发酵工程要点总结讲解

合集下载

发酵工程知识点总结归纳

发酵工程知识点总结归纳

发酵工程知识点总结归纳一、发酵工程概述1. 发酵工程的定义发酵工程是一门研究微生物、酶等生物催化剂在工业生产中广泛应用的工程学科。

2. 发酵工程的历史发酵工程的历史可以追溯到几千年前,最早的酿酒技术可以追溯到古代民族。

随着人类对微生物的认识和技术的发展,发酵工程逐渐成为一门系统的学科。

3. 发酵工程的应用领域发酵工程广泛应用于食品、饮料、医药、生物制药、环保等领域,对人类的生活和健康有着重要影响。

二、发酵过程及机理1. 发酵过程发酵过程是利用微生物或酶对有机物进行生物催化反应,产生有机产物或能量的过程。

发酵过程通常包括菌种培养、发酵产物的分离提纯等步骤。

2. 发酵机理发酵的基本机理包括微生物的生长和代谢过程,包括物质的代谢途径、酶的作用、生理生化特性等。

三、发酵工程中的微生物1. 发酵微生物的分类发酵微生物包括细菌、真菌、酵母等。

不同的微生物在发酵过程中起到不同的作用。

2. 发酵微生物的培养发酵微生物的培养包括培养基的配制、发酵罐的设计等环节,培养条件对微生物的生长和代谢具有重要影响。

3. 发酵微生物的选育发酵工程中常用的微生物包括大肠杆菌、酵母菌等,针对不同的产品需要选择适合的微生物用于发酵生产。

四、发酵工程中的酶1. 酶的分类酶是生物催化剂,可以促进化学反应的进行。

按照其作用方式可以分为氧化酶、还原酶、水解酶等。

2. 酶的应用酶在发酵工程中有着广泛的应用,可以用于生产食品、医药、生物燃料等产品。

3. 酶的工程化酶的工程化包括酶的产生、提纯、改良等步骤,使其更好地适用于实际生产。

五、发酵工程中的设备1. 发酵罐发酵罐是用于放置和滋生微生物的设备,包括灭菌、通气、控温等功能。

2. 排气系统排气系统可以有效地排除产生的二氧化碳和其他代谢产物,以保证发酵过程的正常进行。

3. 分离设备分离设备包括离心机、膜分离等,用于分离提纯发酵产物。

六、发酵工程中的工艺控制1. 发酵条件的控制发酵过程中需要控制pH、温度、氧气供应等参数,以保证微生物的生长和产物的产生。

发酵工程及其应用知识点

发酵工程及其应用知识点

发酵工程及其应用知识点
发酵工程是一门研究微生物发酵过程的学科,它结合了微生物学、生物化学和工程学的知识,旨在通过优化发酵过程来生产有益的化学产品或食品。

以下是关于发酵工程及其应用的一些重要知识点:
1. 发酵过程:发酵工程的核心是发酵过程的控制和优化。

发酵过程是利用微生物生长代谢产生所需产物的过程。

它包括微生物的发酵培养、底物转化、产物分离纯化等步骤。

2. 发酵微生物:常用的发酵微生物有酵母菌、细菌和真菌等。

它们具有各种代谢途径,可以将底物转化为目标产物。

选择合适的微生物对于发酵过程的成功至关重要。

3. 发酵培养基:发酵微生物需要合适的培养基来提供营养和生长条件。

培养基的组成和条件应根据微生物的特性和目标产物的要求进行优化,以获得较高的产量和纯度。

4. 发酵设备:发酵过程需要合适的发酵设备来提供适宜的环境条件。

这些设备包括发酵罐、搅拌器、通气系统等。

设备的选择和设计应考虑到微生物的特性和发酵过程的要求。

5. 生物反应动力学:生物反应动力学研究微生物生长和代谢的速率及其对环境条件的敏感性。

了解生物反应动力学可以帮助优化发酵过程,提高产量和效率。

6. 发酵产物的应用:发酵工程产生的产物广泛应用于各个领域。

例如,酿酒业和食品工业利用发酵工程生产酒精、酸奶、面包等食品;生物制药行业通过发酵工程生产抗生素、蛋白质药物等。

发酵工程是一门复杂的学科,涉及多个学科领域的知识。

它在食品工业、制药工业和能源产业等方面具有广泛的应用。

通过不断深入研究和技术进步,发酵工程的发展将为人类社会带来更多的好处和创新。

发酵工程要点总结讲解

发酵工程要点总结讲解

第一章 绪论发酵:通过微生物、动物细胞和植物细胞的培养,大量生成和积累特定的代谢产物或菌体的过程。

发酵工程:是发酵原理和工程学的结合,是研究由生物细胞(包括微生物、动植物细胞)参与的工艺过程的原理的科学,是研究利用生物材料生产有用物质,服务于人类的一门综合性科学技术。

这里所指的生物材料包括来自自然界微生物、基因重组微生物等以及各种来源的动物细胞和植物细胞。

发酵工程组成从广义上讲,由三部分组成:上游工程、发酵工程、下游工程第二章 发酵设备固体发酵液体发酵(厌氧发酵,好氧发酵)厌氧发酵:酒精发酵罐好氧发酵:通风搅拌发酵罐通风搅拌发酵罐设备主要部件包括:1罐身 2电机3搅拌器4轴封5消泡器6联轴器7中间轴承8空气吹泡管(或空气喷射器)9挡板10冷却装置1.罐体:罐体由圆柱体或碟形封头焊接而成,材料为碳钢或不锈钢,大型发酵罐可用衬不锈钢或复合不锈钢制成,为了满足工艺要求,罐需要承受一定压力,罐壁厚度决定于罐径及罐压的大小。

罐体上的管路越少越好2.搅拌作用:打碎空气气泡,增加气液接触界面以提高气液间的传质效率使发酵液充分混和。

3挡板的作用:防止液面中央产生漩涡,促使液体激烈翻动,提高溶解氧。

竖立的蛇管、列管、排管也可以起挡板作用;4消泡器:利用机械的方法打碎气泡5仪表:测量相关参数为什么压力表不用直管:会有培养基冲入,污染压力表;起不到缓冲作用;灭菌冷却后有冷凝水(含菌)掉入罐内,污染菌种,弯管液封,上面的杂菌不会掉入下面管道中。

6罐体各部分的尺寸有一定比例,高/径比约为2.5~4。

发酵罐的灭菌(在夹套中)关好空气阀,蒸气上进下出,冲蒸气,压力大于2 kg/cm2(120℃),最好是4~5 kg/cm2(160℃)。

当罐内温度>80℃,进蒸气口(蒸气阀)关掉,出蒸气口(排气阀)关小。

打开空气阀,蒸气直接进罐,121℃,20~30min 。

从80℃~100℃上升很快,大于100℃后温度上升很慢,到118℃时就开始计时,计时25min 时立即关掉蒸气阀。

发酵工程重点总结

发酵工程重点总结

第一章发酵:通过微生物的生长繁殖和代谢活动,产生和积累人们所需产品的生物反应过程发酵工程:利用微生物(或动植物细胞)的特定性状,通过现代工程技术,在生物反应器中生产有用物质的技术体系。

该技术体系主要包括菌种选育与保藏、菌种扩大生产、代谢产物的生物合成与分离纯化制备等技术。

发酵工业的特点?(7点)1.发酵过程一般是在常温常压下进行的生化反应,反应安全,要求条件较简单。

2.可用较廉价原料生产较高价值产品。

3.反应专一性强。

4.能够专一性地和高度选择性地对某些较为复杂的化合物进行特定部位的生物转化修饰。

5.发酵过程中对杂菌污染的防治至关重要。

6.菌种是关键。

7.发酵生产不受地理、气候、季节等自然条件限制。

工业发酵的类型?厌氧发酵1. 按微生物对氧的不同需求需氧发酵兼性厌氧发酵液体发酵(包括液体深层发酵)2.按培养基的物理性状浅盘固体发酵深层固体发酵(机械通风制曲)分批发酵按发酵工艺流程补料分批发酵单级恒化器连续发酵连续发酵多级恒化器连续发酵带有细胞再循环的单级恒化器连续发酵发酵生产的基本工业流程?1. 用作种子扩大培养及发酵生产的各种培养基的配制;2. 培养基、发酵罐及其附属设备的消毒灭菌;3. 扩大培养出有活性的适量纯种,以一定比例接种入发酵罐中;4. 控制最适发酵条件使微生物生长并形成大量的代谢产物;5. 将产物提取并精制,以得到合格的产品;6. 回收或处理发酵过程中所产生的三废物质。

工业发酵的过程的工艺流程图?第二章1、发酵工业菌种分离筛选的一般流程?调查研究(包括资料查阅)试验方案设计含微生物样品的采集(如何使样品中所含微生物的可能性大?)样品预处理(如何在后续的操作中使这种可能性实现)菌种分离根据目的菌株及其产物特点分选择性分离方法随机分离方法(定向筛选←选择压力) (用筛选方案- 检测系统进行间接分离)富集液体培养固体培养基条件培养(初筛)菌种纯化复筛菌种纯化初步工艺条件摸索再复筛生产性能测试较优菌株1-3株保藏及进一步做生产试验某些必要试验和或作为育种的出发菌株毒性试验等2、菌种选育改良的具体目标。

发酵工程全部知识点总结

发酵工程全部知识点总结

发酵工程全部知识点总结一、发酵工程的基本概念1. 发酵的定义发酵是指利用微生物或其代谢物来改变物质的过程。

主要包括酵母、细菌、真菌等微生物。

2. 发酵工程的定义发酵工程是指利用发酵微生物代谢特性,通过合理调控环境条件,进行微生物发酵过程中的相关技术。

二、发酵微生物1. 酵母酵母是发酵工程中最常用的微生物,广泛应用于酒类、面包、啤酒等食品工业中。

2. 细菌细菌在发酵工程中也有重要的应用,如益生菌、酸奶中的乳酸菌等。

3. 真菌真菌发酵应用广泛,包括酵素生产、抗生素生产、食品添加剂等。

三、发酵工程的基本过程1. 液体发酵液体发酵是将发酵微生物培养在液体培养基中,通过控制培养基成分、通气、温度等条件来进行微生物代谢产物的生产。

2. 固体发酵固体发酵是将发酵微生物培养在固体底物中,通过控制底物成分、湿度、通气等条件来进行微生物代谢产物的生产。

3. 半固体发酵半固体发酵是将发酵微生物培养在半固体底物中,采用液态和固态发酵的优点来进行微生物代谢产物的生产。

四、发酵工程的主要设备和工艺1. 发酵罐发酵罐是发酵工程的主要设备之一,根据不同的发酵工艺和需求,可以采用不同类型的发酵罐。

2. 发酵工艺发酵工艺是指在发酵过程中,针对不同的微生物和产物特性,进行合理的发酵条件控制和操作流程。

3. 发酵控制系统发酵控制系统是指在发酵工程中,通过自动化设备和仪器,实现对发酵条件如温度、pH 值、通气、搅拌等的精确控制。

五、发酵工程的应用范围1. 食品工业发酵工程在食品工业中应用广泛,如酿造啤酒、制作酸奶、发酵面包、制作酱油等。

2. 医药工业发酵工程在医药工业中应用广泛,如生产抗生素、激素、酶制剂等。

3. 燃料工业发酵工程在燃料工业中也有应用,如生物乙醇、生物柴油等。

4. 化学工业发酵工程在化学工业中也有应用,如生产乳酸、丙酮、丙二醇等。

六、发酵工程的发展趋势1. 发酵工程技术的进步随着科技的不断进步,发酵工程的技术也在不断提高,发酵设备和工艺不断更新。

高二发酵工程的知识点总结

高二发酵工程的知识点总结

高二发酵工程的知识点总结导言发酵工程是利用微生物、酶或细胞等生物催化剂在适宜的温度、湿度、氧气和营养条件下,把某些物质转化为其他有用的产物的过程。

发酵工程技术一直是生物工程领域的重要组成部分,具有广泛的应用前景。

本文将就高二发酵工程的相关知识点进行总结,包括基本概念、发酵工艺、发酵设备以及发酵工程的应用等内容。

一、基本概念1.发酵的定义发酵是指在生物体内或外部环境中,微生物在适宜的温度、湿度和营养条件下,利用其生理代谢特性,使有机物质发生氧化还原反应,产生有用的代谢产物或能量。

广义上说,发酵包括微生物、酶和细胞等生物催化剂在适宜条件下,将有机物质转化为其他有用的物质的过程。

2.发酵的分类发酵可以根据反应物和产物的不同,分为多种类型。

常见的发酵分类包括酒精发酵、乳酸发酵、醋酸发酵、粘质发酵等。

这些发酵过程都有各自的反应特点和应用领域。

3.发酵的基本原理发酵的基本原理是微生物、酶或细胞等生物催化剂在适宜的环境条件下,利用其生理代谢特性,通过氧化还原反应将有机物质转化为其他有用的产物。

发酵过程包括底物的降解、中间产物的生成以及最终产物的生成,涉及到多种生物化学反应和代谢途径。

4.发酵的影响因素发酵过程受多种因素的影响,包括温度、pH值、氧气浓度、底物浓度、营养盐浓度等。

这些因素对发酵过程的速率和产物的选择性都有重要影响,需要在发酵工程中进行精确控制。

二、发酵工艺1.发酵基质的制备发酵基质是支撑微生物生长和代谢的重要环境因素,一般包括底物、营养盐、氮源、微量元素等。

制备发酵基质需要考虑微生物的需求,同时还需要考虑工艺的可行性和经济性。

2.发酵菌种的培养发酵菌种的培养是进行发酵工艺的前提,包括细菌、酵母菌、真菌等。

菌种的选取和培养条件对发酵的效率和产物的纯度都有重要影响,需要进行精确控制。

3.发酵过程的控制发酵过程的控制包括温度、pH值、氧气浓度、搅拌速度等多个因素的调节,需要根据具体的发酵工艺设计和实验结果进行精确控制。

发酵工程知识点总结高中生物

发酵工程知识点总结高中生物

发酵工程知识点总结高中生物发酵工程是一种利用微生物的代谢活动来生产有用物质或转化物质的技术。

在高中生物课程中,发酵工程的知识点主要集中在微生物的类型、发酵过程的基本条件、发酵过程中的物质变化、以及发酵技术的应用等方面。

以下是对这些知识点的总结:一、微生物的类型与作用1. 细菌:在发酵过程中,某些细菌如乳酸菌、醋酸菌等能够通过其代谢活动产生特定的有机酸,从而影响食品的味道和保存性。

2. 酵母菌:酵母菌在无氧条件下能够将糖分解为酒精和二氧化碳,这一过程称为酒精发酵,广泛应用于酿酒和面包制作。

3. 霉菌:霉菌在发酵过程中可以产生多种酶,参与物质的分解和转化,如在酱油和豆瓣酱的生产中起到关键作用。

二、发酵过程的基本条件1. 温度:不同的微生物对温度的适应性不同,发酵过程中需要控制适宜的温度以保证微生物的生长和代谢活动。

2. pH值:微生物的生长和代谢活动对环境的酸碱度有一定的要求,pH 值的控制对于发酵过程的成功至关重要。

3. 氧气:有些发酵过程需要充足的氧气(好氧发酵),而有些则在无氧条件下进行(厌氧发酵)。

三、发酵过程中的物质变化1. 糖类的代谢:在发酵过程中,糖类物质可以被微生物分解为酒精、乳酸、醋酸等不同的有机酸,这些有机酸赋予食品特有的风味。

2. 蛋白质的代谢:蛋白质在微生物的作用下可以分解为多肽、氨基酸等小分子物质,这些物质对食品的营养价值和风味有重要影响。

3. 脂肪的代谢:脂肪在发酵过程中可以被微生物分解为甘油和脂肪酸,这些物质对食品的口感和营养价值有一定的影响。

四、发酵技术的应用1. 食品工业:发酵技术在食品工业中有广泛应用,如酿造酒类、制作面包、酸奶、酱油等。

2. 医药工业:通过发酵技术可以生产抗生素、维生素、酶等医药产品。

3. 化工工业:发酵技术也可以用于生产化工原料,如生物柴油、生物塑料等。

五、发酵工程的未来发展1. 基因工程的应用:通过基因工程技术,可以对微生物进行改造,使其具有更强的发酵能力和更高的产品选择性。

高中发酵工程的知识点总结

高中发酵工程的知识点总结

高中发酵工程的知识点总结一、发酵工程的基本概念1. 发酵工程的定义发酵工程是以微生物或酶等生物催化剂为基础,通过控制合适的环境条件,利用微生物或酶的代谢作用,进行有选择地生产物质或提取有用产品的工程技术。

2. 发酵工程的原理发酵工程利用生物催化剂在适宜的温度、pH、氧气供应等条件下对原料进行代谢作用,使其产生有用的化学产物。

发酵过程分为有氧发酵和无氧发酵,有氧发酵是指微生物在充分供氧的情况下进行代谢作用,而无氧发酵则是微生物在缺氧条件下进行代谢作用。

3. 发酵工程的应用发酵工程在食品、医药、酒类、饲料、化工等领域都有重要的应用,可以生产出酒精、乳酸、维生素、抗生素、酶等多种产品。

二、微生物学基础1. 微生物的分类微生物是一类极小的生物体,包括细菌、真菌、酵母菌、病毒等。

其中,细菌可分为革兰氏阳性菌和革兰氏阴性菌,酵母菌主要是酵母菌科的酵母菌,真菌包括霉菌和酵母菌。

2. 微生物的生长特性微生物的生长需要适宜的温度、pH值、氧气供应等条件,不同微生物的生长特性有所不同。

典型的微生物生长曲线包括潜伏期、对数生长期和平稳期。

3. 微生物的代谢特点微生物的代谢分为呼吸代谢和发酵代谢两种形式。

呼吸代谢需要有氧气,产生CO2和H2O,而发酵代谢不需要氧气,产生乳酸、酒精、醋酸等产物。

4. 微生物的培养方法微生物的培养方法包括液体培养和固体培养两种形式,培养基的选择对微生物的生长有重要影响。

三、发酵工程的工艺流程1. 发酵工程的基本流程发酵工程的基本流程包括发酵菌种的培养和保存、发酵罐的设计和运行、发酵过程的控制和调节、产品的分离和提取等步骤。

2. 发酵工程的发酵罐发酵罐是进行微生物发酵的设备,按照不同的设计要求可分为批式发酵罐和连续式发酵罐。

3. 发酵工程的发酵菌种发酵菌种是进行发酵的微生物,可以是细菌、酵母菌、真菌等。

合适的发酵菌种是发酵工程成功的关键。

4. 发酵工程的发酵过程控制发酵过程的控制包括温度、pH值、氧气供应、营养物质的添加等方面,需要根据不同的菌种和发酵产品进行调节。

发酵工程原理知识点总结

发酵工程原理知识点总结

发酵工程原理知识点总结发酵工程是一门研究微生物在发酵过程中生长、代谢和产物形成的工程学科。

其研究内容包括发酵微生物的筛选与培养、优化发酵条件、发酵过程监控与控制、发酵产物提取纯化与分离、罐内动力学和发酵机理等。

以下是发酵工程原理的相关知识点总结:1.发酵微生物的筛选与培养:(1)选材原则:产物多、投资少、筛选简单、培养容易、操纵方便;(2)常用的微生物包括细菌、酵母、霉菌等;(3)需考虑微生物生长的条件,如pH、温度、氧气供应等;(4)历经菌种筛选、单菌菌种的分离和纯化、菌种的贮藏等步骤;2.发酵条件的优化:(1)pH的控制:不同微生物对pH的要求不同,可以通过酸碱控制剂来调节pH;(2)温度的控制:温度是细胞生长和代谢的重要因素,一般通过水浴或发酵罐内加热来实现温度控制;(3)氧气供应的控制:氧气是许多微生物生长和代谢必需的,可以通过氧气流量的调节或增加曝气器的表面积来提供充足的氧气;(4)发酵液的搅拌速度和离心速度:搅拌可增强氧气传递和培养液的混合,离心可实现发酵产物的分离和提纯;3.发酵过程监控与控制:(1)发酵过程中需要监测的重要指标包括微生物生长速率、酸碱度、氧气浓度、温度、发酵产物浓度等;(2)监控手段有离线分析法、在线分析法和非破坏性检测法;(3)通过对监测指标的控制,实现对发酵过程的控制与优化,如调节酸碱度、温度以及添加营养物质来提高产量和产物质量;4.发酵产物的提取纯化与分离:(1)通过离心和过滤等物理方法,去除微生物和固体颗粒;(2)通过萃取、渗析、蒸馏、结晶等方法来提纯产物;(3)产物的纯化和分离过程需要进行监测和控制,以确保产物的纯度和产量;5.罐内动力学和发酵机理:(1)罐内动力学研究微生物的生长和代谢过程,了解微生物在不同发酵过程中的特性;(2)通过建立数学模型,可以预测发酵过程中微生物产物的生成速率和浓度变化;(3)对发酵机理的研究有助于进一步优化发酵条件,提高产物的产量和质量;以上是发酵工程原理的一些主要知识点总结。

发酵工程知识点总结

发酵工程知识点总结

发酵工程知识点总结一、发酵工程的基本概念发酵工程是利用微生物、酶等生物体对有机物进行代谢的技术和工艺。

通过对微生物的培养、发酵过程的调控和产物的提取等一系列工艺步骤,实现对特定有机物的高效生产。

发酵工程是一门综合国家的学科,涉及生物学、化学工程、微生物学、工艺学等多个学科的知识。

二、发酵工程的发展历史发酵工程的起源可以追溯到几千年前,人类早在古代就已经开始利用自然界中的微生物进行发酵生产,如制酒、酿酒、发酵豆腐等工艺。

随着科学技术的发展,特别是现代微生物学、生物技术和生物化工技术的兴起,发酵工程逐渐成为一门独立的学科,并得到了迅速的发展。

三、发酵工程的基本原理发酵过程是一种微生物或酶对有机物进行代谢的过程。

微生物在合适的温度、pH值、氧气供应等条件下,利用有机物作为碳源进行代谢,产生新的有机化合物。

该过程分为静态发酵和动态发酵两种方式。

在发酵工程中,需要控制好微生物的生长条件,确保发酵产物的质量和产量。

四、发酵工程的主要微生物种类发酵工程中常用的微生物包括细菌、真菌、酵母等。

常见的细菌有大肠杆菌、乳酸菌等,真菌有曲霉、酵母菌等。

不同的微生物对有机物的代谢方式有所差异,因此在不同的发酵工程中需要选择合适的微生物种类。

五、发酵工程的工艺流程发酵工程的工艺流程主要包括微生物的培养、发酵过程的控制和产物的提取三个阶段。

微生物的培养是指通过预处理、接种和发酵基质制备等步骤,使得微生物得到最佳的生长繁殖条件。

发酵过程的控制是指通过对温度、pH值、氧气供应等因素的调控,使得微生物产生出期望的产物。

产物的提取则是指将发酵产物从培养基中分离出来,并经过精制处理得到最终的产品。

六、发酵工程中的发酵罐发酵罐是发酵工程中最为重要的设备之一,它是用来进行微生物培养和发酵过程控制的容器。

根据不同的发酵工艺要求,发酵罐可以分为批次式发酵罐、连续式发酵罐等多种类型。

在发酵罐中,需要控制好温度、pH值、氧气供应等因素,以确保微生物的生长和代谢过程。

高三生物发酵工程知识点总结

高三生物发酵工程知识点总结

高三生物发酵工程知识点总结在高三的生物学课程中,我们学习了许多有关生物发酵工程的知识。

发酵工程是一门将微生物和有机物结合起来产生有用产物的科学,涉及到了微生物学、生物化学、和工程学的多个领域。

本文将总结高三生物学中所学习的一些发酵工程的重要知识点。

1. 发酵工程的定义和应用发酵工程是利用微生物进行发酵生产的一门科学。

它可以用于食品工业、制药工业和环境工程等领域。

在食品工业中,我们通常利用微生物发酵来制作酸奶、啤酒、面包等食品。

在制药工业中,发酵可以用来生产抗生素、维生素和其他药物。

在环境工程中,发酵是处理废物和产生可再生能源的重要方法。

2. 发酵过程的基本原理发酵是一种有氧或无氧条件下的微生物代谢过程。

它通常分为三个阶段:生长阶段、发酵阶段和产物分离和纯化。

在生长阶段,微生物需要合适的温度、pH值和营养物质来进行生长。

在发酵阶段,微生物利用底物进行代谢反应,并产生所需的产物。

在产物分离和纯化阶段,通过一系列的分离和纯化步骤,得到纯净的产物。

3. 杀菌技术在发酵工程中,杀菌是一项重要的步骤。

杀菌可以去除微生物中的杂质和竞争微生物,以确保发酵过程的顺利进行。

常见的杀菌方法包括高温杀菌、紫外线辐射和滤过。

4. 发酵过程监控发酵过程的监控对于产物的得率和品质至关重要。

常用的发酵过程监控方法包括测量发酵生物体积、氧气和二氧化碳浓度、底物浓度以及产物浓度。

这些监控手段可以帮助工程师调整发酵条件,以达到最佳的产物结果。

5. 常见的发酵工程应用在生活中,我们能够接触到许多发酵工程的应用。

例如,酵母菌发酵是制作面包的基础过程。

当酵母菌在面团中进行发酵时,它们分解葡萄糖,产生二氧化碳气泡,使面团发酵膨胀。

啤酒的制作也是通过酵母菌发酵产生的。

此外,酸奶、味精、红曲米等都是通过发酵工程制造的。

6. 发酵工程的未来发展随着科学技术的进步,发酵工程在未来将有更广阔的发展前景。

例如,通过基因工程技术,可以改良微生物的代谢途径,增强产物产量和质量。

发酵工程重要知识点总结

发酵工程重要知识点总结

发酵工程重要知识点总结微生物培养基的设计与制备发酵工程中,微生物培养基的设计与制备是十分重要的一环。

培养基的成分会对微生物的生长和代谢产生重大影响,因此在设计和制备培养基时,需要考虑培养细菌所需的基本营养成分,如碳源、氮源、维生素和微量元素等。

此外,还需考虑到微生物的生理和代谢特点,对培养基进行参数的优化,以提高微生物的生长速度和产物产率。

在培养基设计与制备中,需要考虑到物质成本、功能、易得性、安全性等因素,以保证微生物的正常生长。

通过合理设计与制备,可以提高微生物的产量和产物质量。

发酵过程的控制与优化发酵过程的控制与优化对发酵工程的成败起着至关重要的作用。

在发酵过程中,需要控制发酵温度、pH值、搅拌速率、氧气供应等参数,以保证微生物的生长和产物的产生。

此外,还需要监测发酵过程中的代谢产物和废物的浓度,以及微生物的生理状态。

根据所分析的数据,可以对发酵过程中的参数进行调控,并优化发酵条件,以提高产物产率和产物质量。

通过控制与优化发酵过程,可以确保生产的产品达到规定的标准。

发酵工程中的传质过程在发酵工程中,传质过程也是一个重要的知识点。

传质过程是微生物利用基质的过程,通过传质过程,微生物可以从基质中提取所需的营养物质,以及产生所需的化合物。

传质的速率和效率会影响微生物的生长和产物的产量,因此在发酵工程中需要对传质过程进行研究和分析。

包括气液传质、液相传质等,在发酵设备设计和控制参数优化时,都需要考虑到传质的影响。

发酵工程中的发酵设备在发酵工程中,发酵设备也是一个重要的知识点。

发酵设备的设计与选型会影响发酵过程的效率和成本。

在发酵设备设计中,需要考虑到发酵反应器的结构、材料、加热与冷却系统、搅拌系统、气体供应系统等方面。

通过合理的设计,可以提高发酵设备的使用寿命和效率。

选择合适的发酵设备也可以提高生产效率和成本控制。

发酵工程中的清洁卫生在发酵工程中,清洁卫生也是一个重要的知识点。

在发酵过程中,需要保持发酵设备、培养基、容器和管道的清洁卫生,以避免微生物污染和产物质量下降。

发酵工程知识点范文

发酵工程知识点范文

发酵工程知识点范文发酵工程是指利用微生物或酶等生物催化剂进行发酵制药、食品加工等的工程过程。

发酵工程是生物工程的一个重要分支,涉及生物化学、微生物学、传热学、质量控制和生产管理等学科知识。

以下是发酵工程中的一些重要知识点。

1.发酵工程的基础知识:理解生物反应器的构造和功能,包括发酵罐、曝气装置、控温设备等。

了解微生物的生长和代谢特性,如酵母菌、细菌、真菌等的生存条件和对环境因素的响应。

2.发酵过程控制:掌握发酵罐中各种参数的测量和控制方法,如温度、pH、溶氧量、搅拌速度等。

了解如何利用自动控制系统对发酵过程进行监测和调节,保证产品质量和生产效率。

3.发酵产物的提取与纯化:了解发酵液中产生的目标产物的提取、分离和纯化方法。

掌握常用的萃取、过滤、蒸馏、结晶等技术,能够选择和优化适用的方法,提高产物的纯度和收率。

4.混合培养和连续培养:了解不同类型的发酵过程,如批量发酵、连续发酵和半连续发酵。

混合培养和连续培养可以提高产物的稳定性和生产效率,但也要考虑微生物的生理特性和底物的利用率。

5.发酵介质的设计与优化:理解发酵介质的组成和配比对发酵效果的影响。

掌握适当的碳源、氮源、微量元素和调节剂的选择和添加方式,提高微生物生长和产物积累的效果。

6.基因工程与代谢工程:了解基因工程技术在发酵工程中的应用,如基因的克隆、转导和表达。

掌握代谢工程的原理和方法,通过改造微生物代谢途径提高目标产物的产量和质量。

7.发酵废水处理与资源化利用:了解发酵废水的处理和回收利用方法,减少环境污染。

掌握生物脱氮、生物除磷和沉淀技术等,实现废水的无害化处理和资源化利用。

8. 质量控制与质量管理:了解药品和食品行业的相关法规和质量标准,掌握质量控制的基本方法和技术,如GMP(Good Manufacturing Practice)和HACCP(Hazard Analysis and Critical Control Points)等。

生物选修三发酵工程知识点知乎

生物选修三发酵工程知识点知乎

生物选修三发酵工程知识点知乎发酵工程是一门研究利用微生物进行发酵生产的学科,涉及到微生物学、化学、生物工程等多个学科领域。

以下是发酵工程的一些重要知识点:1.发酵过程及其条件:发酵是一种利用微生物或酶催化剂进行有机物转化的生物过程。

发酵过程通常需要一些基本条件,如适宜的温度、pH值、氧气供应、营养物质等。

2.微生物的选择:发酵过程中,选择适宜的微生物对于产品的质量和产量起到至关重要的作用。

常见的发酵微生物包括酵母菌、乳酸菌、大肠杆菌等。

3.发酵基质:发酵基质是微生物生长和代谢所必需的营养物质,它包括碳源、氮源、矿物质、维生素等。

发酵过程中需要根据不同微生物的需求来设计合适的发酵基质。

4.发酵过程的控制:发酵过程是一个相对复杂的过程,需要通过控制发酵温度、pH值、氧气供应、基质浓度等参数来实现最佳的发酵效果。

5.发酵设备及操作:发酵工程中使用的设备包括发酵罐、搅拌器、气体供应系统、温控系统等。

发酵操作需要严格控制发酵过程中的各个参数,并采取相应的措施来确保发酵过程的成功进行。

6.剪切力与氧气传递:在发酵过程中,剪切力的作用可以促使混合物更加均匀地分布在发酵液中,从而提高氧气传递效率,有效促进微生物的生长和代谢。

7.发酵产物的分离与纯化:发酵产物的分离与纯化是发酵工程中的关键步骤之一、常用的分离技术包括离心、滤过、透析、薄层层析、凝胶层析等。

8.发酵中的计量和控制:发酵过程的计量和控制是发酵工程中的重要内容之一、通过监测和调控发酵过程中的各个参数,可以实现发酵过程的优化和控制。

9.发酵工程的应用:发酵工程在食品工业、医药工业、化工工业等领域有广泛的应用。

例如,酿酒、饮料、乳制品、药物、酶制剂等都是通过发酵工艺生产的。

10.发酵工程的发展:随着生物技术的迅猛发展,发酵工程的研究和应用也得到了广泛的推广。

发酵工程的发展方向包括发酵过程优化、新型发酵设备开发、生物传感器等。

总结起来,发酵工程是研究利用微生物进行发酵生产的学科,涉及到微生物学、化学、生物工程等多个学科领域。

发酵工程原理知识点总结

发酵工程原理知识点总结

发酵工程原理知识点总结1.微生物生长和代谢:发酵工程原理的基础是对微生物生长和代谢过程的深入理解。

微生物生长的关键因素包括温度、pH值、营养物质和氧气的供应等。

在发酵过程中,微生物通过代谢合成或降解有机物质,产生所需的产物或者降解废物。

代谢途径包括糖的发酵、酸的代谢、氨基酸和脂类的合成等。

2.反应器的设计和操作:反应器是发酵工程中最核心的装置,其设计和操作直接影响发酵过程的效果。

常见的反应器类型包括批式反应器、连续流动反应器和离散批式反应器等。

反应器的设计需要考虑气液传质、热量传递、气体液体反应速率等因素。

操作方面,需要控制反应器内的温度、pH值、氧气和营养物质的供应等参数。

3.发酵过程的监测和控制:发酵过程的监测和控制是保证发酵工程运行稳定和高效的关键。

监测包括微生物数量、代谢产物的浓度、营养物质的消耗和废物的产生等方面。

常用的监测方法包括生物量测定、物质浓度测定、环境参数的监测等。

控制方面,需要根据监测结果调整温度、pH值、氧气和营养物质的供应,以维持发酵过程的稳定和高效。

4.发酵工艺的优化:发酵工艺的优化是提高产量和质量的关键。

优化方法包括微生物菌种的选取、培养基组成的优化、发酵条件的优化等。

在微生物菌种选取上,需要考虑产物的需求和微生物的特性。

培养基的组成需要提供充足的营养物质,以满足微生物的生长需求。

发酵条件的优化包括控制温度、pH值、氧气和营养物质的供应等,以最大程度地促进微生物的生长和代谢。

5.发酵工程的应用领域:发酵工程广泛应用于食品、饮料、制药、化工等工业领域。

在食品工业中,发酵工程用于酿造啤酒、酱油、味精等食品。

在制药工业中,发酵工程用于制备抗生素、酶、氨基酸等生物药品。

在化工工业中,发酵工程用于生产有机酸、有机溶剂等化学品。

总之,发酵工程原理涉及微生物的生长和代谢、反应器的设计和操作、发酵过程的监测和控制等方面。

了解和掌握发酵工程原理,可以为工程师在发酵工程中的设计和操作提供理论和实践指导,进一步提高发酵工程的效果和产量。

高二发酵工程的知识点总结

高二发酵工程的知识点总结

高二发酵工程的知识点总结发酵工程是一门涉及生物和工程学科的交叉学科,研究生物质在微生物或酶的作用下产生有用产物的过程。

在高二阶段的学习中,掌握发酵工程的基本知识点对于进一步深入学习和理解发酵工艺具有重要意义。

本文将对高二发酵工程的知识点进行总结。

一、发酵工程的基本概念和原理1. 发酵的定义:发酵是生物体在无氧或微氧条件下通过酶的催化作用将有机物转化为有机酸、醇、酮、酯、酶或其他化合物的过程。

2. 发酵的分类:根据所用微生物的种类和发酵过程的条件,发酵可以分为酒精发酵、乳酸发酵、醋酸发酵、酱油发酵等。

3. 发酵的条件:发酵过程中,需要控制温度、pH值、营养物质和氧气供应等条件,以保持微生物的生长和产酶/产物的最佳状态。

4. 发酵过程的步骤:发酵过程包括菌种接种、培养基制备、发酵液发酵、产物分离和纯化等步骤。

二、常见的发酵工艺1. 酒精发酵:酒精发酵是将糖类物质经过酵母菌的作用转化为乙醇和二氧化碳的过程。

常见的应用包括酿酒、酿造啤酒等。

2. 乳酸发酵:乳酸发酵是将葡萄糖等物质通过乳酸菌转化为乳酸的过程。

常见的应用包括乳制品生产、食品酸化等。

3. 醋酸发酵:醋酸发酵是将酒精通过醋酸菌氧化转化为醋酸的过程。

常见的应用包括醋的生产和调味品的发酵等。

4. 酱油发酵:酱油发酵是将大豆和小麦等原料经过微生物的作用转化为酱油的过程。

常见的应用包括调味品的生产和食品加工等。

三、发酵工程的关键技术1. 良种选育:选择高产高效的微生物菌株,进行培养和改良,以提高发酵产物的质量和产量。

2. 发酵培养基的设计:根据微生物的生长特性和发酵需要,合理设计培养基的组成和比例,为微生物的生长提供适宜的营养环境。

3. 发酵过程的控制:通过控制温度、pH值、氧气供应等参数,调节微生物的生长和代谢,提高产物生成的效率。

4. 发酵产物的提取和纯化:通过物理和化学方法,将发酵产物从发酵液中分离和纯化,以获得高纯度的产品。

四、发酵工程的应用领域1. 食品工业:发酵工程在食品工业中广泛应用,包括酿酒、酿造啤酒、乳制品生产、酱油生产等。

发酵工程知识点总结高中

发酵工程知识点总结高中

发酵工程知识点总结高中一、发酵工程的概念和发展发酵工程,是指通过微生物的代谢活动,将有机物质转化成更有用的产物的工程技术。

发酵工程是综合应用生物化学、微生物学、工程学的一门新兴科学,是现代生产中的重要组成部分。

随着生物技术和工程技术的不断发展,发酵工程得到了较快的发展。

发酵工程的产物广泛用于医学、农业、食品、环保等多个领域。

在国民经济各部门和人们生活中都起着重要作用。

二、发酵工程的基本原理1.微生物发酵的基本原理发酵的基本过程是:首先是微生物分解所需营养物质为能量,随后是将其转化为生长代谢的生物体组织,进一步是将有机物质转化为对人类生产和生活有益的产物。

在这个过程中,微生物起着关键的作用。

2.发酵过程的基本特点发酵过程是由微生物代谢活动引起的,具有时间长、可控制性差等特点。

另外,发酵过程还会产生较多的热量,需要合理的散热措施。

3.发酵工程原料的选择原料的选择对于发酵工程至关重要,原料一般包括碳源、氮源、矿物盐等,不同的微生物对原料要求差异较大。

4.发酵工程的主要流程发酵工程主要包括发酵罐的设计、微生物的培养、发酵条件的控制等步骤,其主要目的是通过发酵罐培养微生物得到需求的产物。

三、发酵工程中的微生物1.发酵工程中的微生物的种类常见的发酵微生物有酵母菌、乳酸菌、霉菌、细菌等。

在不同的发酵过程中,选择合适的微生物种类非常重要。

2.微生物的选型对于发酵工程来说,微生物的选型是十分关键的。

要根据所需产物的性质和发酵条件的要求来选择合适的微生物。

3.微生物的培养微生物的培养是发酵工程中的核心环节,培养的条件应该控制得很好,确保微生物的最佳生长繁殖情况。

四、发酵罐的设计1.发酵罐的结构发酵罐通常分为罐体、搅拌器、温控装置、进气装置、排气装置等几个部分。

2.发酵罐的主要功能和要求发酵罐的主要功能是提供合适的生长环境给微生物,要求它能够充分搅拌,保持温度和通气等。

3.发酵罐的类型目前,常用的发酵罐类型有批量式、连续式及其衍生的多种类型。

发酵工程全重点总结

发酵工程全重点总结

一绪论1生物技术(biotechnology): “应用自然科学及工程学原理、依靠生物作用剂的作用将物料进行加工以提供产品或为社会服务”的技术。

2发酵的英文Fermentation是从拉丁语ferver即“翻腾”、“沸涌”、“发泡”而来;因为发酵有鼓泡和类似翻腾、沸涌的现象。

如中国的黄酒、欧洲的beer就以起泡现象作为判断发酵进程的标志。

3发酵广义——通过微生物的培养使某种特定代谢产物或菌体本身大量积累的过程。

狭义——厌氧微生物或兼性厌氧微生物在无氧条件下进行能量代谢并获得能量的一种方式。

4发酵工业:(巴斯德)经纯种培养和提炼精制获得的成分单纯、无风味要求的产品的生产过程叫发酵工业。

如酒精、抗生素、柠檬酸、氨基酸、酶、维生素、某些色素等。

、5就发酵产品而言,发酵主要有以下主要类型:微生物菌体发酵;酶制剂和酶调节剂的微生物发酵;以微生物的代谢产物(包括初级代谢产物和次级代谢产物)为目的产物的微生物发酵;微生物转化发酵;工程菌和工程细胞产物的发酵等。

6 生物发酵工业的发展简史:传统(古老)生物技术的追溯;第一代(初期)生物技术产品的出现;第二代(近代)生物技术产品的发展;第三代(现代)生物技术产品的挑战。

①最早的发酵产品据记载起源与5000BC。

据记载最早的发酵食品应是酒类,通常认为是wine,因为大自然中具备了野生果类和酵母菌,条件适宜情况下即行发酵。

在神话传说中亦有猿猴酿酒之说。

由于自然界中资源的多样性(F、M),便有了多种多样的发酵食品。

4000BC——Beer,至古埃及即出现了麦芽糖化。

5000~6000BC——wine、黄酒、白酒、Cheese 4000BC——Beer,至古埃及即出现了麦芽糖化。

(酱油、调味品) 白酒:农业社会粮食节余,生霉、发酵、蒸馏而得)②第一个转折点——微生物纯种分离培养技术建立:自然发酵时期:知其然而不知其所以然,如厌气性——酒类,好气性——醋。

微生物纯种分离培养技术,开创了人为控制微生物时代,减少了腐败现象,实现了无菌操作;发明了简便的密封式发酵罐;人工控制条件,提高发酵效率,稳定产品质量。

发酵工程细节知识点总结

发酵工程细节知识点总结

发酵工程细节知识点总结发酵工程的基本原理发酵是一种利用微生物活动的生物技术,利用微生物的新陈代谢,将底物转化为有用的产物的过程。

在发酵过程中,微生物在适宜的温度、pH值、营养物质等条件下进行生长和代谢产物的生产。

微生物可以通过产生酶来将底物转化为有用的产物,也可以通过代谢产生有用的物质,如醇类、有机酸、氨基酸、酶类等。

发酵工程是利用这种生物催化剂进行大规模生产有用产物的工程。

发酵工程的基本原理包括微生物的培养、发酵过程的控制、产物的提取与纯化等环节。

微生物的培养是发酵工程的基础。

在微生物的培养过程中需要考虑温度、pH值、营养物质的成分和浓度、氧气传质等因素,以提供良好的生长环境。

另外,还需要考虑好培养基的选择、接种量、发酵时间等因素。

发酵过程的控制是为了促进微生物的生长和产物的合成。

在发酵过程中需要控制好温度、pH值、搅拌速度、氧气传质等参数,以保证微生物能够在最佳环境中生长。

产物的提取与纯化是为了获得高纯度的产物,这需要通过物理方法、化学方法、生物方法等手段进行。

发酵工程的应用领域发酵工程在食品、医药、能源、环保等领域都有广泛的应用。

在食品工业中,发酵技术被用于生产面包、酸奶、酒类、豆腐、酱油等食品。

在医药工业中,发酵技术被用于生产抗生素、维生素、酶类等药品。

在能源领域中,发酵技术被用于生产生物燃料、生物乙醇等。

在环保领域中,发酵技术被用于废水处理、固体废物处理等。

可以说,发酵工程已经成为生物技术领域中不可缺少的一部分。

发酵工程的工艺流程和设备发酵工程的工艺流程通常包括微生物的制种、发酵罐的灭菌、发酵罐的培养、产物的提取与纯化等环节。

在微生物的制种中,需要选择合适的培养基、温度、pH值、接种方法等条件,以获得高质量的种子菌。

发酵罐的灭菌是为了保证发酵罐中没有其他微生物的污染。

发酵罐的培养需要考虑好温度、pH值、搅拌速度、氧气传质等因素,以提供良好的生长环境。

产物的提取与纯化是为了获得高纯度的产物,这需要通过物理方法、化学方法、生物方法等手段进行。

生物发酵工程知识点总结

生物发酵工程知识点总结

生物发酵工程知识点总结1. 生物发酵工程的基本原理生物发酵工程利用微生物、植物细胞或酶等生物体系进行发酵反应,基本原理是在适宜的温度、酸碱度、氧气、营养物质和搅拌情况下控制微生物或酶的生长及其代谢产物的合成,从而得到所需的产物。

发酵反应是一种细胞代谢过程,主要包括生长期、对数期和平稳期。

在发酵过程中,要控制各种条件以获得高产率和高产量。

2. 微生物发酵微生物发酵是指利用微生物进行发酵反应的过程,其产物包括酒精、酶制品、有机酸、氨基酸、维生素等。

微生物发酵的生物体系包括细菌、酵母菌、真菌等,其中酵母菌发酵用于酒精、面包、酵素制造等方面,细菌发酵用于酸奶、维生素、有机酸的生产,真菌发酵用于抗生素、氨基酸、酶制剂等的生产。

微生物发酵的关键是要选用适宜的微生物菌种,并控制发酵过程中的温度、pH值、营养物质、氧气等因素。

3. 植物细胞发酵植物细胞发酵是指利用植物细胞进行发酵反应的过程,其产物包括植物次生代谢产物、药物、化工产品等。

植物细胞发酵通常是通过培养植物细胞、组织或器官再生植物进行的,其优点是可以大规模生产植物次生代谢产物和药物,但也存在生长速度慢、培养条件复杂等问题。

植物细胞发酵的关键是要选择适宜的培养基和生长调节因子,以及控制植物细胞的生长和代谢过程。

4. 酶工程酶工程是指利用酶进行发酵反应的过程,其产物包括有机合成化合物、生物燃料、生物催化等。

酶工程主要是通过分离纯化酶、改良酶活性和稳定性以及选择适宜的反应条件来实现。

酶工程的关键是要选用适宜的酶种和酶反应条件,以及进行酶的固定化和酶的逆向工程等技术手段。

5. 发酵生产过程控制发酵生产过程控制是指在微生物、植物细胞或酶等生物体系进行发酵反应时,通过对温度、pH值、氧气、营养物质、搅拌等参数进行监测和控制,以获得高产率和高产量的过程。

发酵生产过程控制的关键是要选用适宜的控制系统和控制策略,以及对发酵过程中的微生物或酶的代谢过程进行实时监测和调控。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论发酵:通过微生物、动物细胞和植物细胞的培养,大量生成和积累特定的代谢产物或菌体的过程。

发酵工程:是发酵原理和工程学的结合,是研究由生物细胞(包括微生物、动植物细胞)参与的工艺过程的原理的科学,是研究利用生物材料生产有用物质,服务于人类的一门综合性科学技术。

这里所指的生物材料包括来自自然界微生物、基因重组微生物等以及各种来源的动物细胞和植物细胞。

发酵工程组成从广义上讲,由三部分组成:上游工程、发酵工程、下游工程发酵设备第二章固体发酵液体发酵(厌氧发酵,好氧发酵)厌氧发酵:酒精发酵罐好氧发酵:通风搅拌发酵罐通风搅拌发酵罐设备主要部件包括:罐身1 酒精发酵罐电机2 搅拌器3 轴封4 5消泡器6联轴器7中间轴承8空气吹泡管(或空气喷射器)9挡板10冷却装置:罐体由圆柱体或碟形封头焊接而成,材料为碳钢或不锈钢,大型发酵罐可用衬不锈1.罐体罐壁厚度决定于罐径及罐钢或复合不锈钢制成,为了满足工艺要求,罐需要承受一定压力,压的大小。

罐体上的管路越少越好打碎空气气泡,增加气液接触界面以提高气液间的传质效率使发酵液充分混和。

:2.搅拌作用:防止液面中央产生漩涡,促使液体激烈翻动,提高溶解氧。

竖立的蛇管、列3挡板的作用管、排管也可以起挡板作用;消泡器:利用机械的方法打碎气泡4 仪表:测量相关参数5为什么压力表不用直管:会有培养基冲入,污染压力表;起不到缓冲作用;灭菌冷却后有冷凝水(含菌)掉入罐内,污染菌种,弯管液封,上面的杂菌不会掉入下面管道中。

径比约为2.5~46罐体各部分的尺寸有一定比例,高/ 发酵罐的灭菌~,最好是4压力大于关好空气阀,蒸气上进下出,冲蒸气,2 kg/cm2(120℃)(在夹套中)℃,进蒸气口(蒸气阀)关掉,出蒸气口(排气阀)关。

当罐内温度>805 kg/cm2(160℃)℃℃上升很快,大于100℃~30min121小。

打开空气阀,蒸气直接进罐,℃,20~。

从80100时立即关掉蒸气阀。

关掉蒸气阀后通25min℃时就开始计时,计时后温度上升很慢,到118(在夹套中)立即。

入无菌空气,使罐内一直保持正压(高于大气压,空气不会倒灌入罐内)℃时关掉水,也有缓冲性。

383755加自来水冷却,从下向上,使温度尽快降到℃左右,到~升温降温时注意缓冲性灭菌时蒸气从夹套中进去,如从罐中进去,蒸气冷凝,产生冷凝水、℃需加温。

加温时蒸气由下进入、从上30无法接种、容易污染冬天温度低、散热快,低于而出。

如从25℃→30℃,加热到28℃时即可关蒸气阀微生物代谢发酵时产生大量热,使温度大于30℃,需考虑适当降温。

冷却时冷却水由下进入、从上而出,注意缓冲性,不要降至30℃才关小型罐50L~7T用夹套系统冷却;大型罐7吨以上,用冷却管(盘肠、列管系统)发酵罐的管路和死角的消除1尽量减少管路2发酵罐的出口越少越好3出料口和进气管可以合并4接种管、消泡管、补料管可以合并5排气管不能合并,易引起交叉污消灭死角1丝口连接处改用法兰连接2焊接部位:堆焊、电焊、氧焊、鱼鳞焊,选用鱼鳞焊3管道转弯有弧度4放料管、取料管的阀腔处装小阀消灭渗漏罐体穿孔——不锈钢冷却管产生裂缝——定期更换垫圈(法兰连接)松脱——拧紧轴封渗漏——轴绝对垂直焊缝渗漏阀杆发酵罐的管道布置保证蒸气在管道中畅通,有排气口(小阀),接种管、中间补料管、放料管都要有排气口(小阀)避免冷凝水排入已灭菌的罐体或空气,加止逆阀(单向阀)灭菌后的管道用无菌空气保压单向阀位置正确蒸气总管道要有分气缸、排气阀、减压阀、安全阀相邻罐不联通接种接种的三种方法火圈直接倒种注射器接种压力差接种取样取样阀①关紧,打开蒸气阀②,再打开阀门③,让蒸气冲(消毒杀菌5~10min);关上蒸气阀②,打开取样阀①,培养液因压力作用流出;取样后关闭取样阀①,打开蒸气阀②,通蒸气再次消毒,关闭阀门②和③。

进料和出料发酵罐上的人孔用于加料和维修。

出料管可以和进气管合并。

工业发酵菌种选育第三章重要工业微生物的分离及菌种要求有的微生物从自然界中分离出来就能被利用,有的需要对分离到的野生菌株进行人工诱变,得到突变株才能被利用。

从诱发基当前发酵工业所用的菌种总趋势是从野生菌转向变异菌,自然选育转向代谢育种,工业生产常用的微生物:细菌枯草芽胞杆菌、醋酸杆菌、棒状杆菌、短杆菌等,用于生产淀粉酶、乳酸、醋酸、氨基酸和肌苷酸等酵母菌单细胞真核生物,常用啤酒酵母、假丝酵母、类酵母等,用于酿酒、制造面包、生产脂肪酶以及可食用、药用和饲料用酵母菌体蛋白等霉菌根霉、毛霉、犁头霉、红曲霉、曲霉、青霉等,用于生产多种酶制剂、抗生素、有机酸及甾体激素等放线菌链霉菌属、小单孢菌属和诺卡氏菌属等,能产生多种抗生素,如链霉素、红霉素、金霉素、庆大霉素等担子菌通常所说菇类微生物,用于多糖、橡胶物质和抗癌药物的开发藻类用作人类保健食品和饲料,如螺旋藻、栅列藻;可通过藻类将CO2转变为石油,或获取氢菌种的来源1根据资料直接向有关科研单位、高等院校、工厂或菌种保藏部门索取或购买;2从大自然中分离筛选新的微生物菌种。

工业微生物分离的程序定方案:首先要查阅资料,了解所需菌种的生长培养特性。

采样:有针对性地采集样品。

增殖:人为地通过控制养分或培养条件,使所需菌种增殖培养后,在数量上占优势。

分离:利用分离技术得到纯种。

发酵性能测定:进行生产性能测定。

这些特性包括形态、培养特征、营养要求、生理生化特性、发酵周期、产品品种和产量、耐受最高温度、生长和发酵最适温度、最适pH值、提取工艺等。

工业微生物菌种的选育1自然选育在生产过程中,不经过人工诱变处理,根据菌种的自发突变而进行菌种筛选的过程,叫做自然选育或自然分离。

2诱变育种使用诱变剂进行人工诱变能提高突变频率和扩大变异谱,具有速度快、方法简便等优点,是当前菌种选育的一种主要方法,使用普遍。

诱发突变随机性大,必须与大规模的筛选工作相配合才能受到良好的效果。

诱变育种方案包括:1突变的诱发2突变株的筛选3突变高产基因的表现诱变剂的种类和选择射αγ射线、射线、X射线(库仑/千克)、β。

各种射线,如紫外线(焦耳)物理诱变剂、线和超声波等)、亚硝基胍、亚硝酸、氮芥等。

甲基磺酸乙酯(化学诱变剂EMS而负突剂量中,诱变处理剂量的选择是一个比较复杂的问题,一般正突变较多出现在偏低变则较多出现于偏高剂量中。

目前处理剂量已从以前在较高剂量负突变率更高。

对于经过多次诱变而提高了产量的菌株,%。

诱变剂的选择主要根据已经成功的经验,与诱变80%减低为9970~~采用的死亡率90 剂本身特点、菌种的种类和出发菌株的遗传背景等有关。

与营养缺陷突变有关的三类遗传型个体:而必须在培养基内加入相应有机养分才经诱变产生的一些合成能力出现缺陷,营养缺陷型:能正常生长的变异菌株。

为该微生物的自然界分离到的任何微生物,在其发生营养缺陷突变前的原始菌株,野生型:与野生型的表型:指营养缺陷型突变菌株回复突变或重组后产生的菌株,野生型。

原养型相同。

营养缺陷型的鉴定①生长谱法结果测定物质可为粉末或纸片方法简便,回变和污染不影响测定一般应分两阶段:第一阶段:测定是哪类物质的缺陷型;第二节段:根据第一阶段确定的范围,进一步确定是哪种具体化合物的缺陷型;与筛选营养缺陷型突变株有关的三类培养基基本培养基(MM)[-]:凡是能满足野生型菌株营养要求的最低成分的合成培养基。

完全培养基(CM)[+]:满足一切营养缺陷型菌株生长的天然或半合成培养基。

补充培养基(SM)[x]:在MM中有针对性地加入一或几种营养成分以满足相应营养缺陷型菌株生长的合成培养基。

第三节工业微生物菌种的衰退、复壮与保藏一、微生物菌种的衰退菌种的退化是由个别、少数菌体细胞衰退后逐渐导致整个菌株退化的一个从量变到质变的遗传变异过程。

菌种的退化会使微生物个体和群体特征发生变化,其中最重要的使所需产物的生产产量下降、营养物质代谢和生长繁殖能力下降、发酵周期延长、抗不良环境条件的性能减弱。

(一)菌种衰退的原因1、菌种连续传代导致自发突变或回复突变是菌种发生退化的直接原因2、菌种保藏方法不当。

3、菌种生长的条件要求没有得到满足,或是遇到不利的条件,或是失去某些需要的条件。

(二)、防止菌种衰退的措施1 控制传代次数2 创造良好的培养条件3 利用不易衰退的细胞传代4 采用有效的菌种保藏方法二、菌种的复壮1纯种分离2通过寄主体进行复壮3 淘汰已衰退的个体三、菌种的保藏、菌种保藏的原理;菌种保藏主要是根据菌种的生理、生化特性,人工创造条件使菌(一)体的代谢活动处于休眠状态。

(三)、菌种保藏的注意事项1菌种在保藏前所处的状态2菌种保藏所用的基质3操作过程对细胞结构的损害微生物生长的测定:1个体计数2群体重量测定3群体生理指标测定在生产实践中缩短延滞期的常用手段:(1)通过遗传学方法改变种的遗传特性使迟缓期缩短;(2)利用对数生长期的细胞作为种子(3)尽量使接种前后所使用的培养基组成不要相差太大;(4)适当扩大接种量对数生长期以最大的速率生长和分裂,细菌数量呈对数增加,细菌内各成分按比例有规律地增加,表现为平衡生长。

对数生长期的细菌个体形态、化学组成和生理特性等均较一致,代谢旺盛、生长迅速、代时稳定,所以是研究微生物基本代谢的良好材料。

它也常在生产上用作种子,使微生物发酵的延滞期缩短,提高经济效益。

第四章发酵机制及发酵动力学一初级代谢及产物初级代谢产物是指微生物通过代谢活动所产生的、自身生长和繁殖所必需的物质二次级代谢及产物次级代谢产物是指微生物生长到一定阶段才产生的化学结构十分复杂、对该生物无明显生理功能,或并非是微生物生长和繁殖所必需的物质,乳糖操纵子模型抑制作用:调节基因转录、合成阻遏蛋白,阻遏蛋白因其构象能够识别并结合到操纵基因上,因此RNA聚合酶就不能与启动基因结合,结构基因的表达被抑制,结果不能转录和翻译形成酶蛋白。

诱导作用:在乳糖存在情况下,乳糖代谢产生别乳糖(alloLactose),别乳糖能和调节基因产生的阻遏蛋白结合,使阻遏蛋白改变构象,不能与操纵基因结合,失去阻遏作用,结果RNA聚合酶与启动基因结合,并使结构基因活化,转录出mRNA,翻译出酶蛋白。

负反馈:细胞质中有了β—半乳糖苷酶后,便催化分解乳糖为半乳糖和葡萄糖。

乳糖被分解后,又造成了阻遏蛋白与操纵基因结合,使结构基因关闭。

.2、酶活性的调节(细调)一定数量的酶,通过其分子构象或分子结构的改变来调节其催化反应的速率。

酶活调节的影响因素包括:底物和产物的性质和浓度、压力、pH、离子强度、辅助因子以及其他酶的存在等等。

特点是反应快速。

①酶活性的激活前体激活:代谢途径中后面的酶促反应,可被该途径中较前面的一个中间产物所促进。

代谢中间产物的反馈激活:代谢中间产物对该代谢途径的前面的酶起激活作用。

相关文档
最新文档