材料力学复习
《 材料力学 》综合复习资料.doc
《材料力学》综合复习资料第一章绪论一、什么是强度失效、刚度失效和稳定性失效?答案:略二、如图中实线所示构件内正方形微元,受力片变形为图屮虚线的菱形,则微元的剪应变了为_________________________ ?A^ a B、90° -aC、90° - 2aD、la答案:D三、材料力学中的内力是指()。
A、物体内部的力。
B、物体内部各质点间的相互作用力。
C、由外力作用引起的各质点间相互作用力的改变量。
D、由外力作用引起的某一截面两侧各质点I'可相互作用力的合力的改变量。
答案:B四、为保证机械和工程结构的正常工作,其中各构件一般应满足_______________ ______________ 和 ___________ 三方面的要求。
答案:强度、刚度、稳定性五、截面上任一点处的全应力一般可分解为________________ 方向和______________________________________________________ 方向的分量。
前者称为该点的________ ,用______ 表示;后者称为该点的_________ ,用 ______ 表示。
答案:略第二章内力分析画出图示各梁的Q、M图。
2・5kN7・5kN2qaQ图2.5kN.m答案:a> c、c4、影响杆件工作应力的因素有(因索有()o );影响极限应力的因索有();影响许川应力的第三章拉伸与压缩一、概念题1、画出低碳钢拉伸吋:曲线的人致形状,并在图上标出相应地应力特征值。
2、a、b、c三种材料的应力〜应变曲线如图所示。
其屮强度最高的材料是_____________ ;弹性模最最小的材料是 ________ :須性最好的材料是____________3、延伸率公式<5 = (/, -/)//xlOO%中厶指的是 _________________ ?答案:DA、断裂时试件的长度;B、断裂片试件的长度;C、断裂时试验段的长度;D、断裂后试验段的长度。
材料力学考试复习资料
材料力学1. 材料与构件的许用应力值有关。
2. 切应力互等定理是由单元体静力平衡关系导出的。
3.弯曲梁的变形情况通过梁上的外载荷来衡量。
4.有集中力作用的位置处,其内力的情况为剪力阶跃,弯矩拐点。
5. 在材料力学的课程中,认为所有物体发生的变形都是小变形6. 危险截面是最大应力所在的截面。
7. 杆件受力如图所示,AB段直径为d1=30mm,BC 段直径为d2=10mm,CD段直径为d3=20mm。
杆件上的最大正应力为127.3MPa。
8. 一根两端铰支杆,其直径d=45mm,长度l=703mm,E=210GPa,σp=280MPa,λs=43.2。
直线公式σcr=461-2.568λ。
其临界压力为478kN。
9. 一个钢梁,一个铝梁,其尺寸、约束和载荷完全相同,则横截面上的应力分布相同,变形后轴线的形态不相同。
10. 当实心圆轴的直径增加1倍时,其抗扭强度增加到原来的8倍。
11. 材料力学中求内力的普遍方法是截面法。
12. 压杆在材料和横截面面积不变的情况下,采用D 横截面形状稳定性最好。
13. 图形对于其对称轴静矩和惯性矩均不为零。
14. 梁横截面上可能同时存在切应力和正应力。
15. 偏心拉伸(压缩),其实质就是拉压和弯曲的组合变形。
16. 存在均布载荷的梁段上弯矩图为抛物线。
17. 矩形的对角线的交点属于形心点。
18. 一圆轴用碳钢制作,校核其扭转角时,发现单位长度扭转角超过了许用值。
为保证此轴的扭转刚度,应增加轴的直径。
19. T形图形由1和2矩形图形组成,则T形图形关于x轴的惯性矩等于1矩形关于m轴的惯性矩与2矩形关于n轴的惯性矩的合。
20. 材料力学中关心的内力是物体由于外力作用而产生的内部力的改变量。
21.杯子中加入热水爆炸时,是外层玻璃先破裂的;单一载荷作用下的目标件,其上并不只存在一种应力。
22. 单位长度扭转角θ与扭矩、材料性质、截面几何性质有关。
23. 转角是横截面绕中性轴转过的角位移;转角是挠曲线的切线与轴向坐标轴间的夹角;转角是变形前后同一截面间的夹角24.单元体的形状可以改变;单元体上的应力分量应当足以确定任意方向面上的应力25. 可以有效改善梁的承载能力的方法是:加强铸铁梁的受拉伸一侧;将集中载荷改换为均布载荷;将简支梁两端的约束向中间移动。
材料力学复习
第一章 绪论1. 承载能力:强度:构件在外力作用下抵抗破坏的能力刚度:构件在外力作用下抵抗变形的能力稳定性:构件在外力作用下保持其原有平衡状态的能力2. 变形体的基本假设:连续性假设、均匀性假设、各向同性假设3. 求内力的方法:截面法4. 杆件变形的基本形式:拉伸或压缩、剪切、扭转、弯曲第二章 拉伸、压缩1. 轴力图必须会画:轴力N F 拉为正、压为负2. 横截面上应力:均匀分布 AF N =σ 3. 斜截面上既有正应力,又有切应力,且应力为均匀分布。
ασσα2cos =αστα2sin 21=σ为横截面上的应力。
横截面上的正应力为杆内正应力的最大值,而切应力为零。
与杆件成45°的斜截面上切应力达到最大值,而正应力不为零。
纵截面上的应力为零,因此在纵截面不会破坏。
4. 低碳钢、灰铸铁拉伸时的力学性能、压缩时的力学性能低碳钢拉伸在应力应变图:图的形状、四个极限、四个阶段、各阶段的特点、伸长率(脆性材料、塑性材料如何区分)5. 强度计算脆性材料、塑性材料的极限应力分别是 拉压时的强度条件:][max max σσ≤=AF N 强度条件可以解决三类问题:强度校核、确定许可载荷、确定截面尺寸 6.杆件轴向变形量的计算 EA l F l N =∆ EA :抗拉压刚度 7. 剪切和挤压:剪切面,挤压面的判断第三章 扭转1.外力偶矩的计算公式: 2.扭矩图T 必须会画:扭矩正负的规定3.切应力互等定理、剪切胡克定律4.圆轴扭转横截面的应力分布规律:切应力的大小、作用线、方向的确定sb σσ,min /::)(9549r n kW P m N n P M ⋅=5.横截面上任一点切应力的求解公式:ρI ρT τP ρ=——点到圆心的距离6. 扭转时的强度条件:][max max ττ≤=tW T 7.实心圆截面、空心圆截面的极惯性矩、抗扭截面模量的计算公式 实心圆截面:极惯性矩432D πI p =,抗扭截面模量316D πW t = 空心圆截面:极惯性矩)1(3244αD πI P -=,抗扭截面模量)1(1643αD πW t -==, 8.圆轴扭转时扭转角:pI G l T =ϕ p I G :抗扭刚度 第四章 弯曲内力1.纵向对称面、对称弯曲的概念2. 剪力图和弯矩图必须会画:剪力、弯矩正负的规定3.载荷集度、剪力和弯矩间的关系4. 平面曲杆的弯矩方程5.平面刚架的弯矩方程、弯矩图第五章 弯曲应力1. 纯弯曲、中性层、中性轴的概念2.弯曲时横截面上正应力的分布规律:正应力的大小、方向的确定3. 横截面上任一点正应力的计算公式:zI My =σ 4. 弯曲正应力的强度校核][max max σσ≤=zW M 或][max max max σI y M σz ≤= 对于抗拉压强度不同的材料,最大拉压应力都要校核5. 矩形截面、圆截面的惯性矩和抗弯截面模量的计算 矩形截面:惯性矩,1213bh I z =抗弯截面模量:261bh W z = 实心圆截面:惯性矩464D πI z =,抗弯截面模量:332D πW z = 空心圆截面:惯性矩)1(6444αD πI z -=,抗弯截面模量:)1(3243αD πW z -=, 第七章 应力和应变分析、强度理论1. 主应力、主平面、应力状态的概念及应力状态的分类2. 二向应力状态分析的解析法:应力正负的规定:正应力以拉应力为正,压应力为负;切应力对单元体内任意点的矩顺时针转向为正;α角以逆时针转向为正D d α=D d α=任意斜截面上的应力计算最大最小正应力的计算公式最大最小正应力平面位置的确定 最大切应力的计算公式主应力、主平面的确定3. 了解应力圆的做法,辅助判断主平面4. 广义胡克定律5.四种强度理论内容及适用范围第八章 组合变形1. 组合变形的判断2. 圆截面轴弯扭组合变形强度条件 第三强度理论:[]σσ≤+=WT M r 223 第四强度理论:[]σσ≤+=W T M r 22375.0 W ——抗弯截面模量323d W π=第九章 压杆稳定1. 压杆稳定校核的计算步骤(1)计算λ1和λ2(2)计算柔度λ,根据λ 选择公式计算临界应(压)力(3)根据稳定性条件,判断压杆的稳定性2. P 1σπλE = ba s 2σλ-= ⎪⎪⎩⎪⎪⎨⎧+-=--++=ατασστατασσσσσαα2cos 2sin 22sin 2cos 22xy y x xy y x y x 22min max 22xy y x y x τσσσσσσ+⎪⎪⎭⎫ ⎝⎛-±+=⎭⎬⎫y x xy σστα--=22tan 0231max σστ-=柔度i lμλ= AI i = I ——惯性矩 μ——长度系数;两端铰支μ=1;一端铰支,一段固定μ=0.7;两端固定μ=0.5; 一端固定,一端自由μ=23. 大柔度杆1λλ≥ 22cr λπσE = 中柔度杆12λλλ<≤ λσb a -=cr小柔度杆 2λλ< s cr σσ=4. 稳定校核条件st cr n n FF ≥= F ——工作压力 cr F =cr σ A 第十章 动载荷1. 冲击动荷因数冲击物做自由落体 冲击开始瞬间冲击物与被冲击物接触时的速度为 v水平冲击时 Δst 是冲击点的静变形。
材料力学总复习
步 骤:1、近似微分方程 E Iw M (x)
2、积分
E Iw M (x )d x C 1
E I w [ M ( x ) d x ] d x C 1 x C 2
3、代入边界条件,解出积分常数
4、写出挠曲线方程和转角方程
材料力学
➢ 叠加法求挠度和转角
Fq
()
正确地、熟练地
A
B
C
a
a
使用附录Ⅳ
ε2 E 1[σ2(σ3σ1)]
ε3 E1[σ3(σ1σ2)]
材料力学
➢ 强度理论 ( )
相当应力 σr []
r1 1 σr2 σ1 (σ2 σ3)
σr3 σ1 σ3
σr4
1 2[(σ1
σ2
)2
(σ2
σ3
)2
(σ3
σ1)2
]
材料力学
强度计算的步骤
(1)外力分析:确定所需的外力值; (2)内力分析:画内力图,确定可能的危险面; (3)应力分析:画危面应力分布图,确定危险点并画出单元体,
25
材料力学
➢ 刚度条件
相对扭转角
Tl
GI p
刚度条件
max
Tmax GIp
180 []
26
材料力学
➢ 等直圆杆扭转时的应变能
应变能密度
vε
1
2
应变能
Vε
W
1T
2
1 T2l 2GIp
27
材料力学
1、等截面圆轴扭转时的危险点在
。
2、实心圆轴受扭,当其直径增加一倍时,则最大剪应力是
原来的(
截面应力:
T
Ip
()
T
max
材料力学重点公式复习
1、应力 全应力正应力切应力线应变 的大小; 外力偶矩当功率P 当功率拉压杆件横截面上只有正应力σ,且为平均分布,其计算公式为 N FAσ= 3-1式中N F 为该横截面的轴力,A 为横截面面积;正负号规定 拉应力为正,压应力为负; 公式3-1的适用条件:1杆端外力的合力作用线与杆轴线重合,即只适于轴向拉压杆件; 2适用于离杆件受力区域稍远处的横截面;3杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀; 4截面连续变化的直杆,杆件两侧棱边的夹角020α≤时 拉压杆件任意斜截面a 图上的应力为平均分布,其计算公式为全应力 cos p ασα= 3-2正应力 2cos ασσα=3-3切应力1sin 22ατα=3-4 式中σ为横截面上的应力;正负号规定:α 由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负;ασ 拉应力为正,压应力为负;ατ 对脱离体内一点产生顺时针力矩的ατ为正,反之为负;两点结论:1当00α=时,即横截面上,ασ达到最大值,即()max ασσ=;当α=090时,即纵截面上,ασ=090=0;2当045α=时,即与杆轴成045的斜截面上,ατ达到最大值,即max ()2αατ=1.2 拉压杆的应变和胡克定律 1变形及应变杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长;如图3-2;图3-2 轴向变形 1l l l ∆=- 轴向线应变 llε∆= 横向变形 1b b b ∆=- 横向线应变 bbε∆'=正负号规定 伸长为正,缩短为负; 2胡克定律当应力不超过材料的比例极限时,应力与应变成正比;即 E σε= 3-5 或用轴力及杆件的变形量表示为 N F ll EA∆=3-6 式中EA 称为杆件的抗拉压刚度,是表征杆件抵抗拉压弹性变形能力的量;公式3-6的适用条件:a 材料在线弹性范围内工作,即p σσ〈;b 在计算l ∆时,l 长度内其N 、E 、A 均应为常量;如杆件上各段不同,则应分段计算,求其代数和得总变形;即1ni ii i iN l l E A =∆=∑3-7 3泊松比 当应力不超过材料的比例极限时,横向应变与轴向应变之比的绝对值;即 ενε'=3-8强度计算许用应力 材料正常工作容许采用的最高应力,由极限应力除以安全系数求得; 塑性材料 σ=s s n σ ; 脆性材料 σ=b bn σ其中,s b n n 称为安全系数,且大于1;强度条件:构件工作时的最大工作应力不得超过材料的许用应力; 对轴向拉伸压缩杆件[]NAσσ=≤ 3-9 按式1-4可进行强度校核、截面设计、确定许克载荷等三类强度计算; 2.1 切应力互等定理受力构件内任意一点两个相互垂直面上,切应力总是成对产生,它们的大小相等,方向同时垂直指向或者背离两截面交线,且与截面上存在正应力与否无关;2.2纯剪切单元体各侧面上只有切应力而无正应力的受力状态,称为纯剪切应力状态; 2.3切应变切应力作用下,单元体两相互垂直边的直角改变量称为切应变或切应变,用τ表示; 2.4 剪切胡克定律在材料的比例极限范围内,切应力与切应变成正比,即 G τγ= 3-10式中G 为材料的切变模量,为材料的又一弹性常数另两个弹性常数为弹性模量E 及泊松比ν,其数值由实验决定;对各向同性材料,E 、 ν、G 有下列关系 2(1)EG ν=+ 3-112.5.2切应力计算公式横截面上某一点切应力大小为 p pT I ρτ=3-12 式中p I 为该截面对圆心的极惯性矩,ρ为欲求的点至圆心的距离;圆截面周边上的切应力为 max tTW τ=3-13 式中p t I W R=称为扭转截面系数,R 为圆截面半径;2.5.3 切应力公式讨论(1) 切应力公式3-12和式3-13适用于材料在线弹性范围内、小变形时的等圆截面直杆;对小锥度圆截面直杆以及阶梯形圆轴亦可近似应用,其误差在工程允许范围内; (2) 极惯性矩p I 和扭转截面系数t W 是截面几何特征量,计算公式见表3-3;在面积不变情况下,材料离散程度高,其值愈大;反映出轴抵抗扭转破坏和变形的能力愈强;因此,设计空心轴比实心轴更为合理;2.5.4强度条件圆轴扭转时,全轴中最大切应力不得超过材料允许极限值,否则将发生破坏;因此,强度条件为[]max maxt T W ττ⎛⎫=≤⎪⎝⎭ 3-14 对等圆截面直杆 []maxmax tT W ττ=≤ 3-15式中[]τ为材料的许用切应力; 3.1.1中性层的曲率与弯矩的关系1zMEI ρ=3-16 式中,ρ是变形后梁轴线的曲率半径;E 是材料的弹性模量;E I 是横截面对中性轴Z 轴的惯性矩; 3.1.2横截面上各点弯曲正应力计算公式 ZMy I σ=3-17 式中,M 是横截面上的弯矩;Z I 的意义同上;y 是欲求正应力的点到中性轴的距离最大正应力出现在距中性轴最远点处 max max max max z zM My I W σ=•= 3-18 式中,max z z I W y =称为抗弯截面系数;对于h b ⨯的矩形截面,216z W bh =;对于直径为D 的圆形截面,332z W D π=;对于内外径之比为d a D =的环形截面,34(1)32z W D a π=-; 若中性轴是横截面的对称轴,则最大拉应力与最大压应力数值相等,若不是对称轴,则最大拉应力与最大压应力数值不相等;3.2梁的正应力强度条件梁的最大工作应力不得超过材料的容许应力,其表达式为 []maxmax zM W σσ=≤ 3-19 对于由拉、压强度不等的材料制成的上下不对称截面梁如T 字形截面、上下不等边的工字形截面等,其强度条件应表达为[]maxmax 1l t z M y I σσ=≤ 3-20a []maxmax 2y c zM y I σσ=≤ 3-20b 式中,[][],t c σσ分别是材料的容许拉应力和容许压应力;12,y y 分别是最大拉应力点和最大压应力点距中性轴的距离;3.3梁的切应力 z z QS I bτ*= 3-21式中,Q 是横截面上的剪力;z S *是距中性轴为y 的横线与外边界所围面积对中性轴的静矩;z I 是整个横截面对中性轴的惯性矩;b 是距中性轴为y 处的横截面宽度; 3.3.1矩形截面梁切应力方向与剪力平行,大小沿截面宽度不变,沿高度呈抛物线分布;切应力计算公式 22364Q h y bh τ⎛⎫=- ⎪⎝⎭3-22最大切应力发生在中性轴各点处,max 32QAτ=; 3.3.2工字形截面梁切应力主要发生在腹板部分,其合力占总剪力的95~97%,因此截面上的剪力主要由腹板部分来承担;切应力沿腹板高度的分布亦为二次曲线;计算公式为 ()2222824z Q B b h H h y I b τ⎡⎤⎛⎫=-+-⎢⎥ ⎪⎝⎭⎣⎦3-23近似计算腹板上的最大切应力:dhFs 1max=τd 为腹板宽度 h 1为上下两翼缘内侧距3.3.3圆形截面梁横截面上同一高度各点的切应力汇交于一点,其竖直分量沿截面宽度相等,沿高度呈抛物线变化;最大切应力发生在中性轴上,其大小为 2max42483364z z d d Q QS Q d I b Adππτπ*⋅⋅===⨯ 3-25 圆环形截面上的切应力分布与圆截面类似;3.4切应力强度条件梁的最大工作切应力不得超过材料的许用切应力,即 []max max maxz z Q S I bττ*=≤ 3-26式中,max Q 是梁上的最大切应力值;max z S *是中性轴一侧面积对中性轴的静矩;z I 是横截面对中性轴的惯性矩;b 是maxτ处截面的宽度;对于等宽度截面,max τ发生在中性轴上,对于宽度变化的截面,max τ不一定发生在中性轴上; 4.2剪切的实用计算名义切应力:假设切应力沿剪切面是均匀分布的 ,则名义切应力为 AQ=τ 3-27 剪切强度条件:剪切面上的工作切应力不得超过材料的 许用切应力[]τ,即 []ττ≤=AQ3-285.2挤压的实用计算名义挤压应力 假设挤压应力在名义挤压面上是均匀分布的,则 []bsbs bs bsP A σσ=≤ 3-29 式中,bs A 表示有效挤压面积,即挤压面面积在垂直于挤压力作用线平面上的投影;当挤压面为平面时为接触面面积,当挤压面为曲面时为设计承压接触面面积在挤压力垂直面上的 投影面积;挤压强度条件挤压面上的工作挤压应力不得超过材料的许用挤压应力 []bs bsbs A Pσσ≤=3-30 1, 变形计算圆轴扭转时,任意两个横截面绕轴线相对转动而产生相对扭转角;相距为l 的两个横截面的相对扭转角为dx GI TlP⎰=0ϕ rad 4.4 若等截面圆轴两截面之间的扭矩为常数,则上式化为PGI Tl=ϕ rad 4.5 图4.2式中P GI 称为圆轴的抗扭刚度;显然,ϕ的正负号与扭矩正负号相同;公式4.4的适用条件:(1) 材料在线弹性范围内的等截面圆轴,即P ττ≤;(2) 在长度l 内,T 、G 、P I 均为常量;当以上参数沿轴线分段变化时,则应分段计算扭转角,然后求代数和得总扭转角;即 ∑==ni P i ii iI G l T 1ϕ rad 4.6 当T 、P I 沿轴线连续变化时,用式4.4计算ϕ; 2, 刚度条件扭转的刚度条件 圆轴最大的单位长度扭转角max 'ϕ不得超过许可的单位长度扭转角[]'ϕ,即[]''maxmax ϕϕ≤=PGI T rad/m 4.7 式 []'180'max max ϕπϕ≤⨯=︒P GI T m /︒ 4.82,挠曲线的近似微分方程及其积分在分析纯弯曲梁的正应力时,得到弯矩与曲率的关系EIM=ρ1对于跨度远大于截面高度的梁,略去剪力对弯曲变形的影响,由上式可得()()EIx M x =ρ1 利用平面曲线的曲率公式,并忽略高阶微量,得挠曲线的近似微分方程,即 ()EIx M =''ω 4.9 将上式积分一次得转角方程为 ()C dx EIx M +==⎰'ωθ 4.10再积分得挠曲线方程 ()D Cx dx dx EI x M ++⎥⎦⎤⎢⎣⎡=⎰⎰ω 4.11 式中,C,D 为积分常数,它们可由梁的边界条件确定;当梁分为若干段积分时,积分常数的确定除需利用边界条件外,还需要利用连续条件; 3,梁的刚度条件限制梁的最大挠度与最大转角不超过规定的许可数值,就得到梁的刚度条件,即 []ωω≤max ,[]θθ≤max 4.12 3,轴向拉伸或压缩杆件的应变能在线弹性范围内,由功能原理得 l F W V ∆==21ε 当杆件的横截面面积A 、轴力F N 为常量时,由胡克定律EAlF l N =∆,可得 EA l F V N 22=ε 4.14杆单位体积内的应变能称为应变能密度,用εV 表示;线弹性范围内,得 σεε21=V 4.15 4,圆截面直杆扭转应变能 在线弹性范围内,由功能原 ϕe r M W V 21== 将T M e =与P GI Tl =ϕ代入上式得 Pr GI lT V 22= 4.16图4.5根据微体内的应变能在数值上等于微体上的内力功,得应变能的密度r V : r V r τ21= 4.175,梁的弯曲应变能在线弹性范围内,纯弯曲时,由功能原理得 将M M e =与EIMl=θ代入上式得 EI l M V 22=ε 4.18图4.6横力弯曲时,梁横截面上的弯矩沿轴线变化,此时,对于微段梁应用式4.18,积分得全梁的弯曲应变能εV ,即()⎰=lEI dxx M V 22ε 4.192.截面几何性质的定义式列表于下:静 矩 惯性矩惯性半径惯性积 极惯性矩3.惯性矩的平行移轴公式静矩:平面图形面积对某坐标轴的一次矩,如图Ⅰ-1所示; 定义式: ⎰=Ay zdA S ,⎰=Az ydA S Ⅰ-1量纲为长度的三次方;由于均质薄板的重心与平面图形的形心有相同的坐标C z 和C y ;则由此可得薄板重心的坐标 C z 为 AS A zdA z yAC==⎰同理有 A S y zC =所以形心坐标 A S z y C =,ASy z C = Ⅰ-2或 C y z A S ⋅=,C z y A S ⋅=由式Ⅰ-2得知,若某坐标轴通过形心轴,则图形对该轴的静矩等于零,即0=C y ,0=z S ;0=C z ,则 0=y S ;反之,若图形对某一轴的静矩等于零,则该轴必然通过图形的形心;静矩与所选坐标轴有关,其值可能为正,负或零;如一个平面图形是由几个简单平面图形组成,称为组合平面图形;设第 I 块分图形的面积为 i A ,形心坐标为Ci Ci z y , ,则其静矩和形心坐标分别为 Ci i n i z y A S 1=∑=,Ci i ni y z A S 1=∑= Ⅰ-3∑∑====ni ini Cii z C AyA AS y 11,∑∑====ni ini cii y C AzA AS z 11 Ⅰ-4§Ⅰ-2 惯性矩和惯性半径惯性矩:平面图形对某坐标轴的二次矩,如图Ⅰ-4所示;⎰=Ay dA z I 2,⎰=Az dA y I 2 Ⅰ-5量纲为长度的四次方,恒为正;相应定义AI i y y =,AI i zz =Ⅰ-6 为图形对 y 轴和对 z 轴的惯性半径;组合图形的惯性矩;设 zi yi I I , 为分图形的惯性矩,则总图形对同一轴惯性矩为yi ni y I I 1=∑=,zi ni z I I 1=∑= Ⅰ-7若以ρ表示微面积dA 到坐标原点O 的距离,则定义图形对坐标原点O 的极惯性矩⎰=Ap dA I 2ρ Ⅰ-8因为 222z y +=ρ所以极惯性矩与轴惯性矩有关系 ()z y Ap I I dA z yI +=+=⎰22Ⅰ-9式Ⅰ-9表明,图形对任意两个互相垂直轴的轴惯性矩之和,等于它对该两轴交点的极惯性矩;下式 ⎰=Ayz yzdA I Ⅰ-10定义为图形对一对正交轴 y 、z 轴的惯性积;量纲是长度的四次方; yz I 可能为正,为负或为零;若 y ,z 轴中有一根为对称轴则其惯性积为零;§Ⅰ-3平行移轴公式由于同一平面图形对于相互平行的两对直角坐标轴的惯性矩或惯性积并不相同,如果其中一对轴是图形的形心轴()c cz ,y时,如图Ⅰ-7所示,可得到如下平行移轴公式⎪⎩⎪⎨⎧+=+=+=abA II A b I I Aa I I C C C C z y yzz z y y 22 Ⅰ-13 简单证明之: 其中⎰AC dA z 为图形对形心轴 C y 的静矩,其值应等于零,则得同理可证I-13中的其它两式;结论:同一平面内对所有相互平行的坐标轴的惯性矩,对形心轴的最小;在使用惯性积移轴公式时应注意 a ,b 的正负号;把斜截面上的总应力p 分解成与斜截面垂直的正应力n σ和相切的切应力n τ图222123n l m n σσσσ=++ 2222222123n n l m n τσσσσ=++-在以n σ为横坐标、n τ截面上的正应力n σ和切应力n τ区域图13.2中阴影中的一点;由图13.2显见。
材料力学复习题答案
材料力学复习题答案1. 材料力学中,材料的弹性模量(E)表示材料抵抗形变的能力,其单位是帕斯卡(Pa)。
若某材料的弹性模量为200 GPa,试计算该材料在受到10 MPa应力作用下产生的应变。
答案:根据胡克定律,应变(ε)等于应力(σ)除以弹性模量(E),即ε = σ/E。
将给定的数值代入公式,得到ε = 10 MPa / 200 GPa = 0.00005 或5×10^-5。
2. 简述材料在拉伸过程中的四个阶段,并说明各阶段的特点。
答案:材料在拉伸过程中的四个阶段包括弹性阶段、屈服阶段、强化阶段和断裂阶段。
弹性阶段中,材料在外力作用下发生形变,当外力移除后,材料能恢复原状。
屈服阶段开始时,材料的形变不再与应力成正比,即使应力不再增加,形变也会继续增加。
强化阶段中,材料在屈服后继续承受应力,需要更大的应力才能使形变继续增加。
最后,在断裂阶段,材料因无法承受进一步的应力而发生断裂。
3. 计算圆轴在扭转时的剪切应力。
已知圆轴的直径为50 mm,材料的剪切模量为80 GPa,扭矩为500 N·m。
答案:圆轴在扭转时的剪切应力(τ)可以通过公式τ = T·r/J计算,其中T为扭矩,r为圆轴的半径,J为极惯性矩。
对于直径为50 mm的圆轴,半径r = 25 mm = 0.025 m。
极惯性矩J = π·r^4/2 = π·(0.025)^4/2 ≈ 9.82×10^-6 m^4。
代入公式得到τ = 500 N·m × 0.025 m / 9.82×10^-6 m^4 ≈ 127.6 MPa。
4. 描述梁在弯曲时的正应力和剪切应力的分布规律。
答案:梁在弯曲时,正应力沿着梁的横截面高度线性分布,最大正应力出现在横截面的最外层纤维上,且与中性轴的距离成正比。
剪切应力在梁的横截面上分布不均匀,最大剪切应力出现在中性轴处,向两侧逐渐减小至零。
材料力学性能复习总结
材料力学性能复习总结材料力学性能是指材料在外力作用下所表现出的力学特性和性能。
在材料力学性能的学习中,不仅需要了解材料的基本力学性质,还需要掌握材料的破坏机制、变形行为以及材料的力学性能测试方法等方面的知识。
以下是对材料力学性能复习的总结。
1.材料的破坏机制和破坏形态材料的破坏机制是指材料在受力作用下发生破坏的方式和过程。
常见的破坏机制有拉伸破坏、压缩破坏、剪切破坏等。
拉伸破坏时,材料会发生断裂;压缩破坏时,材料会出现压缩变形和压碎现象;剪切破坏时,材料会出现剪切变形和断裂等。
材料的破坏形态是指材料在受力作用下发生的形态变化。
常见的破坏形态有脆性断裂、塑性变形和疲劳破坏等。
脆性断裂是指材料在受静态或低应力下发生迅速断裂的性质;塑性变形是指材料在受力作用下发生塑性流动,而不发生断裂;疲劳破坏是指材料在反复受力下产生裂纹并最终导致断裂。
2.材料的变形行为和变形机制材料的变形行为是指材料在受力作用下发生的形变现象。
常见的变形行为有弹性变形、塑性变形和粘弹性变形等。
弹性变形是指材料在受力作用下发生的可逆性变形。
材料在弹性变形时能够恢复到原始形状和尺寸。
弹性变形的机制是原子之间的键能发生弹性形变,即在受力作用下原子间的距离发生变化,但不改变原子间的相对位置。
塑性变形是指材料在受力作用下发生的不可逆性变形。
材料在塑性变形时会发生晶格的滑移和位错的运动。
塑性变形的机制是原子间的键能发生塑性形变,即原子间的相对位置发生改变。
粘弹性变形是指材料在受力作用下表现出介于弹性变形和塑性变形之间的性质。
材料在粘弹性变形时有一部分能量会被消耗掉,导致材料的不完全恢复。
粘弹性变形的机制是在外力作用下,分子间的键发生的弹性形变和分子间的长距离位移。
3.材料力学性能的测试方法拉伸试验是指将材料置于拉力下进行测试。
通过拉伸试验可以了解材料的弹性性能、破坏强度、延展性以及断裂形态等。
压缩试验是指将材料置于压力下进行测试。
通过压缩试验可以了解材料的强度和刚度等。
材料力学总复习
第一部分 基本变形部分 第二部分 复杂变形部分 第三部分 压杆稳定 第四部分 能量方法
第一部分
基本变形部分
§1-4 杆件变形的基本形式
内容 种类
外力特点
轴向拉伸 及 压缩
Axial Tension
剪切 Shear
扭转 Torsion
平面弯曲 Bending
组合受力(Combined Loading)与变形
取分离体如图3, a 逆时针为正;
a 绕研究对象顺时针转为正;
由分离体平衡得:
a
a
x
图3
a a
0 0
c os2a sinacosa
或:
a a
0
2
0
2
(1cos2a sin2a
)
(合力) P
n
剪切面:
n
P (合力)
构件将发生相互的错动面,如 n– n 。
Q n
剪切面 剪切面上的内力:
变形特点
二、截面法 ·轴力 内力的计算是分析构件强度、刚度、稳定性等问题的
基础。求内力的一般方法是截面法。
1. 截面法的基本步骤: ① 截开:在所求内力的截面处,假想地用截面将杆件一分为二。 ②代替:任取一部分,其弃去部分对留下部分的作用,用作用
在截开面上相应的内力(力或力偶)代替。 ③平衡:对留下的部分建立平衡方程,根据其上的已知外力来
计算杆在截开面上的未知内力(此时截开面上的内力 对所留部分而言是外力)。
杆在轴向拉压时,横截面上的内力称为轴力。
轴力用 N 表示,方向与轴线重合
引起伸长变形的轴力为正——拉力(背离截面); 引起压缩变形的轴力为负——压力(指向截面)。
N
N
材料力学复习资料全
材料力学复习资料一、填空题K为了保证机器或结构物正常地工作,要求每个构件都有足够的抵抗破坏的能力,即要求它们有足够的强度:冋时要求他们有足够的抵抗变形的能力•即要求它们有足够的刚度:另外,对于受压的细长直杆,还要求它们工作时能保持原有的平衡状态,即要求其有足够的稳定性「2、材料力学是研究构件强度、刚度、稳定性的学科。
3、强度是指构件抵抗破坏的能力:冈帔是指构件抵抗变形的能力:稳左性是指构件维持其原有的平衡状态的能力。
4、在材料力学中,对变形固体的基本假设是连续性假设、均匀性假设、各向同性假设5、随外力解除而消失的变形叫弹性变形;外力解除后不能消失的变形叫舉性变形。
6、截面法是计算力的基本方法。
7、应立是分析构件强度问题的重要依据。
8、线应变和切应变是分析构件变形程度的基本量。
9、轴向尺寸远大于横向尺寸,称此构件为枉。
10、构件每单位长度的伸长或缩短,称为线应变°11、单元体上相互垂直的两根棱边夹角的改变量.称为切应变-12、轴向拉伸与压缩时直杆横截而上的力,称为轴力,13、应力与应变保持线性关系时的最大应力,称为比例极限14、材料只产生弹性变形的最大应力,称为弹性极根:材料能承受的最大应力,称为强度极限。
15、弹性模量E是衡量材料抵抗弹性变形能力的指标。
16、延伸率6是衡量材料的塑性指标。
6 M5%的材料称为塑性材料:§ V5%的材料称为脆性材料。
17、应力变化不大,而应变显著增加的现象,称为屈服或流动18、材料在卸载过程中,应力与应变成线性关系。
19、在常温下把材料冷拉到强化阶段,然后卸载,当再次加载时,材料的比例极限提高,而塑性降低,这种现象称为冷作硬化20、使材料丧失正常工作能力的应力,称为极限应力,21、在工程计算中允许材料承受的最大应力,称为许用应力。
22、当应力不超过比例极限时,横向应变与纵向应变之比的绝对值,称为泊松比一23、胡克定律的应力适用恫是应力不超过材料的比例极限。
2024年上学期材料力学(考试)复习资料
2024年上学期材料力学(考试)复习资料一、单项选择题1.钢材经过冷作硬化处理后其()基本不变(1 分)A.弹性模量;B.比例极限;C.延伸率;D.截面收缩率答案:A2.在下面这些关于梁的弯矩与变形间关系的说法中,()是正确的。
(1 分)A.弯矩为正的截面转角为正;B.弯矩最大的截面挠度最大;C.弯矩突变的截面转角也有突变;D.弯矩为零的截面曲率必为零。
答案:D3.在利用积分计算梁位移时,积分常数主要反映了:( ) (1 分)A.剪力对梁变形的影响;B.支承条件与连续条件对梁变形的影响;C.横截面形心沿梁轴方向的位移对梁变形的影响;D.对挠曲线微分方程误差的修正。
答案:B4.根据小变形条件,可以认为() (1 分)A.构件不变形;B.构件不变形;C.构件仅发生弹性变形;D.构件的变形远小于其原始尺寸答案:D5.火车运动时,其轮轴横截面边缘上危险点的应力有四种说法,正确的是。
(1 分)A.脉动循环应力;B.非对称的循环应力;C.不变的弯曲应力;D.对称循环应力答案:D6.在下列结论中()是错误的(1 分)A.若物体产生位移则必定同时产生变形;B.若物体各点均无位移则必定无变形;C.若物体产生变形则物体内总有一些点要产生位移;D.位移的大小取决于物体的变形和约束状态答案:B7.在下列三种力(1、支反力;2、自重;3、惯性力)中()属于外力(1 分)B.3和2;C.1和3;D.全部答案:D8.在一截面的任意点处若正应力ζ与剪应力η均不为零则正应力ζ与剪应力η的夹角为() (1 分)A.α=90;B.α=450;C.α=00;D.α为任意角答案:A9.拉压杆截面上的正应力公式ζ=N/A的主要应用条件是() (1 分)A.应力在比例极限以内;B.外力合力作用线必须重合于杆件轴线;C.轴力沿杆轴为常数;D.杆件必须为实心截面直杆答案:A10.构件的疲劳极限与构件的()无关。
(1 分)A.材料;B.变形形式;C.循环特性;D.最大应力。
(完整版)材料力学复习题(附答案)
一、填空题1.标距为100mm的标准试件,直径为10mm,拉断后测得伸长后的标距为123mm,缩颈处的最小直径为6.4mm,则该材料的伸长率δ=23%,断面收缩率ψ=59.04%。
2、构件在工作时所允许产生的最大应力叫许用应力σ,极限应力与许用应力的比叫安全系数n。
3、一般来说,脆性材料通常情况下以断裂的形式破坏,宜采用第一二强度理论。
塑性材料在通常情况下以流动的形式破坏,宜采用第三四强度理论。
4、图示销钉的切应力τ=(Pπdh ),挤压应力σbs=(4Pπ(D2-d2))(4题图)(5题图)5、某点的应力状态如图,则主应力为σ1=30Mpa,σ2=0,σ3=-30Mpa。
6、杆件变形的基本形式有拉伸或压缩、剪切、扭转和弯曲四种。
7、低碳钢在拉伸过程中的变形可分为弹性阶段、屈服阶段、强化阶段和局部变形阶段四个阶段。
8、当切应力不超过材料的剪切比例极限时,切应变γ和切应力τ成正比。
9、工程实际中常见的交变应力的两种类型为对称循环,脉动循环。
10、变形固体的基本假设是:连续性假设;均匀性假设;各向同性假设。
11、低碳钢拉伸时大致分为以下几个阶段:弹性;屈服;强化;缩颈。
12、通常计算组合变形构件应力和变形的过程是:先分别计算每种基本变形各自引起的应力和变形,然后再叠加。
这样做的前提条件是构件必须为线弹性、小变形杆件。
13、剪切胡克定律的表达形式为τ=Gγ。
14、通常以伸长率 <5%作为定义脆性材料的界限。
15、提高梁弯曲刚度的措施主要有提高抗弯刚度EI、减少梁的跨度、改善梁的载荷作用方式。
16、材料的破坏按其物理本质可分为屈服和断裂两类。
二、选择题1、一水平折杆受力如图所示,则AB杆的变形为(D)。
(A)偏心拉伸;(B)纵横弯曲;(C)弯扭组合;(D)拉弯组合。
2、铸铁试件试件受外力矩Me作用,下图所示破坏情况有三种,正确的破坏形式是(A)3、任意图形的面积为A,Z0轴通过形心O,Z1轴与Z0轴平行,并相距a,已知图形对Z1轴的惯性矩I1,则对Z0轴的惯性矩I Z0为:(B)(A )00Z I =;(B )20Z Z I I Aa =-;(C )20Z Z I I Aa =+;(D )0Z Z I I Aa =+。
材料力学 复习资料及答案
材料力学I 期末复习资料一、判断题1. 弹性体静力学的任务是尽可能的保证构件的安全工作。
(Y )2. 作用在刚体上的力偶可以任意平移,但作用在弹性体上的力偶一般不能平移。
(Y )3. 若构件上的某一点的任何方向都无应变,则该点无位移。
(N )4. 切应变是变形后构件后构件内任意两条微线段之间夹角的变化量。
(N )5. 胡克定律适用于弹性变形范围内。
(Y )6. 材料的延伸率与试件的尺寸有关。
(Y )7. 一般情况下,脆性材料的安全系数要比塑性材料的大些。
(Y )8. 受扭圆轴的最大切应力出现在横截面上。
(Y )9. 受扭圆轴的最大拉应力的值和最大剪应力的值相等。
(N )10.受扭杆件的扭矩,仅与杆件受到的外力偶矩有关,而与杆件的材料及横截面积的大小、形状无关。
(N )11.平面图形对某轴的静矩等于零,则该轴比为此图形的对称轴。
. (N )12.在一组平行轴中,平面图形对心轴的惯性矩最小。
(Y )13.两梁的跨度、承受的载荷以及支撑都相同,但材料和横截面积不同,则它们的剪力图和弯矩图不一定相同。
(N )14.最大弯矩必然发生在剪力为零的横截面上。
(N )15.若在结构对称的梁上,作用有反对称载荷,则该梁具有对称的剪力图和反对称的弯矩图。
(Y )16.控制梁弯曲强度的主要因素是最大弯矩值。
(N )17.在等截面梁中,正应力绝对值的最大值︱σ︱max比出现在弯矩值︱M︱max最大截面上。
(N )18.梁上弯矩最大的截面,挠度也最大;弯矩为零的截面,转角也为零。
(N )19.平面弯矩梁的挠曲线必定是一条与外力作用面重合或平行的平面曲线。
(Y )20.有正应力作用的方向上,必有线应变;没有正应力作用的方向上,必无线应变。
(N )21.脆性材料不会发生塑性屈服破坏,塑性材料不会发生脆性断裂破坏。
(N )22.纯剪切单元体属于单向应力状态。
(N )23.脆性材料的破坏形式一定是脆性断裂。
(N )24.材料的破坏形式由材料的种类和所处的应力状态而定。
材料力学复习
判断题1、受多个轴向外力的杆件,其轴力最大的横截面一定是危险截面。
2、轴向拉压杆的斜截面上只有正应力,没有切应力。
3.弹性模量E的量纲与正应力σ的量纲相同。
4.弹性模量E的量纲与切应力τ的量纲相同。
5.温度变化在结构中一定会产生附加内力。
6.杆件制作误差在结构中一定会产生附加内力。
7.圆轴扭转时横截面与纵截面均保持为平面。
8.等直圆轴扭转时横截面上只有切应力而无正应力。
9.内外径为r、R的空心圆轴,截面的极惯性矩为()4/44rR-π。
10.内外径为r、R的空心圆轴,其抗扭截面模量为()4/33rR-π。
11.截面图形对某轴的静矩为零,则该轴一定通过截面形心。
12.截面图形对某轴的静矩为零,则该轴不一定通过截面形心。
13.梁弯曲时最大弯矩一定发生在剪力为零的横截面上。
14.不论载荷如何作用,铰支座处的弯矩一定为零。
15.在集中力作用的地方,弯矩图一定发生突变。
16.在力偶矩作用的地方,弯矩图一定发生突变。
17.弯矩为零的地方,剪力一定为零。
18.剪力为零的地方,一定有载荷作用。
19.当梁处于纯弯曲时,横截面上的切应力一定为零。
20.平面弯曲时,横截面中性轴上各点处的正应力为零。
21.梁内最大弯曲正应力一定发生在弯矩值最大的截面上。
22.梁内最大弯曲切应力一定发生在剪力最大的截面上。
23.梁内弯矩为零的横截面上挠度一定为零。
24.梁内弯矩为零的横截面上转角一定为零。
25.最大弯矩处挠度最大。
26.最大弯矩处转角最大。
27.挠曲轴近似微分方程与坐标轴的选取无关。
28.挠曲轴近似微分方程与坐标轴的选取有关。
29.单元体主平面上的切应力一定为零。
30.单元体最大切应力所在截面上的正应力一定为零。
31.主应力是单元体各截面上正应力的极值。
32.常用四个强度理论只适用于复杂受力状态,不适用于简单受力状态。
33.在挠曲线近似微分方程的推导过程中,忽略了横力弯曲时剪切变形的影响,因此用挠曲线近似微分方程计算梁的弯曲位移,结果误差大,不满足工程精度要求,是已被证明错误的方法。
材料力学复习
CD段
10 - 20 -10kN Fx 0
FN 3 F4 25kN
10
x
2、绘制轴力图。
轴向拉压时横截面上的应力
F
如果杆的横截面积为:A
FN
FN A
FN为横截面上的内力(轴力)
4、强度条件
轴力
最大工作 应力
max
FN A
材料的许用应力
横截面积
MB
B
MC
C
MA
A
MD
D
PA 400 M A = 9550 = 9550 × = 5460 N • m n 700 PB 120 M B = M C = 9550 = 9550 × = 1640 N • m n 700 PD 160 M D = 9550 = 9550 × = 2180kN • m n 700
+ Ml 16.6 Ml 4 1 Gd 2 4 G d2 32
小结
小结
内力
杆的拉压
轴力FN(拉为正) 正应力 在横截 面上均匀分布。 FN
圆轴扭转
扭矩 T (右手法)
剪应力 在横截 面上线性分布。 max T 最大剪 应力在 o 表面处
应力
FN / A
抗拉刚度
τ max = T / Wp
2、材料力学研究的对象
在外力作用下,一切固体都将发生变形,故称 为变形固体(变形体),而构件一般均由固体材料 制成,故构件一般都是变形固体。 变形固体的变形:弹性变形、塑性变形 弹性变形:载荷卸除后能消失的变形 塑性变形:载荷卸除后不能消失的变形
3、材料力学的基本假设
材料力学的研究对象是变形固体。变形与材料 有关。为研究方便,采用下述假设:
《材料力学》复习 学习材料 试题与参考答案
《材料力学》习题答案复习学习材料试题与参考答案一、单选题1.三轮汽车转向架圆轴有一盲孔(图a),受弯曲交变应力作用,经常发生疲劳断裂后将盲孔改为通孔(图b),提高了疲劳强度。
其原因有四种答案,正确答案是(A)。
A.提高应力集中系数B.降低应力集中系数C.提高尺寸系数D.降低尺寸系数2.非对称的薄壁截面梁承受横向力时,若要求梁只产生平面弯曲而不发生扭转,则横向力作用的条件是(D)A.作用面与形心主惯性平面重合B.作用面与形心主惯性平面平行C.通过弯曲中心的任意平面D.通过弯曲中心,且平行于形心主惯性平面3.对剪力和弯矩的关系,下列说法正确的是(C)A.同一段梁上,剪力为正,弯矩也必为正B.同一段梁上,剪力为正,弯矩必为负C.同一段梁上,弯矩的正负不能由剪力唯一确定D.剪力为零处,弯矩也必为零4.单位长度扭转角与(C)无关。
A.杆的长度B.扭矩C.材料性质D.截面几何性质5. 描述构件上一截面变形前后的夹角叫(B)A.线位移B.转角C.线应变D.角应变6.梁发生平面弯曲时,其横截面绕(A)旋转。
A.梁的轴线B.截面对称轴C.中性轴D.截面形心7. 梁在集中力偶作用的截面处,它的内力图为(C)A.Q图有突变,M图无变化B.Q图有突变,M图有转折C.M图有突变,Q图无变化D.M图有突变,Q图有转折8. 塑性材料的名义屈服应力使用(D)A.σS表示B.σb表示C.σp表示D.σ0.2表示9.等截面直梁在弯曲变形时,挠曲线曲率最大发生在(D)处。
A.挠度最大B.转角最大C.剪力最大D.弯矩最大10.在单元体的主平面上(D)。
A.正应力一定最大B.正应力一定为零C.剪应力一定最小D.剪应力一定为零11. 圆截面杆受扭转作用,横截面任意一点(除圆心)的切应力方向(B)A.平行于该点与圆心连线B.垂直于该点与圆心连线C.不平行于该点与圆心连线D.不垂直于该点与圆心连线12.滚珠轴承中,滚珠和外圆接触点处的应力状态是(C)应力状态。
材料力学复习(附答案)
材料力学复习题1 .构件在外荷载作用下具有抵抗破坏的能力为材料的(强度);具有一定的抵抗变形的能力为材料的(刚度);保持其原有平衡状态的能力为材料的(稳定性)。
2.构件所受的外力可以是各式各样的,有时是很复杂的。
材料力学根据构件的典型受力情况及截面上的内力分量可分为(拉压)、(剪切)、(扭转)、(弯曲)四种基本变形。
3.轴力是指通过横截面形心垂直于横截面作用的内力,而求轴力的基本方法是(截面法)。
4.工程构件在实际工作环境下所能承受的应力称为(许用应力),工件中最大工作应力不能超过此应力,超过此应力时称为(失效)。
5.在低碳钢拉伸曲线中,其变形破坏全过程可分为(四)个变形阶段,它们依次是(弹性变形)、(屈服)、(强化)、和(颈缩)。
6.用塑性材料的低碳钢标准试件在做拉伸实验过程中,将会出现四个重要的极限应力;其中保持材料中应力与应变成线性关系的最大应力为(比例极限);使材料保持纯弹性变形的最大应力为(弹性极限);应力只作微小波动而变形迅速增加时的应力为(屈服极限);材料达到所能承受的最大载荷时的应力为(强度极限)。
7.通过低碳钢拉伸破坏试验可测定强度指标(屈服极限)和(强度极限);塑性指标(伸长率)和(断面收缩率)。
8.当结构中构件所受未知约束力或内力的数目n多于静力平衡条件数目m时,单凭平衡条件不能确定全部未知力,相对静定结构(n=m),称它为(静不定结构)。
9.圆截面杆扭转时,其变形特点是变形过程中横截面始终保持( 平面 ),即符合( 平面)假设。
非圆截面杆扭转时,其变形特点是变形过程中横截面发生( 翘曲),即不符合( 平面 )假设。
10.多边形截面棱柱受扭转力偶作用,根据( 切应力互等 )定理可以证明其横截面角点上的剪应力为( 0 )。
11.以下关于轴力的说法中,哪一个是错误的。
(C ) (A ) 拉压杆的内力只有轴力; (B ) 轴力的作用线与杆轴重合; (C ) 轴力是沿杆轴作用的外力; (D ) 轴力与杆的横截面和材料无关12.变截面杆AD 受集中力作用,如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 0.5 2
而
2E 200 109 1 3.14 99.3 6 p 200 10
1
由欧拉公式计算其
EI Fcr 2 ( l )
2
3.14 404 1012 (1 0.5 4 ) 3.142 200 109 64 (1 2) 2 58048N
2 2
F3
A
C
157MPa
F2
F1
例题9 图示一钢制实心圆轴,轴上的齿轮C上作用有铅垂切向力 5 kN,径向力 1.82 kN;齿轮 D上作用有水平切向力10 kN,径向力 3.64 kN.齿轮 C 的节圆直径 d1 = 400 mm,齿轮 D 的节圆直径 d2=200mm.设许用应力 =100 MPa。试按第四强度理论求轴的
AC段 向下斜的直线() FSA右 7kN FRA
F1=2kN q=1kN/m
C 4m
M=10kN· m
FSC左 3kN
FRB
F2=2kN
CD段 向下斜的直线 ( A )
FSC右 1kN FSD 3kN
D 4m 4m
B 3m
E
DB段 水平直线 (-) EB段 水平直线 (-)
直径。
z
y 3.64kN 10kN B DD
5kN
A C C
x
1.82kN 300mm
300mm
100mm
Tmax 155 N m
由强度条件
3
max
Tmax 16Tmax 3 Wt d
3
得:
16Tmax d π[ ]
16 155 27.2 10 3 m π 40 10 6
所以,为同时满足强度条件,取d>=27.2mm。
练习1 已知某传动轴为钢管,内径d=30mm,内外径之比=0.6,
1max
T1 T1 22 10 3 Wt1 πd1 / 16 π(0.123 ) / 16
3
A 22 kN· m +
B
C
64.84MPa [ ]
_
2 max
T2 T2 14 103 3 Wt 2 πd 2 / 16 π(0.13 ) / 16 71.3MPa [ ]
f
xy
x
30°
30
x y
30
2 2 40 60 40 60 cos( 60 ) ( 50) sin( 60 ) 2 2 58.3MPa x y 40 60 sin 2 xy cos 2 sin( 60 ) 2 2 ( 50) cos( 60 ) 18.3MPa
x y 2 max x y 80.7MPa 2 ( ) x 2 2 60.7MPa min
1 80.7MP
2 0
3 60.7MPa
强度理论的统一表达式: [ ] r 相当应力
r ,1 1 [ ]
材料为45钢。传动功率P=80KW,n=120r/min,如材料的
[τ]=70Mpa,请校核该轴的扭转强度。 练习2-3 P101习题3.3 、3.4
例题
作梁的内力图.
解: (1)支座反力为 F RA
F1=2kN
q=1kN/m
M=10kN· m
FRB
F2=2kN
FRA 7kN FRB 5kN
400 Me B
r3
M
T W
2 max
A
C
d 38.5mm
F2
F1
(2) 在 B 端加拉力 F3 AB 为弯,扭与拉伸组合变形 固定端截面是危险截面
A
400
400
B C
F3
D
F1 F2
400 Me B
M max 0.8F1 0.4F2 0.8kN m Tmax 0.4kN m
解:1. 计算 FCD
MA 0 1 FCD 2 q 4 2 2 FCD 4q
2. 计算CD杆的稳定性
l
i
l D 4 (1 4 )
64 1 2
l
D (1 2 ) 4
D 2 (1 2 )
4 170
40 10 4
3
30
练习5 如图所示为某构件内危险点的应力状态
(图中应力单位为MPa),试分别求其第二、
第三强度理论的相当应力
r2
60 40
、
,
r2
(μ =0.2)。
如图所示结构,两端铰支的圆环截面杆CD,其内径d=20mm,
外径D=40mm,材料的弹性模量E=200GPa,比例极限
σp=200MPa。若AB杆直径D1=100mm,[σ]=160MPa, 稳 定安全系数nst=2.5,试计算许可载荷。
所能承受的最大载荷。(考虑CD杆的抗弯能力和AB杆的稳定性, 忽略截面剪力与轴力)
800 400
E GPa 180
p
s
a MPa 300
b 1.2
40
200
220
练习2 直径mm的横梁CD,由直径d1=40mm的支杆AB支承,尺
寸如图所示。AB材料常数见下表。若横梁CD材料许用应力
[ ] 180 MPa,AB支杆许用稳定安全系数[n]st=4.0。试求该结构
解: 1.
4轴受力简图如图(b),齿轮Ⅱ
和 Ⅳ上的外力偶矩
P 0.765 M 9549 9549 39.3N m n 183 .5 P 2.98 M IV 9549 9549 155 N m n 183 .5
2.扭矩图如图(c) 3.直径d 的选取
从扭矩图可以看出,在齿轮Ⅲ、Ⅳ之间,轴的任一横截面上的 扭矩皆为最大值,且:
+
6 6
练习1
利用挠度、转角与分布载荷之间的关系做下图所示梁的
剪力方程和弯矩方程。已知F=30KN,q=35KN/m,l=450mm,
a=200mm, M 10KN m 。要求写出各拐点的计算过程。
F
q
M
A
a
C
B
l
练习2 P128 习题4.2(j)
P133 习题4.11(a)用挠度、转角、
DB、BE 四段. (2)剪力图 AC段 向下斜的直线()
A
将梁分为AC、CD、
4m
C
D
B 4m 3m
E
4m
FSA右 FRA 7kN FSC左 FRA 4q 3kN
CD段 向下斜的直线 ( )
FSC右 FRA 4q F1 1kN FSD F2 FRB 3kN
Fcr nst 由稳定性条件 n F
58048 2.5 4q
得:
q 5804N / m 5.8 KN / m
所以:
q 5.8 KN / m
练习1 直径mm的横梁CD,由直径d1=40mm的支杆AB支承,尺
寸如图所示。AB材料常数见下表。若横梁CD材料许用应力
[ ] 180 MPa,AB支杆许用稳定安全系数[n]st=4.0。试求该结构
所能承受的最大载荷。(考虑CD杆的抗弯能力和AB杆的稳定性, 忽略截面剪力与轴力)
800 400
E GPa 180
p
s
a MPa 300
b 1.2
40 90
200
220
45
练习3
如图所示,梁AB在A处铰支,在C处由二力杆CD支撑。
AB和CD材质相同且均为实心圆杆。AB的直径为dAB = 60mm , CD的直径为 dCD = 15mm 。图中L=1m,W=400N,若nst=2,试
400
FN F3 20kN
F3
A
C
F2
F1
固定端截面最大的正应力为
400
400 B
max
M max FN 143MPa Wz A
F3
ACຫໍສະໝຸດ 最大切应力为DF1 F2
Tmax 31.8MPa max Wt
由第三强度理论
400
400 Me B
r 3 4
r , 3 [ ] 141.4 140 100% 100% 1% 5% [ ] 140
所以按照第三强度理论,构件安全。
所以按照第四强度理论,构件安全。
练习1
已知铸铁构件上危险点处的应力状态,
50 25 20
如图9所示。若铸铁拉伸许用应力为[σ]=
60MPa,试按第二强度理论校核该点处的强 度是否安全。
7kN 3kN
FS F2 FRB 3kN
+
x=5m
2kN
1kN
FSB右 F 2 2kN
+
3kN
F点剪力为零,令其距 A截面的距离为x FSx FRA qx F 1 0 x = 5m
(3)弯矩图 AC段 M A 0 FRA
F1=2kN q=1kN/m
C 4m
400 400 B A D C
F1
F2
解:将F2向AB杆的轴线简化得
400
400 B
F2 1kN M e 0.4kN m
AB为弯扭组合变形
A D
C
F1 F2
固定端截面是危险截面
M max 0.8F1 0.4F2 0.8kN m Tmax 0.4kN m
400
2 max
(单位 MPa)
练习2 如图所示单元体,求
100MPa 40MPa