A .2B .3C .4D .56.已知椭圆C :x 24+y 23=1,M ,N 是坐标平面内的两点,且M 与椭圆C 的焦点不重合.若M 关于椭圆C 的左、右焦点的对称点分别为A ,B ,线段MN 的中点在椭圆C 上,则|AN |+|BN |=()A .4B .8C .12D .167.在平面直角坐标系xOy 中,已知点A (0,-2),点B (1,-1),P 为圆x 2+y 2=2上一动点(异于点B ),则|PB ||PA |的最大值是()A .2B .4C.2D .228.【多选题】若{a ,b ,c }为空间的一个基底,则()A .b +c ,b -c ,a 共面B .b +c ,b -c ,2b 共面C .b +c ,a ,a +b +c 共面D .a +c ,a -2c ,c 共面9.【多选题】如图,在长方体ABCD -A 1B 1C 1D 中,AB =3AD =3AA 1=3,点P 为线段A 1C 上的动点,则下列结论正确的是()A .当A 1C →=2A 1P →时,B 1,P ,D 三点共线B .当AP →⊥A 1C →时,AP →⊥D 1P→C .当A 1C →=3A 1P →时,D 1P ∥平面BDC 1D .当A 1C →=5A 1P →时,A 1C ⊥平面D 1AP10.【多选题】已知抛物线E :y 2=4x 的焦点为F ,准线为l ,过F 的直线与E 交于A ,B 两点,分别过A ,B 作l 的垂线,垂足为C ,D ,且|AF |=3|BF |,M 为AB 中点,则下列结论正确的是()A .∠CFD =90°B .△CMD 为等腰直角三角形C .直线AB 的斜率为±3D .△AOB 的面积为411.【多选题】a ,b 为空间两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以AC 为旋转轴旋转,则下列结论正确的是()A .直线AB 与a 所成角的最小值为π4B .直线AB 与a 所成角的最大值为π3C .当直线AB 与a 所成的角为π3时,AB 与b 所成的角为π6D .当直线AB 与a 所成的角为π3时,AB 与b 所成的角为π312.【多选题】古希腊著名数学家阿波罗尼奥斯发现:平面内到两个定点A,B的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy中,A(-2,0),B(4,0),点P满足|PA||PB|=12.设点P的轨迹为C,下列结论正确的是()A.轨迹C的方程为(x+4)2+y2=9B.在x轴上存在异于A,B的两点D,E使得|PD||PE|=1 2C.当A,B,P三点不共线时,射线PO是∠APB的平分线D.在C上存在点M,使得|MO|=2|MA|13.已知直线l:mx-y=1,若直线l与直线x-my-1=0平行,则实数m的值为________,动直线l被圆C:x2+y2+2x-24=0截得弦长的最小值为________.14.已知M(-2,0),N(2,0),点P(x,y)为坐标平面内的动点,满足|MN→|·|MP→|+MN→·NP→=0,则动点P的轨迹方程为________.15.已知直线l:4x-3y+6=0,抛物线C:y2=4x上一动点P到直线l与到y轴距离之和的最小值为________,P到直线l距离的最小值为________.16.已知直线l:y=-x+1与椭圆x2a2+y2b2=1(a>b>0)相交于A,B两点,且线段AB的中点为(1)求此椭圆的离心率;(2)若椭圆的右焦点关于直线l的对称点在圆x2+y2=5上,求此椭圆的方程.17.如图所示,该几何体是由一个直三棱柱ADE-BCF和一个正四棱锥P-ABCD组合而成的,AD⊥AF,AE=AD=2.(1)证明:平面PAD⊥平面ABFE;(2)求正四棱锥P-ABCD的高h,使得二面角C-AF-P的余弦值是22318.如图,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=3,∠ABC=60°.(1)证明:AB⊥A1C;(2)求二面角A-A1C-B的正切值大小.19.如图,直四棱柱ABCD-A1B1C1D1的高为3,底面是边长为4且∠DAB=60°的菱形,AC ∩BD=O,A1C1∩B1D1=O1,E是O1A的中点.(1)求二面角O1-BC-D的大小;(2)求点E到平面O1BC的距离.20.已知圆C:x2+y2+2x-4y+3=0.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,若|PM|=|PO|,求|PM|的最小值及使得|PM|取得最小值的点P的坐标.21.已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.(1)求k的取值范围;(2)若OM→·ON→=12,其中O为坐标原点,求△OMN的面积.22.如图,在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(a>b>0)的短轴长为2,椭圆C上的点到右焦点距离的最大值为2+ 3.过点P(m,0)作斜率为k的直线l交椭圆C于A,B两点,其中m>0,k>0,D是线段AB的中点,直线OD交椭圆C于M,N两点.(1)求椭圆C的标准方程;(2)若m=1,OM→+3OD→=0,求k的值;(3)若存在直线l,使得四边形OANB为平行四边形,求m的取值范围.人教版高中数学选择性必修第一册综合检测卷(解析版)[时间:120分钟满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线过点(1,3),(4,3+3),则此直线的倾斜角是()A.π6B.π4C.π3D.2π3答案A解析设直线的倾斜角为α,则tan α=3+3-34-1=33,∴α=π6.故选A.2.(2019·北京,理)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,则()A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b答案B 解析椭圆的离心率e =c a =12,c 2=a 2-b 2,化简得3a 2=4b 2.故选B.3.如图,在三棱锥O -ABC 中,D 是棱AC 的中点,若OA →=a ,OB →=b ,OC →=c ,则BD →=()A.12a -b +12c B .a +b -c C .a -b +c D .-12a +b -12c答案A解析OD →=OA →+AD →=OA →+12AC →=OA →+12(OC →-OA →)=12OA →+12OC →,因此BD →=OD →-OB →=12OA→-OB →+12OC →=12a -b +12c .4.直线y =x -1被抛物线y 2=4x 截得的线段AB 的中点坐标是()A .(2,6)B .(3,2)C .(6,4)D .(4,6)答案B解析设点A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).将y =x -1代入y 2=4x ,整理得x 2-6x +1=0.由根与系数的关系得x 1+x 2=6,则x 1+x 22=3,y 1+y 22=x 1+x 2-22=6-22=2,所以所求点的坐标为(3,2).故选B.5.已知正四面体ABCD 的棱长为a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为()A .a 2 B.14a 2C.12a 2 D.34a 2答案B解析在正四面体ABCD 中,点E ,F 分别是BC ,AD 的中点,AE →=AB →+BE →,AF →=12AD →,所以AE →·AF →=(AB →+BE →)·12→=12AB →·AD →+12BE →·AD →.因为ABCD 是正四面体,所以BE ⊥AD ,∠BAD =π3,即BE →·AD →=0,AB →·AD →=|AB →|·|AD →|cos π3=12a 2,所以AE →·AF →=14a 2.故选B.6.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线3x +4y +4=0与圆C 相切,则圆C 的方程为()A .x 2+y 2-2x -3=0B .x 2+y 2+4x =0C .x 2+y 2+2x -3=0D .x 2+y 2-4x =0答案D解析由题意设圆心坐标为C (a ,0)(a >0),∵圆C 与直线3x +4y +4=0相切,∴|3a +0+4|9+16=2,解得a =2.∴圆心为C (2,0),∴圆C 的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0.故选D.7.四棱锥P -ABCD 中,底面ABCD 为直角梯形,AB ⊥AD ,BC ∥AD ,且AB =BC =2,AD =3,PA ⊥平面ABCD 且PA =2,则PB 与平面PCD 所成角的正弦值为()A.427 B.77C.33D.63答案B解析建立如图所示的空间直角坐标系,则P (0,0,2),B (2,0,0),C (2,2,0),D (0,3,0).PB →=(2,0,-2),CD →=(-2,1,0),PD →=(0,3,-2).设平面PCD 的一个法向量为n =(x ,y ,z ),2x +y =0,y -2z =0.取x =1得n =(1,2,3).cos 〈PB →,n 〉=PB →·n |PB →||n |=-422×14=-77,可得PB 与平面PCD 所成角的正弦值为77.故选B.8.(2019·课标全国Ⅱ)设F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为()A.2B.3C .2 D.5答案A解析如图,由题意知以OF +y 2=c 24①,将x 2+y 2=a 2记为②式,①-②得x =a 2c ,则以OF 为直径的圆与圆x 2+y 2=a 2的相交弦所在直线的方程为x =a 2c,所以|PQ |=由|PQ |=|OF |,得c ,整理得c 4-4a 2c 2+4a 4=0,即e 4-4e 2+4=0,解得e = 2.故选A.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列说法正确的是()A .在两坐标轴上截距相等的直线可以用方程x a +ya =1表示B .存在实数m ,使得方程x +my -2=0能表示平行于y 轴的直线C .经过点P (1,1),倾斜角为θ的直线方程为y -1=tan θ(x -1)D .点(0,2)关于直线y =x +1的对称点为(1,1)答案BD 解析对于A ,若直线过原点,则在两坐标轴上的截距都为零,故不能用方程x a +ya=1表示,所以A 错误;对于B ,当m =0时,平行于y 轴的直线方程为x =2,所以B 正确;对于C ,若直线的倾斜角为90°,则该直线的斜率不存在,故不能用y -1=tan θ(x -1)表示,所以C 错误;对于D y =x +1上,且(0,2),(1,1)连线的斜率为-1,所以D 正确.故选BD.10.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是A 1D 1和C 1D 1的中点,则下列结论正确的是()A .A 1C 1∥平面CEFB .B 1D ⊥平面CEF C.CE →=12DA →+DD 1→-DC→D .若正方体ABCD -A 1B 1C 1D 1边长为2,点B 1到平面CEF 的距离为1答案AC解析对于A ,因为E ,F 分别是A 1D 1和C 1D 1的中点,所以EF ∥A 1C 1,且EF ⊂平面CEF ,故A 1C 1∥平面CEF 成立,A 正确;对于B ,以点D 为坐标原点,DA →,DC →,DD 1→的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系(如图),设正方形ABCD -A 1B 1C 1D 1的棱长为2,则D (0,0,0),C (0,2,0),A (2,0,0,),B 1(2,2,2),D 1(0,0,2),E (1,0,2),F (0,1,2),B 1D →=(-2,-2,-2),FC →=(0,1,-2),因为B 1D →·FC →=0-2+4=2≠0,所以B 1D →与FC →不垂直,又CF ⊂平面CEF ,所以B 1D 与平面CEF 不垂直,B 错误;对于C ,12DA →+DD 1→-DC →=12(2,0,0)+(0,0,2)-(0,2,0)=(1,-2,2),又CE →=(1,-2,2),所以CE →=12DA→+DD 1→-DC →成立,C 正确;对于D ,连接B 1E ,EF →=(-1,1,0),EC →=(-1,2,-2),设平面EFC 的法向量为n =(x ,y ,z )·n =0,·n =0,x +y =0,x +2y -2z =0,令x =2,得n =(2,2,1),又B 1E →=(-1,-2,0),所以点B 1到平面CEF 的距离d =|B 1E →·n ||n |=63=2,D 错误.故选AC.11.已知P 是椭圆C :x 26+y 2=1上的动点,Q 是圆D :(x +1)2+y 2=15上的动点,则()A .C 的焦距为5B .C 的离心率为306C .圆D 在C 的内部D .|PQ |的最小值为255答案BC解析∵x 26+y 2=1,∴a =6,b =1,∴c =a 2-b 2=6-1=5,则C 的焦距为25,e =ca=56=306.设P (x ,y )(-6≤x ≤6),则|PD |2=(x +1)2+y 2=(x +1)2+1-x 26=+45≥45>15,可知圆D 在C 的内部,且|PQ |的最小值为45-15=55.故选BC.12.已知动点P 到两定点M (-2,0),N (2,0)的距离乘积为常数16,其轨迹为C ,则()A .C 一定经过原点B .C 关于x 轴、y 轴对称C .△MPN 的面积的最大值为43D .C 在一个面积为64的矩形内答案BCD解析设点P 的坐标为(x ,y ),由题意可得(x +2)2+y 2·(x -2)2+y 2=16.对于A ,将原点坐标(0,0)代入方程得2×2=4≠16,故A 错误;对于B ,设点P 关于x 轴、y 轴的对称点分别为P 1(x ,-y ),P 2(-x ,y ),因为(x +2)2+(-y )2·(x -2)2+(-y )2=(x +2)2+y 2·(x -2)2+y 2=16,(-x +2)2+y 2·(-x -2)2+y 2=(x -2)2+y 2·(x +2)2+y 2=16,所以点P 1,P 2都在曲线C 上,所以曲线C 关于x 轴、y 轴对称,故B 正确;对于C ,设|PM |=a ,|PN |=b ,∠MPN =θ(0<θ<π),则ab =16,由余弦定理得cos θ=a 2+b 2-162ab =a 2+b 2-1632≥2ab -1632=12,当且仅当a =b =4时等号成立,则θ,π3,所以sin θ≤32,则△MPN 的面积S △MPN =12ab sin θ≤12×16×32=43,故C正确;对于D ,由16=(x +2)2+y 2·(x -2)2+y 2≥(x +2)2·(x -2)2=|x 2-4|,可得-16≤x 2-4≤16,得0≤x 2≤20,解得-25≤x ≤25,由C 知,S △MPN =12|MN |·|y |=12×4×|y |≤43,得|y |≤23,因为45×43=1615<64,所以曲线C 在一个面积为64的矩形内,故D 正确.故选BCD.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,PA →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG →=________.答案23a -13b +23c 解析PG →=PB →+BG→=PB →+23BD→=PB →+23(BA →+BC →)=PB →+23[(PA →-PB →)+(PC →-PB →)]=PB →+23(PA →-2PB →+PC →)=23PA →-13PB →+23PC →=23a -13b +23c .14.已知点P 是圆C :x 2+y 2=4上的动点,点A (4,2),则线段AP 中点M 的轨迹方程是________________;点M 的轨迹与圆C 相交,则过交点的直线方程是________.(本题第一空2分,第二空3分)答案(x -2)2+(y -1)2=12x +y -4=0解析设M (x ,y ),P (x 1,y 1),=x 1+42,=y 1+22,1=2x -4,1=2y -2.因为x 12+y 12=4,所以(2x -4)2+(2y -2)2=4.整理得(x -2)2+(y -1)2=1.①又圆C :x 2+y 2=4,②由①-②得2x +y -4=0,即为所求直线方程.15.已知点F 2为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,直线y =kx 交双曲线C 于A ,B两点,若∠AF 2B =2π3,S △AF 2B =23,则双曲线C 的虚轴长为________.答案22解析由题意知点B 与点A 关于原点对称,设双曲线的左焦点为F 1,连接AF 1,BF 1,由对称性可知四边形AF 1BF 2是平行四边形,所以∠F 1AF 2=π3,设|AF 2|=m ,不妨设点A 在点B 右侧,则|AF 1|=2a +m .在△AF 1F 2中,由余弦定理可得4c 2=m 2+(m +2a )2-m (m +2a ),化简得4c 2-4a 2=m 2+2ma ,即4b 2=m (m +2a ).又S △AF 2B =12m (m +2a )·32=23,所以b 2=2,所以2b =2 2.16.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F 1(1,0),离心率为e .设A ,B 为椭圆上关于原点对称的两点,AF 1的中点为M ,BF 1的中点为N ,原点O 在以线段MN 为直径的圆上.设直线AB 的斜率为k ,若0<k ≤3,则e 的取值范围为________.答案[3-1,1)解析设A (m ,n ),则B (-m ,-n ),则k =nm,因为原点O 在以线段MN 为直径的圆上,所以OM ⊥ON ,又因为M 为AF 1的中点,所以OM ∥BF 1,同理ON ∥AF 1,所以四边形OMF 1N 是矩形,即AF 1⊥BF 1,而AF 1→=(1-m ,-n ),BF 1→=(1+m ,n ),所以(1-m )(1+m )-n 2=0,即m 2+n 2=1,又m 2a 2+n 2b 2=1,于是有m 2a 2+n 2b 2=m 2+n 2,从而1a 2-11-1b 2=n 2m 2=k 2≤3,即1a 2+3b2≥4,将b 2=a 2-1代入上式,整理得4a 4-8a 2+1≤0,解得2-32≤a 2≤2+32,又a >c =1,所以4-23≤1a2<1,即3-1≤e <1.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知三角形的顶点A (2,3),B (0,-1),C (-2,1).(1)求直线AC 的方程;(2)从①,②这两个问题中选择一个作答.①求点B 关于直线AC 的对称点D 的坐标.②若直线l 过点B 且与直线AC 交于点E ,|BE |=3,求直线l 的方程.思路分析(1)由A (2,3),C (-2,1),可求出直线AC 的斜率,由点斜式即可写出直线的方程;(2)选①由对称点的性质即可求出;选②设出E ,12t +t 的值,根据B ,E 两点的坐标即可求出直线的方程.解析(1)因为直线AC 的斜率为k AC =12,所以直线AC 的方程为y -3=12(x -2),即直线AC 的方程为x -2y +4=0.(2)选择问题①:设D 的坐标为(m ,n ),·12=-1,2·n -12+4=0,=-125,=195.所以点D -125,选择问题②:设E,12t +|BE |=33,解得t =0或t =-125.所以E 的坐标为(0,2)-125,所以直线l 的方程为x =0或3x +4y +4=0.18.(12分)已知圆C 经过三点O (0,0),A (1,3),B (4,0).(1)求圆C 的方程;(2)求过点P (3,6)且被圆C 截得弦长为4的直线的方程.解析(1)由题意,设圆C 的方程为x 2+y 2+Dx +Ey +F =0,=0,+9+D +3E +F =0+4D +F =0,=-4,=-2,=0.所以圆C 的方程为x 2+y 2-4x -2y =0,即(x -2)2+(y -1)2=5.(2)由(1)知圆心坐标为C (2,1),半径为5,弦长为4时,圆心C 到直线的距离为1.①若直线斜率不存在,则直线方程为x =3,经检验符合题意;②若直线斜率存在,设直线斜率为k ,则直线方程为y -6=k (x -3),即kx -y -3k +6=0,则|5-k |1+k 2=1,解得k =125,所以直线方程为y -6=125(x -3),即12x -5y -6=0.综上可知,直线方程为x =3或12x -5y -6=0.19.(12分)(2019·课标全国Ⅱ,文)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >0,b >0)的两个焦点,P 为C 上的点,O 为坐标原点.(1)若△POF 2为等边三角形,求C 的离心率;(2)如果存在点P ,使得PF 1⊥PF 2,且△F 1PF 2的面积等于16,求b 的值和a 的取值范围.解析(1)若△POF 2为等边三角形,则P ,±32c ,代入方程x 2a 2+y 2b 2=1,可得c 24a2+3c 24b2=1,解得e 2=4±23,所以e =3-1(3+1已舍去).(2)由题意可得|PF 1→|+|PF 2→|=2a ,因为PF 1⊥PF 2,所以|PF 1→|2+|PF 2→|2=4c 2,所以(|PF 1→|+|PF 2→|)2-2|PF 1→|·|PF 2→|=4c 2,所以2|PF 1→|·|PF 2→|=4a 2-4c 2=4b 2,所以|PF 1→|·|PF 2→|=2b 2,所以S △PF 1F 2=12|PF 1→|·|PF 2→|=b 2=16,解得b =4.因为(|PF 1→|+|PF 2→|)2≥4|PF 1→|·|PF 2→|,即(2a )2≥4|PF 1→|·|PF 2→|,即a 2≥|PF 1→|·|PF 2→|,所以a 2≥32,所以a ≥42,即a 的取值范围为[42,+∞).20.(12分)如图,在四棱锥P -ABCD 中,平面PCD ⊥平面ABCD ,且△PCD 是边长为2的等边三角形,四边形ABCD 是矩形,BC =22,M 为BC 的中点.(1)求证:AM ⊥PM ;(2)求二面角P -AM -D 的大小;(3)求点D 到平面AMP 的距离.解析以点D 为原点,分别以直线DA ,DC 为x 轴、y 轴,建立如图所示的空间直角坐标系,依题意,可得D (0,0,0),P (0,1,3),A (22,0,0),M (2,2,0),PM →=(2,1,-3),AM →=(-2,2,0).(1)证明:∵PM →·AM →=(2,1,-3)·(-2,2,0)=0,即PM →⊥AM →,∴AM ⊥PM .(2)设n =(x ,y ,z )为平面PAM 的法向量,·PM →=0,·AM →=0,y -3z =0,+2y =0,取y =1,得n =(2,1,3).取p =(0,0,1),显然p 为平面ABCD 的一个法向量,∵cos 〈n ,p 〉=n ·p |n ||p |=36=22,∴二面角P -AM -D 的大小为45°.(3)设点D 到平面AMP 的距离为d ,由(2)可知n =(2,1,3)为平面AMP 的一个法向量,∴d =|DA →·n ||n |=|22×2|2+1+3=263,即点D 到平面AMP 的距离为263.21.(12分)如图,三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=BC 1=2,∠AA 1C 1=60°,平面ABC 1⊥平面AA 1C 1C ,AC 1与A 1C 相交于点D .(1)求证:BD ⊥平面AA 1C 1;(2)设点E 是直线B 1C 1上一点,且DE ∥平面AA 1B 1B ,求平面EBD 与平面ABC 1夹角的余弦值.解析(1)证明:由已知得侧面AA 1C 1C 是菱形,D 是AC 1的中点.∵BA =BC 1,∴BD ⊥AC 1.∵平面ABC 1⊥平面AA 1C 1C ,且BD ⊂平面ABC 1,平面ABC 1∩平面AA 1C 1C =AC 1,∴BD ⊥平面AA 1C 1C .(2)设点F 是A 1C 1的中点,连接DF ,EF ,∵点D 是AC 1的中点,∴DF ∥平面AA 1B 1B .又∵DE ∥平面AA 1B 1B ,∴平面DEF ∥平面AA 1B 1B .又∵平面DEF ∩平面A 1B 1C 1=EF ,平面AA 1B 1B ∩平面A 1B 1C 1=A 1B 1,∴EF ∥A 1B 1.∴点E 是B 1C 1的中点.如图,以D 为原点,以DA 1,DA ,DB 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.由已知可得AC 1=2,AD =1,BD =A 1D =DC =3,BC =6,∴D (0,0,0),A (0,1,0),A 1(3,0,0),B (0,0,3),C 1(0,-1,0).设平面EBD 的法向量是m =(x ,y ,z ),由m ⊥DB →,得3z =0⇒z =0.又DE →=12(DC 1→+DB 1→)=12(DC 1→+DB →+AA 1→)1由m ⊥DE →,得(x ,y ,z10⇒32x -y =0.令x =1,得y =32,∴m ,32,∵平面ABC 1⊥平面AA 1C 1C ,DA 1⊥AC 1,∴DA 1⊥平面ABC 1.∴DA 1→是平面ABC 1的一个法向量,DA 1→=(3,0,0).∴cos 〈m ,DA 1→〉=31+34×3=277,∴平面EBD 与平面ABC 1夹角的余弦值是277.22.(12分)已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且PM →·PF →=0,|PM →|=|PN →|.(1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A ,B 两点,若OA →·OB →=-4,且46≤|AB →|≤430,求直线l 的斜率k 的取值范围.解析(1)由题意知P 为线段MN 的中点,设N (x ,y ),则M (-x ,0),由PM →·PF →=0x,∴(-x )·10,∴y 2=4x (x >0),∴点N 的轨迹方程为y 2=4x (x >0).(2)设l 与抛物线交于点A (x 1,y 1),B (x 2,y 2).当l 与x 轴垂直时,则由OA →·OB →=-4,得y 1=22,y 2=-22,|AB |=42<46,不合题意.故l 与x 轴不垂直.可设直线l 的方程为y =kx +b (k ≠0),则由OA →·OB →=-4,得x 1x 2+y 1y 2=-4.由点A ,B 在抛物线y 2=4x (x >0)上有y 12=4x 1,y 22=4x 2,故y 1y 2=-8.又2=4x ,=kx +b ,联立消x ,得ky 2-4y +4b =0.∴4bk =-8,b =-2k.∴Δ=16(1+2k 2),|AB |2y1-y 2)2∵46≤|AB |≤430,∴96480.解得直线l的斜率取值范围为-1,-12∪12,1.1.若椭圆x2a2+y2b2=1(a>b>0)的离心率为32,则双曲线x2a2-y2b2=1的离心率为()A.54B.52C.32D.54答案B2.已知四面体顶点A(2,3,1),B(4,1,-2),C(6,3,7)和D(-5,-4,8),则顶点D 到平面ABC的距离为()A.8B.9C.10D.11答案D解析设平面ABC的一个法向量为n=(x,y,z),则·AB→=0,·AC→=0,x,y,z)·(2,-2,-3)=0,x,y,z)·(4,0,6)=0.x-2y-3z=0,x+6z=0=2x,=-23x,令x=1,则n,2AD→=(-7,-7,7),故所求距离为|AD→·n||n|=|-7-14-143|1+4+49=11.3.如图,在四棱锥S-ABCD中,底面ABCD是边长为1的正方形,SA=SB=SC=SD=2.下列结论中正确的是()A.SA→+SB→+SC→+SD→=0B.SA→-SB→+SC→-SD→=0C.SA→·SB→+SC→·SD→=0D.SA→·SC→=0答案B解析本题考查空间向量的加减运算和数量积.由题意易知A错误;因为SA→-SB→+SC→-SD→=BA→+DC→=0,所以B正确;因为底面ABCD是边长为1的正方形,SA=SB=SC=SD=2,所以SA →·SB →=2×2×cos ∠ASB ,SC →·SD →=2×2×cos ∠CSD ,而∠ASB =∠CSD ,于是SA →·SB →=SC →·SD →≠0,所以C 错误;连接AC ,在△SAC 中,SA =SC =2,AC =2,所以∠ASC ≠90°,所以cos ∠ASC ≠0,又SA →·SC →=2×2×cos ∠ASC ,所以SA →·SC →≠0,所以D 错误.故选B.4.已知A 是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左顶点,F 是抛物线C :y 2=-8ax 的焦点.若在双曲线的渐近线上存在点P ,使得AP →⊥FP →,则E 的离心率的取值范围是()A .(1,2),324D .(2,+∞)答案B解析由题意得,A (-a ,0),F (-2a ,0),不妨设0,ba x AP →⊥FP →,得AP →·FP →=0⇒0+a ,b a x 0+2a ,ba x 0⇒c 2a 2x 02+3ax 0+2a 2=0.因为在双曲线E 的渐近线上存在点P ,所以Δ≥0,即9a 2-4×2a 2×c 2a 2≥0,9a 2≥8c 2⇒e 2≤98⇒-324≤e ≤324,又因为E 为双曲线,所以1<e ≤324.故选B.5.如图,在正四棱锥P -ABCD 中,PA =AB ,点M 为PA 的中点,BD →=λBN →.若MN ⊥AD ,则实数λ为()A .2B .3C .4D .5答案C解析连接AC 交BD 于点O ,以O 为原点,OA 为x 轴,OB 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系.设PA =AB =2,则A (2,0,0),D (0,-2,0),P (0,0,2),0B (0,2,0),∴BD →=(0,-22,0),设N (0,b ,0),则BN →=(0,b -2,0).∵BD=λBN →,∴-22=λ(b -2),∴b =2λ-22λ,∴N,2λ-22λ,,→-22,2λ-22λ,-AD →=(-2,-2,0),∵AD ⊥MN ,∴AD →·MN →=1-2λ-4λ=0,解得λ=4.故选C.6.已知椭圆C :x 24+y 23=1,M ,N 是坐标平面内的两点,且M 与椭圆C 的焦点不重合.若M 关于椭圆C 的左、右焦点的对称点分别为A ,B ,线段MN 的中点在椭圆C 上,则|AN |+|BN |=()A .4B .8C .12D .16答案B解析设MN 的中点为D ,椭圆C 的左、右焦点分别为F 1,F 2,如图,连接DF 1,DF 2.∵F 1是MA 的中点,D 是MN 的中点,∴F 1D 是△MAN 的中位线,∴|DF 1|=12|AN |,同理|DF 2|=12|BN |,∴|AN |+|BN |=2(|DF 1|+|DF 2|).∵点D 在椭圆上,根据椭圆的标准方程及椭圆的定义知,|DF 1|+|DF 2|=4,∴|AN |+|BN |=8.故选B.7.在平面直角坐标系xOy 中,已知点A (0,-2),点B (1,-1),P 为圆x 2+y 2=2上一动点(异于点B ),则|PB ||PA |的最大值是()A .2B .4C.2D .22答案A解析设点P (x 0,y 0),则x 02+y 02=2,所以|PB |2|PA |2=(x 0-1)2+(y 0+1)2x 02+(y 0+2)2=x 02+y 02-2x 0+2y 0+2x 02+y 02+4y 0+4=-2x 0+2y 0+44y 0+6=-x 0+y 0+22y 0+3,令λ=-x 0+y 0+22y 0+3,则λ≠0,x 0+(2λ-1)y 0+3λ-2=0,由题意,知直线x +(2λ-1)y +3λ-2=0与圆x 2+y 2=2有公共点,所以|3λ-2|1+(2λ-1)2≤2,得λ2-4λ≤0,得0<λ≤4,所以|PB ||PA |的最大值为2.8.【多选题】若{a ,b ,c }为空间的一个基底,则()A .b +c ,b -c ,a 共面B .b +c ,b -c ,2b 共面C .b +c ,a ,a +b +c 共面D .a +c ,a -2c ,c 共面答案BCD解析易知b +c ,b -c ,a 不共面;因为2b =(b +c )+(b -c ),所以b +c ,b -c ,2b 共面;因为a +b +c =(b +c )+a ,所以b +c ,a ,a +b +c 共面;因为a +c =(a -2c )+3c ,所以a +c ,a -2c ,c 共面.故选BCD.9.【多选题】如图,在长方体ABCD -A 1B 1C 1D 中,AB =3AD =3AA 1=3,点P 为线段A 1C 上的动点,则下列结论正确的是()A .当A 1C →=2A 1P →时,B 1,P ,D 三点共线B .当AP →⊥A 1C →时,AP →⊥D 1P→C .当A 1C →=3A 1P →时,D 1P ∥平面BDC 1D .当A 1C →=5A 1P →时,A 1C ⊥平面D 1AP答案ACD解析在长方体ABCD -A 1B 1C 1D 1中,连接AC ,以点D 为坐标原点,建立如图所示的空间直角坐标系,因为AB =3AD =3AA 1=3,所以AD =AA 1=1,则A (1,0,0),A 1(1,0,1),C (0,3,0),C 1(0,3,1),D 1(0,0,1),D (0,0,0),B (1,3,0),则A 1C →=(-1,3,-1),D 1A →=(1,0,-1),DC 1→=(0,3,1),DB →=(1,3,0),A 1D 1→=(-1,0,0).当A 1C →=2A 1P →时,P 为A 1C 的中点,根据长方体结构特征,可知P 为体对角线的中点,因此P 也为B 1D 的中点,所以B 1,P ,D 三点共线,故A 正确;当AP →⊥A 1C →时,AP ⊥A 1C ,由题意可得A 1C =1+1+3=5,AC =1+3=2,因为S △A 1AC =12AA 1·AC =12A 1C ·AP ,所以AP =255,所以A 1P =55,即点P 为靠近点A 1的五等分点,所以,35,D 1P →,35,-AP →=-15,35,D 1P →·AP →=-425+325-425=-15≠0,所以AP →与D 1P →不垂直,故B 错误;当A 1C →=3A 1P →时,A 1P →=13A 1C →-13,33,-BDC 1的一个法向量为n =(x ,y ,z ),·DC 1→=0,·DB →=0,+z =0,+3y =0,令y =1,可得n =(-3,1,-3),又D 1P →=A 1P →-A 1D 1→=,33,-D 1P →·n =0,因此D 1P →⊥n ,所以D 1P →∥平面BDC 1,故C 正确;当A 1C →=5A 1P →时,A 1P →=15A 1C →-15,35,-所以D 1P →=A 1P →-A 1D 1→,35,-所以A 1C →·D 1P →=0,A 1C →·D 1A →=0,因此A 1C ⊥D 1P ,A 1C ⊥D 1A ,又D 1P ∩D 1A =D 1,所以A 1C ⊥平面D 1AP ,故D 正确.故选ACD.10.【多选题】已知抛物线E :y 2=4x 的焦点为F ,准线为l ,过F 的直线与E 交于A ,B 两点,分别过A ,B 作l 的垂线,垂足为C ,D ,且|AF |=3|BF |,M 为AB 中点,则下列结论正确的是()A .∠CFD =90°B .△CMD 为等腰直角三角形C .直线AB 的斜率为±3D .△AOB 的面积为4答案AC解析如图,过点M 向准线l 作垂线,垂足为N ,F (1,0),设A (x 1,y 1),B (x 2,y 2),因为|AF |=|AC |,所以∠AFC =∠ACF ,又因为∠OFC =∠ACF ,所以∠OFC =∠AFC ,所以FC 平分∠OFA ,同理可知FD 平分∠OFB ,所以∠CFD =90°,故A 正确;假设△CMD 为等腰直角三角形,则∠CFD =∠CMD =90°,则C ,D ,F ,M 四点共圆且圆的半径为12|CD |=|MN |,又因为|AF |=3|BF |,所以|AB |=|AF |+|BF |=|AC |+|BD |=2|MN |=4|BF |,所以|MN |=2|BF |,所以|CD |=2|MN |=4|BF |,所以|CD |=|AB |,显然不成立,故B 错误;设直线AB的方程为x =my +12=4x ,+1,所以y 2-4my -4=01+y 2=4m ,1y 2=-4,又因为|AF |=3|BF |,所以y 1=-3y 22y 2=4m ,3y 22=-4,所以m 2=13,所以1m =±3,所以直线AB 的斜率为±3,故C 正确;取m =331+y 2=433,1y 2=-4,所以|y 1-y 2|=833,所以S △AOB =12·|OF |·|y 1-y 2|=12×1×833=433D 错误.故选AC.11.【多选题】a ,b 为空间两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以AC 为旋转轴旋转,则下列结论正确的是()A .直线AB 与a 所成角的最小值为π4B .直线AB 与a 所成角的最大值为π3C .当直线AB 与a 所成的角为π3时,AB 与b 所成的角为π6D .当直线AB 与a 所成的角为π3时,AB 与b 所成的角为π3答案AD解析由题意知,a ,b ,AC 三条直线两两相互垂直,画出图形如图.不妨设图中所示正方体的棱长为1,则AC =1,AB =2,斜边AB 以直线AC 为旋转轴旋转,则A 点保持不变,B 点的运动轨迹是以C 为圆心,BC 长为半径的圆,设CB 旋转到直线a 上时为CE ,旋转到直线b 上时为CD ,以C 为坐标原点,以CD 所在直线为x 轴,CE 所在直线为y 轴,CA 所在直线为z 轴,建立空间直角坐标系,则D (1,0,0),A (0,0,1),设B 点在运动过程中的坐标为(cos θ,sin θ,0),其中θ为射线CD 绕端点C 旋转到CB 形成的角,θ∈[0,2π),∴AB 在运动过程中对应的向量AB →=(cos θ,sin θ,-1),|AB →|=2,设AB 与a 所成的角为α,α∈0,π2,则cos α=22|sin θ|∈0,22,∴α∈π4,π2,故A 正确,B错误;设AB 与b 所成的角为β,β∈0,π2,则cos β=22|cos θ|,当AB 与a 所成的角为π3,即α=π3时,|sin θ|=2cos α=2cos π3=22,∵cos 2θ+sin 2θ=1,∴cos β=22|cos θ|=12,∵β∈0,π2,∴β=π3,此时AB 与b所成的角为π3,故D 正确,C 错误.故选AD.12.【多选题】古希腊著名数学家阿波罗尼奥斯发现:平面内到两个定点A ,B 的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy 中,A (-2,0),B (4,0),点P 满足|PA ||PB |=12.设点P 的轨迹为C ,下列结论正确的是()A .轨迹C 的方程为(x +4)2+y 2=9B .在x 轴上存在异于A ,B 的两点D ,E 使得|PD ||PE |=12C .当A ,B ,P 三点不共线时,射线PO 是∠APB 的平分线D .在C 上存在点M ,使得|MO |=2|MA |答案BC解析设P (x ,y ),则(x +2)2+y 2(x -4)2+y 2=12,化简得(x +4)2+y 2=16,所以A 错误;假设在x轴上存在异于A ,B 的两点D ,E 使得|PD ||PE |=12,设D (m ,0),E (n ,0),则(x -n )2+y 2=2(x -m )2+y 2,化简得3x 2+3y 2-(8m -2n )x +4m 2-n 2=0,由轨迹C 的方程为x 2+y 2+8x =0,可得8m -2n =-24,4m 2-n 2=0,解得m =-6,n =-12或m =-2,n =4(舍去),即在x 轴上存在异于A ,B 的两点D ,E 使|PD ||PE |=12,所以B 正确;当A ,B ,P 三点不共线时,由|OA ||OB |=12=|PA ||PB |,可得射线PO 是∠APB 的平分线,所以C 正确;假设在C 上存在点M ,使得|MO |=2|MA |,可设M (x ,y ),则有x 2+y 2=2(x +2)2+y 2,化简得x 2+y 2+163x +163=0,与x 2+y 2+8x =0联立,得x =2,不合题意,故不存在点M ,所以D 错误.故选BC.13.已知直线l :mx -y =1,若直线l 与直线x -my -1=0平行,则实数m 的值为________,动直线l 被圆C :x 2+y 2+2x -24=0截得弦长的最小值为________.答案-1223解析由题得m ×(-m )-(-1)×1=0,所以m =±1.当m =1时,两直线重合,舍去,故m =-1.因为圆C 的方程x 2+y 2+2x -24=0可化为(x +1)2+y 2=25,所以圆心为C (-1,0),半径为5.由于直线l :mx -y -1=0过定点P (0,-1),所以过点P 且与PC 垂直的弦的弦长最短,且最短弦长为2×52-(2)2=223.14.已知M (-2,0),N (2,0),点P (x ,y )为坐标平面内的动点,满足|MN →|·|MP →|+MN →·NP →=0,则动点P 的轨迹方程为________.答案y 2=-8x 解析由题意,知MN →=(4,0),|MN →|=4,MP →=(x +2,y ),NP →=(x -2,y ).由|MN →|·|MP →|+MN →·NP →=0,得4(x +2)2+y 2+4(x -2)=0,化简整理,得y 2=-8x .15.已知直线l :4x -3y +6=0,抛物线C :y 2=4x 上一动点P 到直线l 与到y 轴距离之和的最小值为________,P 到直线l 距离的最小值为________.答案134解析设抛物线C :y 2=4x 上的点P 到直线4x -3y +6=0的距离为d 1,到准线的距离为d 2,到y 轴的距离为d 3,由抛物线方程可得焦点坐标为F (1,0),准线方程为x =-1,则d 3=d 2-1,|PF |=d 2,因此d 1+d 3=d 1+d 2-1=d 1+|PF |-1,因为d 1+|PF |的最小值是焦点F 到直线4x -3y +6=0的距离,即|4+6|42+(-3)2=2,所以d 1+d 3=d 1+|PF |-1的最小值为2-1=1;设平行于直线l 且与抛物线C :y 2=4x 相切的直线方程为4x -3y +m =0,由x -3y +m =0,2=4x ,得y 2-3y +m =0,因为直线4x -3y +m =0与抛物线C :y 2=4x 相切,所以Δ=(-3)2-4m =0,解得m =94,因此该切线方程为4x -3y +94=0,所以两平行线间的距离为6-9442+(-3)2=34,即P 到直线l 距离的最小值为34.16.已知直线l :y =-x +1与椭圆x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,且线段AB 的中点为(1)求此椭圆的离心率;(2)若椭圆的右焦点关于直线l 的对称点在圆x 2+y 2=5上,求此椭圆的方程.解析(1)x +1,+y 2b 2=1,得(b 2+a 2)x 2-2a 2x +a 2-a 2b 2=0,∴Δ=4a 4-4(a 2+b 2)(a 2-a 2b 2)>0⇒a 2+b 2>1.设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=2a 2b 2+a 2.∵线段AB ,∴2a 2b 2+a 2=43,得a 2=2b 2.又a 2=b 2+c 2,∴a 2=2c 2,∴e =22.(2)设椭圆的右焦点为F (c ,0),则点F 关于直线l :y =-x +1的对称点为P (1,1-c ).∵点P 在圆x 2+y 2=5上,∴1+(1-c )2=5,即c 2-2c -3=0.∵c >0,∴c =3,又a 2=2c 2且a 2=b 2+c 2,∴a =32,b =3,∴椭圆的方程为x 218+y 29=1.17.如图所示,该几何体是由一个直三棱柱ADE -BCF 和一个正四棱锥P -ABCD 组合而成的,AD ⊥AF ,AE =AD =2.(1)证明:平面PAD ⊥平面ABFE ;(2)求正四棱锥P -ABCD 的高h ,使得二面角C -AF -P 的余弦值是223解析(1)证明:在直三棱柱ADE -BCF 中,AB ⊥平面ADE ,AD ⊂平面ADE ,所以AB ⊥AD .又AD ⊥AF ,AB ∩AF =A ,AB ⊂平面ABFE ,AF ⊂平面ABFE ,所以AD ⊥平面ABFE .因为AD ⊂平面PAD ,所以平面PAD ⊥平面ABFE .(2)由(1)知AD ⊥平面ABFE ,以A 为原点,AB ,AE ,AD 所在直线分别为x ,y ,z 轴建立空间直角坐标系,如图,则A (0,0,0),F (2,2,0),C (2,0,2),P (1,-h ,1),AF →=(2,2,0),AC →=(2,0,2),AP →=(1,-h ,1).设平面AFC 的一个法向量为m =(x 1,y 1,z 1),·AF →=2x 1+2y 1=0,·AC →=2x 1+2z 1=0,取x 1=1,则y 1=z 1=-1,所以m =(1,-1,-1).设平面AFP 的一个法向量为n =(x 2,y 2,z 2),·AF →=2x 2+2y 2=0,·AP →=x 2-hy 2+z 2=0,取x 2=1,则y 2=-1,z 2=-1-h ,所以n =(1,-1,-1-h ).因为二面角C -AF -P 的余弦值为223,所以|cos 〈m ·n 〉|=|m ·n ||m |·|n |=|1+1+1+h |3×2+(h +1)2=223,解得h =1或h =-35(舍),所以正四棱锥P -ABCD 的高h =1.18.如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,AC =AA 1=3,∠ABC =60°.。

人教版数学必修一综合测试(含答案)

人教版数学必修一综合测试(含答案)

人教版数学必修一一、单选题1.已知集合A ={x |x =2sin nπ3,n ∈N ∗},B ={x |x 2―2x ―3<0},则A ∩B =( )A .{―3,0,3}B .{0,3}C .{―3,0}D .{―1,0,3}2.函数f (x )=log 2(3―x )+1x ―1的定义域为( )A .[1,3]B .[1,3)C .[1,+∞)D .(1,3)3.函数 y =2x ―1的定义域为 (―∞,1)∪[2,5) , 则其值域是( ) A .(0,+∞)B .(―∞,2]C .(―∞,12)∪[2,+∞)D .(―∞,0)∪(12,2]4.函数f (x )=|x -2|·(x -4)的单调递减区间是( )A .[2,4]B .[2,3]C .[2,+∞)D .[3,+∞)5.已知函数f (x )=cos(ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,且存在0≤x 1<x 2≤π,满足f(x 1)=f (x 2)=―45,则cos(x 2―x 1)=( )A .―35B .35C .45D .―456.函数 f (x )=3―x 2+4x +3 的单调递增区间为( )A .(―∞,2)B .(2,+∞)C .(―3,2)D .(2,7)7.已知函数f (x )={x 2+2x ,x⩽0,ln 1x ,x >0.若函数g (x )=f (x )―a |x |恰有三个零点,则实数a 的取值范围是( )A .(―2,―1e )∪[0,+∞)B .[―2,―1e ]∪(0,+∞)C .(―e ,0)∪[2,+∞)D .{―1e}∪[0,+∞)8.已知a =5log 56―log 29×lo g 32,b =log 56+log 3025,5b +12b =13c ,则( )A.c<b<a B.b<c<a C.a<c<b D.a<b<c二、多选题9.图中阴影部分用集合符号可以表示为( )A.∁U B∩(A∪C)B.∁U((A∩B)∪(B∩C))C.A∪(C∩∁U B)D.(A∩∁U B)∪(C∩∁U B)10.下列命题中正确的是( )A.函数y=1―sin2x的周期是πB.函数y=1―co s2x的图像关于直线x=π4对称C.函数y=2―sinx―cosx在[π4,π]上是减函数D.函数y=cos(2022x―π3)+3sin(2022x+π6)的最大值为1+311.已知抛物线C1:y=x2与抛物线C2:y=a x2+1―a(0<a<13)在第一象限交于M点,过M点的直线l 分别与C1,C2交于P,Q两点,且M为线段PQ的中点,O为坐标原点,则( )A.|PQ|>2|OP|B.|PQ|<|OQ|C.tan∠POQ+2>0D.tan∠POQ+1<012.定义在(―1,1)上的函数f(x)满足f(x)―f(y)=f(x―y1―xy),且当x∈(―1,0)时,f(x)<0,则有( )A.f(x)为奇函数B.存在非零实数a,b,使得f(a)+f(b)=f(12)C.f(x)为增函数D.f(12)+f(13)>f(56)三、填空题13.(lg5)2+lg2×lg50= .14.不等式ax2+4x+a>1﹣2x2对一切x∈R恒成立,则实数a的取值范围是 .15.已知函数f(x)=3sinωx+cosωx(ω>0),若函数f(x)在区间(π3,π2)内没有零点,则实数ω的最大值是 .16.设正数x,y满足a≥x+yx+y恒成立,则a的最小值是 .四、解答题17.计算下列各式的值:(1)(14)―1+log23;(2)2723+(5)2―1614+(e―1)0.18.已知方程ax2+x+b=0.(1)若方程的解集为{1},求实数a,b的值;(2)若方程的解集为{1,3},求实数a,b的值.19.如图,在直角坐标系xOy中,角α的顶点是原点,始边与轴正半轴重合,终边交单位圆于点A,且α∈(π6,π2),将角α的终边按照逆时针方向旋转π3,交单位圆于点B,记A(x1,y1),B(x2,y2)(1)若x1=13,求x2;(2)分别过A、B做x轴的垂线,垂足依次为C、D,记ΔAOC的面积为S1,ΔBOD的面积为S2,若S1=2S2,求角α的值.20.已知函数f(x)满足2f(x)+f(―x)=x+2x(x≠0).(1)求y=f(x)的解析式;(2)若对∀x1、x2∈(2,4)且x1≠x2,都有f(x2)―f(x1)x2―x1>kx2⋅x1(k∈R)成立,求实数k的取值范围.21.已知定义在R上的函数f(x)满足:①对任意x,y∈R,有f(x+y)=f(x)+f(y).②当x <0时,f(x)>0且f(1)=―3.(1)求证:f(x)是奇函数;(2)解不等式f(2x―2)―f(x)≥―12.22.已知函数f(x)=2x+ab⋅2x+1是定义域为R的奇函数.(1)求函数f(x)的解析式;(2)若存在x∈[―2,2]使不等式f(m⋅4x)+f(1―2x+1)≥0成立,求m的最小值.答案解析部分1.【答案】B2.【答案】D3.【答案】D4.【答案】B5.【答案】C6.【答案】A7.【答案】D8.【答案】C9.【答案】A,D10.【答案】A,D11.【答案】A,D12.【答案】A,B,C13.【答案】114.【答案】(2,+∞)15.【答案】17316.【答案】217.【答案】(1)解:原式=(14)―1⋅(2―2)log23=4×3―2=49.(2)解:原式=33×23+5―24×14+1=32+5―2+1=13. 18.【答案】(1)解:若方程的解集为{1},则①若a=0,则1+b=0,解得a=0,b=﹣1;②若a≠0,则a+1+b=0且1﹣4ab=0,解得a=b=﹣12.综上所述,a=0,b=﹣1或a=b=﹣12(2)解:依题意得:1+3=﹣1a ,1×3= ba,解得a=﹣14,b=﹣3419.【答案】(1)解:由三角函数定义,得x1=cosα,x2=cos(α+π3).因为 α∈(π6,π2) , cos α=13 ,所以 sin α=1―cos 2α=223.所以 x 2=cos(α+π3)=12cos α―32sin α=1―266 .(2)解:依题意得 y 1=sin α , y 2=sin(α+π3) . 所以 S 1=12x 1y 1=12cos α·sin α=14sin2α ,S 2=12|x 2|y 2=12[―cos(α+π3)]·sin(α+π3)=―14sin(2α+2π3) .依题意 S 1=2S 2 得 sin2α=―2sin(2α+2π3) ,即 sin2α=―2[sin2αcos 2π3+cos2αsin 2π3]=sin2α―3cos2α ,整理得 cos2α=0 .因为 π6<α<π2 ,所以 π3<2α<π ,所以 2α=π2 ,即 α=π4 .20.【答案】(1)解:由条件2f (x )+f (―x )=x +2x,可知函数f (x )的定义域为{x |x ≠0},所以,2f (―x )+f (x )=―x ―2x,可得{2f (x )+f (―x )=x +2x2f (―x )+f (x )=―x ―2x,解得f (x )=x +2x(x ≠0).(2)解:对∀x 1、x 2∈(2,4),x 1≠x 2,都有f (x 2)―f (x 1)x 2―x 1>k x 2⋅x 1(k ∈R ),不妨设2<x 1<x 2<4,由f (x 2)―f (x 1)x 2―x 1>k x 2⋅x 1,则f (x 2)―f (x 1)>k (x 2―x 1)x 2⋅x 1=k x 1―k x 2,可得f (x 2)+k x 2>f (x 1)+k x 1,也即可得函数g (x )=f (x )+k x =x +k +2x 在区间(2,4)上递增;g ′(x )=1―k +2x2≥0对任意的x ∈(2,4)恒成立,即k +2≤x 2,当x ∈(2,4)时,4<x 2<16,故k +2≤4,解得k ≤2.因此,实数k 的取值范围是(―∞,2].21.【答案】(1)证明:令 x =y =0 , f (0)=f (0)+f (0) ,∴ f (0)=0 ,令 y =―x , ∴ f (0)=f (―x )+f (x )=0∴f(x)=―f(―x).∴函数f(x)是奇函数.(2)解:设x1<x2,则x1―x2<0,∴f(x1)―f(x2)=f(x1)+f(―x2)=f(x1―x2)>0∴f(x)为R上减函数.∵f(2x―2)―f(x)=f(2x―2)+f(―x)=f(x―2)≥―12,―12=4f(1)=f(4).∴x―2≤4即x≤6.∴不等式f(2x―2)―f(x)≥―12的解集为{x|x≤6}.22.【答案】(1)解:因为函数f(x)是定义域为R的奇函数,可知f(0)=0, ∴a=-1,又f(―x)=―f(x),则2―x―1b⋅2―x+1=- 2x―1b⋅2x+1,∴1―2x b+2x =- 2x―1b⋅2x+1,∴b=1,∴f(x)=2x―12x+1(2)解:∵f(x)=2x―12x+1=1- 22x+1,所以f(x)在[―2,2]上单调递增;由f(m⋅4x)≥―f(1―2x+1)=f(2x+1―1)可得m⋅4x≥2x+1―1在[―2,2]有解分参得m≥2x+1―14x =2⋅12x―14x,设t=12x ,t∈[14,4], m≥―t2+2t=―(t―1)2+1,所以m≥―8,则m的最小值为―8。

人教A版高中数学必修一综合检测试卷(含解析)

人教A版高中数学必修一综合检测试卷(含解析)

人教A版高中数学必修一综合检测试卷(含解析)综合检测时间:120分钟满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设全集I={x|-3<x<3,x∈Z},A={1,2},B={-2,-1,2},则A∪∁IB等于( ) A.{1}B.{1,2} C.{2} D.{0,1,2} 解析:∵x∈Z,∴I={-2,-1,0,1,2} ∴∁IB={0,1} ∴A∪∁IB={0,1,2}.答案:D 2.函数y=1x+log2(x +3)的定义域是( ) A.R B.(-3,+∞) C.(-∞,-3) D.(-3,0)∪(0,+∞) 解析:函数定义域x≠0x+3>0∴-3<x<0或x>0. 答案:D 3.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A.y=1x B.y=e-x C.y=-x2+1 D.y=lg |x| 解析:偶函数的有C、D两项,当x>0时,y=lg |x|单调递增,故选C. 答案:C 4.设x0是方程ln x+x=4的解,则x0属于区间( ) A.(0,1) B.(1,2) C.(2,3) D.(3,4) 解析:设f(x)=ln x+x-4,则有f(1)=ln 1+1-4=-3<0.f(2)=ln 2+2-4= ln 2-2<1-2=-1<0,f(3)=ln 3+3-4=ln 3-1>1-1=0. ∴x0∈(2,3).答案:C 5.3log34-27 -lg 0.01+ln e3=( ) A.14 B.0 C.1 D.6 解析:原式=4-3272-lg 0.01+3=7--lg 10-2=9-9=0. 答案:B 6.若y=log3x的反函数是y=g(x),则g(-1)=( ) A.3 B.-3 C.13 D.-13 解析:由题设可知g(x)=3x,∴g(-1)=3-1=13. 答案:C 7.若实数x,y满足|x|-ln1y=0,则y关于x的函数的图象大致是( ) 解析:由|x|=ln1y,则y=1ex,x≥0ex,x<0. 答案:B 8.已知f(x)=log x,g(x)=2x-1,则函数y=f(x)-g(x)的零点个数为( ) A.0 B.1 C.2 D.不确定解析:在同一坐标系中作函数f(x),g(x)的图象(图略),从而判断两函数交点个数.答案:B 9.函数f(x)=--的零点的个数为( ) A.0 B.1 C.2 D.3 解析:函数的定义域为{x|x≠1},当x>1时f(x)<0,当x<1时f(x)>0,所以函数没有零点,故选A. 答案:A 10.某新品牌电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售700台,则下列函数模型中能较好地反映销量y与投放市场月数x之间的关系的是( ) A.y=100x B.y=50x2-50x+100 C.y=50×2x D.y=100log2x+100 解析:代入验证即可.答案:B 11.若f(x)=ax3+ax+2(a≠0)在[-6,6]上满足f(-6)>1,f(6)<1,则方程f(x)=1在[-6,6]内的解的个数为( ) A.1 B.2 C.3 D.4 解析:设g(x)=f(x)-1,则由f(-6)>1,f(6)<1得[f(-6)-1][f(6)-1]<0,即g(-6)g(6)<0. 因此g(x)=f(x)-1在(-6,6)有一个零点.由于g(x)=ax3+ax+1(a≠0),易知当a>0时g(x)单调递增;当a<0时,g(x)单调递减,即函数g(x)为单调函数,故g(x)仅有一个零点.因此方程f(x)=1仅有一个根.故选A. 答案:A 12.某公司在甲、乙两地销售一种品牌车,利润(单价:万元)分别为L1=5.06x -0.15x2和L2=2x,其中x为销售量(单位:辆),若该公司在两地共销售15辆车,则能获得的最大利润为( ) A.45.666万元 B.45.6万元 C.45.56万元 D.45.51万元解析:设在甲地销售x辆,在乙地则销售(15-x)辆,∴总利润S=5.06x-0.15x2+2(15-x) =-0.15x2+3.06x+30(0≤x≤15) ∴当x=10时,S有最大值45.6万元.答案:B 二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上) 13.已知f(x)是定义在R上的偶函数,且当x>0时,f(x)=2x-3,则f(-2)=________. 解析:∵f(x)为定义在R上的偶函数,∴f(-x)=f(x),∴f(-2)=f(2)=22-3=1. 答案:1 14.已知集合A={x|ax2-3x+2=0}至多有一个元素,则a的取值范围为________.解析:集合A有为∅和A中只有一个元素两种情况, a=0时,A={23}满足题意,a≠0时,则由Δ=9-8a≤0得a≥98. 答案:a≥98或a=0 15.用二分法求方程ln x=1x在[1,2]上的近似解时,取中点c=1.5,则下一个有根区间为________.解析:令f(x)=ln x-1x,则f(1)=-1<0,f(2)=ln 2-12=ln 2-ln e12>0, f(1.5)=f(32)=ln32-23=ln32-ln e23 e23=3e2>32,∴ln e23>ln32,即f(1.5)<0. ∴下一个有根区间为(1.5,2).答案:(1.5,2) 16. 给出下列四个命题:①a>0且a≠1时函数y=logaax与函数y=alogax表示同一个函数.②奇函数的图象一定通过直角坐标系的原点.③函数y=3(x-1)2的图象可由y=3x2的图象向右平移1个单位得到.④若函数f(x)的定义域为[0,2],则函数f(2x)定义域为[0,4].其中正确命题的序号是________(填上所有正确命题的序号) 解析:①两函数定义域不同,y =logaax定义域为R,y=alogax定义域(0,+∞).②如果函数在x=0处没有定义,图象就不过原点,如y=1x. ③正确.④f(x)定义域[0,2]∴f(2x)定义域0≤2x≤2即0≤x≤1,∴f(2x)定义域为[0,1].答案:③ 三、解答题(本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知A={x|x2+2x-8=0}, B={x|log2(x2-5x+8)=1}, C={x|x2-ax+a2-19=0}.若A∩C=∅,B∩C≠∅,求a的值.解析:A={2,-4},B={2,3},由A∩C=∅知2∉C,-4∉C,又由B∩C≠∅知3∈C,∴32-3a+a2-19=0解得a=-2或a=5,当a=-2时,C={3,-5},满足A∩C=∅,当a=5时,C={3,2},A∩C={2}≠∅,(舍去),∴a=-2. 18.(本小题满分12分)已知函数f(x)=ax2+bx+1(a,b为实数,a≠0,x∈R) (1)当函数f(x)的图象过点(-1,0),且方程f(x)=0有且只有一个根,求f(x)的表达式. (2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围.解析:(1)因为f(-1)=0,所以a-b+1=0 因为方程f(x)=0有且只有一个根,∴Δ=b2-4a=0,∴b2-4(b-1)=0,即b=2,a=1,∴f(x)=(x+1)2. (2)∵g(x)=f(x)-kx=x2+2x+1-kx =x2-(k-2)x+1 =(x-k-22)2+1--当k-22≥2或k-22≤-2时即k≥6或k≤-2时,g(x)是单调函数. 19.(本小题满分12分)已知f(x)是定义在(0,+∞)上的增函数,且对任意x,y∈(0,+∞),都有f(xy)=f(x)-f(y). (1)求f(1)的值; (2)若f(6)=1,解不等式f(x+3)+f1x≤2. 解析:(1)∵f(x)是(0,+∞)上的增函数,且对任意x,y∈(0,+∞),都有f xy=f(x)-f(y),∴f(1)=f(11)=f(1)-f(1)=0. (2)若f(6)=1,则f(x+3)+f 1x≤2=1+1=f(6)+f(6),∴f(x+3)-f(6)≤f (6)-f 1x,即f x+36≤f(6x),∴0<x+36≤6x,解得x≥335. ∴原不等式的解集为{x|x≥335}. 20.(本小题满分12分)已知函数f(x)=mx+n1+x2是定义在(-1,1)上的奇函数,且f(12)=25. (1)求实数m,n的值; (2)用定义证明f(x)在(-1,1)上为增函数; (3)解关于t的不等式f(t-1)+f(t)<0. 解析:(1)∵f(x)为奇函数,∴f(-x)=-f(x),即-+n1+-=-mx+n1+x2. ∴n=0. 又∵f12=12m1+122=25,∴m=1.(2)由(1)得,f(x)=x1+x2. 设-1<x1<x2<1,则f(x1)-f(x2) =x11+x21-x21+x22=+-+++=--++-1<x1<x2<1,∴x1-x2<0,1-x1x2>0,1+x21>0,1+x22>0,∴f(x1)-f(x2)<0. ∴f(x)在(-1,1)上为增函数.(3)∵f(x)是定义在(-1,1)上的奇函数,由f(t-1)+f(t)<0,得f(t)<-f(t-1)=f(1-t).又∵f(x)在(-1,1)上为增函数,∴-1<t<1,-1<1-t<1,t<1-t,解得0<t<12. 21.(本小题满分13分)某医疗研究所开发了一种新药,如果成人按规定的剂量服用,则服药后每毫升血液中的含药量y与时间t之间近似满足如图所示的曲线. (1)写出服药后y 与t之间的函数关系式; (2)据测定,每毫升血液中含药量不少于4μg时治疗痢疾有效.假设某病人一天中第一次服药时间为上午7:00,问一天中怎样安排服药时间(共4次)效果更佳?解析:(1)依题意,得y=6t,0≤t≤1,-23t+203,1<t≤10. (2)设第二次服药在第一次服药后t1小时,则-23t1+203=4. 解得t1=4,因而第二次服药应在11:00. 设第三次服药在第一次服药后t2小时,则此时血液中含药量应为前两次服药后的含药量的和,即-23t2+203-23(t2-4)+203=4. 解得t2=9小时,故第三次服药应在16:00. 设第四次服药在第一次服药后t3小时(t3>10),则此时第一次服进的药已吸收完,血液中含药量为第二、三次的和,即-23(t3-4)+203-23(t3-9)+203=4. 解得t3=13.5小时,故第四次服药应在20:30. 22.(本小题满分13分)已知函数f(x)定义域为[-1,1],若对于任意的x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0, (1)证明: f(x)为奇函数; (2)证明:f(x)在[-1,1]上是增加的. (3)设f(1)=1,若f(x)<m-2am+2,对所有x∈[-1,1],a∈[-1,1]恒成立,求实数m的取值范围.解析:(1)令x=y=0,∴f(0)=0 令y=-x,f(x)+f(-x)=0 ∴f(-x)=-f(x),∴f(x)为奇函数.(2)∵f(x)是定义在[-1,1]上的奇函数,令-1≤x1<x2≤1,则f(x2)-f(x1)=f(x2-x1)>0,∴f(x)在[-1,1]上是增加的. (3)f(x)在[-1,1]上是增加的,f(x)max=f(1)=1,使f(x)<m-2am+2对所有x∈[-1,1]恒成立,只要m-2am+2>1,即m-2am+1>0,令g(a)=m-2am+1=-2am+m+1,要使g(a)>0时,a∈[-1,1]恒成立,则-,,即1+3m>0,1-m>0,∴-13<m<1. ∴实数m的取值范围是(-13,1).。

人教版高中数学新教材必修第一册综合测试题(基础,含多选题)

人教版高中数学新教材必修第一册综合测试题(基础,含多选题)

人教版高中数学新教材必修第一册综合测试题第一部分选择题(共60分)一、单项选择题:(共8小题,每题5分,共40分. 在每个小题给出的四个选项中,只有一项是符合题目要求的 )1.设集合{}1,2,3,4,5U =,,{1,3,5}A =,{2,3,5}B =,则()U C A B 等于( )A .{3, 5}B .{ 4 }C .{1,2,4}D .∅2.设x∈R,则“05x <<” 是“02x <<”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.在下列四组函数中,()f x 与()g x 表示同一函数的是( )A .,0(),(),0x x f x x g x x x ≥⎧==⎨-<⎩B .2(),()x f x x g x x==C .()1(),()1()f x x x g x x x =+∈=+∈R ZD .2(),()f x x g x ==4. 若c b a >>,则下列不等式成立的是( )A .22a b >B .a c b c +>+C .bc ac >D .bc ac <5. 函数(){}1,1,1,2f x x x =+∈-的值域是 ( ).A ( 0,2,3 ) .B 03y ≤≤ .C {}0,2,3 .D []0,36.若不等式x 2+kx +1<0的解集为空集,则k 的取值范围是( )A .[-2,2]B .(-∞,-2]∪[2,+∞)C .(-2,2)D .(-∞,-2)∪(2,+∞)7. 若0,0>>y x ,且28x y +=,则xy 的最大值是( )A .2B .4C .8D .16 8.甲、乙两同学同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均分别相同,则( )A .甲先到教室B .乙先到教室C .两人同时到教室D .谁先到教室不确定 二、 多项选择题: (共4题,每题5分,共20分. 在每个小题给出的四个选项中,有多个项符合题目要求. 全部选对的得5分,选对但不全的得3分,未选或有选错的得0分)9.已知集合}01|{2=-=x x A ,则下列式子表述正确的有( )A .A ∈1B .A ∈-}1{C .A ⊆φD .A ⊆-}1,1{ 10.下列命题为真命题的是( )A .2,x R x x ∀∈≥B .0,0a b a ==若则C .0,0a a b ==若则D .菱形的对角线互相平分 11. 以下四个不等式, 其中是a 1<b1成立的充分条件的是( ) A .a<0<b B .b<a<0 C .b<0<a D .0<b<a ,12.下列结论正确的是( ) A. 1+2x x ≥ B. 11+3-1x x x >时,的最小值是 C. +y=4x 时,y x 的最大值4 D. 0 a ≠时,2212a a ≥+第二部分非选择题(90分)三.填空题: (本题共4个小题,每小题5分,共20分)13. 函数11y x =-的定义域是__________. 14. 满足{}{}1,21,2,3B =的集合B 的个数为15. 不等式225413x x x -+<-+的解集是__________.16. 已知函数()32,f x x =+若()8,f a = 则实数a 的值是_________.四、解答题(共70分,解答必须写出必要的文字说明、证明过程或演算步骤)(){}{}17. 10 121,25P x a x a Q x x =+≤≤+=-≤<分若(1)当a =3时,求(C R P) ∩Q ;(2)0,a P Q a >⊆若,求的取值范围18.(12分) 已知命题P: 2,2,x R x x m ∀∈≠-+命题q: 2,210x R x x m ∃∈+--=(1) 写出命题P ⌝(2)若命题P 为假命题,命题q 为真命题,求实数m 的取值范围19.(12分) 已知集合{}{}2A 22,-8+15=0x a x a B x x x =-≤≤+=(1)当3a =时,A B 判断集合与的关系;(2)x B ∈若“”是x A ∈“”的充分不必要条件,求实数a 的取值范围20.(12分) 已知两个正实数,x y 满足141x y+= (1) 求4y x +的最小值; (2) 若不等式234y x m m +≥-恒成立,求实数m 的取值范围21.(12分)已知函数2()4f x x ax =-++,()5g x x =-+.(1)当1a =时,比较()()f x g x 与的大小;(2)若不等式()()f x g x ≥的解集包含[1,2],求a 的取值范围。

(人教版A版)高中数学必修第一册 第二章综合测试试卷03及答案

(人教版A版)高中数学必修第一册 第二章综合测试试卷03及答案

第二章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列等式一定正确的是( )A .()lg lg lg xy x y=+B .222m n m n++=C .222m n m n+×=D .2ln 2ln x x=2.若函数()12122m y m m x -=+-是幂函数,则m =()A .1B .3-C .3-或1D .23.下列函数既是增函数,图像又关于原点对称的是( )A .y x x=B .xy e =C .1y x=-D .2log y x=4.函数()ln 3y x =- )A .[)23,B .[)2+¥,C .()3-¥,D .()23,5.下列各函数中,值域为()0¥,+的是( )A .22xy -=B.y =C .21y x x =++D .113x y +=6.已知()x f x a =,()()log 01a g x x a a =>,且≠,若()()330f g <,那么()f x 与()g x 在同一坐标系内的图像可能是()A BC D7.已知0.2log 2.1a =, 2.10.2b =,0.22.1c =则( )A .c b a<<B .c a b<<C .a b c<<D .a c b<<8.已知()()221122x a x x f x x ì-ï=íæö-ïç÷èøî,≥,,<是R 上的减函数,则实数a 的取值范围是( )A .()2-¥,B .138æù-¥çúèû,C .()02,D .1328éö÷êëø,9.已知函数()y f x =是定义在R 上的偶函数,当0x ≥时,()2x f x e x =+,则()ln 2f -=( )A .12ln 22-B .12ln 22+C .22ln 2-D .22ln 2+10.已知函数()()()x xf x x e ae x -=+ÎR ,若()f x 是偶函数,记a m =;若()f x 是奇函数,记a n =.则2m n +的值为( )A .0B .1C .2D .1-11.已知实数a ,b 满足等式20172018a b =,则下列关系式不可能成立的是( )A .0a b <<B .0a b <<C .0b a<<D .a b=12.已知函数()221222log x mx m x m f x x x m ì-++ï=íïî,≤,,>,其中01m <<,若存在实数a ,使得关于x 的方程()f x a=恰有三个互异的实数解,则实数m 的取值范围是()A .104æöç÷èø,B .102æöç÷èø,C .114æöç÷èøD .112æöç÷èø,二、填空题:本大题共4小题,每小题5分,共20分.13.满足31164x -æöç÷èø>的x 的取值范围是________.14.若函数()212log 35y x ax =-+在[)1-+¥,上是减函数,则实数a 的取值范围是________.15.如图,矩形ABCD 的三个顶点A ,B ,C分别在函数y x =,12y x =,xy =的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.16.定义新运算Ä:当m n ≥时,m n m Ä=;当m n <时,m n n Ä=.设函数()()()2221log 2xx f x x éùÄ-Ä×ëû,则函数()f x 在()02,上的值域为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)计算下列各式的值:(1)7015log 243210.06470.250.58--æö--++´ç÷èø;(2)()2235lg5lg 2lg5lg 20log 25log 4log 9+´++´´.18.(本小题满分12分)已知定义域为R 的单调函数()f x 是奇函数,当0x >时,()23x xf x =-.(1)求()f x 的解析式;(2)若对任意的t ÎR ,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围.19.(本小题满分12分)已知实数x 满足9123270x x -×+≤,函数()2log 2xf x =×(1)求实数x 的取值范围;(2)求函数()f x 的最值,并求此时x 的值.20.(本小题满分12分)已知函数()x f x a =,()2x g x a m =+,其中0m >,0a >且1a ≠.当[]11x Î-,时,()y f x =的最大值与最小值之和为52.(1)求a 的值;(2)若1a >,记函数()()()2h x g x mf x =-,求当[]0x Î,1时,()h x 的最小值()H m .21.(本小题满分12分)以德国数学家狄利克雷(l805-1859)命名的狄利克雷函数定义如下:对任意的x ÎR ,()10.x D x x ì=íî,为有理数,,为无理数研究这个函数,并回答如下问题:(1)写出函数()D x 的值域;(2)讨论函数()D x 的奇偶性;(3)若()()()212x x D x x f x D x x ì-ï=íïî+,为有理数,+,为无理数,,求()f x 的值域.22.(本小题满分12分)若函数()f x 满足()()21log 011a a f x x a a a x æö=×-ç÷-èø>,且≠.(1)求函数()f x 的解析式,并判断其奇偶性和单调性;(2)当()2x Î-¥,时,()4f x -的值恒为负数,求a 的取值范围.第二章综合测试答案解析一、1.【答案】C【解析】对于A ,D ,若x ,y 为非正数,则不正确;对于B ,C ,根据指数幂的运算性质知C 正确,B 错误.故选C .2.【答案】B【解析】因为函数()12122m y m n x -=+-是幂函数,所以22211m m m +-=且≠,解得3m =-.3.【答案】A【解析】2200x x y x x x x ìï==í-ïî,≥,,<为奇函数且是R 上的增函数,图像关于原点对称;x y e =是R 上的增函数,无奇偶性;1y x=-为奇函数且在()0-¥,和()0+¥,上单调递增,图像关于原点对称,但是函数在整个定义域上不是增函数;2log y x =在()0+¥,上为增函数,无奇偶性.故选A .4.【答案】A【解析】函数()ln 3y x =-+x 满足条件30240xx -ìí-î>,≥,解得32x x ìíî<,≥,即23x ≤<,所以函数的定义域为[)23,,故选A .5.【答案】A【解析】对于A,22xxy -==的值域为()0+¥,;对于B ,因为120x -≥,所以21x ≤,0x ≤,y =(]0-¥,,所以021x <≤,所以0121x -≤<,所以y =[)01,;对于C ,2213124y x x x æö=++=++ç÷èø的值域是34éö+¥÷êëø,;对于D ,因为()()1001x Î-¥+¥+,∪,,所以113x y +=的值域是()()011+¥,∪,.6.【答案】C【解析】由指数函数和对数函数的单调性知,函数()x f x a =与()()log 01a g x x a a =>,且≠在()0+¥,上的单调性相同,可排除B ,D .再由关系式()()330f g ×<可排除A ,故选C .7.【答案】C【解析】 2.100.200.20.2log 2.1log 1000.20.21 2.1 2.1 1.a b c a b c ======\Q <,<<,><<.故选C .8.【答案】B【解析】由题意得,函数()()221122x a x x f x x ì-ï=íæö-ïç÷èøî,≥,,<是R 上的减函数,则()2201122,2a a -ìïíæö--´ïç÷èøî<,≥解得138a ≤,故选B .9.【答案】D【解析】Q 函数()y f x =是定义在R 上的偶函数,且当0x ≥时,()2x f x e x =+,()()ln 2ln 2ln 22ln 222ln 2f f e \-==+=+.故选D .10.【答案】B【解析】当()f x 是偶函数时,()()f x f x =-,即()()x x x x x e ae x e ae --+=-×+,即()()10x x a e e x -++=.因为上式对任意实数x 都成立,所以1a =-,即1m =-.当()f x 是奇函数时,()()f x f x =--,即()()x x x x x e ae x e ae --+=+,即()()10x x a e e x ---=.因为上式对任意实数x 都成立,所以1a =,即1n =.所以21m n +=.11.【答案】A【解析】分别画出2017x y =,2018x y =的图像如图所示,实数a ,b 满足等式20172018a b =,由图可得0a b >>或0a b <<或0a b ==,而0a b <<不成立.故选A .12.【答案】A【解析】当01m <<时,函数()221222log x mx m x m f x x x m ì-++ï=£íïî,≤,,>,的大致图像如图所示.Q 当x m ≤时,()()2222222f x x mx m x m =-++=-+≥,\要使得关于x 的方程()f x a =有三个不同的根,则12log 2m >.又01m <<,解得104m <<.故选A .二、13.【答案】()1-¥,【解析】由题可得,321144x --æöæöç÷ç÷èøèø>,则32x --<,解得1x <.14.【答案】(]86--,【解析】令()235g x x ax =-+,其图像的对称轴为直线6a x =.依题意,有()1610ag ì-ïíï-î,>,即68.a a -ìí-î≤,>故(]86a Î--,.15.【答案】1124æöç÷èø,【解析】由图像可知,点()2A A x ,在函数y x =的图像上,所以2A x =,212A x ==.点()2B B x ,在函数12y x =的图像上,所以122B x =,4x =.点()4,C C y 在函数x y =的图像上,所以414C y ==.又因为12D A xx ==,14D C y y ==,所以点D 的坐标为1124æöç÷èø,.16.【答案】()112,【解析】根据题意,当22x ≥,即1x ≥时,222x x Ä=;当22x <,即1x <时,222x Ä=.当2log 1x ≤,即02x <≤时,21log 1x Ä=;当21log x <,即2x >时,221log log x x Ä=.()()2220122122log 2 2.x x x x xx f x x x x ìïï\=-íï-×ïî,<<,,≤≤,,>\①当01x <<时,()2x f x =是增函数,()12f x \<<;②当12x ≤<,()221122224xxx f x æö=-=--ç÷èø,1222 4.x x \Q ≤<,≤<()221111242424f x æöæö\----ç÷ç÷èøèø<,即()212f x ≤<.综上,()f x 在()02,上的值域为()112,.三、17.【答案】解(1)70515log 244321510.06470.250.51224822--æöæö--++´=-++´=ç÷ç÷èøèø.(2)()()22352lg52lg 22lg3lg5lg 2lg5lg 20log 25log 4log 9lg5lg5lg 2lg 21lg 2lg3lg5+´++´´=++++´´11810=++=.18.【答案】解(1)Q 定义域为R 的函数()f x 是奇函数,()00f \=.Q 当0x <时,0x ->,()23x xf x --\-=-.又Q 函数()f x 是奇函数,()()f x f x \-=-,()23x xf x -\=+.综上所述,()2030020.3xx x x f x x xx -ì-ïï==íïï+î,>,,,,<(2)()()51003f f -==Q >,且()f x 为R 上的单调函数,()f x \在R 上单调递减.由()()22220f t t f t k -+-<得()()2222f t t f t k ---<.()f x Q 是奇函数,()()2222f t t f k t \--<.又()f x Q 是减函数,2222t t k t \-->,即2320t t k -->对任意t ÎR 恒成立,4120k \D =+<,解得13k -<,即实数k 的取值范围为13æö-¥-ç÷èø,.19.【答案】解(1)由9123270x x -×+≤,得()23123270xx -×+≤,即()()33390x x --≤,所以339x ≤≤,所以12x ≤≤,满足02x 0.所以实数x 的取值范围为[]12,.(2)()()()()2222222231log log 1log 2log 3log 2log 224xf x x x x x x æö=×=--=-+=--ç÷èø.因为12x ≤≤,所以20log 1x ≤≤.所以2log 1x =,即2x =时,()min 0f x =;当2log 0x =,即1x =时,()max 2f x =.故函数()f x 的最小值为0,此时2x =,最大值为2,此时1x =.20.【答案】解(1)()f x Q 在[]11-,上为单调函数,()f x \的最大值与最小值之和为152a a -+=,2a \=或12a =.(2)1a Q >,2a \=.()2222x x h x m m =+-×,即()()2222xx h x m m =-×+.令2x t =,则()h x 可转化为()22k t t mt m =-+,其图像对称轴为直线t m =.[]01x ÎQ ,,[]12t \Î,,\当01m <<时,()()11H m k m ==-+;当12m ≤≤时,()()2H m k m m m ==-+;当2m >时,()()234H m k m ==-+.综上所述,()21011234 2.m m H m m m m m m -+ìï=-+íï-+î,<<,,≤≤,,>21.【答案】解(1)函数()D x 的值域为{}01,.(2)当x 为有理数时,则x -为无理数,则()()1D x D x -==;当x 为无理数时,则为x -为无理数,则()()0D x D x -==.故当x ÎR 时,()()D x D x -=,所以函数()D x 为偶函数.(3)由()D x 的定义知,()22x x x f x x ìï=íïî,为有理数,,为无理数.即当x ÎR 时,()2x f x =.故()f x 的值域为()0+¥,.22.【答案】解(1)令log a x t =,则t x a =,()()21t t a f t a a a -\=--.()()()21x x a f x a a x a -\=-Î-R .()()()()2211x x x x a a f x a a a a f x a a ---=-=--=---Q ,()f x \为奇函数.当1a >时,x y a =为增函数,xy a -=-为增函数,且2201a a -,()f x \为增函数.当01a <<时,x y a =为减函数,x y a -=-为减函数,且2201a a -<,()f x \为增函数.()f x \在R 上为增函数.(2)()f x Q 是R 上的增函数,()4y f x \=-也是R 上的增函数.由2x <,得()()2f x f <,要使()4f x -在()2-¥,上恒为负数,只需()240f -≤,即()22241a a a a ---≤.422141a a a a-\×-≤,214a a \+≤,2410a a \-+≤,22a \-+≤.又1a Q ≠,a \的取值范围为)(21,2éë.。

人教版高一数学必修一期末综合练习题(含答案)

人教版高一数学必修一期末综合练习题(含答案)

人教版高一数学必修一期末综合练习题(含答案)人教版高一数学必修一期末综合练题(含答案)一、单选题1.已知实数a,b,c满足lga=10=b,则下列关系式中不可能成立的是()A。

a>b>cB。

a>c>bC。

c>a>bD。

c>b>a2.已知函数f(x)=x(e^x+a),若函数f(x)是偶函数,记a=m,若函数f(x)为奇函数,记a=n,则m+2n的值为()A。

0B。

1C。

2D。

-13.命题:“对于任意实数x,x^2+x>0” 的否定是( )A。

存在实数x,使得x^2+x≤0B。

对于任意实数x,x^2+x≤0C。

存在实数x,使得x^2+x<0D。

对于任意实数x,x^2+x≥04.已知sin2α=-1/2,则cos(α+π/3)=()A。

-1/3B。

-2/3C。

1/3D。

2/35.已知ω>0,函数f(x)=cos(ωx+π/2),则ω的取值范围是()A。

(0,π/12]B。

(0,π/6]C。

(0,π/4]D。

(0,π/2]6.为了得到函数y=cos2x的图象,只需将函数y=sin(2x-π/2)的图象上所有点A。

向右平移π个单位B。

向左平移π个单位C。

向右平移π/2个单位D。

向左平移π/2个单位7.下列函数中,与函数y=x相同的是()A。

y=1/xB。

y=x^2C。

y=√xD。

y=|x|8.若2sinx-cos(π/2+x)=1,则cos2x=()A。

-8/9B。

-7/9C。

7/9D。

8/99.设A={x|x^2-4x+3≥0},B={x|x^2-6x+5≤0},则“A包含于B”是“B包含于A”的()A。

充分必要条件B。

必要不充分条件C。

充分不必要条件D。

既不充分也不必要条件10.已知集合A={x|y=ln(x+1)},集合B={x|x≤2},则A∩B等于()A。

(-1,2]B。

[0,2]C。

(0,∞)D。

(5,6]11.已知集合P={x|x-3≤2,x∈R},Q={3,5,6},则P∩Q=()A。

高中数学人教A版必修第一册期末综合练习题(含答案)

高中数学人教A版必修第一册期末综合练习题(含答案)

人教版高一数学必修一期末综合练习题(含答案)一、单选题1.若定义域为R 的函数()f x 不是奇函数,则下列命题中一定为真命题的是( ). A .x R ∀∈,()()f x f x -≠- B .x R ∀∈,()()f x f x -= C .0x R ∃∈,()()00f x f x -=D .0x R ∃∈,()()00f x f x -≠-2.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( ) A .略有盈利 B .略有亏损C .没有盈利也没有亏损D .无法判断盈亏情况3.已知集合{}{}1,0,0,1A B =-=,则A B = ( )A .∅B .{}0C .{}1,1-D .{}1,0,1-4.定义在R 上的奇函数()f x 满足()()330f x f x --+-=,若()11f =,()22f =-,则()()()()1232020f f f f ++++=( )A .1-B .0C .1D .25.已知24(0,0)x y x y +=>>,则xy 的最大值是( ) A .5B .4C .3D .26.已知向量(sin a θ=,()1,cos b θ=,3πθ≤,则a b -的最大值为( )A .2B C .3D .57.下列函数既是奇函数又是增函数的是( ) A .21y x =-+B .11xy x-=+ C .1y x=-D .y x x =8.q 是p 的充要条件的是( ) A .:325p x +>;:235q x -->-B .:2p a >,2b >;:q a b >C .:p 四边形的两条对角线互相垂直平分;:q 四边形是正方形D .:0p a ≠;:q 关于x 的方程1ax =有唯一解9.“a=3”是“直线ax -2y -1=0”与“直线6x -4y+c=0平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件10.在①160°;②480°;③–960°;④1530°这四个角中,属于第二象限角的是( ) A .①B .①②C .①②③D .①②③④11.下列结论成立的是( ) A .若,a b c d >>,则a c b d ->- B .若,a b c d >>,则a d b c ->- C .若a b >,则22ac bc >D .若a b >,则22a b >12.已知函数f (x )=log a |x|在(0,+∞)上单调递增,则( ) A .f (3)<f (﹣2)<f (1) B .f (1)<f (﹣2)<f (3) C .f (﹣2)<f (1)<f (3) D .f (3)<f (1)<f (﹣2)第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.已知集合{}0,1A =,{}2,2B a a =,其中a R ∈,我们把集合{}1212,,x x x x x A xB =+∈∈记作A B *,若集合A B *中的最大元素是21a +,则a 的取值范围是________.14.若函数()1f x =+()g x =-,则()()f x g x +=________.15.幂函数()f x 的图像过点(,则()8f =___________. 16.“15a =”是“直线()2120ax a y +-+=与直线()1330a x ay +++=垂直”的_________条件(从“充分不必要”,“必要不充分”,“充要”,“既不充分又不必要”中选取一个填入).三、解答题17.已知()()2log 43a f x ax x a =-+.(1)当3a =时,求()tan y f x =的定义域; (2)若()f x 在1,2⎛⎫-∞ ⎪⎝⎭上为减函数,求实数a 的取值范围.18.已知函数223,0()3,0x x x f x x x ⎧+-≤=⎨-->⎩(1)求f(-4)、f(5)的值;(2)画出函数f(x)的图象,并指出它的单调区间(不需证明); (3)当[2,0]x ∈-时,求函数的值域. 19.设()2501xf x x =+,求()f x 在()0,∞+上的最大值.20.已知函数()()()()sin 0,0,0,2f x A x A ωϕωϕπ=+>>∈的部分图像如图所示,求函数()f x 的解析式.21.已知指数函数()y g x =满足(3)8g =;定义域为R 的函数()()2()n g x f x m g x -=+是奇函数.(1)确定(),()y g x y f x ==的解析式;(2)若对任意[1,4]t ∈,不等式(23)()0f t f t k -+->恒成立,求实数k 的取值范围.22.已知x ∈R ,设(2cos ,sin cos )m x x x =+,(3sin ,sin cos )n x x x =-,记函数()f x m n =⋅.(1)求函数()f x 取最小值时x 的取值范围;(2)设△ABC 的角A ,B ,C 所对的边分别为a ,b ,c ,若()2f C =,c =,求△ABC的面积S 的最大值.23.公元2222年,有一种高危传染病在全球范围内蔓延,被感染者的潜伏期可以长达10年,期间会有约0.05%的概率传染给他人,一旦发病三天内即死亡,某城市总人口约200万人,专家分析其中约有1000名传染者,为了防止疾病继续扩散,疾病预防控制中心现决定对全市人口进行血液检测以筛选出被感染者,由于检测试剂十分昂贵且数量有限,需要将血样混合后一起检测以节约试剂,已知感染者的检测结果为阳性,末被感染者为阴性,另外检测结果为阳性的血样与检测结果为阴性的血样混合后检测结果为阳性,同一检测结果的血样混合后结果不发生改变.(1)若对全市人口进行平均分组,同一分组的血样将被混合到一起检测,若发现结果为阳性, 则再在该分组内逐个检测排査,设每个组x 个人,那么最坏情况下,需要进行多少次检测可以找到所有的被感染者?在当前方案下,若要使检测的次数尽可能少,每个分组的最优人数?(2)在(1)的检测方案中,对于检测结果为阳性的组来取逐一检测排査的方法并不是很好, 或可将这些组的血样再进行一次分组混合血样检测,然后再进行逐一排査,仍然考虑最坏的情况,请问两次要如何分组,使检测总次数尽可能少?(3)在(2)的检测方案中,进行了两次分组混合血样检测,仍然考虑最坏情况,若再进行若干次分组混合血样检测,是否会使检测次数更少?请给出最优的检测方案.24.已知()()2sin sin x x x f x =. (1)求函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值; (2)若曲线()y f x =的对称轴只有一条落在区间[]0,m 上,求m 的取值范围.25.已知曲线()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的一个最高点为,212P π⎛⎫⎪⎝⎭,与点P 相邻一个最低点为Q ,直线PQ 与x 轴的交点为,03π⎛⎫⎪⎝⎭. (1)求函数()f x 的解析式; (2)求函数()f x 的单调增区间;(3)若,46x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()()21g x f x n =+-恰有一个零点,求实数n 的取值范围.参考答案1.D2.B3.D4.C5.D6.B7.D8.D9.B10.C11.B12.B 13.()0,214.1+01x ≤≤15.16.充分不必要17.(1),,,2632k k k k k Z ππππππππ⎛⎫⎛⎫-+⋃++∈ ⎪ ⎪⎝⎭⎝⎭;(2)⎣. 18.(1)-8 (2) [-4,-3] 19.2520.()2sin 44f x x ππ⎛⎫=+⎪⎝⎭21.(1)112()22xx f x +-=+;(2)9k >22.(1)|,6x x k k Z ππ⎧⎫=-∈⎨⎬⎩⎭;(2)423.(1)62101000x x⨯+ 次,45人;(2)第一次每组159人,第二次每组13人;(3)见解析24.(1)()min 0f x =; ()max 3f x =.(2)5,36m ππ⎡⎫∈⎪⎢⎣⎭25.(1)()2cos 26x f x π⎛⎫=-⎪⎝⎭;(2)5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(3){}|1153n n n n -<<+==-或。

(完整word)人教版高中数学必修一综合测试题带答案的哦

(完整word)人教版高中数学必修一综合测试题带答案的哦

高一数学必修1测试题第I卷(选择题共60分)一、选择题(本大题共10小题,每小题5分,共60分)1. 已知A={ x|y=x,x € R}, B={ y|y=x2,x€ R},贝A A B 等于A.{x|x€ R}B.{y|y> 0}C.{(0,0),(1,1)}D.2. 函数y x2的单调递增区间为A • ( ,0]B • [0, ) C. (0, ) D.(,)3. 下列四个函数中,在(0,+ g)上为增函数的是A. f(x)=3-xB.f(x)=x2-3x1C.f(x)=-D.f(x)=-|x|x 14. 函数f(x)=x2+2(a —1)x+2在区间(-g ,4]上递减,则a的取值范围是A. [-3,+ g]B.(-g ,-3)C.(-g ,5]D. [3,+g)A B C D6. 函数y= . x 1 +1( x》1)的反函数是2 2A.y=x2-2x+2(x< 1)B.y=x2-2x+2(x> 1)C.y=x2-2x(x< 1)D.y=x2-2x(x> 1)7. 已知函数f(x)= . mx2mx 1的定义域是一切实数,则m的取值范围是A.0< m< 4B.0 < m< 1C.m> 4D.0 < m< 48. 某商场对顾客实行购物优惠活动,规定一次购物付款总额:(1) 如果不超过200元,则不给予优惠;(2) 如果超过200元但不超过500元,则按标价给予9折优惠;(3) 如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.某人两次去购物,分别付款168元和423元,假设他一次性购买上述两次同样的商品,则应付款是A.413.7 元C.546.6 元B.513.7 元D.548.7 元b9. 二次函数y=ax2+bx与指数函数y=( —)x的图象只可能是a①前3年总产量增长速度增长速度越来越快;②前3年中总产量增长速度越来越慢;10. 已知函数f(n)=f[f(n 吧A.2B.411. 如图,设a,b,c,d>0,且不等于贝U a,b,c,d的大小顺序()A、a<b<c<dB、a<b<d<cC、b<a<d<cD、b<a<c<d10),其中水N,则购等于C.6D.71, y=a x , y=b x , y=c x ,y=d x在同一坐标系中的图象如图,.x iy=b y Ixy=cN l12. •已知0<a<1,b<-1,函数f(x)=a x+b的图象不经过:( )y=d x A.第一象限;B.第二象限;C•第三象限;D.第四象限第n卷(非选择题共70分)二、填空题(本大题共4小题,每小题5分,共20分)13•已知f(x)=/—1(x<0),则厂*3)= ________ .14.函数y _log2(3x 2)的定义域为V 315•某工厂8年来某产品产量y与时间t年的函数关系如下图,则:y yyn 3(n 10),③第3年后,这种产品停止生产;④第3年后,这种产品年产量保持不变以上说法中正确的是2x 3 (x 0),16.函数y= x 3 (0 x 1),的最大值是-x 5 (x 1)三、解答题117.( 12分)已知函数f(x) x - , ( I )证明f(x)在[1,)上是增函数;x(n)求f(x)在[1,4]上的最大值及最小值.x 118.(本小题满分10分)试讨论函数f(x)=log a (a>0且1)在(1,+ )上的单调性x 1并予以证明.19.(本小题满分12分)二次函数f (x)满足:1' ''且f (0) =1.⑴求f (x )的解析式;(2)在区间上卜I"〕,y=f(x)的图象恒在y=2x+m 的图象上方,试确定实数m 的 范围•20},B {x|x mx 2 0},若 B A ,2 20.设集合 A {x | x 3x 2求:实数m 的值组成的集合12 分)21.设 f(x) 44试求:(1) f(a)f(1 a)的值;心f (4011f (坐鸟的值; 4011答案一.BAaCc BDCAD BA 二。

高一数学人教版必修一第一章《集合与函数概念》综合测试题(含答案)

高一数学人教版必修一第一章《集合与函数概念》综合测试题(含答案)

第一章集合与函数概念综合测试题、选择题1函数讨二2x -1的定义域是()2•已知集合 A 到B 的映射f:x T y=2x+1,那么集合A 中元素2在B 中对应的元素是( )A • 2B • 6C • 5D • 83•设集合 A 二{x|1 ::: x ::: 2}, B 二{x|x ::: a}.若 A B,则 a 的范围是()A • a_2B • a < 1C • a - 1D . a 乞 24•函数y =(k • 2)x • 1在实数集上是减函数,则 k 的范围是()A • k l :—2B • k z ;—2C • k ^ -2D • k-25•全集 U ={ 0,1,3,5,6,8},集合 A = { 1 , 5, 8 }, B ={2},则(6 A ) B =()A (2,;)B.[];)2 2—1 C.(「2) -1D.( =,2]B • { 0,3,6} {2,1,5,8} D • {0,2,3,6}F列各组函数中,表示同一函数的是(0 x y =x ,y =A •xB y = .x -1 . x 1, y = . x2 -1—2Dy=|x|,y = (、x)F列函数是奇函数的是(1A • y =x2B • y =2x2 3 (一“)若奇函数f x在1,3】上为增函数,且有最小值0,则它在1-3,-1】上A •是减函数,有最小值C •是减函数,有最大值设集合M = X - 2乞x -2 :f,B •是增函数,D •是增函数,N 二:y0 -有最小值有最大值y乞2:,给出下列四个图形,其中能表示集合M为定义域,N为值域的函数关系的是()x2 x 010. 已知f (x) X=0,则 f [ f (-3)]等于( )0 x cO2A . 0 B. n C. n D. 9二. 填空题r X +5(XA 1) nt211. 已知f(x—1)=x2,贝y f(x)= .14.已知f (x) = 2 ,则2x +1(x 兰1)f[f(1)> _______________________ .212. 函数y = x -6x的减区间是_____________ .13•设偶函数f (x)的定义域为R,当x・[0, •::)时f(x)是增函数,则f (2), f (二),f (-3)的大小关系是_________________________三、解答题14.设U =R, A x _1[ B J x 0 :: x :: 5?,求C u 切B 和A C U B .15. 求下列函数的定义域(4)f(X)x —22(2) f(x)|x| -216.集合A = 'xx2• 4x = 0; B -汉x2• 2 a T x • a2-1 = 0若A B = B求a 的取值范围。

人教版高一数学必修一综合练习题(含答案)

人教版高一数学必修一综合练习题(含答案)

必修一综合习题课1、已知函数的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,则实数m 的取值范围为答案:11m -≤≤2、已知函数222()1x ax b f x x ++=+的值域为[1,3],则22a b +=答案:83、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f x g x x +=-,则()f x 的解析式为 ,()g x 的解析式为 答案:21()1f x x =- 2()1x g x x =-4、若函数()f x =3442++-mx mx x 的定义域为R ,则实数m 的取值范围是答案: [0,43)5、对于11a -≤≤,不等式2(2)10x a x a +-+->恒成立的x 的取值范围是答案:(﹣∞,0)∪(2,+∞)6、定义在R 上的函数()f x 满足:()(4)f x f x =-且(2)(2)0f x f x -+-=,则4ln 2()f e的值是 答案:∵(2)(2)0f x f x -+-=,令x=2得f (0)+f (0)=0,所以f (0)=0由题意可得f (x+4)=f (x-4),所以函数以8为周期,所以4ln 2()f e=4ln24()=(2)=f 16f e f () =f (0)=07、已知函数()f x 满足()12f =,()()()111f x f x f x ++=-,则(1)(2)(3)....(2012)f f f f ⋅⋅⋅⋅的值为 答案:18、已知18log 9,185,b a ==则36log 45可以用,a b 表示为:答案:2b a a +-9、已知210mx x m ++-=有且只有一根在区间(0,1)内,则m 的取值范围为答案:由题意可知f (0)×f (1)=1×(m+2)<0,求得m <-210、已知关于x 的不等式250ax x a-<-的解集为M ,若3M ∈且5M ∉,则实数a 的取值范围为: 答案:()259351,, ⎪⎭⎫⎢⎣⎡11、已知定义在R 上的函数()f x ,满足1()2()f x f x x-=成立,则|()|f x 的最小值为:答案:312、对任意,x y ,均满足22()()2[()]f x y f x f y +=+且(1)0f ≠,则(2012)f =答案:100613、如果()()()f x y f x f y +=,且(1)2f =,则(2)(4)(6)(2012)...(1)(3)(5)(2011)f f f f f f f f ++++= 答案:4022,原式=2×2011=402214、设01a <<,x 和y 满足log 3log log 3a x x x a y +-=,如果y 有最大值42,则这时a = ;x = .答案:a=41,x=8115、设111(020,)()241(2040,)t t t N f t t t t N ⎧+≤<∈⎪=⎨⎪-+≤≤∈⎩,*143()(040,)33g t t t t N =-+≤≤∈,则()()S f t g t =的最大值为答案:17616、将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形.要使正方形与圆的面积之和最小,正方形的周长应为_________答案:4π4+17、若函数2()22,[,1]f x x x x t t =-+∈+当时的最小值为()g t ,求函数()g t 当∈t [-3,-2]时的最值 答案:⎪⎩⎪⎨⎧≥+≤+=)()<<()()(1t 22t -t 1t 010t 1t t g 22,当∈t [-3,-2]时,g (t )min =g (-2)=5;g (t )max =g (-3)=1018、已知a R ∈,讨论关于x 的方程2680x x a -+-=的根的情况答案:2y=68y=x x a -+函数与的图象的交点个数即为所求方程根的个数,所以a<-1时,无解当-1<a<8时,原方程有4个解当a >8或a=-1时,原方程有2个解19、已知113a ≤≤,若2()21f x ax x =-+在区间[1,3]上的最大值为()M a ,最小值为()N a ,令()()()g a M a N a =-。

人教版高中数学必修一综合测试题(很基础,很全面)

人教版高中数学必修一综合测试题(很基础,很全面)

人教版高中数学必修一综合测试题(考试时间为120分钟,满分150分)一、 选择题(本大题共12小题,每小题5分,共60分)1.已知集合{2,1,0,1,2}A =--,{|22,}B x x x N =-<<∈,则AB =( ) A. {1,0}- B. {0,1} C. {1,0,1}- D. {0,1,2}2.下列图象中表示函数图象的是 ( )A. B. C. D.3、下列函数中,在(0,)+∞上为增函数的是( )。

A 、()3f x x =-B 、2()3f x x x =-C 、1()1f x x =-+ D 、()||f x x =-4.4等于( )A. 16aB. 8aC. 4aD. 2a 5.计算:log 916·log 881的值为( )A. 18B. 118C. 83D. 386.已知函数2()3(0)x f x a a -=+≠,则()f x 的图象过定点( )A.(0,4)B.(2,4)C. (0,3)D. (4,3) 7. 若11221272,,log 327a b c --⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系为( ) A. a b c << B. a c b << C.c b a << D. c a b << 8. 函数2()log ()21x f x x g x -==-与与在同一平面直角坐标系下的图象大( )9.函数()f x = ) A. {}0x x > B. {}1x x > C. {}1x x ≥ D. {}01x x <≤ 10.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减函数,那么实数a 的取值范围是( )A. 3a ≤-B. 3a ≥-C. 5a ≤D. 5a ≥11、已知函数f(x)是R 上的减函数,A (0,1),B (2,-1)是其图象上的两点,那么∣f(x)∣<1的解集的补集是 ( )A.(-1,2)B.(1,4)C.(-∞,-1)∪[4,+∞)D.(∞,0]∪[2,+∞) 12.12R (),f x x ∈定义在上的偶函数满足:对任意的x (]12,0(),x x -∞≠有12)x x -•([]21()()0.)f x f x n N *->∈则当时,有( A.()(1)(1)f n f n f n -<-<+ B. (1)()(1)f n f n f n -<-<+C. (1)()(1)f n f n f n +<-<-D. (1)(1)()f n f n f n +<-<-二、填空题(本大题共4小题,每小题5分,共20分)13、210()20x x f x x x ⎧+≤=⎨->⎩ , , , ,若()10f x = ,则_______x =.14.使不等式31220x -->成立的x 的取值范围是 .15、已知函数3()8f x ax bx =+- ,且f(-2) =10,则f (2 ) =_______. 16.下列命题:①若函数()f x 是一个定义在R 上的函数,则函数h x f x f x 是奇函数; ②函数211x x y x 是偶函数; ②函数12x y -=的图象可由12x y的图象向右平移2个单位得到; ②函数1y x=在区间12,上既有最大值,又有最小值; 则上述正确命题的序号是________②.三、解答题(本大题共6小题,共70分)17.(本题满分10分)已知全集为U=R ,A={22|<<-x x } ,B={1,0|≥<x x x 或} 求:(1)A ⋂B ,(2)A ⋃B 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高一数学必修一综合测试题
第一部分 选择题(共50分)
一、 单项选择题(每小题5分,共10题,共50分)
1、设集合A={1,2}, B={1,2,3}, C={2,3,4},则=⋃⋂C B A )( ( )
A.{1,2,3}
B.{1,2,4}
C.{2,3,4}
D.{1,2,3,4}
2、设函数⎩⎨⎧<≥+=0
,0,1)(2x x x x x f ,则[])2(-f f 的值为 ( )
3、下列各组函数中,表示同一函数的是 ()
x
x y y ==,1x y x y lg 2,lg 2==33,x y x y == D.2)(,x y x y == 4、下列四个函数中,在(0,+∞)上为增函数的是 ( )(x)=3-x B.x x x f 3)(2-= C.x x f 1)(-= D.x x f -=)(
5
、下列式子中,成立的是 ( )6log 4log 4.04.0<5.34.301.101.1>3.03.04.35.3<
D.7log 6log 67<
6、设函数833)(-+=x x f x ,用二分法求方程0833=-+x x 在)2,1(=∈x 内
近似解的过程中,计算得到f(1)<0, f>0, f<0,则方程的根落在区
间 ( )A.(1, B., C.,2) D.不能确定
7、若f(x)是偶函数,其定义域为(—∞,+∞),且在[0,+∞)上是减
函数,则 ⎪⎭⎫ ⎝⎛-23f 与⎪⎭⎫ ⎝⎛25f 的大小关系是
( )A.⎪⎭⎫ ⎝⎛>⎪⎭⎫ ⎝⎛-2523f f B.⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-2523f f ⎪⎭
⎫ ⎝⎛<⎪⎭⎫ ⎝⎛-2523f f .不能确定 8、当0<a<1时,在同一坐标系中,函数x a y -=与x y a log =的图像为
()
A. B. C. D.
9、某学生离家去学校,因为怕迟到,所以一开始就跑步,后来累
了,就走回学校。

若横轴表示时间,纵轴表示离学校距离的话,下面四幅图符合该学生走法的是
A. B.
C. D.
10、如果定义在)
-∞ 上的奇函数f(x),在(0,+∞)内是减函数,
(+∞
,0(
)0,
又有f(3)=0,则0
f
x的解集为()
⋅x
)
(<
11、A.{x|-3<x<0或x>3} B. {x|x<-3或0<x<3}
C. {x|-3<x<0或0<x<3}
D. {x|x<-3或x>3}
第二部分非选择题(共100分)
二、填空题(每小题5分,共4题,共20分)
11、函数1
4)(-+=x x x f 的定义域为_____________ 12、已知幂函数)(x f y =的图像过点)2,2(,则)9(f =______________
13、设集合{}{}1212|,23|+≤≤-=≤≤-=k x k x B x x A 且B A ⊇,则实数k
的取值范围是___________________
14若)10(153log ≠><a a a 且,则实数a 的取值范围是
___________________
解答题(其中15、16题12分,17~20题14分,共6题,共80分)
15、已知集合{}{}19123|,73|<-<=≤≤=x x B x x A ,求:
(1)求B A ⋃
(2)求B A C R ⋂)(
16、计算:(1)8log 932log 2log 2333+- (2)232021)5.1()8
33()6.9()412(--+--- 17、已知函数)10)(1(log )(≠>-=a a x x f a 且,求:
(1)f (x )的定义域
(2)能使f (x )>0成立的x 的取值范围
18、已知函数0)1(,)(2=++=f c bx x x f 且
(1)若b=0,求函数f(x)在区间[-1,3]上的最值(2)要使函数f(x)在区间[-1,3]上单调递增,求b 的取值范围
19、已知函数1
22)(+-=x a x f (1)若该函数为奇函数,求a
(2)判断f(x)在R上的单调性,并证明你的结论。

相关文档
最新文档