平面直角坐标系中点的平移
数学用坐标表示平移
![数学用坐标表示平移](https://img.taocdn.com/s3/m/a1cf932c26d3240c844769eae009581b6ad9bd55.png)
函数图像的平移
函数图像的平移
在函数图像中,平移可以改变图 像的位置,但不会改变图像的形 状和大小。通过平移,我们可以 更好地理解函数的性质和变化趋
势。
函数图像的对称性
平移可以与函数的对称性相结合, 例如通过平移奇函数或偶函数的 图像,可以更好地理解函数的对
称性质。
函数图像的周期性
在周期函数中,平移可以用于研 究函数的周期性和振幅变化,帮 助我们更好地理解函数的周期性。
平移解释物理现象
在物理现象的解释中,平移可以用来解释物体的运动轨迹 和速度变化的原因,例如在流体动力学中,平移可以用来 解释流体运动的轨迹和速度。
总结与展望
06
平移在数学中的重要地位
基础概念
平移是几何学中的基本概念,是研究图形变换和运动的基础。通过 坐标表示平移,可以更精确地描述图形的位置和方向变化。
数学用坐标表示平移
目录
• 引言 • 平移在坐标系中的表示 • 平移的数学表示 • 平移的性质和定理 • 平移的应用 • 总结与展望
引言
01
平移的定义
01
平移是图形在平面内沿某一方向 移动一定的距离,而不发生旋转 或翻转。
02
平移不改变图形的形状、大小和 方向,只改变其位置。
坐标系简介
坐标系是用来确定点 在平面上的位置的一 组数轴。
物理学
在物理学中,平移可以用于描述物体的位置和速度,特别 是在经典力学和电磁学中,平移是研究物体运动规律和相 互作用的基础。
计算机图形学
在计算机图形学中,平移是计算机图形处理的基础技术之 一,可以用于实现图像的平移、缩放、旋转等变换操作。
经济学
在经济学中,平移可以用于描述经济现象的变化趋势,如 市场供需关系的变化、经济增长率的变动等。
第七课时坐标平移及点关于坐标轴的轴反射
![第七课时坐标平移及点关于坐标轴的轴反射](https://img.taocdn.com/s3/m/02fe146aec3a87c24128c4e6.png)
第一章 实数1.4 平面直角坐标系第二课时 坐标平移规律及点关于坐标轴的轴反射一.预习题纲 (1)学习目标展示1.掌握平面直角坐标系中坐标平移公式和轴反射公式 2.会通过建立平面直角坐标系来描述物体的位置(2)预习思考二.经典例题例1.如图1,方格纸中的每个小格点都是边长为1个单位长度的正方形,我们把顶点在格点上的三角形叫做“格点三角形”,图中的△ABC 就是格点三角形,在建立平面直角坐标系以后,点B 的坐标为(—1,—1),把△ABC 向左平移3个单位后得到△A 1B 1C 1,画出△A 1B 1C 1,并分别写出A 1、B 1、C 1的坐标.【分析】由图可知A 点的坐标为(3,3),C则原图形中各点的纵坐标都不变,横坐标都减去3,即可求得平移后各对应点的坐标. 【简解】A 1(0,3);B 1(—4,—1);C 1(2,—1),顺次连结这三个点即可得到△A 1B 1C 1 如图2所示.【规律总结】在平面直角坐标系中,点的坐标平移规律为:左、右平移,纵坐标不变,横坐标减增(正向增,负向减);上、下平移,横坐标不变,纵坐标增减(正向增,负向减).记忆口诀为:左减右加,上加下减三.易错例题例2.在平面直角坐标系中,点P (3,4)关于x 轴轴反射后像点的坐标为 ;关于y 轴轴反射后像点的坐标为【错解】点P 关于x 轴轴反射后像点的坐标为(-3,4);点P 关于y 轴轴反射后像点的坐标为(3,-4)【错因分析】错解的原因是对平面直角坐标系中轴反射规律没有掌握好,从而弄错了符号。
【正解】点P关于x轴轴反射后点的坐标为(3,-4);点P关于y轴轴反射后像点的坐标为(-3,4)【点拨】平面直角坐标系中,点关于坐标轴轴反射后,对应点的坐标之间的关系是:关于哪个坐标轴对称,哪个坐标不变,另一个坐标变成相反数。
一.课前预习1.平移不改变图形的,只改变图形的2.在平面直角坐标系中,A点坐标为(1,3),将A点向右平移2个单位后到B点,则B 点与A点横坐标的关系是,纵坐标的关系是3.在平面直角坐标系中,△ABC三个顶点的坐标分别为A(1,3),B(3,2),C(0,0),分别作A、B、C三点关于y轴的轴反射,对应点分别为A/,B/,C/,则A/,B/,C/三点的坐标分别为;;二.当堂训练知识点一:平面直角坐标系中点的坐标平移规律1.在直角坐标系中,将点P(3,6)向左平移4个单位长度,再向下平移8个单位长度后,得到的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(2009天津)在平面直角坐标系中,已知线段AB的两个端点分别是A(-4,-1),B(1,1),将线段AB平移后得到线段A/B/,若点A/的坐标为(-2,2),则点B的坐标为()A.(4,3)B.(3,4)C.(-1,-2)D.(-2,-1)3.(2009荆门)将点P向左平移2个单位,再向上平移1个单位得到P/(-1,3),则点P 的坐标是____4.如图1,将平行四边形ABCD向左平移2个单位长度,可以得到平行四边形A/B/C/D/,画出平移后的图形,并指出各个顶点的坐标Array知识点二:平面直角坐标系中的轴反射规律5.(2009郴州)点P(3,-5)关于x轴轴反射后的坐标为()A.(-3,-5)B.(5,3)C.(-3,5)D.(36.(2009钦州)点P(-2,1)关于 y轴轴反射后点的坐标为(A.(-2,-1)B.(2,1)C.(2,-1)D.(-2,7.(2009吉林)如图2,点A关于y轴的轴反射后的点的坐标是.知识点三:用坐标表示地理位置8.确定一个地点的位置,下列说法中正确的是()A.偏西30°,相距500米B.东北方向C.距此200米D.距此北500米y O(01)B , (20)A , 1(3)A b , 1(2)B a , 图1 x 9.芳芳放学从校门向东走400米,再往北走200米到家;丽丽出校门向东走200 米到家,则丽丽家在芳芳家的 ( )A.东南方向B.西南方向C.东北方向D.西北方向课时测评(时间:40分钟,满分100分)一.选择题(每小题5分,共25分)1.(2009南充)在平面直角坐标系中,点A (2,5)与点B 关于y 轴轴反射,则点B 的坐标是( ) A .(-5,-2) B .(-2,-5) C .(-2,5) D .(2,-5) 2.(2009威海)如图1,A ,B 的坐标为(2,0),(0,1)若将线段AB 平移至A 1B 1,则a+b 的值为( ) A .2 B .3 C .4 D .53.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比是( )A .向右平移了3个单位B .向左平移了3个单位C .向上平移了3个单位D .向下平移了3个单位 4.已知三角形的三个顶点坐标分别是(-4,-1)、(1,1)、(-1,4),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标依次是( ) A .(-2,2),(3,4),(1,7) B .(-2,2),(4,3),(1,7) C .(2,2),(3,4),(1,7) D .(2,-2),(3,3),(1,7) 5.(2009襄樊)如图2,在边长为1的正方形网格中,将ABC △向右平移两个单位长度得到A B C '''△,则与点B '关于x 轴轴反射的点的坐标是( ) A .()01-, B .()11, C .()21-,D .()11-, 二.填空题(每小题5分,共25分) 6.(2008乌鲁木齐)将点(1,2)向左平移1个单位,再向下平移2个单位后得到对应点的坐标是 7.(2009梧州)将点A (1,-3)向右平移2个单位,再向下平移2个单位后得到点B (a ,b ),则ab = . 8.(2009包头)线段CD 是由线段AB 平移得到的,点A (-1,4)的对应点为C (4,7),则点B (-4,-1)的对应点D 的坐标是9.(2009常德)如图3,△ABC 向右平移4个单位后图3北南西东B A DCOM图4图2得到△A′B′C′,则A′点的坐标是.10.如图4,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(-40,-30)表示,那么(10,20)表示的点是三.解答题(本题共50分)12.(本题12分)如图6,将三角形ABC向右平移2个单位长度,再向下平移3个单位长度,得到对应的三角形A1B1C1,画出三角形A1B1C1,并写出点A1、B1、C1的坐标。
2024八年级数学上册第四章第4课时用坐标表示点在坐标系中的两次平移习题课件鲁教版五四制
![2024八年级数学上册第四章第4课时用坐标表示点在坐标系中的两次平移习题课件鲁教版五四制](https://img.taocdn.com/s3/m/0a9238530a4c2e3f5727a5e9856a561252d321a2.png)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
② P '在 x 轴上, Q '在 y 轴上,
则 P '的纵坐标为0, Q '的横坐标为0,
∵0- m =- m ,
∴点 P '的横坐标为 m -3- m =-3,
∴点 P 平移后的对应点的坐标是(-3,0).
综上可知,点 P 平移后的对应点的坐标是(0,2)或
C1.已知△ ABC 内任意一点 P ( a , b ),经平移后对应点
为 P1( a +4, b +1).
(1)请描述△ ABC 如何平移得到
△ A1 B1 C1;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
【解】∵点 P ( a , b )经平移后的对应点为 P1( a +4, b +1),
∴△ ABC 先向右平移4个单位长度,再向上平移1个单位长度
【解】当 a =-2时, P1(2, b +1).∵ P1恰好在第一象
限,∴ b +1>0.∵△ P1 AB 的面积为11,∴6( b +1+3)-
×3×4- ×2( b +1+3)- ×6( b +1)=11,解得 b =
0,∴此时点 P 的坐标为(-2,0).
1
2
3
4
5
6
7
8
9
10
11
1
2
3
4
5
人教版数学七年级下册--坐标系下平移的三种形式
![人教版数学七年级下册--坐标系下平移的三种形式](https://img.taocdn.com/s3/m/21042c995f0e7cd1842536a6.png)
坐标系下平移的三种形式黄山杨叶道我们已经知道图形的平移与平移的方向和平移的距离有关,但平移后的图形与原图形的形状和大小是一致的,只是位置不同而已,且图形上每一点平移的方向和距离都是相同的.因此,研究图形的平移的关键是点的平移.在坐标平面内,研究点的平移十分简单,主要表现为以下三种平移.一、沿x轴的方向平移我们知道,当点A(4,-3)沿与x轴平行的方向向左平移5个单位时,平移后得到的点B的纵坐标不变,仍是-3,而横坐标为4-5=-1,因此,平移后点的坐标是(-1,-3);类似地,如果点A(4,-3)沿x轴方向向右平移5个单位,则点A的纵坐标仍然不变,横坐标变为4+5=9,于是A点平移后的坐标为(9,-3).一般地,设点P(x,y)沿x轴方向平移n(n>0)个单位后的点是Q,则向左平移时,点Q的坐标是(x-n,y);向右平移时,点Q的坐标是(x+n,y).这就是说:“点沿横轴方向平移时,纵坐标不变,横坐标左减右加.”例1已知点A的坐标是(-2,3),线段AB∥x轴,且AB=2,求点B的坐标.解析:任何两点中的一点都可以看作是由另一点平移得到的,这里的AB=2表明点A、B之间的距离是2,因此,把点A平移2个单位可得点B.注意到AB//x轴,说明点A沿x 轴方向平移2个单位可得点B,可究竟是向左还是向右平移呢?题目并无说明,因此需要一一讨论.如果是向左平移,那么点B的坐标是(-4,3);如果是向右平移,那么点B的坐标是(0,3).因此,点B的坐标是(-4,3)或(0,3).跟踪训练1在平面直角坐标系中,点P(-1,1)沿与x轴平行的方向向右平移2个单位后得到点P1,则点P1在【】A.第一象限B.第二象限C..第三象限D.第四象限二、沿y轴的方向平移与上述探索方法一样,易得如下结论:设点P(x,y)沿y轴方向平移n(n>0)个单位后的点是Q,则向上平移时,点Q的坐标是(x,y+n);向下平移时,点Q的坐标是(x,y-n);这就是说:“点沿纵轴方向平移时,横坐标不变,纵坐标上加下减.”例2在数学兴趣小组的一次活动中,小明通过建立平面直角坐标系发现旗杆底端位置在点A(3,1),顶端在点B(3,10),升旗前旗帜的三个顶点的位置分别在点P(3,2),Q(3,3),R(5,2),写出当旗帜的顶端Q升到杆顶B处时,点P和R对应的点的坐标.解析:显然,旗杆平行于y轴,所以升旗时旗帜是沿y轴方向向上平移,由于点Q从(3,3)平移到点(3,10),平移的距离是10-3=7,所以点P(3,2)沿y轴方向向上平移7个单位后是点P′(3,9),点R(5,2)向上平移7个单位后是点R′(5,9).跟踪训练2在平面直角坐标系中,将点A(5,6)向下平移6个单位后的点的坐标是【】A.(11,6)B.(5,0)C.(5,12)D.(-1,6)三、不沿坐标轴的方向平移如果点的平移方向既不是沿横轴方向,也不是沿纵轴方向,那么它可以看作既沿横轴方向平移,又沿纵轴方向平移.此时,我们可以通过上述的两种平移来解决.例3如何平移点A(-5,3),使它到达点B(2,-1)?解析:先从横坐标来考虑,由于点A到点B,横坐标由-5增加到2,可知点A向右平移2-(-5)=7个单位长度;纵坐标由3减小到-1,可知只需要再把点(2,3)向下平移3-(-1)=4个单位长度.因此,把点A向右平移7个单位,再向下平移4个单位可得点B.跟踪训练3将点A(2,1)先向左平移()个单位,再向下平移()个单位可得到点(-2,-2),则括号内的数依次应填【】A.2,1B.0,-1C..4,3D.3,4答案1.A2.B3. C。
学会一口诀轻松点平移
![学会一口诀轻松点平移](https://img.taocdn.com/s3/m/303e259d5fbfc77da369b12e.png)
学会一口诀轻松点平移平移作为一种重要的几何变换,在数学中有着广泛的应用,因此学好平移,对于广大中学生而言意义重大而深远。
但在现实的学习中,学生的学习效果却不太理想,针对这一现状,笔者认真阅读了人教版初中数学教材中点平移的相关知识,并在此基础上对数轴上的点平移和平面直角坐标系内的点平移的规律做了细致而深入的研究,发明了一个简单的点平移口诀,现与大家一起分享。
点平移口诀:左右横,上下纵,正加负减。
使用说明:①该口诀适用于数轴上、平面直角坐标系内点的平移;②“左右横”指左右移动时变横坐标,“上下纵”指上下移动时变纵坐标,“正加负减”指点移动方向为坐标轴的正方向就加,负方向就减。
一、现举一例详述方法把点A(-2,3)依次做如下四次平移:①向左平移2个单位;②向右平移-1个单位;③向上平移4个单位;④向下平移-5个单位;平移后得到点B,求点B的坐标。
分析简解将点A(-2,3)“向左平移2个单位”,由点平移口诀可知:“向左”表示变横坐标,又“左”代表横轴的“负”方向,所以平移之后的新点的坐标为:(-2-2,3);同理:“向右平移-1个单位”表示“横坐标+(-1)”,“向上平移4个单位” 表示“纵坐标+4”,“向下平移-5个单位” 表示“纵坐标-(-5)”,所以点B的坐标为:B(-2-2+(-1),3+4-(-5)),化简后可得点B坐标为:(-5,12)。
二、趣题重现难题巧解蜗牛能成功吗?一只蜗牛不小心掉进一口枯井里。
它趴在井底哭了起来,一只癞蛤蟆爬过来,瓮声瓮气的对蜗牛说:“别哭了,小兄弟!哭也没用,这井壁太高了,掉到这里就只能在这生活了。
我已经在这里过了多年了,很久没有看到过太阳,就更别提想吃天鹅肉了!”蜗牛望着又老又丑的癞蛤蟆,心里想:“井外的世界多美呀,我决不能像它那样生活在又黑又冷的井底里!”蜗牛对癞蛤蟆说:“癞大叔,我不能生活在这里,我一定要爬上去!请问这口井有多深?”“哈哈哈……,真是笑话!这井有3米深,你小小的年纪,又背负着这么重的壳,怎么能爬上去呢?”“我不怕苦、不怕累,每次爬一段,总能爬出去!”。
【第05讲】平面直角坐标系中的点
![【第05讲】平面直角坐标系中的点](https://img.taocdn.com/s3/m/c4587698192e45361166f53f.png)
平面直角坐标系中的点➢ 知识网一、对称类点点()P a b ,关于x 轴的对称点是()P a b '-,,即横坐标不变,纵坐标互为相反数. 点()P a b ,关于y 轴的对称点是()P a b '-,,即纵坐标不变,横坐标互为相反数. 点()P a b ,关于坐标原点的对称点是()P a b '--,,即横坐标互为相反数,纵坐标也互为 相反数. 二、平移⑴ 点平移:①将点()x y ,向右(或向左)平移a 个单位可得对应点()x a y +,或()x a y -,. ②将点()x y ,向上(或向下)平移b 个单位可得对应点()x y b +,或()x y b -,. ⑵ 图形平移:①把一个图形各个点的横坐标都加上(或减去)一个正数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位.②如果把图形各个点的纵坐标都加上(或减去)一个正数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位.注意:平移只改变图形的位置,图形的大小和形状不发生变化. 三、平面直角坐标系中的特殊计算 1.中点坐标公式:已知11(,)A x y ,22(),B x y ,则中点坐标为:121222,x x y y ++⎛⎫⎪⎝⎭.2.两点之间的距离公式:已知11(),A x y ,22(),B x y ,则AB 12|AB x x -.【例1】在平面直角坐标系中,()45P -,关于x 轴的对称点的坐标是 ,关于y 轴的对称点的坐标是 ,关于原点的对称点是 .【练1】 ⑴ 点()35P -,关于x 轴对称的点的坐标为( ) A .()35--,B .()53,C .()35-,D .()35,⑵ 点()21P -,关于y 轴对称的点的坐标为( ) A .()21--,B . ()21,C .()21-,D .()21-,⑶ 在平面直角坐标系中,点()23P -,关于原点对称点P '的坐标是 .⑷ 点()23,P 关于直线3x =的对称点为 ,关于直线5y =的对称点为 .⑸ 已知点()121P a a +-,关于x 轴的对称点在第一象限,求a 的取值范围.【例2】点()35M --,向上平移7个单位得到点1M 的坐标为 ;再向左平移3个单位得到点2M 的坐标为 .【练2】⑴ 平面直角坐标系中,将(2,1)P -向右平移4个单位,向下平移3个单位,得到'P ,⑵ 平面直角坐标系中,线段11A B ′′是由线段AB 经过平移得到的,点()14A --,的对应点为()111A -,′,那么此过程是先向 平移 个单位再向 平 移个单位得到的,则点B ()11,的对应点1B 坐标为 . ⑶将点()21,P m n -+沿x 轴负方向平移3个单位,得到()112,P m -,则点P 坐标是 .⑷ 平面直角坐标系中,线段A B ′′是由线段AB 经过平移得到的,点()21,A -的对应点为()34,A ′,点B 的对应点为()40,B ′,则点B 的坐标为( ) A .()93, B .()13,--C .()33,-D .()31,--【例3】如图,直角坐标系中,ABC △的顶点都在网格点上,其中点A 坐标为()21-,,则ABC △的面积为 平方单位.【练1】 ⑵ 直角坐标系中,已知()10A -,、()30B ,两点,点C 在y 轴上,ABC △的面积是4,则点C 的坐标是 .⑵ 如右图,已知直角坐标系中()14A -,、()02B ,,平移线段AB ,使点B 移到点()30C ,,此时点A 记作点D ,则四边形ABCD 的面积是 .【例4】已知,在平面直角坐标系中,A 、B 两点分别在x 轴、y 轴的正半轴上,且3OB OA ==. ⑴直接写出点A 、B 的坐标; ⑵若点()22C -,,求BOC △的面积;⑶点P 是与y 轴平行的直线上一点,且点P 的横坐标为1,若ABP △的面积是6,求点P 的坐标.【练4】已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题:(1)在坐标系内描出点A、B、C的位置;(2)求出以A、B、C三点为顶点的三角形的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10,若存在,请直接写出点P的坐标;若不存在,请说明理由.【练5】如图,△ABC是由△A1B1C1向右平移3个单位,再向下平移1个单位所得.已知A (2,1),B(5,3),C(3,4).(1)直接写出△A1B1C1三个顶点的坐标.(2)求△ABC的面积.(3)在坐标轴上是否存在一点M,使得S△AOM=2S△ABC,若存在,求出M点的坐标,若不存在请说明理由。
初中数学知识点归纳平面直角坐标系
![初中数学知识点归纳平面直角坐标系](https://img.taocdn.com/s3/m/5a343a95d0f34693daef5ef7ba0d4a7303766c48.png)
初中数学知识点归纳平面直角坐标系平面直角坐标系是数学中非常重要的概念,它由平面上的两条相互垂直的直线组成。
下面我们来归纳一下初中数学中关于平面直角坐标系的知识点。
1.平面直角坐标系的建立:平面直角坐标系一般由两条相互垂直的直线组成,其中一条称为x轴,另一条称为y轴。
通过将这两条直线固定在平面上,并以相交点为原点,可以确定其他点的坐标,从而建立平面直角坐标系。
2.坐标的表示和性质:在平面直角坐标系中,每个点都可以用一个有序数对(x,y)来表示,其中x表示横坐标,y表示纵坐标。
例如,点A的坐标为(2,3),表示A点在x轴上的坐标为2,在y轴上的坐标为3性质:对于平面上的任意两点A(x1,y1)和B(x2,y2),有以下性质:-若x1=x2且y1=y2,则A=B,即两点相等;-若x1≠x2或y1≠y2,则A≠B,即两点不等;-若x1=x2且y1=y2,则AB=0,即两点重合;-若x1≠x2或y1≠y2,则AB≠0,即两点不重合。
3.平面上点的四象限和坐标轴上的点:平面直角坐标系将平面划分为四个部分,称为四个象限。
x轴和y轴分别将平面分成两半,可形成4个象限:第一象限,该象限中x坐标和y坐标均为正;第二象限,该象限中x坐标为负,y坐标为正;第三象限,该象限中x坐标和y坐标均为负;第四象限,该象限中x坐标为正,y坐标为负。
此外,坐标轴上的点有特殊的性质:x轴上的点坐标形式为(x,0),y 轴上的点坐标形式为(0,y)。
4.两点间的距离和中点:在平面直角坐标系中,两点间的距离可以通过勾股定理求得。
设A(x1, y1)和B(x2, y2)是平面上的两点,其距离为AB=sqrt((x2-x1)^2+(y2-y1)^2)。
中点公式:在平面直角坐标系中,连接线段AB的中点M(xm, ym)的坐标可以通过以下公式得到:xm=(x1+x2)/2,ym=(y1+y2)/25.点的对称性和平移性:关于原点对称:对于平面直角坐标系中的点A(x,y),关于原点O对称的点A'的坐标为A'(-x,-y)。
七年级数学下册第七章平面直角坐标系7.2.2用坐标表示平移课件新版新人教版
![七年级数学下册第七章平面直角坐标系7.2.2用坐标表示平移课件新版新人教版](https://img.taocdn.com/s3/m/50d6218a561252d381eb6e25.png)
课堂导学
3.把A(2,3)向左平移2个单位,再向上平移6个单位 得到的点的坐标是____(_0_,__9_) _.
4.线段AB是由线段CD平移得到,点A(-2,1)的对 应点为C(1,1),则点B(3,2)的对应点D的坐标是 __(_6_,__2_)___.
5.如图,三角形ABC的顶点都在 方格纸的格点上, 如果将三角形 ABC先向右平移4个单位长度,再 向下平移1个单位长度,得到三角 形A1B1C1,那么点A的对应点A1的 坐标为___(_2_,__5_)__.
课堂导学
6.如图,把三角形ABC经过一定的变换得到三角形 A′B′C′,如果三角形ABC上点P的坐标为(a,b),那 么点P变换后的对应点P′的坐标为_(_a_+__3_,__b_+__2_)__.
2. 单击鼠标右键,选择“更改图片”,选
3. 在“替换为”下拉列表中选择替换字体。 4. 点击“替换”按钮,完成。
PPT放映 设置 PPT放映场合不同,放映的要求也不同,下面将例举几种常用的放映设置方式。
让PPT停止自动播放
1. 单击”幻灯片放映”选项卡,去除“使用计时”选项即可。
让PPT进行循环播放
课堂导学
对点训练一 1.已知点A(3,-2),写出这点经过平移后得到的点
的坐标: (1)向右平移3个单位得到__(6_,__-__2_),或向左平移3个
单位得到__(_0_,__-__2_) _; (2)向上平移3个单位得到__(3_,__1_)__,或向下平移3个
单位得到__(3_,__-__5_).
平面直角坐标系与坐标变换
![平面直角坐标系与坐标变换](https://img.taocdn.com/s3/m/d33f549a51e2524de518964bcf84b9d528ea2c33.png)
平面直角坐标系与坐标变换平面直角坐标系是描述平面上点的位置的一种常用坐标系。
它由两条相互垂直的坐标轴组成,分别被称为x轴和y轴,并且原点位于这两条轴的交点处。
在平面直角坐标系中,每个点都可以由一个有序数对 (x, y) 来表示,其中 x 表示点在x轴上的坐标,y 表示点在y轴上的坐标。
坐标变换是在不同坐标系之间进行转换的过程。
当我们需要在不同的坐标系中描述同一个点时,就需要进行坐标变换。
常见的坐标变换包括平移、旋转、缩放等操作。
1. 平移平移是将一个点沿着给定的方向和距离移动的操作。
在平面直角坐标系中,平移操作可以通过在原有坐标的基础上加上一个常量来实现。
对于点 P(x, y) 的平移操作,可以表示为 P'(x+a, y+b),其中 (a, b) 是平移向量。
2. 旋转旋转是将一个点绕着某个中心点按照一定的角度进行旋转的操作。
在平面直角坐标系中,原点 O(0, 0) 是通常被选作旋转的中心点。
对于点 P(x, y) 的旋转操作,可以表示为 P'(x', y'),其中 x' 和 y' 的计算公式如下:x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ其中,θ 表示旋转的角度。
3. 缩放缩放是将一个点按照给定的比例进行放大或缩小的操作。
在平面直角坐标系中,缩放操作可以通过乘上一个比例因子来实现。
对于点P(x, y) 的缩放操作,可以表示为 P'(kx, ky),其中 k 表示缩放的比例。
4. 坐标轴变换坐标轴变换是将坐标系的x轴和y轴进行调整的操作。
在平面直角坐标系中,坐标轴变换操作可以通过旋转和缩放来实现。
例如,如果我们需要将坐标系中的x轴和y轴交换,可以先进行一个旋转操作将x 轴旋转到y轴的位置,然后再进行一个缩放操作将x轴和y轴的刻度进行调整。
综上所述,平面直角坐标系与坐标变换是描述平面上点的位置和在不同坐标系之间进行转换的重要概念和操作。
用坐标表示平移(第一课时)课件人教版数学七年级下册
![用坐标表示平移(第一课时)课件人教版数学七年级下册](https://img.taocdn.com/s3/m/12452f08e97101f69e3143323968011ca300f741.png)
可求出点 E,F,G,H 的坐 标分别是(5,-3),(5,-4), (6,-4),(7,-3).
如果直接平移正方形 ABCD, 使点 A 移到点 E,它和我们 前面得到的正方形位置相同.
y
6 5 A D4 B C3 2 1
-6 -5 -4 -3 -2 -1O -1 -2
-3 -4 -5
1 2 3 4 5 6x
+3
OB=4
2.如图,点 A、B 的坐标分别为 (1,2)、(4,0),将 △AOB
沿 x 轴向右平移,得到 △CDE,已知 DB=1,则点 C 的坐
标为( D ) A. (2,2) B. (4,3)
平移长度OD=3
y AC
C. (3,2) D. (4,2)
O DB E x
3.若将点 A(m+2,3) 先向下平移 1 个单位,再向左平移 2 个单位,得到点 B(2,n-1),则( A )
导入新知
如图,你能画出把鱼往左平移 6 格后所得的图形吗? y
建立如图所示的平面直角
坐标系,平移这个图形,
图形上的点的坐标发生了
什么变化呢?
O
x
合作探究 新知一 平面直角坐标系中点的平移
y
根据右图回答问题:
6
5
1.将点A(-2,-3)向右平移5个单
4
3
位长度,得到点A1( _3__ , _-_3_ );
(1)AB是怎样平移的? (2)求点B′的坐标.
解:(1)∵A(1,0)平移后对应点 A′的坐标为(1,-3),∴A 点的平移方 法是:向下平移 3 个单位,∴线段 AB 向下平移 3 个单位得到 A′B′ (2)∵B 点的平移方法与 A 点的平移方法是相同的,∴B(1,3)平移后 B ′的坐标是(1,0)
第4讲 平面直角坐标系中的图形规律
![第4讲 平面直角坐标系中的图形规律](https://img.taocdn.com/s3/m/4f43621c3b3567ec102d8a4f.png)
A5
y A1(a,4)
A.18 【答案】A
B.20
C.36
A
O B
B1(3,b) x
D.无法确定
【例 4】如图,A、B 的坐标分别为(1,0)、(0,2),若线段 AB 平移到至 A1B1,A1、B1 的坐 标分别为(2,a)、(b,3),则 a-b 的值为______.
【答案】0
y B1(b,3)
B(0,2)
A1(2,a)
O A(1,0) x
剖析三 坐标系中图形变化与面积问题
【例 5】如图,在直角坐标系中,A(-3,4),B(-1,-2),O 为坐标原点,把△AOB 向右 平移 3 个单位,得到△DEF.
(1)求 D、E、F 三点的坐标. (2)求△DEF 的面积.
Ay
O
x
B
【答案】解:(1)∵A(-3,4),B(-1,-2),O 为坐标原点,把△AOB 向右平移 3 个单位, 得到△DEF; ∴D(0,4),E(2,-2),F(3,0); (2)过点 A 作 AD⊥y 轴于点 D,过点 B 作 BE⊥y 轴于点 E, ∵△AOB 的面积等于△DEF 的面积,
∴△DEF 的面积= 1 (3+1)×6- 1 ×3×4- 1 ×1×2=5.
2
2
2
Ay D
O
x
BE
【例 6】已知:如图,把△ABC 向上平移 3 个单位长度,再向右平移 2 个单位长度,得到 △A′B′C′.
(1)写出 A′、B′、C′的坐标; (2)求出△ABC 的面积; (3)点 P 在 y 轴上,且△BCP 与△ABC 的面积相等,求点 P 的坐标.
规则图形的面积可用几何图形的面积公式求解,对于不规则的图形的面积,通常可采用 割补法将不规则图形的面积转化为规则图形的面积的和或差求解.
平面直角坐标系中的平移变换
![平面直角坐标系中的平移变换](https://img.taocdn.com/s3/m/7725b02e580216fc700afdbc.png)
设F 是坐标平面内的一个图形,将F 上所有点按 照同一方向,移动同样长度,得到图形F ,这一过 程叫图形的平移.
2.设F 是坐标平面内的一个图形,将F 上所有点 按照同一方向,移动同样长度,得到图象 F 与F 之间的关系?
y
O
x
2 点的平移公式:
设P (x,y)是图象F上任一点,平移后对应点为
2
中心为
( x0 , y0 )
a ( x0 , y0 )
2
⑤.曲线 C : y 2 px ,按向量
2
平移后得曲线
C : ( y y0 ) 2 p( x x0 )
顶点为
( x0 , y0 )
例2.说明方程
4 x 9 y 16 x 18 y 11 0
将它们代入y=2x 中得到 y 3 2 x
即函数的解析式为 y 2 x 3
P( x, y)
O x P ( x, y )
例3:已知函数y=x2图象F, 平移向量a=(-2,3)到 F'的位置, 求图象F'的函数表达式 解:在曲线F上任取一点P(x,y),设F'上的对 Y 应点为P′(x′,y ′ ),则
F' x ′=x-2, y ′=y+3 ∴ x=x ′+2 ,y=y ′-3
将上式代入方程y=x2, 得: y ′-3=(x ′+2)2
a
F:y=x2
即:y ′=(x
′+2)2+3
OLeabharlann X一般地我们有如下关于平移变换的结论: ①.将点 P(x, y) 按向量 a ( x0 , y0 ) 平移,所得点 P( x x0 , y y0 ) P的坐标为: .②.将曲线
平面直角坐标系中的几何变换
![平面直角坐标系中的几何变换](https://img.taocdn.com/s3/m/40e37320fd4ffe4733687e21af45b307e871f999.png)
平面直角坐标系中的几何变换在数学中,几何变换是一种将图形从一个位置或形状转移到另一个位置或形状的方法。
在平面直角坐标系中,有许多常见的几何变换,如平移、旋转、缩放和翻转等。
这些变换不仅在数学中有着重要的应用,也在计算机图形学、物理学和工程学等领域中扮演着重要的角色。
平移是最简单的几何变换之一。
它通过将图形的每个点沿着指定的向量移动一定的距离来改变图形的位置。
在平面直角坐标系中,平移可以通过将图形的每个点的坐标分别增加或减少相同的数值来实现。
例如,将一个三角形沿着向量(2, 3)平移,可以将每个点的x坐标增加2,y坐标增加3。
这样,原来的三角形将平移至新的位置。
旋转是另一种常见的几何变换。
它通过围绕一个点或围绕坐标轴旋转图形来改变图形的方向。
在平面直角坐标系中,旋转可以通过将图形的每个点绕着指定的旋转中心旋转一定的角度来实现。
旋转的角度可以是正数或负数,正数表示逆时针旋转,负数表示顺时针旋转。
例如,将一个矩形绕着原点逆时针旋转90度,可以通过将每个点的坐标(x, y)变换为(-y, x)来实现。
缩放是改变图形大小的几何变换。
它通过乘以一个比例因子来增加或减少图形的尺寸。
在平面直角坐标系中,缩放可以通过将图形的每个点的坐标分别乘以相同的数值来实现。
如果缩放因子大于1,图形将变大;如果缩放因子小于1,图形将变小。
例如,将一个圆的半径缩小为原来的一半,可以将每个点的坐标乘以0.5。
翻转是将图形沿着某个轴对称的几何变换。
它通过改变图形的左右或上下位置来改变图形的方向。
在平面直角坐标系中,翻转可以通过将图形的每个点的坐标的一个分量取反来实现。
例如,将一个三角形关于x轴翻转,可以将每个点的y坐标取反。
除了以上几种常见的几何变换,还有一些其他的变换,如错切、投影和仿射变换等。
错切是通过将图形的每个点的坐标的一个分量增加或减少与另一个分量成比例的数值来改变图形的形状。
投影是将三维图形映射到二维平面上的几何变换。
仿射变换是一种将图形进行平移、旋转、缩放和错切等组合的变换。
图形在坐标系中的平移(共12张PPT)
![图形在坐标系中的平移(共12张PPT)](https://img.taocdn.com/s3/m/99bf2caca1116c175f0e7cd184254b35eefd1ad7.png)
A1( 3,3 ),C1( 2,1 ) 1
1
( 4 )将点D( -1,2 )向下平移1个单位;
( 3 )写出图形中和坐标轴平行的线段;
在平面直角坐标系中,已知线段AB的两个端点分别是A( 4,-1 ),B( 1,1 ).
4.在平面直角坐标系中,已知线段AB的两个端点分别是A( 4,-1 ),B( 1,1 ).将 线段AB平移后得到线段A'B',若点A'的坐标为( -2,2 ),则点B'的坐标为 ( 5,4 ) .
第11章
图形在坐标系中的平移
-9-
12.一个三角形ABC的三个顶点坐标分别为A( 0,0 ),B( 3,0 ),C( 2,3 ). ( 1 )把三角形ABC向右平移3个单位,再向下平移2个单位,得到三角形A'B'C', 写出点A',B',C'的坐标.
( 2 )若三角形A″B″C″三个顶点坐标分别是A″( -2,-3 ),B″( 1,3 ),C″( 0,0 ),则三角形A″B″C″是由三角形ABC经过怎样的平移得到的?
A1( (2
)3(,4-(2),,-C421)(.)2求,2 出) 此图形的面积.
( 2,5 )
B.
向下平移3个单位长度,再向右平移2个单位长度
( 2 )将三角形ABC向左平移2个单位,再向下平移3个单位,得到三角形A″B″C″.
( 3 )( 4,9 ).
解:( 1 )如图. 如图所示,在平面直角坐标系中,点A,B,C的坐标分别为( -1,3 ),( -4,1 ),( -2,1 ),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是( 1,2 ),则点A1,C1的坐标分别是 ( A )
在平面直角坐标系中点的平移规律
![在平面直角坐标系中点的平移规律](https://img.taocdn.com/s3/m/0af15614dc36a32d7375a417866fb84ae45cc3d5.png)
在平面直角坐标系中点的平移规律
平面直角坐标系左右平移,点的横坐标变化,向右平移变大,向左平移变小。
平面直角坐标系上下平移,点的纵坐标变化,向上平移变大,向下平移变小。
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称直角坐标系。
在平面直角坐标系内,如果把一个图形各个点的横坐标都加平移a个单位长度。
在平面直角坐标系内,如果把一个图形各个点的纵坐标都加平移a个单位长度。
坐标平面内的点与有序实数对一一对应。
一三象限角平分线上的点横纵坐标相等。
二四象限角平分线上的点横纵坐标互为相反数。
一点上下平移,横坐标不变,即平行于y轴的直线上的点横坐标相同。
y轴上的点,横坐标都为0。
x轴上的点,纵坐标都为0。
坐标轴上的点不属于任何象限。
图形在坐标中的平移(提高)知识讲解
![图形在坐标中的平移(提高)知识讲解](https://img.taocdn.com/s3/m/be44f5d8b4daa58da1114a5b.png)
图形在坐标中的平移(提高)知识讲解【学习目标】1. 能在直角坐标系中用坐标的方法研究图形的平移变换,掌握图形在平移过程中各点的变化规律,理解图形在平面直角坐标系上的平移实质是点坐标的对应变换。
2. 运用点的坐标的变化规律来进行简单的平移作图.【要点梳理】要点一、点在用坐标中的平移在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x +a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y +b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移点的坐标规律:沿x轴方向平移纵坐标不变,沿y轴方向平移横坐标不变.要点二、图形在坐标中的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化。
【典型例题】类型一、点在用坐标中的平移1.(2016•藁城区校级模拟)在平面直角坐标系中,将点A(m﹣1,n+2)先向右平移3个单位,再向上平移2个单位,得到点A′,若点A′位于第二象限,则m、n的取值范围分别是()A.m<0,n>0 B.m<1,n>﹣2 C.m<0,n<﹣2 D.m<﹣2,m>﹣4 【思路点拨】根据点的平移规律可得向右平移3个单位,再向上平移2个单位得到(m﹣1+3,n+2+2),再根据第二象限内点的坐标符号可得.【答案与解析】解:点A(m﹣1,n+2)先向右平移3个单位,再向上平移2个单位得到点A′(m+2,n+4), ∵点A′位于第二象限,∴,解得:m<﹣2,n>﹣4,故选D.【总结升华】此题主要考查了点的坐标平移规律,关键是横坐标,右移加,左移减;纵坐标,上移加,下移减.2. 如果将点P(3,4)沿x轴方向平移2个单位,再沿y轴方向向下平移3个单位后的坐标是_______.【答案】(1,1)或(5,1)【解析】解:直接利用平移中点的变化规律求解即可.由点P的平移规律可知,此题规律是(x-2,y—3),或(x+2,y—3)照此规律计算可知平移后的点的坐标是(1,1)或(5,1).故答案填:(1,1)或(5,1).【总结升华】本题考查图形的平移变换.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.举一反三:【变式】将点M向左平移3个单位,再向下平移2个单位得到M′(-2,—3),则点M的坐标是_______.【答案】(1,-1).类型二、图形在坐标中的平移3.(2014•钦州)如图,△A′B′C′是△ABC经过某种变换后得到的图形,如果△ABC 中有一点P的坐标为(a,2),那么变换后它的对应点Q的坐标为.【思路点拨】根据对应点A、A′的坐标确定出平移规律为向右5个单位,向下4个单位,然后写出点Q的坐标即可.【答案】(a+5,﹣2).【解析】解:由图可知,A(﹣4,3),A′(1,﹣1),所以,平移规律为向右5个单位,向下4个单位,∵P(a,2),∴对应点Q的坐标为(a+5,﹣2).故答案为:(a+5,﹣2).【总结升华】本题考查了坐标与图形变化﹣平移,观察图形得到变化规律是解题的关键.举一反三:【变式】(2015•济南)如图,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个单位长度,在向下平移1个单位长度,得到△A1B1C1,那么点A 的对应点A1的坐标为( )A.(4,3) B。
八年级数学上册第11章平面直角坐标系11.2图形在坐标系中的平移教案沪科版
![八年级数学上册第11章平面直角坐标系11.2图形在坐标系中的平移教案沪科版](https://img.taocdn.com/s3/m/7891761a366baf1ffc4ffe4733687e21af45ffd1.png)
11。
2 图形在坐标系中的平移【知识与技能】在同一坐标系中,感受图形上的点的坐标与图形变化之间的关系。
【过程与方法】经历图形在坐标系中的平移过程,培养学生形象思维能力和数形结合意识.【情感与态度】调动学生学习的主动性,培养合作探究的意识,体会坐标系中的图形平移的实际应用价值.【教学重点】重点是探究点或图形的平移引起的坐标变化的规律,另一个是研究图形上的点的坐标的某种变化引起的图形的平移变换.【教学难点】难点是对图形在坐标中的平移变化的理解。
一、创设情境,导入新知1.复习回顾探究:根据下面条件画一副示意图,标出学校和小强家、小敏家、小刚家的位置。
小刚家:出校门向东走150m,再向北走200m.小强家:出校门向西走200m,再向北走350m,最后向东走50m。
小敏家:出校门向南走100m,再向东走300m,最后向南走75m。
选取直角坐标系的方法很多,在让学生充分交流的基础上,引导学生选择最优方案,那就是:选学校所在位置为原点,分别取正东、正北方向为x轴、y轴正方向建立直角坐标系,并取比例尺1:10000(图中1cm相当于实际中10000cm即100m).依题目所给的已知条件,取得小刚家的位置是(150, 200),类似地,小强和小敏家的位置分别是(-150, 350)和(300,-175).2.教师归纳利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:(1)建立直角坐标系,选择一个适当的参照为原点,确定x轴、y轴的正方向.(2)依据具体问题确定适当的比例尺,在坐标轴上标出单位长度。
(3)在坐标平面的内部画出这些点,写出各点的坐标和各个地点的名称.二、问题牵引,引入研究【问题】如图,△ABC在坐标平面上平移后得到新图形△A1B1C1。
(1)△ABC移动的方向怎样?(2)写出△ABC与△A1B1C1各点的坐标,比较对应点坐标,看有怎样的变化?(3)如果△ABC向下平移2个单位,得到△A2B2C2。
平面直角坐标系中的平移(一)
![平面直角坐标系中的平移(一)](https://img.taocdn.com/s3/m/c90636dedd88d0d232d46a32.png)
y
5
把图形向上
图中的鱼是将 坐标为:(0,0)
平移2个单位 (5,4) (3,0) (5,1)
4
(5,-1) (3,0) (4,-
3
2) (0,0)的点用
线段依次连接
2
而成的
1
猜一猜:横坐标
0 12345678 –1
–2
x 保持不变,将各坐 标的纵坐标加2,
图案会变成什么样?
–3
原来的–鱼4 (0,0) (5,4) (3,0) (5,1) (5,-1) (3,0) (4,-2) (0,0)
1
将各坐标的横坐
标减2,图案会
-2 -1 0 1 2 3 4 5 6 7 8 9 10 x 变成什么样?
–1
–2
则坐标变化为:
–3
(x–,4y) (0,0) (5,4) (3,0) (5,1) (5,-1) (3,0) (4,-2) (0,0)
(x-–25,y) (-2,0) (3,4) (1,0) (3,1) (3,-1) (1,0) (2,-2) (-2,0)
思考: 在坐标系中,将坐标作如下变化时,图形将 怎样变化? (x,y)——(x-1 , y+4)
作业布置
• 课本3.2习题
新鱼–5 (0,2) (5,6) (3,2) (5,3) (5,1) (3,2) (4,0) (0,2)
y
5 把图形向下平移1个单位
4 3 2 1
图中的鱼是将 坐标为:(0,0)
(5,4) (3,0) (5,1)
(5,-1) (3,0) (4,2) (0,0)的点用 线段依次连接 而成的
0 12345678
1 2 3 4 5 6 7 8 9 10 x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
横坐标-2
-5 -4 -3 -2-1 O 1 2 3 4 5 x
(-4,-3)
-1 -2
(-4,-3) A2 A
(-2,-3)
-3 -4
-5
-6
(3)将点A(-2,-3)向上平移6个单位
长度,得到点 A3,在图上标出这个点,并
写出它的坐标.
上移6个单位
(-2,-3)
y
4
3
(-2,-3)
右移5个单位 (3,-3)
横坐标+5
2 1
-5 -4 -3 -2-1 O 1 2 3 4 5 x
-1 -2
A -3
(-2,-3) -4 -5 -6
A1
(3,-3)
(2) 将点A(-2,-3)向左平移2个单
位长度,得到点 A2,在图上标出这个点,
并写出它的坐标.
y
4
3
2
1
左移2个单位
知识回顾:
影响平移的因素:
平移的方向和平移的距离。
平移的性质:
平移前后,两个图形的对应点的连线平行(或在同一条直线上)且相等。 平移不改变图形的形状和大小。
本节任务:
通过几种点的平移方式,探索点在平面直角 坐标系中的平移规律。
(1) 将点A(-2,-3)向右平移5个单位长
度,得到点A1,在图上标出这个点,并写出它的
4 3
(-2,3)
2
(-2,3)
1
-5 -4 -3 -2-1 O 1 2 3 4 5 x
-1 -2
A
(-2,-3)
-3 -4
-5
-6
(4) 将点A(-2,-3)向下平移4个单
位长度,得到点A4,在图上标出这个点,并
写出它的坐标.
y
(-2,-3) 下移4个单位
纵坐标-4
4
3
(-2,-7)
2 1
-5 -4 -3 -2-1 O 1 2 3 4 5 x
-1 -2
A -3
(-2,-3) -4
-5 -6
A4 (-2,-7)
(5) 将点A(-2,-3)先向左平移2个单位
长度,再向上平移3个单位长度,得到点B,在
图上标出点B,并写出它的坐标. y
4
3
(-2,-3)左移2个单位
横坐标-2
3 3
2
(-4,-3) (-4,0)B
1
上 移
纵 坐
个标
单+
位
(-4,0)
-1 -2 -3 ●
A(-2,-3)-4
-5 -6
本节小结:
在直角坐标系中, 点的平移的一般规律; 学会利用点的平移规律,得到点平移后的坐标, 学会由点的坐标变化,得到点的平移方式。
作业
分析:比较A点平移后的坐标变化,根据点在直角坐标系中
的平移规律得到点的平移方式。
y
4
解:A点平移至E点后横坐标增加 了4,纵坐标增加了4,由点的 平移规律,可知将A点向右平移 4个单位,然后向上平移4个单位 可得E点。(也可先向上平移4个 单位再向右平移4个单位)
3 2 1 ● E(2,1)
-5 -4 -3 -2 -1 O 1 2 3 4 5 x
-5 -4 -3 -2-1 O 1 2 3 4 5 x
-1 -2
A’ ● A -3
(-4,-3) (-2,-3-4)
-5 -6
规律:
P(x,y+b)
b向
个上
单平
位移
P(x-a,y)
向左平移
向右平移
PP((x,,yy) )
a个单位
a个单位
b向
个下
单平
位移
P(x,y-b)
P(x+a,y)
怎样平移点A (-2,-3)可以得到点 E(2,1)?