有限元分析研究汇报ppt课件
合集下载
有限元分析-动力学分析PPT课件
有限元分析-动力学分析ppt课件
目录
• 引言 • 有限元分析基础 • 动力学分析基础 • 有限元分析在动力学中的应用 • 案例分析 • 结论与展望
01 引言
目的和背景
01
介绍有限元分析在动力学分析中 的应用和重要性。
02
阐述本课件的目标和内容,帮助 读者了解有限元分析在动力学分 析中的基本概念、方法和应用。
随着工程复杂性和精确度要求的提高,有限元分析在动力学分析中的 应用将更加重要和必要。
02
未来需要进一步研究有限元分析算法的改进和优化,以提高计算效率 和精度。
03
未来需要加强有限元分析与其他数值计算方法的结合,如有限差分、 有限体积等,以实现更复杂的动力学模拟和分析。
04
未来需要加强有限元分析在多物理场耦合和多尺度模拟中的应用,以 更好地解决工程实际问题。
有限元分析的优点和局限性
• 精确性:对于某些问题,可以得到相当精确的结 果。
有限元分析的优点和局限性
数值误差
由于离散化的近似性,结果存在一定的数值误 差。
计算成本
对于大规模问题,计算成本可能较高。
对模型简化的依赖
结果的准确性很大程度上依赖于模型的简化程度。
03 动力学分析基础
动力学简介
动力学是研究物体运 动过程中力与运动关 系的科学。
THANKS FOR WATCHING
感谢您的观看
ห้องสมุดไป่ตู้
求解等。
02 有限元分析基础
有限元方法概述
01
有限元方法是一种数值分析方法,通过将复杂的物理系统离散化为有 限个简单元(或称为元素)的组合,来模拟和分析系统的行为。
02
它广泛应用于工程领域,如结构分析、流体动力学、热传 导等领域。
目录
• 引言 • 有限元分析基础 • 动力学分析基础 • 有限元分析在动力学中的应用 • 案例分析 • 结论与展望
01 引言
目的和背景
01
介绍有限元分析在动力学分析中 的应用和重要性。
02
阐述本课件的目标和内容,帮助 读者了解有限元分析在动力学分 析中的基本概念、方法和应用。
随着工程复杂性和精确度要求的提高,有限元分析在动力学分析中的 应用将更加重要和必要。
02
未来需要进一步研究有限元分析算法的改进和优化,以提高计算效率 和精度。
03
未来需要加强有限元分析与其他数值计算方法的结合,如有限差分、 有限体积等,以实现更复杂的动力学模拟和分析。
04
未来需要加强有限元分析在多物理场耦合和多尺度模拟中的应用,以 更好地解决工程实际问题。
有限元分析的优点和局限性
• 精确性:对于某些问题,可以得到相当精确的结 果。
有限元分析的优点和局限性
数值误差
由于离散化的近似性,结果存在一定的数值误 差。
计算成本
对于大规模问题,计算成本可能较高。
对模型简化的依赖
结果的准确性很大程度上依赖于模型的简化程度。
03 动力学分析基础
动力学简介
动力学是研究物体运 动过程中力与运动关 系的科学。
THANKS FOR WATCHING
感谢您的观看
ห้องสมุดไป่ตู้
求解等。
02 有限元分析基础
有限元方法概述
01
有限元方法是一种数值分析方法,通过将复杂的物理系统离散化为有 限个简单元(或称为元素)的组合,来模拟和分析系统的行为。
02
它广泛应用于工程领域,如结构分析、流体动力学、热传 导等领域。
有限元分析及应用课件
参数设置
设置材料属性、单元类型等参数。
求解过程
刚度矩阵组装
根据每个小单元的刚度,组装成全局的刚度矩阵。
载荷向量构建
根据每个节点的外载荷,构建全局的载荷向量。
求解线性方程组
使用求解器(如雅可比法、高斯消元法等)求解线性方程组,得到节点的位移。
后处理
01
结果输出
将计算结果以图形、表格等形式输 出,便于观察和分析。
有限元分析广泛应用于工程领域,如结构力学、流体动力学、电磁场等领域,用于预测和优化结构的 性能。
有限元分析的基本原理
离散化
将连续的求解域离散化为有限 个小的单元,每个单元具有特
定的形状和属性。
数学建模
根据物理问题的性质,建立每 个单元的数学模型,包括节点 力和位移的关系、能量平衡等。
求解方程
通过建立和求解线性或非线性 方程组,得到每个节点的位移 和应力分布。
PART 05
有限元分析的工程应用实 例
桥梁结构分析
总结词
桥梁结构分析是有限元分析的重要应用之一,通过模拟桥梁在不同载荷下的响应,评估 其安全性和稳定性。
详细描述
桥梁结构分析主要关注桥梁在不同载荷(如车辆、风、地震等)下的应力、应变和位移 分布。通过有限元模型,工程师可以预测桥梁在不同工况下的行为,从而优化设计或进
刚性问题
刚性问题是有限元分析中的一种 特殊问题,主要表现在模型中某 些部分刚度过大,导致分析结果 失真
刚性问题通常出现在大变形或冲 击等动态分析中,由于模型中某 些部分刚度过高,导致变形量被 忽略或被放大。这可能导致分析 结果与实际情况严重不符。
解决方案:为避免刚性问题,可 以采用多种方法进行优化,如采 用更合适的材料模型、调整模型 中的参数设置、采用更精细的网 格等。同时,可以采用多种方法 对分析结果进行验证和校核,以 确保其准确性。
设置材料属性、单元类型等参数。
求解过程
刚度矩阵组装
根据每个小单元的刚度,组装成全局的刚度矩阵。
载荷向量构建
根据每个节点的外载荷,构建全局的载荷向量。
求解线性方程组
使用求解器(如雅可比法、高斯消元法等)求解线性方程组,得到节点的位移。
后处理
01
结果输出
将计算结果以图形、表格等形式输 出,便于观察和分析。
有限元分析广泛应用于工程领域,如结构力学、流体动力学、电磁场等领域,用于预测和优化结构的 性能。
有限元分析的基本原理
离散化
将连续的求解域离散化为有限 个小的单元,每个单元具有特
定的形状和属性。
数学建模
根据物理问题的性质,建立每 个单元的数学模型,包括节点 力和位移的关系、能量平衡等。
求解方程
通过建立和求解线性或非线性 方程组,得到每个节点的位移 和应力分布。
PART 05
有限元分析的工程应用实 例
桥梁结构分析
总结词
桥梁结构分析是有限元分析的重要应用之一,通过模拟桥梁在不同载荷下的响应,评估 其安全性和稳定性。
详细描述
桥梁结构分析主要关注桥梁在不同载荷(如车辆、风、地震等)下的应力、应变和位移 分布。通过有限元模型,工程师可以预测桥梁在不同工况下的行为,从而优化设计或进
刚性问题
刚性问题是有限元分析中的一种 特殊问题,主要表现在模型中某 些部分刚度过大,导致分析结果 失真
刚性问题通常出现在大变形或冲 击等动态分析中,由于模型中某 些部分刚度过高,导致变形量被 忽略或被放大。这可能导致分析 结果与实际情况严重不符。
解决方案:为避免刚性问题,可 以采用多种方法进行优化,如采 用更合适的材料模型、调整模型 中的参数设置、采用更精细的网 格等。同时,可以采用多种方法 对分析结果进行验证和校核,以 确保其准确性。
有限元分析 ppt课件
有限元分析 Finite Element Analysis
课程目标
1) 了解什么是有限单元法、有限单元法的基本 思想。
2) 学习有限单元法的原理,主要结合弹性力学 问题来介绍有限单元法的基本方法,包括单 元分析、整体分析、载荷与约束处理、等参 单元等概念。
3) 初步学会使用商用有限元软件分析简单工程 问题。
4. O.C. Zienkiewicz, R.L. Taylor. The finite element method( 5th ed). Oxford ; Boston : Butterworth-Heinemann, 2000
5. 郭和德编. 有限单元法概论,清华大学, 1998
1 有限单元法简介
自重作用下等截面直杆的材料力学解答
N(x)q(Lx)
d(L x)N(x)d xq(Lx)dx EA EA
u(x)xN(x)d xq(L xx2)
0 EA EA 2
x
du q (Lx) dx EA
x
Ex
q(Lx) A
自重作用下等截面直杆的有限单元法 解答
1)离散化 如图所示,将直杆划分 成n个有限段,有限段之 间通过一个铰接点连接。 称两段之间的连接点为 结点,称每个有限段为 单元。 第 i 个 单 元 的 长 度 为 Li , 包含第i,i+1个结点。
1.3.1网格划分
对弹性体进行必要的简化,再将弹性体 划分为有限个单元组成的离散体。 单元之间通过单元节点相连接。 由单元、结点、结点连线构成的集合称 为网格。
1.3.1网格划分
通常把三维实体划分成四面体(Tetrahedron) 或六面体(Hexahedron)单元的网格
四面体4结点单元
六面体8结点单元
课程目标
1) 了解什么是有限单元法、有限单元法的基本 思想。
2) 学习有限单元法的原理,主要结合弹性力学 问题来介绍有限单元法的基本方法,包括单 元分析、整体分析、载荷与约束处理、等参 单元等概念。
3) 初步学会使用商用有限元软件分析简单工程 问题。
4. O.C. Zienkiewicz, R.L. Taylor. The finite element method( 5th ed). Oxford ; Boston : Butterworth-Heinemann, 2000
5. 郭和德编. 有限单元法概论,清华大学, 1998
1 有限单元法简介
自重作用下等截面直杆的材料力学解答
N(x)q(Lx)
d(L x)N(x)d xq(Lx)dx EA EA
u(x)xN(x)d xq(L xx2)
0 EA EA 2
x
du q (Lx) dx EA
x
Ex
q(Lx) A
自重作用下等截面直杆的有限单元法 解答
1)离散化 如图所示,将直杆划分 成n个有限段,有限段之 间通过一个铰接点连接。 称两段之间的连接点为 结点,称每个有限段为 单元。 第 i 个 单 元 的 长 度 为 Li , 包含第i,i+1个结点。
1.3.1网格划分
对弹性体进行必要的简化,再将弹性体 划分为有限个单元组成的离散体。 单元之间通过单元节点相连接。 由单元、结点、结点连线构成的集合称 为网格。
1.3.1网格划分
通常把三维实体划分成四面体(Tetrahedron) 或六面体(Hexahedron)单元的网格
四面体4结点单元
六面体8结点单元
《有限元分析及应用》PPT课件
41
2.3 基本变量的指标表达
指标记法的约定:
自由指标:在每项中只有一个下标出现,如
,
i,j为自由指标,它们可以自由变化;在三维ij 问题
中,分别取为1,2,3;在直角坐标系中,可表示
三个坐标轴x, y, z。
哑指标:在每项中有重复下标出现,如:
,j为哑指标。在三维问题中其变化的范ai围j x为j 1,b2i ,3
有限元方法的思路及发展过程
思路:以计算机为工具,分析任意变形体以获得所有 力学信息,并使得该方法能够普及、简单、高效、方 便,一般人员可以使用。 实现办法:
20
技术路线:
21
发展过程: 如何处理
对象的离散化过程
22
常用单元的形状
.点 (质量)
面 (薄壳, 二维实体,
.. 轴..对称实体.).......
3
有限元法是最重要的工程分析技术之一。 它广泛应用于弹塑性力学、断裂力学、流 体力学、热传导等领域。有限元法是60年 代以来发展起来的新的数值计算方法,是 计算机时代的产物。虽然有限元的概念早 在40年代就有人提出,但由于当时计算机 尚未出现,它并未受到人们的重视。
4
随着计算机技术的发展,有限元法在各个 工程领域中不断得到深入应用,现已遍及 宇航工业、核工业、机电、化工、建筑、 海洋等工业,是机械产品动、静、热特性 分析的重要手段。早在70年代初期就有人 给出结论:有限元法在产品结构设计中的 应用,使机电产品设计产生革命性的变化, 理论设计代替了经验类比设计。
由此得到
考虑 X 0
xyl ym zy n Y xl yxm zxn X
考虑
Z 0 xzl yzm zn Z
应力边界条件
第1章有限元基本理论ppt课件
x dx
li
E i
i
E (ui1ui )
x
x
li
1.8 直杆受自重作用的拉伸问题(续)
❖ 外载荷与结点的平衡方程
EA(uiui1 ) li1
EA(ui1ui ) li
q(li1 li ) 2
q(li1li ) 为第i个结点上承受的外载荷
2
1.8 直杆受自重作用的拉伸问题(续)
❖ 假定将直杆分割成3个单元,每个单元长为a=L/3, 则对结点2,3,4列出的平衡方程为:
单元: 一组节点自由度间相互作用的 数值、矩阵描述(称为刚度或系数 矩阵)。单元有线、面或实体以及二 维或三维的单元等种类。
载荷
有限元模型由一些简单形状的单元组成,单 元之间通过节点连接,并承受一定载荷。
1.6 节点和单元 (续)
信息是通过单元之间的公共节点传递的。
. . 2 nodes ...
. . . 1 node
1.1 有限元分析 (FEA)
有限元分析 是利用数学近似的方法对真实物理
系统(几何和载荷工况)进行模拟。它利用简 单而又相互作用的元素,即单元,用有限数量 的未知量去逼近无限未知量的真实系统。
1.2 有限单元法的基本思想
❖ 将连续的结构离散成有限个单元,并在每一单元中 设定有限个节点,将连续体看作只在节点处相连接 的一组单元的集合体。
I
J
O
N
三维实体结构单元
K UX, UY, UZ
P
M L
J
I
J
K J
O N
K J
三维梁单元 UX, UY, UZ, ROTX, ROTY, ROTZ
三维四边形壳单元 UX, UY, UZ, ROTX, ROTY, ROTZ
有限元法PPT课件
和时间。
如何克服局限性
改进模型
通过更精确地描述实际 结构,减少模型简化带
来的误差。
优化网格生成
采用先进的网格生成技 术,提高网格质量,降
低计算误差。
采用高效算法
采用并行计算、稀疏矩 阵技术等高效算法,提
高计算效率。
误差分析和验证
对有限元法的结果进行误 差分析和验证,确保结果
的准确性和可靠性。
05 有限元法的应用实例
有限元法ppt课件
目 录
• 引言 • 有限元法的基本原理 • 有限元法的实现过程 • 有限元法的优势与局限性 • 有限元法的应用实例 • 有限元法的前沿技术与发展趋势 • 结论
01 引言
有限元法的定义
01
有限元法是一种数值分析方法, 通过将复杂的结构或系统离散化 为有限个简单元(或称为元素) 的组合,来模拟和分析其行为。
有限元法在流体动力学分析中能够处理复杂的流体流动和 压力分布。
详细描述
通过将流体域离散化为有限个小的单元,有限元法能够模 拟流体的流动、压力、速度等状态,广泛应用于航空、航 天、船舶等领域。
实例
分析飞机机翼在不同飞行状态下的气动性能,优化机翼设 计。
热传导分析
总结词
有限元法在热传导分析中能够处理复杂的热传递过程。
实例
分析复杂电磁设备的电磁干扰问题,优化设备性能。
06 有限元法的前沿技术与发 展趋势
多物理场耦合的有限元法
总结词
多物理场耦合的有限元法是当前有限元法的重要发展方向, 它能够模拟多个物理场之间的相互作用,为复杂工程问题提 供更精确的解决方案。
详细描述
多物理场耦合的有限元法涉及到流体力学、热力学、电磁学 等多个物理场的耦合,通过建立统一的数学模型,能够更准 确地模拟多物理场之间的相互作用。这种方法在航空航天、 能源、环境等领域具有广泛的应用前景。
如何克服局限性
改进模型
通过更精确地描述实际 结构,减少模型简化带
来的误差。
优化网格生成
采用先进的网格生成技 术,提高网格质量,降
低计算误差。
采用高效算法
采用并行计算、稀疏矩 阵技术等高效算法,提
高计算效率。
误差分析和验证
对有限元法的结果进行误 差分析和验证,确保结果
的准确性和可靠性。
05 有限元法的应用实例
有限元法ppt课件
目 录
• 引言 • 有限元法的基本原理 • 有限元法的实现过程 • 有限元法的优势与局限性 • 有限元法的应用实例 • 有限元法的前沿技术与发展趋势 • 结论
01 引言
有限元法的定义
01
有限元法是一种数值分析方法, 通过将复杂的结构或系统离散化 为有限个简单元(或称为元素) 的组合,来模拟和分析其行为。
有限元法在流体动力学分析中能够处理复杂的流体流动和 压力分布。
详细描述
通过将流体域离散化为有限个小的单元,有限元法能够模 拟流体的流动、压力、速度等状态,广泛应用于航空、航 天、船舶等领域。
实例
分析飞机机翼在不同飞行状态下的气动性能,优化机翼设 计。
热传导分析
总结词
有限元法在热传导分析中能够处理复杂的热传递过程。
实例
分析复杂电磁设备的电磁干扰问题,优化设备性能。
06 有限元法的前沿技术与发 展趋势
多物理场耦合的有限元法
总结词
多物理场耦合的有限元法是当前有限元法的重要发展方向, 它能够模拟多个物理场之间的相互作用,为复杂工程问题提 供更精确的解决方案。
详细描述
多物理场耦合的有限元法涉及到流体力学、热力学、电磁学 等多个物理场的耦合,通过建立统一的数学模型,能够更准 确地模拟多物理场之间的相互作用。这种方法在航空航天、 能源、环境等领域具有广泛的应用前景。
有限元及其分析绪论PPT课件
以处理很复杂的连续介质问题,是一种普遍方法。
60年代后期,J.T.Oden 等学者进一步研究了加权残值法与有限元法之间的关系,建立有限元法的计算格式, 并指出有限元法所利用的主要是Galerkin加权残值法,它可以用于即使泛函无法构造或泛函根本不存在的 问题,从而进一步扩大了有限元法的应用领域。
1972年,J.T.Oden 出版了第一本处理非线性连续介质问题的专著 《非线性连续体的有限元法 》。
• 在此期间,O.C.Zienkiewicz、卞学璜、董平等人进一步推动有限元的发展,分别提出了等参单元、杂交 单元的概念。1967年,O.C.Zienk iewic e 和Y.K.Cheung( 张佑启) 出版了第一本有关有限元分析的专著 《连续体和结构的有限元法》,此书是有限元法的名著,后更名为《有限单元法》。
V
•
Galerkin 方法
在Galerkin方法中,选择的加权函数wi为试函数(如取为形函数N,wi=Ni )
L(x) EIv' ' ' ' p
R(x) EIv' ' ' ' p
L
0 wi(EIv''''' p)dx 0
i 0~n
• 以三角函数为试探函数求ci • 以幂级数为试探函数求ci • 以形函数为试探函数求ci
近原始结构,体现了几何上的近似;而用近似函数逼近未知变量在单元内的真实解,体现了数学上的近似;利 用与原问题的等效的变分原理(如最小势能原理)建立有限元基本方程(刚度方程)又体现了其明确的物理背 景。
• 厚实的理论基础,数值计算稳定、高效
• 有限元法计算格式的建立既可基于物理概念推得,如刚度法、虚功原理,也可基于纯数学原理推 得,如泛函变分原理、加权残值法。通常直接刚度法、虚功原理用于杆系结构或结构问题的方程 建立;而变分原理设计泛函极值,既适用于简单的结构问题,也适应于更复杂的工程问题(如温 度场问题)。当给定的问题存在经典变分叙述时,则利用变分原理很容易建立这类问题的有限元 方程,如加权残值法。加权残值法由问题的基本微分方程出发而不依赖于泛函,可用于处理一般 问题的有限元方程建立,如流固耦合问题。所以,有限元法不仅具有明确的物理背景,更具有坚 实的数学基础,且数值计算的收敛性、稳定性均可从理论上得到证明,有关这方面的内容可参考 相关资料。
60年代后期,J.T.Oden 等学者进一步研究了加权残值法与有限元法之间的关系,建立有限元法的计算格式, 并指出有限元法所利用的主要是Galerkin加权残值法,它可以用于即使泛函无法构造或泛函根本不存在的 问题,从而进一步扩大了有限元法的应用领域。
1972年,J.T.Oden 出版了第一本处理非线性连续介质问题的专著 《非线性连续体的有限元法 》。
• 在此期间,O.C.Zienkiewicz、卞学璜、董平等人进一步推动有限元的发展,分别提出了等参单元、杂交 单元的概念。1967年,O.C.Zienk iewic e 和Y.K.Cheung( 张佑启) 出版了第一本有关有限元分析的专著 《连续体和结构的有限元法》,此书是有限元法的名著,后更名为《有限单元法》。
V
•
Galerkin 方法
在Galerkin方法中,选择的加权函数wi为试函数(如取为形函数N,wi=Ni )
L(x) EIv' ' ' ' p
R(x) EIv' ' ' ' p
L
0 wi(EIv''''' p)dx 0
i 0~n
• 以三角函数为试探函数求ci • 以幂级数为试探函数求ci • 以形函数为试探函数求ci
近原始结构,体现了几何上的近似;而用近似函数逼近未知变量在单元内的真实解,体现了数学上的近似;利 用与原问题的等效的变分原理(如最小势能原理)建立有限元基本方程(刚度方程)又体现了其明确的物理背 景。
• 厚实的理论基础,数值计算稳定、高效
• 有限元法计算格式的建立既可基于物理概念推得,如刚度法、虚功原理,也可基于纯数学原理推 得,如泛函变分原理、加权残值法。通常直接刚度法、虚功原理用于杆系结构或结构问题的方程 建立;而变分原理设计泛函极值,既适用于简单的结构问题,也适应于更复杂的工程问题(如温 度场问题)。当给定的问题存在经典变分叙述时,则利用变分原理很容易建立这类问题的有限元 方程,如加权残值法。加权残值法由问题的基本微分方程出发而不依赖于泛函,可用于处理一般 问题的有限元方程建立,如流固耦合问题。所以,有限元法不仅具有明确的物理背景,更具有坚 实的数学基础,且数值计算的收敛性、稳定性均可从理论上得到证明,有关这方面的内容可参考 相关资料。
《有限元法及其应用》课件
实例
某型战斗机的机翼设计过程中,通过有限元分析,优化了机翼的结构和材料分布,提高了机翼的抗弯和 抗扭能力,同时减小了机翼的气动阻力,为飞机的高性能提供了保障。
汽车碰撞模拟
01
总结词
利用有限元法模拟汽车碰撞过程,评估汽车的安全性能和 改进设计方案。
02 03
详细描述
汽车碰撞是交通事故中最为严重的一种情况,有限元法能 够模拟汽车碰撞过程,对汽车的结构、材料和吸能设计等 进行评估,为汽车的安全性能提供科学依据。同时,通过 模拟不同碰撞条件下的结果,可以为汽车设计提供改进方 案。
通过离散化的方法,将连续的偏微分 方程转化为离散的代数方程组。
刚度矩阵与载荷向量
刚度矩阵
描述了每个单元的刚度关系,反 映了单元之间的相互作用。
载荷向量
描述了作用在每个节点上的外力 。
位移求解与应力分析
位移求解
通过求解离散化的代数方程组,得到每个节点的位移。
应力分析
根据位移求解的结果,通过计算得到每个单元的应力应变状态。
有限元法的应用领域
结构分析
有限元法在结构分析中应用最为广泛,可 以用于分析各种结构的应力、应变、位移
等。
电磁场分析
有限元法可以用于分析电磁场中的电场强 度、磁场强度、电流密度等,如电磁兼容
性分析、天线设计等。
流体动力学
有限元法可以用于模拟流体在各种复杂环 境下的流动行为,如航空航天、船舶、汽 车等领域的流体动力学问题。
应用领域
广泛应用于科学研究和工 程领域,如化学、生物医 学、电磁学等。
FE-SAFE
概述
FE-SAFE是一款用于结构疲劳分析的有限元软件 ,基于有限元方法进行疲劳寿命预测。
特点
某型战斗机的机翼设计过程中,通过有限元分析,优化了机翼的结构和材料分布,提高了机翼的抗弯和 抗扭能力,同时减小了机翼的气动阻力,为飞机的高性能提供了保障。
汽车碰撞模拟
01
总结词
利用有限元法模拟汽车碰撞过程,评估汽车的安全性能和 改进设计方案。
02 03
详细描述
汽车碰撞是交通事故中最为严重的一种情况,有限元法能 够模拟汽车碰撞过程,对汽车的结构、材料和吸能设计等 进行评估,为汽车的安全性能提供科学依据。同时,通过 模拟不同碰撞条件下的结果,可以为汽车设计提供改进方 案。
通过离散化的方法,将连续的偏微分 方程转化为离散的代数方程组。
刚度矩阵与载荷向量
刚度矩阵
描述了每个单元的刚度关系,反 映了单元之间的相互作用。
载荷向量
描述了作用在每个节点上的外力 。
位移求解与应力分析
位移求解
通过求解离散化的代数方程组,得到每个节点的位移。
应力分析
根据位移求解的结果,通过计算得到每个单元的应力应变状态。
有限元法的应用领域
结构分析
有限元法在结构分析中应用最为广泛,可 以用于分析各种结构的应力、应变、位移
等。
电磁场分析
有限元法可以用于分析电磁场中的电场强 度、磁场强度、电流密度等,如电磁兼容
性分析、天线设计等。
流体动力学
有限元法可以用于模拟流体在各种复杂环 境下的流动行为,如航空航天、船舶、汽 车等领域的流体动力学问题。
应用领域
广泛应用于科学研究和工 程领域,如化学、生物医 学、电磁学等。
FE-SAFE
概述
FE-SAFE是一款用于结构疲劳分析的有限元软件 ,基于有限元方法进行疲劳寿命预测。
特点
4-有限元分析PPT模板
先进制造技术
有限元分析
1.1 有限元法的基本概念和特点
1.有限元法基本概念
有限元法(Finite Element Method,FEM) 也称为有限单元法或有限元素法,其基本思想是 将物体(即连续求解域)离散成有限个且按一定 方式相互连接在一起的单元组合,来模拟或逼近 原来的物体,从而将一个连续的无限自由度问题 简化为离散的有限自由度问题进行求解。物体被 离散以后,通过对其中的各个单元进行单元分析, 最终得到对整个物体的分析。网络划分中每个小 的块体称为单元。确定单元形状、单元之间相互 连接的点称为节点。单元上节点处的结构内力为 节点力,外力为节点载荷。
提高自动化的
展到求解非线性问题
网格处理能力
现代设计技术
— 7—
先进制造技术
选择位移模式
分析单元的力学性质
计算等效节点力
根据单元的材料性质、形状、尺寸、节点数目、位置及其含义等,
找出单元节点力和节点位移的关系式,根据弹性力学的几何方程和物理
方程确定单元的刚度矩阵,形成如下所示的线性方程:
F=Kδ
①
式中:F——节点力向量;
K——单元刚度矩阵;
δ ——节点位移向量。
现代设计技术
04
这是有限元分析的后处理部分,在该步骤中,对
05
计算出来的结果进行加工处理,并以各种形式将计算结 果显示出来。
现代设计技术
— 6—
有限元分析
1.3 有限元分析的发展趋势
由单一场计算向多 物理耦合场问题的求解 方向发展
与CAD/CAM 等软件的集成
软件面向专业 用户的开放性
1
2
3
4
5
由求解线性问题发
现代设计技术
有限元分析
1.1 有限元法的基本概念和特点
1.有限元法基本概念
有限元法(Finite Element Method,FEM) 也称为有限单元法或有限元素法,其基本思想是 将物体(即连续求解域)离散成有限个且按一定 方式相互连接在一起的单元组合,来模拟或逼近 原来的物体,从而将一个连续的无限自由度问题 简化为离散的有限自由度问题进行求解。物体被 离散以后,通过对其中的各个单元进行单元分析, 最终得到对整个物体的分析。网络划分中每个小 的块体称为单元。确定单元形状、单元之间相互 连接的点称为节点。单元上节点处的结构内力为 节点力,外力为节点载荷。
提高自动化的
展到求解非线性问题
网格处理能力
现代设计技术
— 7—
先进制造技术
选择位移模式
分析单元的力学性质
计算等效节点力
根据单元的材料性质、形状、尺寸、节点数目、位置及其含义等,
找出单元节点力和节点位移的关系式,根据弹性力学的几何方程和物理
方程确定单元的刚度矩阵,形成如下所示的线性方程:
F=Kδ
①
式中:F——节点力向量;
K——单元刚度矩阵;
δ ——节点位移向量。
现代设计技术
04
这是有限元分析的后处理部分,在该步骤中,对
05
计算出来的结果进行加工处理,并以各种形式将计算结 果显示出来。
现代设计技术
— 6—
有限元分析
1.3 有限元分析的发展趋势
由单一场计算向多 物理耦合场问题的求解 方向发展
与CAD/CAM 等软件的集成
软件面向专业 用户的开放性
1
2
3
4
5
由求解线性问题发
现代设计技术
有限元法PPT课件
重工业
Motorola– Drop Test Fujitsu-Computers Intel –Chip Integrity
电子
Baxter - Equipment J&J – Stents Medtronic - Pacemakers
医疗
Principia-spain Arup-U.K. T.Y. Lin - Bridge
有限元法
左图所示,为分析齿轮上一个齿内的应力分布,可分析图中所示的一个平面截面内位移分布.作为近似解,可以先求出图中各三角形顶点的位移.这里的 三角形就是单元,其顶点就是节点。
从物理角度理解, 可把一个连续的齿形截面单元之间在节点处以铰链相链接,由单元组合而成的结构近似代替原连续结构,在一定的约束条件下,在给定的载荷作用下,就可以求出各节点的位移,进而求出应力.
一.Abaqus公司简介
公司
’00 ’01 ’02 ’03 ’04 ‘05 ’06 ‘07
18%
18%
20%
SIMULIA公司(原ABAQUS公司)成立于1978年,全球超过600名员工,100% 专注于有限元分析领域。 全球28个办事处和9个代表处 业务迅速稳定增长,是当前有限元软件行业中唯一保持两位数增长率的公司。 2005年5月ABAQUS加入DS集团,将共同成为全球PLM的领导者
Where :
Displacement interpolation functions (位移插值函数)
13.3 Approximating Functions for Two-Dimensional Linear Triangular Elements (二维线性三角形单元的近似函数)
node (节点)
element(单元)
Motorola– Drop Test Fujitsu-Computers Intel –Chip Integrity
电子
Baxter - Equipment J&J – Stents Medtronic - Pacemakers
医疗
Principia-spain Arup-U.K. T.Y. Lin - Bridge
有限元法
左图所示,为分析齿轮上一个齿内的应力分布,可分析图中所示的一个平面截面内位移分布.作为近似解,可以先求出图中各三角形顶点的位移.这里的 三角形就是单元,其顶点就是节点。
从物理角度理解, 可把一个连续的齿形截面单元之间在节点处以铰链相链接,由单元组合而成的结构近似代替原连续结构,在一定的约束条件下,在给定的载荷作用下,就可以求出各节点的位移,进而求出应力.
一.Abaqus公司简介
公司
’00 ’01 ’02 ’03 ’04 ‘05 ’06 ‘07
18%
18%
20%
SIMULIA公司(原ABAQUS公司)成立于1978年,全球超过600名员工,100% 专注于有限元分析领域。 全球28个办事处和9个代表处 业务迅速稳定增长,是当前有限元软件行业中唯一保持两位数增长率的公司。 2005年5月ABAQUS加入DS集团,将共同成为全球PLM的领导者
Where :
Displacement interpolation functions (位移插值函数)
13.3 Approximating Functions for Two-Dimensional Linear Triangular Elements (二维线性三角形单元的近似函数)
node (节点)
element(单元)
有限元分析(FEA)方法PPT课件
(b)定义几何模型 应用实体建模
(c) 用P单元分网。 自适应网格对P方法是无效的
3.施加载荷、求解
应用实体模型加载,而不是有限元模型
求解:推荐采用条件共轭梯度法(PCG),但PCG对于壳体P单元无效
4.后处理 察看结果
有限元分析及应用讲义
举例: platep.dat
20 in
R=5 in
SEQV SMN=773.769 SMNB=708.94 SMX=4421 SMXB=4999
有限元分析及应用讲义
P方法及p单元的应用
P 单元的位移形函数
u=a1+a2x+a3y+a4x2+a5xy+a6y2
v=a7+a8x+a9y+ a10x2+a11xy+a12y2
P方法的优点:
如果使用 p-方法 进行结构分析,可以依靠p单元自动调整单元多项式阶数(2-
– 导出 MeshTool 工具, 划分方式设为自由划 分.
– 推荐使用智能网格划分 进行自由网格划分, 激活它并指定一个尺寸级别. 存储数据库.
– 按 Mesh 按钮开始划分网格. 按拾取器中 [Pick All] 选择所有实体 (推荐).
– 或使用命令 VMESH,ALL 或 AMESH,ALL.
savg = 1100
s = 1000 Elem 1
s = 1100
s = 1200 Elem 2
s = 1300
(节点的 ss 是积分点 的外插)
savg = 1200
7
有限元分析及应用讲义
ANSYS网格误差估计
误差估计作用条件:
• 线性静力结构分析及线性稳态热分析 • 大多数 2-D 或 3-D 实体或壳单元 • PowerGraphics off
《有限元分析概述》课件
如何生成适合于有限元分析的网格,并优 化网格结构。
如何进行杆件的有限元分析,包括轴力、 弯曲和扭转。
3 二维和三维模型的分析
4 不同单元的选择及其特点
如何进行二维和三维模型的有限元分析, 包括平面应力、平面应变和轴对称。
不同类型的有限元单元的选择和应用,以 及它们的特点和限制。
有限元分析软件
ANSYS
有限元分析的应用领域
工程结构分析
有限元分析广泛应用于工程领域,包括建筑、桥梁、船舶、管线等结构的设计和分析。
汽车、航空航天、机械等领域应用
有限元分析在汽车、航空航天、机械等行业中被广泛应用于产品设计和优化。
地震、爆炸等自然灾害分析
有限元分析可以用于模拟和预测地震、爆炸等自然灾害对结构的影响,进而提高结构的抗震 和防爆性能。
COMSOL Multiphysics是一款多物理场耦合的 有限元分析软件,适用于多领域的工程分析。
有限元分析的未来发展
1 超级计算机的运用 2 多物理场耦合
随着计算机性能的提升, 有限元分析可以应用于 更大规模、更复杂的问 题。
有限元分析将更多的物 理场耦合在一起,进行 更全面的分析。
3 计算效率的提高
有限元分析的基本流程
1
,将结构进行建模。
2
离散
将结构分割成小的、简单的单元。
3
材料定义
定义每个单元的材料性质和力学行为。
4
载荷约束条件
对结构施加边界条件和加载条件。
5
求解
通过数值计算方法求解结构的行为特性。
有限元分析的相关问题
1 网格生成及其优化
2 杆件的分析
随着算法和计算技术的 进步,有限元分析的计 算效率将得到提高。
有限元分析实例ppt课件
Stress distribution
Reaction
有限元分析典型流程
§3-5 有限元分析法存在的问题及发展方向
• 有限元模型的建立 有限元网格的自动划分与动态划分-自适应网格
• 求解过程的优化 减少计算量,降低分析成本。
• 有限元分析结果的判读和评定 采用等值线图、明暗色彩、动态图形、过程模拟
机进行分析计算的重要工具。
但是当时限于国内大中型计算机很少,大约只有杭州汽轮机厂的 Siemens7738和沈阳鼓风机厂的IBM4310安装有上述程序,所以用户 算题非常不方便,而且费用昂贵。PC机的出现及其性能奇迹般的提高, 为移植和发展PC版本的有限元程序提供了必要的运行平台。可以说国内 FEA软件的发展一直是围绕着PC平台做文章。在国内开发比较成功并拥 有较多用户(100家以上) 的有限元分析系统有大连理工大学工程力学 系的FIFEX95、北京大学力学与科学工程系的SAP84、中国农机科学研 究院的MAS5.0和杭州自动化技术研究院的MFEP4. 等。但正如上面所述, 国外很多著名的有限元分析公司已经从前些年对PC平台不屑一顾转变为 热衷发展,对国内FEA程序开发者来说发展PC版本不再具有优势。
单元类型选择
Element type:
3结点三角形平面应力单元
单元特性定义 Element properties:
材料特性:E, µ 单元厚度:t
网格划分
Mesh 1
Total number of elements:356 Total number of nodes:208
Mesh 2
Total number of elements:192 Total number of nodes:115
Rotor Dynamics(转子动力学分析) :转子动力学分析主要解决旋转机械
有限元分析报告
有限元法最初被称为矩阵近似方法,应用 于航空器的结构强度计算,并由于其方便 性、实用性和有效性而引起从事力学研究 的科学家的浓厚兴趣。
随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强 度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广 泛并且实用高效的数值分析方法。
纵观当今国际上CAE软件的发展 情况,可以看出有限元分析方法 的一些发展趋势
1、与CAD软件的无缝集成
2、更为强大的网格处理能力 3、由求解线性问题发展到求解非线性问题
4、由单一结构场求解发展到耦合场问题的求解 5、程序面向用户的开放性
ቤተ መጻሕፍቲ ባይዱ
Finite Element Analysis>>>
有限元分析
简单认识有限元
PPT TM By 机电工程学院 Robert
用多边形逼近圆来求得圆的周长
有限元分析是用较简单的问题代替复杂问题后再求解。 它将求解域看成是由许多称为有限元的小的互连子域组成,对每一 单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条 件(如结构的平衡条件),从而得到问题的解。
这个解不是准确解,而是近似解,因为实际问题被较简单的问题所 代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高, 而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
有限元法最初起源于土木工程和 航空工程中的弹性和结构分析问 题的研究
发展可以追溯到Alexander Hrennikoff(1941)和Richard Courant(1942)的工作. 这些先驱者使用的方法具有很大的差异, 但是他们具有共同的本质 特征: 利用网格离散化将一个连续区域转化为一族离散的子区域, 通常叫做 元.Hrennikoff 用类似于格子的网格离散区域; Courant 将区域分解为有限 个三角形的子区域, 用于求解来源于圆柱体转矩问题的二阶椭圆偏微分方程. Courant 的贡献推动了有限元的发展, 绘制了早期偏微分方程的研究结果.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变缓,速度波动较小,流动相对较稳定。 ➢ 血液流经支架时,压强会逐渐变小,但变化范围不大。 ➢ 支架处的切应力基本不变。 ➢ 总的来说,支架对血液的流动影响很小,能较好地实现其功能。
4 参考文献
• [1]张彦儒, 林焰, 陆丛红,等. NURBS流曲线造型新方法及其在船舶设计中应用[J].大 连理工大学学报, 2017, 57(06):565-570.
1 概述
有限元分析的基本思路
总结构离散化
单元力学分析
单元组装
总结构分析
施加边界条件
结构总反应
结构内部某单 元的反应分析
第二部分
『新方法』
2 新方法
“NURBS”有限元法
➢ NURBS是Non-Uniform Rational B-Splines的缩写,是非均 匀有理B样条的意思。
➢ 用空间样条曲线来划分单元。NURBS 单元的控制点脱离 了单元本身,并且利用B-spline理论上可以把单元的光滑程 度提高到无限,而且不会显著提高计算量。
• [5]李红霞,张艺浩,王希诚. 基于有限元模拟的支架扩张、血流动力学及支架疲劳 分析[J].医用生物力学, 2012, 27(02):178-185.
谢谢大家!
有限元分析研究汇报
目录
『CONTENT』
▷ 第一部分 『概述』 ▷ 第二部分 『新方法』 ▷ 第三部分 『新领域』
第一部分
『概述』
1 概述
有限元法的概念 ➢ 有限元法(Finite Element Method)是基于近代计算机的快速发展而发展起来的一种近似数值方法,
用来解决力学,数学中的带有特定边界条件的偏微分方程问题(PDE)。而这些偏微分方程是工程实 践中常见的固体力学和流体力学问题的基础。 ➢ 有限元法的核心思想是“数值近似”和“离散化”。
• [2]邢海瑞,朱明,崔跃,等. Ti-Ni合金血管支架的有限元分析及疲劳性能研究[J].稀 有金属, 2016, 40(10):976-981.
• [3]江旭东,滕晓艳,史冬岩,等.冠脉支架对弯曲血管损伤机理的非线性有限元分 析[J].功能材料, 2015, 3(46):3050-3054.
• [4]石更强,宋晓冰. 基于ANSYS软件血管支架的有限元分析[J].生物医学工程学杂志, 2015, 5 (32):1004-1008.
➢ 原因:有限元分析法可以分析 支架与血管之间的相互作用以及 支架自身的物理性
ANSYS分析过程: ➢ 1.建立血管和支架模型。支架
采用的是菱形结构,使血管内 表面与支架外表面接近无缝配 合,对血管起支撑作用。 ➢ 2. 定义单元类型为solid186单 元。solid186是一个高阶3维20 节点固体结构单元,它具有二 次位移模式,能够更好地模拟 不规则的支架。
➢ CAD和NURBS的交互可以非常简单和高效的,甚至可以 说是无缝连接。因此在工业界中十分复杂的模型都可以用 CAD进行建模,再用NURBS进行有限元计算。
2 新方法
“NURBS”有限元法
➢ 一些运动物体(如汽车、飞机、船舶等)的外形设计十分 重要,可采用NURBS流曲线造型方法对其进行外形设计。
➢ 算例:根据NURBS流曲线造型方法,采用人机交互的遗传 算法对7000t 散货船(设计航速18kn)设计水线进行方案 设计的数值算例.
设计水线结果及控制顶点分布 周围流场信息
第三部分
『新领域』
3 新领域
在医学领域的应用——血管支架
➢ 背景:截止到2011年,中国心血 管疾病患者人数约为2.3亿,与 常规外科手术相比,血管内支架 存在很多优势。
情况。没有支架的血管处的血 流速度并不均匀,支架处的血 流速度波动较小,血流更稳定。 2)观察支架附近切应力变化情况。 相比没有放支架的血管处,支 架处的切应力基本无变化,即 基本不影响血液的流动。
血流速度矢量图 支架附近切应力云图
3 新领域
在医学领域的应用——血管支架
一些结论: ➢ ANSYS软件模拟的结果表明,支架置入之后,支架处的血流速度会
支架三维模型
3 新领域
在医学领域的应用——血管支架
ANSYS分析过程: ➢ 3.定义参数。弹性模量,泊松比,
血液定义为牛顿黏性流体,将血 管壁设置为各向同性的线弹性。 ➢ 4.划分网格,施加约束。支架放 入血液后划分网格的情况如图所 示。
支架的网格图
3 新领域
在医学领域的应用——血管支架
ANSYS分析过程: ➢ 5.有限元分析结果: 1)观察支架附近血流速度的变化
4 参考文献
• [1]张彦儒, 林焰, 陆丛红,等. NURBS流曲线造型新方法及其在船舶设计中应用[J].大 连理工大学学报, 2017, 57(06):565-570.
1 概述
有限元分析的基本思路
总结构离散化
单元力学分析
单元组装
总结构分析
施加边界条件
结构总反应
结构内部某单 元的反应分析
第二部分
『新方法』
2 新方法
“NURBS”有限元法
➢ NURBS是Non-Uniform Rational B-Splines的缩写,是非均 匀有理B样条的意思。
➢ 用空间样条曲线来划分单元。NURBS 单元的控制点脱离 了单元本身,并且利用B-spline理论上可以把单元的光滑程 度提高到无限,而且不会显著提高计算量。
• [5]李红霞,张艺浩,王希诚. 基于有限元模拟的支架扩张、血流动力学及支架疲劳 分析[J].医用生物力学, 2012, 27(02):178-185.
谢谢大家!
有限元分析研究汇报
目录
『CONTENT』
▷ 第一部分 『概述』 ▷ 第二部分 『新方法』 ▷ 第三部分 『新领域』
第一部分
『概述』
1 概述
有限元法的概念 ➢ 有限元法(Finite Element Method)是基于近代计算机的快速发展而发展起来的一种近似数值方法,
用来解决力学,数学中的带有特定边界条件的偏微分方程问题(PDE)。而这些偏微分方程是工程实 践中常见的固体力学和流体力学问题的基础。 ➢ 有限元法的核心思想是“数值近似”和“离散化”。
• [2]邢海瑞,朱明,崔跃,等. Ti-Ni合金血管支架的有限元分析及疲劳性能研究[J].稀 有金属, 2016, 40(10):976-981.
• [3]江旭东,滕晓艳,史冬岩,等.冠脉支架对弯曲血管损伤机理的非线性有限元分 析[J].功能材料, 2015, 3(46):3050-3054.
• [4]石更强,宋晓冰. 基于ANSYS软件血管支架的有限元分析[J].生物医学工程学杂志, 2015, 5 (32):1004-1008.
➢ 原因:有限元分析法可以分析 支架与血管之间的相互作用以及 支架自身的物理性
ANSYS分析过程: ➢ 1.建立血管和支架模型。支架
采用的是菱形结构,使血管内 表面与支架外表面接近无缝配 合,对血管起支撑作用。 ➢ 2. 定义单元类型为solid186单 元。solid186是一个高阶3维20 节点固体结构单元,它具有二 次位移模式,能够更好地模拟 不规则的支架。
➢ CAD和NURBS的交互可以非常简单和高效的,甚至可以 说是无缝连接。因此在工业界中十分复杂的模型都可以用 CAD进行建模,再用NURBS进行有限元计算。
2 新方法
“NURBS”有限元法
➢ 一些运动物体(如汽车、飞机、船舶等)的外形设计十分 重要,可采用NURBS流曲线造型方法对其进行外形设计。
➢ 算例:根据NURBS流曲线造型方法,采用人机交互的遗传 算法对7000t 散货船(设计航速18kn)设计水线进行方案 设计的数值算例.
设计水线结果及控制顶点分布 周围流场信息
第三部分
『新领域』
3 新领域
在医学领域的应用——血管支架
➢ 背景:截止到2011年,中国心血 管疾病患者人数约为2.3亿,与 常规外科手术相比,血管内支架 存在很多优势。
情况。没有支架的血管处的血 流速度并不均匀,支架处的血 流速度波动较小,血流更稳定。 2)观察支架附近切应力变化情况。 相比没有放支架的血管处,支 架处的切应力基本无变化,即 基本不影响血液的流动。
血流速度矢量图 支架附近切应力云图
3 新领域
在医学领域的应用——血管支架
一些结论: ➢ ANSYS软件模拟的结果表明,支架置入之后,支架处的血流速度会
支架三维模型
3 新领域
在医学领域的应用——血管支架
ANSYS分析过程: ➢ 3.定义参数。弹性模量,泊松比,
血液定义为牛顿黏性流体,将血 管壁设置为各向同性的线弹性。 ➢ 4.划分网格,施加约束。支架放 入血液后划分网格的情况如图所 示。
支架的网格图
3 新领域
在医学领域的应用——血管支架
ANSYS分析过程: ➢ 5.有限元分析结果: 1)观察支架附近血流速度的变化