笔记(初一数学下基础-相交线与平行线)

合集下载

七年级下册数学相交线与平行线知识点总结

七年级下册数学相交线与平行线知识点总结

七年级下册数学相交线与平行线知识点总结七年级下册数学相交线与平行线知识点总结 11、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。

性质是对顶角相等。

2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。

3、两条直线被第三条直线所截:同位角f(在两条直线的同一旁,第三条直线的同一侧)内错角z(在两条直线内部,位于第三条直线两侧)同旁内角u(在两条直线内部,位于第三条直线同侧)4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。

其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。

5、垂直三要素:垂直关系,垂直记号,垂足6.垂直公理:一点后有且只有一条直线垂直于已知直线。

7、垂线段最短。

8.点到直线的距离:从直线外的一点到直线垂直段的长度。

9.平行公理:直线外的一点后,有且只有一条直线平行于这条直线。

推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

如果b//a,c//a,那么b//c10、平行线的判定:①同位角相等,两直线平行。

②内错角相等,两直线平行。

③同旁内角互补,两直线平行。

11.推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。

12、平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

13、平面上不相重合的两条直线之间的位置关系为_______或________14、平移:①平移前后的两个图形形状大小不变,位置改变。

②对应点的线段平行且相等。

平移:在平面上,一个图形向某一方向移动一定距离。

图形的这种移动被称为翻译转换,或简称为翻译。

对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

15.命题:判断一个事物的陈述叫做命题。

人教版七年级数学下册第五章相交线与平行线知识点归纳总结

人教版七年级数学下册第五章相交线与平行线知识点归纳总结

第五章相交线与平行线知识点归纳总结1.对顶角,同位角,同旁内角,内错角,邻补角;垂线,角平分线,平行线2.定理总结:(1)对顶角相等。

(2)经过直线外或直线上一点,有且只有一条直线与已知直线垂直。

(3)经过已知直线外一点,有且只有一条直线与已知直线平行。

(4)如果两条直线都和第三条直线平行,那么这两条直线也平行。

(5)连接直线外一点与直线上各点的所有线段中,垂线段最短。

(6)平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。

(7)平行线的特征:两条直线平行,被第三条直线所截,其同位角,内错角,同旁内角有如下关系:(1)两直线平行,被第三条直线所截,同位角相等;(2)两直线平行,被第三条直线所截,内错角相等(3)两直线平行,被第三条直线所截,同旁内角互补。

题型:一.确定角之间的关系(同位角,内错角,同旁内角)或计数(数一共几对)。

二.角度的计算;实际问题(a地理偏向; b白纸折叠 c走路拐弯儿)利用垂直、平行,余角,补角,对顶角等关系进行计算。

例题1:选择:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少,那么这两个角是30()、、1010、104213842138A. B. 都是 C. 或 D. 以上都不对例题2:判断:如果乙船在甲船的北偏西35°的方向线上, 那么从甲船看乙船的方向角是南偏东35°.( )例题3:如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE、∠AOG 的度数.例题4:折叠:如图,先找到长方形纸的宽DC 的中点E ,将∠C 过E 点折起任意一个角,折痕是EF ,再将∠D 过E 点折起,使DE 和C'E 重合,折痕是GE ,请探索下列问题:(1)∠FEC'和∠GEC'互为余角吗?为什么?(2)∠GEF 是直角吗?为什么?(3)在上述折纸图形中,还有哪些互为余角?还有哪些互为补角?例题5:如图,直线AB 、CD 、EF 相交于同一点O,而且∠BOC=∠AOC,∠DOF=∠AOD,2313那么∠FOC=______度.FE OD CBA例题6:一学员练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是() A. 第一次向左拐,第二次向右拐 B. 第一次向右拐,第二次向左拐303050130 C.第一次向右拐,第二次向右拐 D.第一次向左拐,第二次向左拐5013050130三.利用平行线、垂线的性质计算角度、证明平行或证明角之间的关系例题1:如图,AB ⊥BD,CD ⊥MN,垂足分别是B 、D 点,∠FDC=∠EBA.(1)判断CD 与AB 的位置关系;(2)BE 与DE 平行吗?为什么?例题2:如图,已知,,是的平分线,,求的度数。

人教版初中数学七年级下 相交线和平行线知识点总结

人教版初中数学七年级下 相交线和平行线知识点总结

人教版初中数学七年级下相交线和平行线知识点总结本章介绍了平面内两条直线相交与平行的关系,重点探讨了两条直线相交时形成角的特征、两条直线互相垂直的特性、两条直线平行的条件和特征,以及有关图形平移变换的性质。

本文将对其中的重点知识点进行总结。

5.1 相交线1.邻补角与对顶角当两条直线相交时,所形成的四个角具有不同的关系。

其中,对顶角是具有特殊位置关系的两个角,它们的大小相等;邻补角则是互为反向延长线的两个角,它们的和为180度。

2.垂线垂线是指当两条直线相交时,其中一个角为直角的情况。

垂线具有两个性质:一是过一点只有一条直线与已知直线垂直;二是连接直线外一点与直线上各点的垂线段最短。

3.垂线的画法画垂线的方法有两种:一是过直线上一点画已知直线的垂线;二是过直线外一点画已知直线的垂线。

画法可采用“一靠二移三画”的方法。

4.点到直线的距离点到直线的距离是指直线外一点到这条直线的垂线段的长度。

记忆时应结合图形进行理解。

本章内容的重点是垂线和其性质、平行线的判定方法和性质、平移和其性质,以及这些知识点的组织运用。

在研究这些知识点时,需要注意记忆其定义和性质,掌握其画法和应用方法。

垂线是指从一个点垂直于一条直线或平面的线段,而垂线段则是垂线的长度。

它们都具有垂直的性质,可以用来计算点到直线的距离或两点间的距离。

点到直线的距离是特殊的两点(即已知点与垂足)间距离,而两点间的距离是点与点之间的长度。

线段和距离都是长度的概念,但线段是一种图形,不能等同于距离。

平行线是指在同一平面内不相交的两条直线,它们的位置关系只有两种:相交和平行。

判断两条直线的位置关系可以根据它们的公共点个数来确定,有且只有一个公共点时两直线相交,无公共点时两直线平行,两个或两个以上公共点时两直线重合。

平行公理指出,经过直线外一点,有且只有一条直线与这条直线平行。

同时,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

三线八角是指两条直线被第三条直线所截形成的八个角,包括同位角、内错角和同旁内角。

相交线与平行线知识点总结

相交线与平行线知识点总结

相交线与平行线第一节相交线一:相交线对顶角与邻补角二:垂线垂线段最短点到直线的距离第二节平行线及其判定一:平行线平行线平行线公理及推论二:平行线的判定同位角、内错角同旁内角平行线的判定第三节平行线的性质平行线的性质1、平行线性质定理定理1:两条平行线被第三条直线所截;同位角相等.简单说成:两直线平行;同位角相等.定理2:两条平行线被地三条直线所截;同旁内角互补..简单说成:两直线平行;同旁内角互补.定理3:两条平行线被第三条直线所截;内错角相等.简单说成:两直线平行;内错角相等.2、两条平行线之间的距离处处相等平行线的判定及性质(1)平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.(2)2应用平行线的判定和性质定理时;一定要弄清题设和结论;切莫混淆.(3)3平行线的判定与性质的联系与区别(4)区别:性质由形到数;用于推导角的关系并计算;判定由数到形;用于判定两直线平行.(5)联系:性质与判定的已知和结论正好相反;都是角的关系与平行线相关.(6)4辅助线规律;经常作出两平行线平行的直线或作出联系两直线的截线;构造出三类角平行线之间的距离(1)平行线之间的距离(2)从一条平行线上的任意一点到另一条直线作垂线;垂线段的长度叫两条平行线之间的距离.(3)2平行线间的距离处处相等第四节平移生活中的平移现象1、平移的概念2、在平面内;把一个图形整体沿某一的方向移动;这种图形的平行移动;叫做平移变换;简称平移.3、2、平移是指图形的平行移动;平移时图形中所有点移动的方向一致;并且移动的距离相等.4、3、确定一个图形平移的方向和距离;只需确定其中一个点平移的方向和距离平移的性质②新图形中的每一点;都是由原图形中的某一点移动后得到的;这两个点是对应点.连接各组对应点的线段平行且相等作图----平移变换。

七下数学第五章相交线与平行线知识点

七下数学第五章相交线与平行线知识点

七下数学第五章相交线与平行线知识点
七下数学第五章相交线与平行线包括以下几个知识点:
1. 平行线的判定:两条直线如果在同一个平面内,且没有交点,那么它们是平行线。

2. 平行线的性质:
a. 平行线上的任意两点与第三条线的交点分别都与平行线上的对应点连线相平行。

b. 平行线之间的距离是不变的,无论在任何位置上测量。

3. 线的相交情况:
a. 直线与直线相交,交点为一点。

b. 直线与平行线相交,交点为无穷远处的一点(虚交点)。

c. 平行线与平行线相交,交点不存在。

4. 相交线的判定:
a. 两条直线相交,交点只有一个。

b. 两条直线平行,交点不存在。

c. 两条直线重合,交点有无数个。

5. 用相交线运用到的一些概念:
a. 对偶关系:如果两条直线相交于一个点,那么这两条直线互为对偶关系。

b. 垂直线:两条互相垂直的直线相交于直角。

6. 平行线判定定理:
a. 若两条直线被一组平行线切割,那么这两条直线也是平行线。

b. 若两条直线分别与一组平行线平行,那么这两条直线也是平行线。

这些知识点是七下数学第五章相交线与平行线的重点,通过学习这些内容,能够更好地理解和运用在平行线和相交线的相关问题中。

人教版初中数学七年级下-相交线和平行线知识点总结

人教版初中数学七年级下-相交线和平行线知识点总结

人教版初中数学七年级下相交线和平行线知识点总结5.1相交线1、邻补角与对顶角两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:图形顶点边的关系大小关系对顶角∠1与∠2有公共顶点∠1的两边与∠2的两边互为反向延长线对顶角相等即∠1=∠2邻补角∠3与∠4有公共顶点∠3与∠4有一条边公共,另一边互为反向延长线。

∠3+∠4=180°注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。

⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。

2、垂线⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

符号语言记作:如图所示:AB ⊥CD ,垂足为O1243A BCDO⑵垂线性质1:过一点有且只有一条直线与已知直线垂直(与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

简称:垂线段最短。

3、垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。

注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。

画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。

4、点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离记得时候应该结合图形进行记忆。

如图,PO ⊥AB ,同P 到直线AB 的距离是PO 的长。

PO 是垂线段。

七年级下数学培训资料相交线与平行线知识点归纳

七年级下数学培训资料相交线与平行线知识点归纳

第五章:《相交线与平行线》知识点归纳一、相交线1.相交线:两条直线相交,有且只有一个交点。

(反之,若两条直线只有一个交点,则这两条直线相交。

)2.对顶角----特点:(1)有一个公共顶点(2)两边互为反向延长线-----性质:对顶角相等3.邻补角:两条直线相交,产生邻补角和对顶角的概念。

要注意区分互为邻补角与互为补角的异同。

----特点:(1)有一个公共顶点(2)有一条公共边(3另一边互为反向延长线-----性质:邻补角互补(和为180°)4.垂线:同一平面内,两条直线相交,所成的夹角均为90°时,称这两条直线互相垂直。

垂直是两直线相交的特殊情况。

注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a 。

垂足:两条互相垂直的直线的交点叫垂足。

垂直时,一定要用直角符号表示出来。

---性质:(1)在同一平面内,过直线外一点有且只有一条直线与已知直线垂直(2)垂线段最短----点到直线的距离:就是点到直线的垂线段的长度。

注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。

反过来亦成立。

②、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。

二、平行线1.平行线:在同一平面内,不相交的两条直线。

-----特点:没有交点,平行线永不相交。

2.平行公理:过直线外一点有且只有一条直线与已知直线平行。

推论----如果有一条直线与其它两条直线平行,那么另外两条直线也平行。

3.三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角形成方式-------两条直线被第三条直线所截(这两条直线不一定平行,)特别注意:①三角形的三个内角均互为同旁内角;②同位角、内错角、同旁内角的称呼并不一定要建立在两条平行的直线被第三条直线所截的前提上才有的,这两条直线也可以不平行,也同样的有同位角、内错角、同旁内角。

名称-----同位角(4对)内错角(2对)同旁内角(2对)(成对出现)4.平行线的判定方法----(1)同位角相等,两直线平行(2)内错角相等,两直线平行(3)同旁内角互补,两直线平行(4)如果两条直线分别与第三条直线平行,那么这两条直线也互相平行。

七年级下册数学相交线与平行线知识点归纳

七年级下册数学相交线与平行线知识点归纳

七年级下册数学相交线与平行线知识点归纳第1篇:七年级下册数学相交线与平行线知识点归纳1.平面上不相重合的两条直线之间的位置关系为_______或________2.两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,*质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。

*质是对顶角相等。

p3例;p82题;p97题;p352(2);p353题3.两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。

其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。

4.垂直三要素:垂直关系,垂直记号,垂足5.做直角三角形的高:两条直角边即是钝角三角形的高,只要做出斜边上的高即可。

6.做钝角三角形的高:最长的边上的高只要向最长边引垂线即可,另外两条边上的高过边所对的顶点向该边的延长线做垂线。

7.垂直公理:过一点有且只有一条直线与已知直线垂直。

8.垂线段最短;9.点到直线的距离:直线外一点到这条直线的垂线段的长度。

10.两条直线被第三条直线所截:同位角f(在两条直线的同一旁,第三条直线的同一侧),内错角z(在两条直线内部,位于第三条直线两侧),同旁内角u(在两条直线内部,位于第三条直线同侧)。

p7例、练习111.平行公理:过直线外一点有且只有一条直线与已知直线平行。

12.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

如果b//a,c//a,那么b//cp174题13.平行线的判定。

p15例结论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。

p15练习;p177题;p368题。

14.平行线的*质。

p21练习1,2;p236题15.命题:如果+题设,那么+结论。

p22练习116.真、假命题p2411题;p3712题17.平移的*质p28归纳第2篇:七年级数学下册相交线与平行线知识点归纳1.平面上不相重合的两条直线之间的位置关系为_______或________2.两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,*质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。

相交线和平行线学霸笔记

相交线和平行线学霸笔记

相交线和平行线学霸笔记全文共四篇示例,供读者参考第一篇示例:相交线和平行线是几何学中的基本概念,是我们在课堂上经常接触的内容。

了解这些概念不仅有助于我们解决各种几何问题,也能帮助我们更好地理解几何学的原理和规律。

在本篇笔记中,我们将详细介绍相交线和平行线的定义、性质以及相关定理,希望能够对你的学习有所帮助。

一、相交线的定义相交线是指在同一平面上相交的两条直线。

当两条直线在同一平面上相交时,它们有一个公共点,这个点就是它们的交点。

根据交点的不同位置,相交线可以分为以下几种情况:1. 相交于交点的两条直线称为异面直线,它们在交点处的夹角不为180度。

2. 相交于一点的两条直线称为共面直线,它们在交点处的夹角为180度。

3. 相互交叉的两条直线称为交叉线,它们在交点处的夹角小于180度。

1. 平行线的斜率相等。

如果两条直线的斜率相等,并且它们在同一平面上没有交点,那么这两条直线就是平行线。

斜率的定义是直线上任意两个点的纵坐标差值和横坐标差值的比值。

2. 平行线之间的夹角为等角。

如果两条直线与一条直线相交,且分别与该直线的两个角相等,那么这两条直线就是平行线。

这个定理叫做同位角定理,也是平行线的一个重要性质。

三、平行线的性质平行线有许多重要的性质,下面我们将介绍其中几条:如果两条平行线相交,那么它们与交点相对的两个夹角是锐角。

这是平行线的一个重要性质,也是我们在解决几何问题时经常会用到的知识点。

3. 平行线的倒数产品是-1。

第二篇示例:相交线和平行线是几何学中非常基础的概念,而且在日常生活中也经常会遇到。

了解相交线和平行线的性质不仅有助于我们解决数学问题,还能帮助我们更好地理解周围的世界。

在本文中,我们将详细介绍相交线和平行线的性质,以及它们在数学中的应用。

让我们来看看相交线的性质。

相交线是指在平面上相互交叉的两条直线。

当两条直线相交时,它们会形成一对相交角。

相交角是指由相交线所形成的两个角,它们的顶点位于相交线的交点处。

七年级下册数学《相交线与平行线》相交线知识点整理

七年级下册数学《相交线与平行线》相交线知识点整理

相交线一、本节学习指导本节重点学习各种角的概念和对应关系。

潜意识中必须记住直角等于90°,平角等于180°,这是我们后面求角计算中的隐含条件。

本节知识在考试中覆盖面很广,但是很少单独命题,基本上都和其他几何图形结合在一起。

掌握相交线的各种特征也是后面学习几何的基础。

二、知识要点1、真理:两条直线相交,有且只有一个交点。

2、邻补角:两角共一边,另一边互为反向延长线。

邻补角互补。

【重点】概念翻译:在一条直线同一侧并且相加等于180°的两个角称为邻补角。

知识点解析:上图中∠1和∠2在一条直线的右侧并且∠1+∠2=180°,所以∠1和∠2是邻补角。

∠2和∠3也是邻补角;但是∠1和∠3不在同一侧,并且相加也不是180°,所以不是邻补角。

3、对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。

对顶角相等。

【重点】概念翻译:两条直线相交形成的两个头对头的角称为对顶角。

对顶角大小相等。

概念解析:上图中,两条直线相交,形成了四个角,然后∠2和∠4是对顶角,∠1和∠3是对顶角。

他们大小相等。

4、垂线:当两条直线相交所成的四个角中有一个角为90°时,着两条直线相互垂直,其中一条直线叫做另一条直线的垂线。

【重点】概念解析:上图中直线b垂直于直线a,就说直线b是直线a的垂线,也可以说直线a是直线b 的垂线。

垂线性质1:过直线外一点有且只有一条直线与已知直线垂直。

垂线性质2:直线外一点到已知直线的距离垂线段最短。

注意:两直线垂直,是互相垂直,即:若直线a垂直于直线b,则直线b垂直于直线a .垂足:两条互相垂直的直线的交点叫垂足。

垂直时,一定要用直角符号表示出来。

5、同位角:两条直线a,b被第三条直线c所截,在截线c的同旁,被截两直线a,b 的同一方,我们把这种位置关系的角称为同位角,如图中的∠3与∠6为同位角。

概念解析:上图中∠4与∠5,∠3与∠6,∠1与∠8,∠2与∠7均为同位角。

七年级下册第五章相交线与平行线概念总结

七年级下册第五章相交线与平行线概念总结

相交线与平行线概念总结
1.平行线的定义:在同一平面内不相交的两条直线叫做平行线。

2.平行线的表示:我们通常用符号“//”表示平行。

同一平面内的两条不重合的直线的位置关系只有两种:相交或平行
3.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

4.平行线的传递性:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。

如果a//c, b//c; 那么a//b 。

如果两条直线都垂直于第三条直线,那么这两条直线互相平行。

如果a⊥c, a⊥b;那么b//c .
5.平行线的判定:
(1)两条直线被第三条所截,如果同位角相等,那么这两条直线平行.简单地说,同位角相等,两直线平
行.
(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 简单说成:内错角相等,两直线平行.
(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行. 简单说成:同旁内角互补,两直线平行。

北师大版七年级下数学第二章平行线与相交线学习笔记

北师大版七年级下数学第二章平行线与相交线学习笔记

第二章平行线与相交线2.1 台球桌面上的角Ⅰ学法导引互为余角、互为补角都是指两个角之间的数量关系,与它们的位置无关,理解和掌握余角、补角的性质对今后的学习很重要,对顶角是常见的几何图形,对顶角的性质在以后的几何学习中经常用到,要应用对顶角的性质,首先要理解,掌握对顶角的概念,通过辨析,认识对顶角.Ⅱ要点精讲1 重点:掌握互余、互补及对顶角的概念及其特征.2 难点:概念的理解和如何将理论和实际相结合,即怎样正确的运用.3 易错点:例如认为“∠1+∠2+∠3=180°,则∠1,∠2,∠3互为补角”是正确的,概念模糊,对对顶角的特点掌握不清楚.Ⅲ精典例题解析重点【例1】如图2-1-1,O是直线AB上一点,∠AOE=∠FOD=90°,OB平分∠COD,图中与∠DOE互余的角有哪些?与∠DOE互补的角有哪些?并说明理由.解析既要寻找与∠DOE相邻的角,又要注意不相邻的角.答案图中与∠DOE互余的角有∠EOF、∠BOD、∠BOC.(1)∵∠FOD=90°,∴∠DOE+∠EOF=90°;(2)∵∠AOE+∠BOE=180°,∠AOE=90°,∴∠BOE=90°∴∠DOE+∠BOD=90°(3)∵OB平分∠COD,∴∠BOC=∠BOD.∵∠BOD+∠DOE=90°,∴∠BOC+∠DOE=90°.图中与∠DOE互补的角有∠BOF,∠COE.(1)∵∠AOE=∠DOF,∴∠AOF+∠EOF=∠DOE+∠EOF,∴∠AOF=∠DOE,∵∠AOF+∠BOF=180°,∴∠DOE+∠BOF=180°;(2)∵∠BOC+∠DOE=∠EOF+∠DOE=90°,∴∠BOC=∠EOF,∴∠BOC+∠BOE=∠EOF+∠BOE,∴∠COE=∠BOF.∵∠DOE+∠BOF=180°,∴∠DOE+∠COE=180°.剖析难点【例2】如图2-1-2,AB与CD相交于点O,OE平分∠AOD,∠AOC=120°,求∠BOD、∠AOE的度数.解析∠BOD与∠AOC是对顶角,可得∠BOD度数,由于∠AOD与∠AOC互补,可知∠AOD度数,又OE平分∠AOD,可得∠AOE度数.答案∠BOD与∠AOC是对顶角,根据对顶角相等,可知∠BOD=120°.点击易错点【例3】如图2-l-3,∠1和∠2是对顶角的图形个数有() A.1个B.2个C.3个D.4个错解选B.错解分析选择B的原因是把图(2)中的∠1、∠2当成了对顶角.正解选AⅣ能力升级综合能力升级余角、补角知识与方程(组)知识相结合.应用创新能力升级利用余角、补角的知识解决“测建筑物高度”问题.【例5】雨后初晴,小明站在操场上点B的位置,看到大楼CD的顶部C在水泡E中的像(点B、E、D在同一直线上).已知∠1=∠2,∠A+∠2=90°,∠l=35°,求∠A的度数.(如图2-1-4)2.2 探索直线平行的条件Ⅰ学法导引识别同位角、内错角、同旁内角关键抓住“三线八角”,只有“三线”出现且必须是两线被第三线所截才能出现这三类角.判定两条直线平行时要正确判断出是什么角,什么关系,由此推出哪两条直线平行.Ⅱ要点精讲1 重点:掌握同位角、内错角、同旁内角在图形中的位置.2 难点:能正确识别同位角、内错角、同旁内角,因为它是识别平行线的基础,平行线是在以后的学习中经常出现的知识,它的识别对将来的学习有很大作用.3 易错点:对同位角、内错角、同旁内角的实质和特征掌握不熟.Ⅲ精典例题解析重点【例1】在下列图形中(如图2-2-1),∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④解析同位角、内错角、同旁内角的形成,都是由两条直线被第三条直线所截得到的,两个角应有一条边在同一直线上,①②④都具备同位角的特征,而③中的∠1与∠2不具备同位角的特征.答案应选C剖析难点【例2】如图2-2-2标有角号的8个角中共有同位角、内错角、同旁内角各几对?请分别写出来.答案同位角2对:∠1和∠3、∠5和∠8.内错角2对:∠3和∠6、∠4和∠7.同旁内角7对:∠1和∠8、∠2和∠3、∠2和∠7、∠3和∠7、∠4和∠5、∠4和∠6、∠5和∠6.点拨在图中角的个数较多的情况下,寻找同位角、内错角、同旁内角易发生遗漏.为避免遗漏,在寻找的过程中,应遵循先从最小数字的角开始,把与它有关的角都找出来;例如从∠1开始,把与它有关的角∠3与它是同位角;∠8与它是同旁内角,然后再去找与∠2有关的角,依次类推,就不会遗漏了.点击易错点[例3]如图2-2-3,∠1和∠2,∠3和∠4是内错角,问是哪两条直线被哪一条直线所截的?错解∠1和∠2是AD与BE被AC所截的内错角.∠3和∠4是AB与CD被BD所截的内错角.错解分析错解的原因是弄错了被截直线,具体找法:∠1和∠2公共边所在直线AC是截线,其余两边AB和CD是被截的两直线,∠3和∠4的截线是BD,被截两线是AD和BC.正解∠1和∠2是AB与CD被AC所截的内错角,∠3和∠4是AD 与BC被BD所截的内错角.Ⅳ能力升级综合能力升级既能正确识别同位角、内错角、同旁内角,又能正确运用平行线的三条判定定理.[例4]如图2-2-4,回答下列问题:①由∠C=∠2,可以得出哪两条直线平行?并说明理由.②由∠2=∠3,可以得出哪两条直线平行?并说明理由.③由∠D+∠C=180°,可以得出哪两条直线平行?并说明理由.答案①由∠2=∠C,可得DC∥EF,理由是同位角相等,两直线平行;②由∠2=∠3,可得EF∥AB,理由是内错角相等,两直线平行;③由∠D+∠C=180°,可得AD∥BC,理由是同旁内角互补,两直线平行.应用创新能力升级把两角关系转化成同位角、内错角、同旁内角的关系.[例5]如图2-2-5,直线a、b都与直线c相交,∠1=47°,∠2=133°,能判定a∥b吗?说明理由.解法1 ∵∠1+∠2=180°,∠2+∠3=180°,∴∠1=∠3,∴a∥b.解法2 ∵∠3=∠180°-∠2=47°,∠5=∠1=47°,∴∠3=∠5,∴a∥b.解法3 ∵∠3=180°-∠2=47°,∠4=180°-∠1=133°,∠3+∠4=180°,∴ a∥b2.3 平行线的特征Ⅰ学法导引本节应对照平行线的判定去学习,比较性质、判定之间的联系与区别更利于记忆和运用.Ⅱ要点精讲1 重点:掌握平行线的三个特征及它们的综合运用.2 难点:运用的过程中易与它的判定产生混淆.3 易错点:分不清条件结论,平行线的性质和判定相混淆.Ⅲ精典例题解析重点【例1】如图2-3-1,已知直线a∥b,直线c∥d,∠1=105°,求∠2、∠3的度数.解析由a∥b,可得∠1=∠2.从而求得∠2=105°,又由c∥d,可得∠3=∠2.从而求得∠3=105°.答案∵ a∥b(已知),∴∠2=∠1(两直线平行,内错角相等).又∵∠1=105°(已知),∴∠2=105°.∵ c∥d(已知),∴∠3=∠2(两直线平行,同位角相等).∴∠3=105°.剖析难点【例2】如图2-3-2,已知∠1=72°,∠2=72°,∠3=60°,求∠4的度数.解析本题是平行线的性质和判定的综合运用,由∠1=∠2可得出a ∥b,再由平行线的性质及对顶角相等可得出∠3=∠4.答案∵∠1=72°,∠2=72°,(已知)∴∠1=∠2(等式的性质),∴ a∥b(同位角相等,两直线平行).∵∠3=∠5(两直线平行,同位角相等),∵∠4=∠5(对顶角相等),∴∠3=∠4(等量代换),∵∠3=60°(已知),∴∠4=60°(等式性质).点击易错点【例3】同位角一定相等吗?错解相等.错解分析同位角、内错角、同旁内角仅仅反映两角之间的位置关系.它们没有确定的数量关系.如图2-3-3,∠l与∠2是同位角,但它们不相等.只有在两条平行线被第三条直线所截的前提下,同位角才相等.同样也只有在这个前提下,内错角相等,同旁内角互补.正解不一定相等.Ⅳ能力升级综合能力升级不仅要熟悉图形、性质,还要善于进行等量转化,把待求的角逐步和已知条件建立联系.【例4】如图2-3-4,已知DE∥BC,∠D∶∠DBC=2∶1,∠1=∠2,求∠DEB的度数。

人教版初中数学七年级下 相交线和平行线知识点总结

人教版初中数学七年级下 相交线和平行线知识点总结

人教版初中数学七年级下 相交线和平行线知识点总结本章使生了解在平面不重合的直相交平行的位置系,究了直相交的形成的角的学内两条线与两种关研两条线时特征,直互相垂直所具有的特性,直平行的期共存件和所有的特征以及有形平移的两条线两条线长条它关图变换性,利用平移一些美的案质设计优图.。

重点:垂和的性线它质,平行的判定方法和的性,平移和的性,线它质它质以及些的用这组织运.5.1相交线1、邻补角与对顶角直相交所成的四角中存在几不同系的角,的念及性如下表:两线个种关它们概质形图点顶的系边关大小系关角对顶∠1∠与2有公共点顶∠1的两边与∠2的互两边为反向延长线角相等对顶即∠1=∠2角邻补 ∠3∠与4有公共点顶∠3∠与4有一公共,另一条边互反向延边为长。

线∠3+∠4=180°注意点:⑴角是成出的,角是具有特殊位置系的角;对顶对现对顶关两个⑵如果∠α∠与β是角,那一定有∠对顶么α=∠β;反之如果∠α=∠β,那∠么α∠与β不一定是角对顶⑶如果∠α∠与β互角,一定有∠为邻补则α+∠β=180°;反之如果∠α+∠β=180°,∠则α∠与β不一定是角邻补。

⑶直相交形成的四角中,每一角的角有,而角只有一。

两线个个邻补两个对顶个2、垂线⑴定,直相交所成的四角中,有一角是直角,就直互相垂直,其中的一直叫做义当两条线个个时说这两条线条线另一直的垂,的交点叫做垂足。

条线线它们符言作:号语记 第1页共7页1243A BCDO如所示:图AB⊥CD ,垂足为O⑵垂性线质1:一点有且只有一直已知直垂直 过条线与线(平行公理相比与较记)⑶垂性线质2:接直外一点直上各点的所有段中,垂段最短。

:垂段最短。

连线与线线线简称线3、垂线的画法:⑴直上一点已知直的垂;⑵直外一点已知直的垂。

过线画线线过线画线线注意:①一段或射的垂,就是所在直的垂;②一点作段的垂,垂足可在段上,也画条线线线画它们线线过线线线可以在段的延上。

线长线法:⑴一靠:用三角尺一直角靠在已知直上,⑵二移:移三角尺使一点落在的另一直角上,⑶画条边线动它边边三:沿着直角,不要成人的印象是段的。

相交线和平行线学霸笔记

相交线和平行线学霸笔记

相交线和平行线学霸笔记
相交线和平行线是几何中非常重要的概念,它们在解决几何问题和证明中起着至关重要的作用。

让我们先来讨论相交线。

相交线是指在同一个平面上相交的两条直线。

当两条直线相交时,它们会形成一对相对的内角和外角。

内角和外角的性质是我们研究相交线时经常要考虑的重要内容。

内角和外角的关系可以帮助我们解决夹角、同旁内角、同旁外角等相关问题。

接下来我们来谈谈平行线。

平行线是指在同一个平面上永远不会相交的两条直线。

平行线之间有许多有趣的性质和定理。

例如,平行线之间的对应角相等、同位角相等、内错角互补等等。

这些性质在解决平行线和转角问题时非常有用。

在几何学中,我们经常需要判断两条直线的关系,是相交线还是平行线。

为了判断两条直线的关系,我们需要运用一些几何定理和性质。

例如,当两条直线的夹角为90度时,我们可以判断这两条直线是垂直的,而垂直的直线之间是平行的。

此外,当两条直线被一条横截线所切割,我们也可以利用内角和外角的性质来判断这些直线的关系。

除了基本的性质和定理之外,相交线和平行线还有许多应用,比如在解决三角形的性质、平行四边形的性质、平行线的证明等方面。

在平面几何、立体几何以及解析几何中,相交线和平行线的概念都扮演着重要的角色。

总的来说,相交线和平行线是几何学中基础而重要的概念,它们的性质和定理对于解决几何问题和证明都具有重要意义。

通过深入理解相交线和平行线的性质,我们可以更好地应用它们解决各种几何问题,提高解题的效率和准确性。

希望我的回答能够帮助你更好地理解相交线和平行线的知识。

七年级数学平行线相交线知识点

七年级数学平行线相交线知识点

七年级数学平行线相交线知识点七年级数学平行线相交线知识点在学习中,大家都背过各种知识点吧?知识点在教育实践中,是指对某一个知识的泛称。

还在苦恼没有知识点总结吗?以下是店铺精心整理的七年级数学平行线相交线知识点,希望对大家有所帮助。

1、邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

2、对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

3、对顶角和邻补角的关系4、垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。

5、垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

6、垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。

7、垂线性质(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。

(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成:垂线段最短。

(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

8、同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

内错角:∠2与∠6像这样的一对角叫做内错角。

同旁内角:∠2与∠5像这样的一对角叫做同旁内角。

9、平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。

10、平行线:在同一平面内,不相交的两条直线叫做平行线。

11、命题:判断一件事情的语句叫命题。

12、真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。

13、假命题:条件和结果相矛盾的命题是假命题。

14、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

15、对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

16、定理与性质对顶角的.性质:对顶角相等。

七年级下册数学相交线与平行线笔记

七年级下册数学相交线与平行线笔记

一、相交线1.相交线是指两条直线在同一平面内,相互交叉,有且
仅有一个交点的两条直线。

2.相交线之间有共同的概念:相交线上有且仅
有一个交点,只有满足交点要求,两条直线才能称为相交线。

3.相交线有
两种情况:(1)两条相交直线形成的直角型,称之为直角。

(2)两条相交直线不形成直角,称之为锐角。

二、平行线1.所谓的平行线是指平行
平面上的两条直线,它们之间的距离相等的直线。

2.平行线的特点:(1)同一平面上的两条平行线不会相交。

(2)不同平面上的两条平行线也不
会相交。

(3)平行线之间的距离不变,无论何时都不会发生改变。

(4)平行线之间的角度也不会发生改变,无论何时都不会改变。

七年级下册-第二章相交线与平行线-2.3平行线的性质 -带笔记

七年级下册-第二章相交线与平行线-2.3平行线的性质 -带笔记

平行线的性质1平行线性质1:直线平行,同位角相等;平行线性质2:直线平行,内错角相等;平行线性质3:直线平行,同旁内角互补;判定两条直线是平行线的判定方法有:判定1:内错角相等,两直线平行;判定2:同位角相等,两直线平行;判定3:同旁内角互补两直线平行(应结合题意,具体情况,具体分析)。

1.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若,则_________.题1 题22.如图,已知直线、被直线所截,若,,则的度数为_______.3.如图,先填空后证明.已知:,求证:.证明:∵( ),( )∴( )∴( )请你再写出一种证明方法.4.直线、、、的位置如图所示,如果=,=,=,那么等于________.题4 题55.如图,,平分,,则________度.平行线的性质2平行线性质1:直线平行,同位角相等;平行线性质2:直线平行,内错角相等;平行线性质3:直线平行,同旁内角互补;1.如图,给出了过直线外一点,作已知直线的平行线的方法,其依据是A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.过直线外一点有且只有一条直线与这条直线平行2.如图,直线,将三角尺的直角顶点放在直线上,若,则= ____题2 题33.将一个直角三角板和一把直尺如图放置,如果,则的度数是________.4.如图所示,如果,则,,之间的关系为A.B.C.D.5.如图,在中,,将在平面内绕点旋转到的位置,使,则旋转角的度数为( )题5 题66.如图,若直线,,,则的度数为_________.。

七年级下册数学相交线与平行线知识点

七年级下册数学相交线与平行线知识点

七年级下册数学相交线与平行线知识点七年级下册数学相交线与平行线知识点文字像精灵,只要你用好它,它就会产生让你意想不到的效果。

所以无论我们说话还是作文,都要运用好文字。

只要你能准确灵活的用好它,它就会让你的语言焕发出活力和光彩。

下面,店铺为大家分享七年级下册数学相交线与平行线知识点,希望对大家有所帮助!七年级下册数学相交线与平行线知识点篇11.平面上不相重合的两条直线之间的位置关系为_______或________2.两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。

性质是对顶角相等。

P3例;P82题;P97题;P352(2);P353题3.两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。

其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。

4.垂直三要素:垂直关系,垂直记号,垂足5.做直角三角形的高:两条直角边即是钝角三角形的高,只要做出斜边上的高即可。

6.做钝角三角形的高:最长的边上的高只要向最长边引垂线即可,另外两条边上的高过边所对的顶点向该边的延长线做垂线。

7.垂直公理:过一点有且只有一条直线与已知直线垂直。

8.垂线段最短;9.点到直线的距离:直线外一点到这条直线的垂线段的长度。

10.两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧),内错角Z(在两条直线内部,位于第三条直线两侧),同旁内角U(在两条直线内部,位于第三条直线同侧)。

P7例、练习111.平行公理:过直线外一点有且只有一条直线与已知直线平行。

12.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

如果b//a,c//a,那么b//cP174题13.平行线的判定。

P15例结论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。

P15练习;P177题;P368题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学下基础-相交线与平行线
1.对顶角的重要性质是 .
2.一条直线与端点在这条直线上的一条射线组成的两个角是 .
3.两个角互为邻补角,它们的平分线所成的角是 度
.
4.如图2—11,直线AB 、CD 、EF 相交于点O ,则∠AOC 的对顶角是 ,∠AOD 的对顶角是 ,∠BOC 的邻补角是 和 ,∠BOE 的邻补角是 和 .
5.如图2—12直线AB 、CD 、EF 相交于点O ,且∠1=∠2,试说明OE 是∠AOC 的平分线. 1.下列说法正确的是( )
A .不是对顶角就不相等 B.相等的角为对顶角C .不相等的角不是对顶角 D .上述说法都不对 2.下列各图中∠1和∠2为对顶角的是( )
3.如果两个角的平分线相交成90°的角,那么这两个角
A .对顶角
B .互补的两个角
C .互为邻补角
D .以上答案都不对 1.已知直线AB 、CD 相交于点O ,∠AOC+∠BOD=230°,求∠BOC 的度数.
2.如图2—14,已知直线AB 、CD 、EF 相交于点O ,∠1:∠2:∠3=2:3:4,求∠4的度数
.
21
D C
A B
E
C B
O
F E
3.图2—15,已知直线AB 、CD 相交于点O ,OE 平分∠BOD ,且∠BOD=10°,求∠AOC 的度数. 4.如图,已知∠ABC=90°,∠1=∠2,∠DCA=∠CAB,求证:(1)CD ⊥CB;(2)CD•平分∠ACE. 5.如图,OE,OF 分别是∠AOC 与∠BOC 的平分线,且OE ⊥OF,求证:A,O,B•三点在同一直线上. 6.如图A 、B 、C 三点表示某平原的三个村庄;要建一个电视转播站,使它到三个村庄距离相等,求作电视转播的位置
P.
l
a
7568
432
1b
(3)
5
6
43
21
A B N
M P
(4)
O
Q
42
1
D A
B (5)
O
F
E
11.如图3,直线L 截直线a,b 所得的同位角有____对,它们是_ _;•内错有___对,它们是_ _;同旁内角有___对,•它们是__;•对顶角___•对,•它们是_ .
12.如图4,∠1的同位角是____,∠1的内错角是____,∠1•的同旁内角是___.
13.如图5,直线AB,CD 相交于O,OE 平分∠AOD,FO ⊥OD 于O,∠1=40°,则∠2=•__ __,∠4=_____.
D C A B
N M (6)
O
F
E C A
B
N M (7)
D C A
B
(8)
1 3
2 A
E C
F 图10
F
2 A B C
D
Q
E
1
P
M
N 图11
14.如图6,AB ⊥CD 于O,EF 为过点O 的直线,MN 平分∠AOC,若∠EON=100•°,•那么∠-EOB=_____ ,∠BOM=___ .
15.如图7,AB 是一直线,OM 为∠AOC 的角平分线,ON 为∠BOC 的角平分线,则OM,ON 的位置关系是_______.
16.直线外一点与直线上各点连结的线段中,以_______为最短. 17.从直线外一点到这条直线的____ ____叫做这点到直线的距离. 18.经过直线外或直线上一点,有且只有______直线与已知直线垂直.
19.如图8,要证BO ⊥OD,请完善证明过程,并在括号内填上相应依据:∵AO ⊥CO,∴∠AOC=__________(___________).又∵∠COD=40°(已知),∴∠AOD=_______.•∵∠BOC=∠AOD=50°(已知),∴∠BOD=_______,∴_______⊥_______(__________).
1.如图10,∠1∶∠2∶∠3 = 2∶3∶4, ∠AFE = 60°,∠BDE =120°,写出图中平行的直线,并说明理由.
2.如图11,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BME。

求证:AB∥CD,MP∥NQ.
3.已知:如图:∠AHF +∠FMD =180°,GH 平分∠AHM ,MN 平分∠DMH 。

求证:GH ∥MN 。

4.如图,已知:∠AOE +∠BEF =180°,∠AOE +∠CDE =180°,求证:CD ∥BE 。

5.如图,已知:∠A =∠1,∠C =∠2。

求证:求证:AB ∥CD 。

1.如图③
∵∠1=∠2,
∴_______∥________()。

∵∠2=∠3,
∴_______∥________()。

2.如图④
∵∠1=∠2,
∴_______∥________()。

∵∠3=∠4,
∴_______∥________()。

3.如图⑤∠B=∠D=∠E,那么图形中的平行线有__________________。

4.如图⑥
∵ AB⊥BD,CD⊥BD(已知)
∴AB∥CD( )
又∵∠1+∠2 =︒
180(已知)
∴ AB∥EF ( )
∴ CD∥EF ( )
1.如图⑩
∵∠B=∠_______,∴ AB∥CD()
∵∠BGC=∠_______,∴ CD∥EF()∵AB∥CD ,CD∥EF,∴ AB∥_______()2.如图⑾填空:
(1)∵∠2=∠3(已知)∴ AB__________()(2)∵∠1=∠A(已知)∴ __________()(3)∵∠1=∠D(已知)∴ __________()
E
D
C
B
A
A B
P
C D
A B
C D
E
α
β
γ
图1 图2图3
1、如图1,AB∥CD,且∠BAP=60°-α,
∠APC=45°+α,∠PCD=30°-α,则α=( )
A、10°
B、15°
C、20°
D、30°
2、如图2,CD
AB//,且
25
=
∠A,
45
=
∠C,则E
∠的度数是()
A.
60 B.
70 C.
110 D.
80
3、如图3,已知AB∥CD,则角α、β、γ之间的关系为
(A)α+β+γ=1800(B)α—β+γ=1800
(C)α+β—γ=1800(D)α+β+γ=3600
3.填空。

如图,∵AC⊥AB,BD⊥AB(已知)
∴∠CAB=90°,∠______=90°()∴∠CAB=∠______()∵∠CAE=∠DBF(已知)∴∠BAE=∠______∴_____∥_____()
4.已知,如图∠1+∠2=180°,填空。

∵∠1+∠2=180°()又∠2=∠3()
∴∠1+∠3=180°∴_________()
1.已知:如图⑿,CE平分∠ACD,∠1=∠B,求证:AB∥CE
2.如图:∠1=︒
53,∠2=︒
127,∠3=︒
53,
试说明直线AB与CD,BC与DE的位置关系。

3.如图:已知∠A=∠D,∠B=∠FCB,能否确定ED与CF的位置关系,请说明理由。

4.已知:如图,,,且.
F
E
A
O
B C
α2
1
F
E D
C
B
A
N
M
E D
C
B
A
F
E
D
C
A
7、如图,∠ABC+∠ACB=110°,BO、CO分别平分∠ABC和∠ACB,EF过点O与BC平行,求∠BOC。

8、如图,已知AB∥CD,∠1=100°,∠2=120°,求∠α。

9、已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.
10、.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系,为什么?
E
D
C
B
A
F
E
D
A B
11、如图,若AB∥CD,猜想∠A、∠E、∠D之间的关系,并证明之。

12、如图,AB∥CD,∠BEF=85°,求∠ABE+∠EFC+∠FCD的度数。

相关文档
最新文档