弹性力学作业答案Word版
弹性力学课后答案
![弹性力学课后答案](https://img.taocdn.com/s3/m/8b0d38375727a5e9856a614c.png)
弹性力学课后答案第二章习题的提示与答案2-1 是2-2 是2-3 按习题2-1分析。
2-4 按习题2-2分析。
2-5 在的条件中,将出现2、3阶微量。
当略去3阶微量后,得出的切应力互等定理完全相同。
2-6 同上题。
在平面问题中,考虑到3阶微量的精度时,所得出的平衡微分方程都相同。
其区别只是在3阶微量(即更高阶微量)上,可以略去不计。
2-7 应用的基本假定是:平衡微分方程和几何方程─连续性和小变形,物理方程─理想弹性体。
2-8 在大边界上,应分别列出两个精确的边界条件;在小边界(即次要边界)上,按照圣维南原理可列出3个积分的近似边界条件来代替。
2-9 在小边界OA边上,对于图2-15(a)、(b)问题的三个积分边界条件相同,因此,这两个问题为静力等效。
2-10 参见本章小结。
2-11 参见本章小结。
2-12 参见本章小结。
2-13 注意按应力求解时,在单连体中应力分量必须满足(1)平衡微分方程,(2)相容方程,(3)应力边界条件(假设 )。
2-14 见教科书。
2-15 2-16 见教科书。
见教科书。
2-17 取它们均满足平衡微分方程,相容方程及x=0和的应力边界条件,因此,它们是该问题的正确解答。
2-18 见教科书。
2-19 提示:求出任一点的位移分量和,及转动量,再令 ,便可得出。
第三章习题的提示与答案3-1 本题属于逆解法,已经给出了应力函数,可按逆解法步骤求解:(1)校核相容条件是否满足,(2)求应力,(3)推求出每一边上的面力从而得出这个应力函数所能解决的问题。
3-2 用逆解法求解。
由于本题中 l>>h, x=0,l 属于次要边界(小边界),可将小边界上的面力化为主矢量和主矩表示。
3-3 见3-1例题。
3-4 本题也属于逆解法的问题。
首先校核是否满足相容方程。
再由求出应力后,并求对应的面力。
本题的应力解答如习题3-10所示。
应力对应的面力是:主要边界:所以在边界上无剪切面力作用。
(完整版)弹塑性力学作业(含答案)(1)
![(完整版)弹塑性力学作业(含答案)(1)](https://img.taocdn.com/s3/m/f2b727a30b4c2e3f56276338.png)
第二章 应力理论和应变理论2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及正负值应作何修正。
解:在右图示单元体上建立xoy 坐标,则知 σx = -10 σy = -4 τxy = -2 (以上应力符号均按材力的规定)代入材力有关公式得: 代入弹性力学的有关公式得: 己知 σx = -10 σy= -4 τxy = +2由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。
2—6. 悬挂的等直杆在自重W 作用下(如图所示)。
材料比重为γ弹性模量为 E ,横截面面积为A 。
试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。
解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得:c 截面的内力:N z =γ·A ·z ;c 截面上的应力:z z N A zz A Aγσγ⋅⋅===⋅;所以离下端为z 处的任意一点c 的线应变εz 为:z z z E Eσγε==;则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为:()22z z z z z z z z y zz l d l d d zd EEEγγγε=⎰⋅∆=⎰⋅=⎰=⎰=ooooV ;显然该杆件的总的伸长量为(也即下端面的位移):()2222ll A l lW ll d l EEAEAγγ⋅⋅⋅⋅⋅=⎰∆===oV ;(W=γAl ) 2—9.己知物体内一点的应力张量为:σij =50030080030003008003001100-⎡⎤⎢⎥+-⎢⎥⎢⎥--⎣⎦应力单位为kg /cm 2 。
试确定外法线为n i(也即三个方向余弦都相等)的微分斜截面上的总应力n P v、正应力σn 及剪应力τn 。
弹性力学(徐芝纶)前四章习题答案
![弹性力学(徐芝纶)前四章习题答案](https://img.taocdn.com/s3/m/ef06c665ba0d4a7303763a7e.png)
著应力,对远处影响忽略不计。
3.解:平衡微分方程组为:
3
其中
fx
V x
V , f y y .
x x
yx y
fx
0
y
y
xy x
fy
0
取该方程组的一组特解: x V , y V , xy 0
齐次方程组
x x y
y
yx y
xy x
0
的通解为
0
所以微分平衡方程组的解为
界条件。
(4)位移单值条件为:令应力分量表达式中可能留有的待定函数或待定常数通过积分产生
的多值项为 0。
1
2.解:
1
F X
Y 图a
F
X
Y 图b
h Z
Y 图c
(1) 在图 b 中,我们由剪力平衡方程和弯矩平衡方程得到:
1
F Q 0 ,即 Q F
M Fx 0 ,即 M Fx
在图 a 中,有:
4
4
x(3h 2 A hB C) 0 即 3h 2 A hB C 0
4
4
以上四式联立得:
A
2 g h2
,
B
0, C
3 g 2h
,
D
g 2
代入(a),并注意 E F G 0 得:
x
6 g h2
x2 y+
4 g h2
y3
6Hy
2K
y
2 g h2
y3
3 g 2h
y
gy
g 2
xy
x
2 y 2
y
2 x2
xy
2 xy
x
2 y 2
V
y
(完整版)《弹性力学》试题参考答案
![(完整版)《弹性力学》试题参考答案](https://img.taocdn.com/s3/m/562268a7a76e58fafbb00391.png)
《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。
2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。
3.等截面直杆扭转问题中, 的物理意义是 杆端截面上剪应力对转轴的矩等于M dxdy D=⎰⎰2ϕ杆截面内的扭矩M 。
4.平面问题的应力函数解法中,Airy 应力函数在边界上值的物理意义为 边界上某一点(基准ϕ点)到任一点外力的矩 。
5.弹性力学平衡微分方程、几何方程的张量表示为: ,。
0,=+i j ij X σ)(21,,i j j i ij u u +=ε二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。
圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。
作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。
(2)将次要的位移边界条件转化为应力边界条件处理。
2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数的分离变量形式。
ϕ题二(2)图(a ) (b )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x ⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。
试求薄板面积的改变量。
S∆题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为。
由得,l ∆q E)1(1με-=)1(2222με-+=+=∆Eb a q b a l 设板在力P 作用下的面积改变为,由功的互等定理有:S ∆lP S q ∆⋅=∆⋅将代入得:l ∆221b a P ES +-=∆μ显然,与板的形状无关,仅与E 、、l 有关。
弹性力学(徐芝纶)第四章习题答案
![弹性力学(徐芝纶)第四章习题答案](https://img.taocdn.com/s3/m/de67ff3db90d6c85ec3ac686.png)
第四章 习题解答4-14-2、解:本题为轴对称应力问题,相应的径向位移为: ()()()()()θ+θ+⎥⎦⎤⎢⎣⎡υ-+υ-+-υ-+υ+-=sin cos ln K I Cr 12Br 311r Br 12r A 1E 1u r (1) 轴对称应力通式为()()02ln 232ln 2122=+++-=+++=θθτσσr r C r B rAC r B r A由应力边界条件()()()()0,00,===-=====b r r b r r a r r a r r q θθτστσ并结合位移单值条件可知B=0,求得:22222222ab qa C a b qb a A -=--= 因半径的改变与刚体位移I ,K 无关,且为平面应变问题,将A 、B 、C 代入(1)式,并将υυυυ-→-→1,12EE 得:内半径的改变:()()()⎪⎪⎭⎫⎝⎛-+-+-=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛--+-⎪⎭⎫ ⎝⎛-+-=∆=υυυυυυυυ11*111112222222222222a b a b Eqa a a b qa a a b q b a E u ar r外半径的改变:()()()2222222222221*11111a b ab E qa b a b qa b a b q b a Eu br r --=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛--+-⎪⎭⎫ ⎝⎛-+-=∆=υυυυυυ 圆筒厚度的改变:()()()⎪⎪⎭⎫⎝⎛-++---=∆-∆=∆==υυυ112a b a b E qa u u R ar r b r r4-2另解:半径为r 的圆筒周长为r π2,受载后周长则为 ()θθεπεππ+=+1222r r r , 于是半径为 ()θε+1r ,半径的改变量则为:⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+--=⎪⎭⎫⎝⎛---=C r A C rA r E E r r r 212111*2222υυυσυυσυεθθ将对应的A 、C 及r=a,b 分别代入,可求出内外半径的改变及圆筒厚度的改变。
弹性力学简明教程(第四版)_第四章_课后作业题答案
![弹性力学简明教程(第四版)_第四章_课后作业题答案](https://img.taocdn.com/s3/m/de119c92e45c3b3566ec8b53.png)
弹性力学简明教程(第四版)_第四章_课后作业题答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March第四章 平面问题的极坐标解答【4-8】 实心圆盘在r ρ=的周界上受有均布压力q 的作用,试导出其解答。
【解答】实心圆盘是轴对称的,可引用轴对称应力解答,教材中的式(4-11),即22(12ln )2(32ln )20AB CAB C ρϕρϕσρρσρρτ⎫=+++⎪⎪⎪⎪=-+++⎬⎪⎪⎪=⎪⎭ (a) 首先,在圆盘的周界(r ρ=)上,有边界条件()=r q ρρσ=-,由此得-q 2(12ln )2AB C ρσρρ=+++= (b)其次,在圆盘的圆心,当0ρ→时,式(a )中ρσ,ϕσ的第一、第二项均趋于无限大,这是不可能的。
按照有限值条件(即,除了应力集中点以外,弹性体上的应力应为有限值。
),当=0ρ时,必须有0A B ==。
把上述条件代入式(b )中,得/2C q =-。
所以,得应力的解答为-q 0ρϕρϕσστ===。
【4-9】 半平面体表面受有均布水平力q ,试用应力函数2(sin 2)ΦρB φC φ=+求解应力分量(图4-15)。
【解答】(1)相容条件:将应力函数Φ代入相容方程40∇Φ=,显然满足。
(2)由Φ求应力分量表达式=-2sin 222sin 222cos 2B C B C B Cρϕρϕσϕϕσϕϕτϕ⎧+⎪⎪=+⎨⎪=--⎪⎩(3)考察边界条件:注意本题有两个ϕ面,即2πϕ=±,分别为ϕ±面。
在ϕ±面上,应力符号以正面正向、负面负向为正。
因此,有2()0,ϕϕπσ=±= 得0C =; -q 2(),ρϕϕπτ=±= 得2qB =-。
将各系数代入应力分量表达式,得sin 2sin 2cos 2q q q ρϕρϕσϕσϕτϕ⎧=⎪⎪=-⎨⎪=⎪⎩ 【4-14】 设有内半径为r 而外半径为R 的圆筒受内压力q ,试求内半径和外半径的改变量,并求圆筒厚度的改变量。
《弹性力学》试题参考答案
![《弹性力学》试题参考答案](https://img.taocdn.com/s3/m/a9d1097e1ed9ad51f11df205.png)
《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。
2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。
3.等截面直杆扭转问题中,Mdxdy D=⎰⎰ 2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。
4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。
5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。
二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。
圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。
作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。
(2)将次要的位移边界条件转化为应力边界条件处理。
2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。
题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++=)(),(),(33223θθϕϕf r r dy cxy y bx ax y x3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。
试求薄板面积的改变量S ∆。
题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。
由q E)1(1με-=得, )1(2222με-+=+=∆Eb a q b a l设板在力P 作用下的面积改变为S ∆,由功的互等定理有:l P S q ∆⋅=∆⋅将l ∆代入得:221b a P ES +-=∆μ显然,S ∆与板的形状无关,仅与E 、μ、l 有关。
弹性力学-04(习题答案)
![弹性力学-04(习题答案)](https://img.taocdn.com/s3/m/8dec52d6852458fb770b56d4.png)
1 )
(sin
22
sin
21)
y
q0
2
2(2
1) (sin
22
sin
21)
xy
q0
2
(cos 22
cos 21)
aa q
证法1:(叠加法)
y
1
O 2
P
x
证法1:(叠加法) 分析思路:
aa q
y
1
O 2
P
x
aa
q
y
O
P x
q
aa
y
O
P x
求解步骤: 由楔形体在一面受均布压力问题的结果:
刚体
r
a2b2
(1 2)b2
a2
q(
1 b2
1
r
2
2
)
a2b2
(1 2)b2
a2
q(
1 b2
1
2
r2
)
ra
r
a2b2
(1 2)b2
a2
q(
1 b2
1
2
a2
)
q
a2b2
(1 2)b2
a2
q(
1 b2
1
2
a2
)
习题4-4 矩形薄板受纯剪,剪力集度为q,如图所示。如果离板边较 远处有一小圆孔,试求孔边的最大和最小正应力。
解:由图(a)给出的孔 边应力结果:
q
q(1 2cos 2 )
得:
q
x
q
r
q
q
x
r
q 1 2cos 2( 45)
y (a)
q1 2cos 2( 45)
q1 2sin 2 q1 2sin 2
弹性力学教材习题及解答完整版
![弹性力学教材习题及解答完整版](https://img.taocdn.com/s3/m/5e073e786137ee06eff918c3.png)
弹性力学教材习题及解答HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】1-1. 选择题a. 下列材料中,D属于各向同性材料。
A. 竹材; B. 纤维增强复合材料; C. 玻璃钢; D. 沥青。
b. 关于弹性力学的正确认识是A。
A. 计算力学在工程结构设计的中作用日益重要; B. 弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设; C. 任何弹性变形材料都是弹性力学的研究对象; D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。
c. 弹性力学与材料力学的主要不同之处在于B。
A. 任务; B. 研究对象; C. 研究方法; D. 基本假设。
d. 所谓“完全弹性体”是指B。
A. 材料应力应变关系满足胡克定律; B. 材料的应力应变关系与加载时间历史无关; C. 本构关系为非线性弹性关系; D. 应力应变关系满足线性弹性关系。
2-1. 选择题a.所谓“应力状态”是指B。
A. 斜截面应力矢量与横截面应力矢量不同; B. 一点不同截面的应力随着截面方位变化而改变; C. 3个主应力作用平面相互垂直; D. 不同截面的应力不同,因此应力矢量是不可确定的。
2-2. 梯形横截面墙体完全置于水中,如图所示。
已知水的比重为,试写出墙体横截面边界AA',AB,BB’的面力边界条件。
2-3. 作用均匀分布载荷q的矩形横截面简支梁,如图所示。
根据材料力学分析结果,该梁横截面的应力分量为试检验上述分析结果是否满足平衡微分方程和面力边界条件。
2-4. 单位厚度的楔形体,材料比重为,楔形体左侧作用比重为的液体,如图所示。
试写出楔形体的边界条件。
2-5. 已知球体的半径为r,材料的密度为1,球体在密度为1(1>1)的液体中漂浮,如图所示。
试写出球体的面力边界条件。
2-6. 矩形横截面悬臂梁作用线性分布载荷,如图所示。
弹性力学 - 答案
![弹性力学 - 答案](https://img.taocdn.com/s3/m/e628998d6bec0975f465e286.png)
《弹性力学》习题答案一、单选题1、所谓“完全弹性体”是指(B)A、材料应力应变关系满足虎克定律B、材料的应力应变关系与加载时间、历史无关C、本构关系为非线性弹性关系D、应力应变关系满足线性弹性关系2、关于弹性力学的正确认识是(A )A、计算力学在工程结构设计中的作用日益重要B、弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设C、任何弹性变形材料都是弹性力学的研究对象D、弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析3、下列对象不属于弹性力学研究对象的是(D )。
A、杆件B、块体C、板壳D、质点4、弹性力学对杆件分析(C)A、无法分析B、得出近似的结果C、得出精确的结果D、需采用一些关于变形的近似假定5、图示弹性构件的应力和位移分析要用什么分析方法?(C)A、材料力学B、结构力学C、弹性力学D、塑性力学6、弹性力学与材料力学的主要不同之处在于( B )A、任务B、研究对象C、研究方法D、基本假设7、下列外力不属于体力的是(D)A、重力B、磁力C、惯性力D、静水压力8、应力不变量说明( D )。
A. 应力状态特征方程的根是不确定的B. 一点的应力分量不变C. 主应力的方向不变D. 应力随着截面方位改变,但是应力状态不变9、关于应力状态分析,(D)是正确的。
A. 应力状态特征方程的根是确定的,因此任意截面的应力分量相同B. 应力不变量表示主应力不变C. 主应力的大小是可以确定的,但是方向不是确定的D. 应力分量随着截面方位改变而变化,但是应力状态是不变的10、应力状态分析是建立在静力学基础上的,这是因为( D )。
A. 没有考虑面力边界条件B. 没有讨论多连域的变形C. 没有涉及材料本构关系D. 没有考虑材料的变形对于应力状态的影响11、下列关于几何方程的叙述,没有错误的是( C )。
A. 由于几何方程是由位移导数组成的,因此,位移的导数描述了物体的变形位移B. 几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的位移C. 几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的应变分量D. 几何方程是一点位移与应变分量之间的唯一关系12、平面应变问题的应力、应变和位移与那个(些)坐标无关(纵向为 z 轴方向)( C )A、 xB、 yC、 zD、 x, y, z13、平面应力问题的外力特征是(A)A 只作用在板边且平行于板中面B 垂直作用在板面C 平行中面作用在板边和板面上D 作用在板面且平行于板中面。
弹性力学简明教程[第四版]_课后习题解答
![弹性力学简明教程[第四版]_课后习题解答](https://img.taocdn.com/s3/m/3772a3a6daef5ef7ba0d3cb2.png)
弹性力学简明教程(第四版)课后习题解答徐芝纶第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。
【解答】均匀的各项异形体如:竹材,木材。
非均匀的各向同性体如:混凝土。
【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。
【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。
【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。
引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。
因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。
完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。
这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。
均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。
各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。
小变形假定:假定位移和变形是微小的。
亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。
弹性力学简答题答案======1.doc
![弹性力学简答题答案======1.doc](https://img.taocdn.com/s3/m/6b19c5e2a216147916112812.png)
弹性力学考试简答题弹性力学的概念,任务。
答:弹性体力学通常简称为弹性力学,是研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。
弹性力学的任务和材料力学、结构力学的任务一样,是分析各种结构物或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度和刚度,并寻求或改进它们的计算方法。
弹性力学中的基本假定。
答:①连续性一假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留卜任何空隙。
②完全弹性一假定物体能完金恢复原形而没有任何剩余形变。
③均匀性一假定整个物体是由同一材料组成的。
④各向同性一假定物体的弹性在所有各个方向都相同.⑤小变形假定一假定位移和形变是微小的。
什么是理想弹性体。
答:凡是符合连续性、完全弹性、均匀性利各向同性这四个假定的物体就称为理想弹性体。
弹性力学依据的三大规律。
答:变形连续规律、应力-应变关系利运动(或平衡)规律。
边界条件。
答:边界条件表示在边界上位移与约束,或应力与面力之间的关系式。
它可以分为位移边界条件、应力边界条件和混合边界条件。
简述圣维南原理。
答:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主距也相同),那么,近处的成力分布将有显著的改变,但是远处所受的影响可以不计。
简述平面应力问题。
答:设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。
同时,体力也平行于板面并且不沿厚度变化。
弹性力学的问题解法有儿种,并简述。
答:弹性力学问题解法有两种。
一是以位移分量为基本未知函数,从方程和边界条件中消去应力分量和形变分量,导出只含位移分量的方程和相应的边界条件.并由此解出位移分量,然后再求出形变分量和应力分量,这种解法称为位移法;二是以应力分量为基本未知函数,从方程和边界条件中消去位移分量和形变分量,导出只含应力分量的方程和相应的边界条件,并由此解出应力分量,然后再求出形变分量和位移分量,这种解法称为应力法。
弹性力学(徐芝纶)习题答案
![弹性力学(徐芝纶)习题答案](https://img.taocdn.com/s3/m/d4b773aa0029bd64783e2c68.png)
第一章第二章习题答案2-1解:已知 0,0,===-==y x xy y x f f q τσσ1)⎪⎪⎩⎪⎪⎨⎧+∂∂+∂∂+∂∂+∂∂y xy y x yxx f x yf yx τστσ23()()⎩⎨⎧=+=+s xy y s yx x l m m l σστστσ 有:t lq t x -=;代入(*4理、几何方程得:(E x u x ==∂∂ε1(1E y v y ==∂∂ε0==∂∂+∂∂xy yux v γ ()()⇒=+∴0dyy df dx x dg 类似于教材题2-3,可求出 ()()wx v x g wy u y f +=-=00,001;1v wx qy Ev u wy qx Eu ++--=+---=∴υυ从v u ,表达式可见,位移分量是坐标的单值函数,满足位移单值条件。
综合1)~4),。
q xy y x 为问题的正确解答0,=-==τσσ2-2x =σxy τ注意:y x ,代入均满足。
2)验证相容方程:0)(2=+∇y x σσ 亦满足。
3)验证应力边界条件: i) 主要边界:()0,2=±=hy yxy τσ 满足ii) 次要边界:()()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰⎰-=-=-=222222320)1(0h h lx xy h h l x x h h l x x Pdy ydy dy τσσ (1)、(2)满足,(3)式左=⎰-===⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-223332212*41*618218hh P h I P h h I P dy y h I P 右 结论:所列xy y x τσσ,,满足平衡方程、相容方程;在主要边界上严格满足应力边界条件,次要边界近似满足应力边界条件,又为单连体,故在圣维南原理的前提下为问题的正确解。
2-3、证明:1)由,,yVf xV fy x∂∂-=∂∂-=则平衡微分方程为: ()()⎪⎪⎩⎪⎪⎨⎧=∂τ∂+∂-σ∂=∂τ∂+∂-σ∂⇒⎪⎪⎩⎪⎪⎨⎧=∂∂-∂τ∂+∂σ∂=∂∂-∂τ∂+∂σ∂0x y V 0yx V 0y V x y 0x V y x yx y xyx yx y xy x (*) 类似于题2-10的推证过程,(*)式的通解为:y x x V yV 2xy 22y 22x ∂∂ϕ∂-=τ∂ϕ∂=-σ∂ϕ∂=-σ;;即: yx V xV y2xy 22y 22x ∂∂ϕ∂-=τ+∂ϕ∂=σ+∂ϕ∂=σ;;2) 对于平面应力问题,相容方程为:()()⎪⎪⎭⎫⎝⎛∂∂+∂∂+-=+∇y f x f y x y x υσσ12即:2222 2-4、x, y n l σσ2==2l应力主向成∴l()2121σσσ+=n 得证。
弹性力学试题及答案
![弹性力学试题及答案](https://img.taocdn.com/s3/m/7a794b3759fb770bf78a6529647d27284b73371a.png)
弹性⼒学试题及答案《弹性⼒学》试题参考答案(答题时间:100分钟)⼀、填空题(每⼩题4分)1.最⼩势能原理等价于弹性⼒学基本⽅程中:平衡微分⽅程,应⼒边界条件。
2.⼀组可能的应⼒分量应满⾜:平衡微分⽅程,相容⽅程(变形协调条件)。
3.等截⾯直杆扭转问题中, M dxdy D=??2?的物理意义是杆端截⾯上剪应⼒对转轴的矩等于杆截⾯的扭矩M 。
4.平⾯问题的应⼒函数解法中,Airy 应⼒函数?在边界上值的物理意义为边界上某⼀点(基准点)到任⼀点外⼒的矩。
5.弹性⼒学平衡微分⽅程、⼏何⽅程的量表⽰为:0,=+i j ij X σ,)(21,,i j j i ij u u +=ε。
⼆、简述题(每⼩题6分)1.试简述⼒学中的圣维南原理,并说明它在弹性⼒学分析中的作⽤。
圣维南原理:如果物体的⼀⼩部分边界上的⾯⼒变换为分布不同但静⼒等效的⾯⼒(主⽮与主矩相同),则近处的应⼒分布将有显著的改变,但远处的应⼒所受影响可以忽略不计。
作⽤:(1)将次要边界上复杂的⾯⼒(集中⼒、集中⼒偶等)作分布的⾯⼒代替。
(2)将次要的位移边界条件转化为应⼒边界条件处理。
2.图⽰两楔形体,试分别⽤直⾓坐标和极坐标写出其应⼒函数?的分离变量形式。
题⼆(2)图(a )=++= )(),(),(222θθ??f r r cy bxy ax y x (b )?=+++= )(),(),(33223θθ??f r r dy cxy y bx ax y x 3.图⽰矩形弹性薄板,沿对⾓线⽅向作⽤⼀对拉⼒P ,板的⼏何尺⼨如图,材料的弹性模量E 、泊松⽐ µ 已知。
试求薄板⾯积的改变量S ?。
题⼆(3)图设当各边界受均布压⼒q 时,两⼒作⽤点的相对位移为l ?。
由q E)1(1µε-=得,)1(2222µε-+=+=?Eb a q b a l设板在⼒P 作⽤下的⾯积改变为S ?,由功的互等定理有:l P S q ??=??将l ?代⼊得:221b a P ES +-=µ显然,S ?与板的形状⽆关,仅与E 、µ、l 有关。
弹性力学答案
![弹性力学答案](https://img.taocdn.com/s3/m/f91004135f0e7cd184253600.png)
1. 说明下列应变状态是否可能.222()00000ijc x y cxy cxy cy =⎛⎫⎪ ⎪ ⎪⎝⎭+ε 解:若应变状态可能,则应变分量应满足协调方程。
二维情况下,协调方程为:22222xy yxx y∂∂∂+=∂∂∂∂εεγx y22222222222[()]()2c x y cy c yxyx∂∂∂∂+=++=∂∂∂∂εεx y22(2)2xy cxy c x yx y∂∂==∂∂∂∂γ显然满足方程,故该应变状态可能。
2、设,τττ==yzxy 其余应力分量为零,求该点的主应力及对应于最大主应力的主方向。
解:20020233222221=-==-=---++==στσττττττττσσσσσσI I I zx yzxy xz zy yx解得τσστσ2,0,2321-===设对应于1σ的主方向为n m l ,,,有 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛---00020202n m l τττττττ又有1222=++n m l求得21,22,21===n m l3、一方板,z 向厚度h=10mm,边长 a=800mm ,且平行于x,y 轴,0,0,360=====yxyxzzxMPa εττσσ,若E=72Gpa,33.0=υ,求y σ和此板变形后的尺寸。
解:(1)求y σMPaEz xyz xyy 8.118)(0)]([1=+=∴=+-=σσυσσσυσε(2)求x εmma a Ex z yxx 56.380000446.000446.0)]([1=⨯=⨯=∆∴=+-=εσσυσε伸长(3)厚度变化 mmh E y xz z 022.0101019.21019.2)]([133-=⨯⨯-=∆∴⨯-=+-=--σσυσε4、平面应变问题中某点的三个应力分量为100,50,50,x y xy M pa M pa M pa σστ===求该点的三个主应力及x ε。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题
1.弹性力学的基本假设为均匀性、各向同性、 连续性 、 完全弹性 和 小变形 。
2.弹性力学正面是指 外法线方向与坐标轴正向一致 的面,负面指 外法线方向与坐标轴负向一致 的面。
3.弹性力学的应力边界条件表示在边界上 应力 与 面力 之间的关系式。
除应力边界条件外弹性力学中还有 位移 、 混合 边界条件。
4.在平面应力问题与平面应变问题中,除 物理 方程不同外,其它基本方程和边界条件都相同。
因此,若已知平面应力问题的解答,只需将其弹性模量E 换为 ()21E -μ,泊松比μ换为()1μ-μ,即可得到平面应变问题的解答。
5.平面应力问题的几何形状特征是 一个方向上的尺寸远小于另外两个方向上的尺寸;平面应变问题的几何形状特征是 一个方向上的尺寸远大于另外两个方向上的尺寸。
二、单项选择题
1. 下列关于弹性力学问题中的正负号规定,正确的是 D 。
(A) 应力分量是以沿坐标轴正方向为正,负方向为负 (B) 体力分量是以正面正向为正,负面负向为正 (C) 面力分量是以正面正向为正,负面负向为负 (D) 位移分量是以沿坐标轴正方向为正,负方向为负
2. 弹性力学平面应力问题中应力分量表达正确的是 A 。
(A) 0z σ= (B) [()]/z z x y E σεμεε=-+ (C) ()z x y σμσσ=+ (D) z z f σ=
3. 弹性力学中不属于基本方程的是 A 。
(A) 相容方程 (B) 平衡方程 (C) 几何方程 (D) 物理方程
4. 弹性力学平面问题中一点处的应力状态由 A 个应力分量决定。
(A) 3 (B) 2 (C) 4 (D) 5
三、简答题
1. 求解弹性力学问题的三类基本方程是什么?仅由基本方程是否可以求得具体问题的解答?为什么?
答:平衡方程,几何方程和物理方程。
仅由基本方程不可以求得具体解答,因为缺少边
界条件,只能得到问题的通解而不是特解。
2. 简述圣维南原理及其在弹性力学中的简化作用。
答:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢和主矩
相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。
作用: (1)将次要边界上复杂的面力做分布的面力替代;
(2) 将次要的位移边界条件转化为应力边界条件处理。
四、计算题
如图所示,设单位厚度的悬臂梁在左端受到集中力和力矩作用,体力忽略不计,l h >>。
试
用应力函数233
Axy By Cy Dxy =+++ϕ求解应力分量。
解:(I) 显然,应力函数
233Axy By Cy Dxy ϕ=+++ (1)
满足双调和方程。
(II) 写出应力的表达式(不计体力)
22266x B Cy Dxy y
∂ϕ
σ==++∂ (2)
220y x
∂ϕ
σ==∂ (3)
M
223xy A Dy x y
∂ϕ
τ=-
=--∂∂ (4) (III) 通过边界条件确定待定系数
边界条件为: 边界2
h
y =-
上: 2
0h y y =-
σ= (5)
2
0h xy
y =-
τ= (6)
边界2
h
y =
上: 2
0h y y =
σ= (7) 2
0h xy
y =
τ= (8)
由(2)(4)(5)(6)式有
2
302h A D ⎛⎫
---= ⎪⎝⎭
23
04
A h D += (9)
由(2)(4)(7)(8)式也可得到(9)式。
在边界0x =上,用圣维南原理提出如下边界条件
()20
2
1h h x N
x dy F
=-σ⋅⋅=-⎰ (10)
()20
2
1h h xy s
x dy F =-τ
⋅⋅=-⎰
(11)
()20
2
1h h x x dy y M =-σ
⋅⋅⋅=-⎰ (12)
将(2)代入(10)得到
()22
26h h N
B Cy dy F
-+⋅=-⎰ 2N Bh F =-
2N
F B h
=-
(13) 将(4)代入(11)得到
()2
22
3h h s
A Dy dy F -+⋅=⎰
2 1
4
s F
A Dh
h
+=(14)联立(9)(14)得到
3 2s
F
A
h
=(15)
3
2s
F D h =-
(16) 将(2)代入(12)得到
()22
26h h B Cy y dy M -+⋅=-⎰
3
2M
C h =-
(17) 由(13)(15)(16)(17)及(2)(3)(4)得到
331212N s x F F
M y xy h h h
σ=-
-- (18) 0y σ= (19)
2
3362s s xy F F y h h
τ=-
+ (20)
(注:可编辑下载,若有不当之处,请指正,谢谢!)。