静定刚架的内力计算及内力图
静定结构的内力计算
§3-5 静定平面刚架
▲ 作内力图
D C 144 E B
M CD 48 KN m (左拉) M DC 0
作M图 CD杆(一段二点): 48
192
AC杆(一段二点):
由此作M图如图(b)所示:
1 M CA 48 4 6 4 2 144 KN m 2 M AC 0 (右拉)
M,在数值上等于截面以左所有向上的力对截面形心的矩减 去所有向下的力对截面形心的矩;或截面以右所有向上的 力对截面形心的矩减去所有向下的力对截面形心的矩。
11
§3-2 内力方程· 内力图
2、关于内力图的规律
◆当某梁段除端截面外全段上不受外力作用时,则 有(a)该段上的剪力方程FS(x)=常数,故该段的剪 力图为水平线;(b)该段上的弯矩方程M(x)是x的 一次函数,故该段的弯矩图为斜直线 。
在静定刚架内力分析中,首先是先求支座反力。然后 再求内力。刚架在外力作用下处于平衡状态,其约束反力 可用平衡方程来确定。
2、绘制内力图:
截面法同样适用于刚架。 轴力:杆件受拉为正,受压为负。 剪力:使截离体顺时针方向转动为正,反之为负。 弯矩:不作正负规定。 弯矩图:画在各杆的受拉一侧,不注明正、负号。 剪力图及轴力图:可画在刚架轴线的任一侧(通常正值画 在刚架的外侧),但须注明正、负号。
受力分析:作用在基本部分上的力不传递给附属部 分,而作用在附属部分上的力传递给基本部分,如 图示 P
P1
2
(a)
P2
B A VC
P1
VB
(b)
因此,计算多跨静定梁时应该是先附属后基本,这样 可简化计算,取每一部分计算时与单跨静定梁无异。22
§3-4 静定多跨梁
第三章静定平面刚架讲解
A C
x
L
B 斜梁的反力与相应简支 梁的反力相同。
(2)内力 求斜梁的任意截面C的内力,取隔离体AC:
a
相应简支梁C点的内力为:
FP1 A
FYA
x
MC FNC C
FQC
MC0
=
FY
0 A
x
FP1 (x
a)
FQ0C = FY A FP1 FN0C = 0
Fp1 M0
C
斜梁C点的内力为:
MC = FYA x FP1 (x a) = MC0
F0 YA
F0 QC
FQC = (FYA FP1)Cos = FQ0CCos
FNC = (FYA FP1)Sin = FQ0CSin
结论:斜梁任意点的弯矩与水平梁相应点相同, 剪力和轴力等于水平梁相应点的剪力在沿斜梁 切口及轴线上的投影。
例:求图示斜梁的内力图。
q
A
L
解:a、求反力
B
XA =0
FNDC=8k0N
A
MDC=24kN.m(下拉)
FQDB=8kN D FNDB=6kN
MDB=16kN.m(右拉)
8kN
B
6kN C 6kN
2m
8kN
B24kN.m
6kN
4m
6kN
-6kN 8kN
∑Fx = 8-8 = 0 ∑Fy = -6-(-6) = 0
16kN.m 6kN
∑M = 24-8 - 16 = 0
Fx = 0 : FNCE = 0 .45 kN
校核 Fy= (3.13+0.45)sin +(1.793.58)cos
= 3.58 1.79×2 = 0
静定结构的内力计算图文
30 30
4m
4m
4m
4m
12kN
12kN 12kN
M 图(kN·m)
9kN
9kN
2kN/m
7kN
5kN
9kN
4.5kN
7.5kN
39
第40页/共76页
作业
习题3-5、3-6、3-9 习题3-10、3-12
40
第41页/共76页
§3-3 三铰拱
41
第42页/共76页
一、 概述
1、定义:
通常杆轴线为曲线,在竖向荷载作用下,支座产生水平反力的结构。
AC段受力图:
q
MC
t
C
FNC
FQC
n
x
FAY
FAYSinα
(2)求内力方程:
MC = 0 Ft = 0 Fn= 0
M = 1 qlx 1 qx2 (0 x l) 22
FN
=
q(1 l 2
x) sin
(0 x l)
FQ
=
q(1 2
l
x) cos
(0 x l)
FAYcosα
FAY
M中 =162 / 8 6.23/ 2 =1.385kN.m(下拉)
弯矩图见下图。
1kN/m
6.23 D
C 1.385
6.23 E
1.385kN A
4.5kN
M 图(kN.m)
B 1.385kN
1. 5kN
38
第39页/共76页
例:主从刚架弯矩图。
12kN
2kN/m
36 36
6m
12 42 30
F
F
曲梁
拱
f / l : 高跨比(1~1/10)
第三章 静定结构的内力计算
FAy
1 3a 4 FP a M q 3a 3a 2 5
第三章
静定结构的内力计算
M
B
0
3a 4 FAy 3a M q 3a FP a 0 2 5 1 3a 4 FAy FP a M q 3a 3a 2 5
第三章
无荷载 平行轴线
Q图
静定结构的内力计算
均布荷载
集中力 发生突变
P
集中力偶
无变化 发生突变
m
斜直线
M图
二次抛物线 凸向即q指向
出现尖点
两直线平行 备 注
Q=0区段M图 Q=0处,M 平行于轴线 达到极值
集中力作用截 集中力偶作用 面剪力无定义 面弯矩无定义
在自由端、铰支座、铰结点处,无集中力偶作用,截面弯矩 等于零,有集中力偶作用,截面弯矩等于集中力偶的值。
第三章 静定结构的内力计算
第三章
静定结构的内力计算
§3-1单跨静定梁
一、静定结构概述 1.概念:是没有多余约束的几何不变体系。 2.特点:在任意荷载作用下,所有约束反力和内力都 可由静力平衡方程唯一确定。 平衡方程数目 = 未知量数目 3.常见的静定结构 常见的静定结构有:单跨静定梁、多跨静定梁、静 定平面刚架、三铰拱、静定平面桁架、静定组合结构等 (如下图)。
0 FYA FYA 0 FYB FYB
A
x
C
L
斜梁的反力与相应简支 梁的反力相同。
第三章
(2)内力
静定结构的内力计算
求斜梁的任意截面C的内力,取隔离体AC: a FP1 A
FYA x Fp1 FYA
0
MC
结构力学二3-静定结构的内力计算
以例说明如下
例 绘制刚架的弯矩图。 解:
E 5kN
由刚架整体平衡条件 ∑X=0 得 HB=5kN← 此时不需再求竖向反力便可 绘出弯矩图。 有:
30
20 20 75 45
40
0
MA=0 , MEC=0 MCE=20kN· m(外) MCD=20kN· m(外) MB=0 MDB=30kN· m(外) MDC=40kN· m(外)
有突变
铰或 作用处 自由端 (无m)
m
Q图
M图
水平线
⊕
⊖㊀
Q=0 处 突变值为P 如变号 无变化
有极值 尖角指向同P 有极值 有突变 M=0 有尖角
斜直线
→
↑
利用上述关系可迅速正确地绘制梁的内力图(简易法)
简易法绘制内力图的一般步骤:
(1)求支反力。 (2)分段:凡外力不连续处均应作为分段点, 如集中力和集中力偶作用处,均布荷载两端点等。 (3)定点:据各梁段的内力图形状,选定控制 截面。如集中力和集中力偶作用点两侧的截面、均 布荷载起迄点等。用截面法求出这些截面的内力值, 按比例绘出相应的内力竖标,便定出了内力图的各 控制点。
说明:
(a)M图画在杆件受拉的一侧。 (b)Q、N的正负号规定同梁。Q、N图可画在杆的 任意一侧,但必须注明正负号。 (c)汇交于一点的各杆端截 面的内力用两个下标表示,例如: MAB表示AB杆A端的弯矩。 MAB
例 作图示刚架的内力图
RB↑
←HA
VA→
CB杆:
由∑ X=0 可得: M = CD RB=42kN↑ HA=48kN←, H (左) A=6×8=48kN← 由∑M144 VA=22kN↓ 48 A=0 可得: MEB=MEC=42×3 ↑ (2)逐杆绘M图 R=126kN = 126 · m (下) B 192 MDC=0 CD杆: M =42 × 6-20 × 3 由 ∑Y=0 可得: CB MCD=48kN·m(左) =192kN· m(下) VA=42-20=22kN↓
结构力学静定结构的内力计算图文
dM
q(x)
(1)微分关系 dx FQ
dx
dFQ q dx
q
FQ
M+d M
M d x FQ+d FQ
MA FQA
d 2M
q
Fy
dx2
FQ
m0 M
dx
M+ M
(2)增量关系
FQ+F Q
FQ Fy M m0
(3)积分关系 由dFQ = – q·d x
qy
FQB FQA
xB xA
q
y
dx
ቤተ መጻሕፍቲ ባይዱMB
静定结构内力计算过程中需注意的几点问题: (1)弯矩图习惯画在杆件受拉边、不用标注正负号,轴力图和剪力图可画 在杆件任一边,需要标注正负号。 (2)内力图要写清名称、单位、控制截面处纵坐标的大小,各纵坐标的长 度应成比例。 (3)截面法求内力所列平衡方程正负与内力正负是完全不同的两套符号系 统,不可混淆。
四、 分段叠加法作弯矩图
MA
q
MB
P
M
MA
M
MA
M
+
M
M M M
A
MA
MB
FNA
FyA MA
MB
Fy0A
MA
q q q
M M
B MB
FNB FyB
MB
Fy0B
MB
例:4kN·m
4kN
3m
3m
(1)集中荷载作用下
6kN·m
(2)集中力偶作用下
4kN·m 2kN·m
(3)叠加得弯矩图
4kN·m
4kN·m
§3-2 静定梁
❖ 静定梁分为静定单跨梁和静定多跨梁。单跨梁的结构形式有水平梁、斜
第6讲 刚架弯矩图的绘制(之一).
简支刚架
B
B
三铰刚架
C
C
B
C C B B B
C
B
B
B
D
D
D
A
A A A
A
A
A
A
A
C
C
C
§3-2 静定平面刚架的计算 有基、附关系的刚架 Structural Mechanics
§3-2 静定平面刚架的计算 刚结点处的 变形特点
Structural Mechanics
保持角度不变
§3-2 静定平面刚架的计算
80kN
A 20kN
2m 2m
§3-2 静定平面刚架的计算
40kN
C
q=20kN/m
D
B
0
60kN
20
(-)
Structural Mechanics
60
(+)
4m
V(kN)
A 20kN
80 80
2m 2m
40kN
C B
60kN
40kN
C
B
60kN
VDB VBD 60(kN) VCA 0
3.刚架实例
Structural Mechanics
广东中山岐江公园——刚架船坞中抽屉式插入了游船码头
§3-2 静定平面刚架的计算
3.刚架实例
Structural Mechanics
纵向120米,跨度46米;柱距6米,共3道支撑,3个10T吊车, 间距1.5米。刚接柱
§3-2 静定平面刚架的计算
A
0
60
(-)
20kN
20kN/m
B D
mA=20
Y A=60
第3章 静定刚架
15
qa2/2
B
q C qa2/2
qa2/8
A
a
qa
↑↑↑↑↑↑↑↑
+
qa2/2
C QCB
B
QBC
M图 a
↑↑↑↑↑↑↑↑
∑MC=qa2/2+ QBCa=0 QBC=QCB=-qa/2 qa2/2
QCA
-
qa/2
QAC
(下拉)
Fy 0, FQCD 7.5KN 9
3、作内力图
C 30 B A 30 M图(KN.m)
7.5 7.5 15 FQ图(KN) A
C
D
D
FN图(KN)
FQBA 15KN , FQCB 0, FQCD 7.5KN
C 2m 2m 15kn B 7.5KN 4m 7.5KN D
(c)
(d)
(d)
29
思考题 : 试找出下列M图的错误 。
P P
(e)
(e)
(f)
(f)
q P
(g)
(g)
(h)
(h)
30
思考题 : 试找出下列M图的错误 。
M
( j)
p
p
p
(k)
p
31
32
q
练习: 作图示结构弯矩图
q
ql l / 2
ql
l l
l/2
l
q
l
22
FPa
FPa
FPa
FPa 2FPa a a
FP
a
2FP a
a
平行
23
40
工程力学31 静定平面刚架的内力计算
F
C
XE E
B
YE
YE
A
XE
33
FP
FP a
D
F
2FPa 2FP 0
A
E0
FP 2FP
FP
C
D
F
FP
B
0 XE E
FP
2FP YE
FP
2FP
34
C
B
FRB FP FP
变形曲线
结构的变形曲线:
1. 必须符合支座的约束条件和杆件的联结条件; 2. 必须正确反映结点线位移和角位移的方向; 3. 必须正确反映杆件的弯曲方向。
静定平面刚架的内力
1
31
❖ 由多根直杆组成 ❖ 杆件之间的结点多为刚结点
2
刚结点
❖变形特点:限制相对的转动和移动 ❖受力特点:可传递弯矩、剪力和轴力
3
32
悬臂刚架 简支刚架
三铰刚架
4
3 ❖内力类型:弯矩、剪力、轴力 ❖计算方法:截面法 ❖内力的符号规定:
弯矩:取消正负规定,弯矩图画在受拉一侧。 剪力:符号规定不变。 轴力:符号规定不变。 轴力图和剪力图习惯上同号画在同侧,标明正负
(2) 作M图
10
(3) 作FQ图
由隔离体平衡条件求杆端剪力
FQAD 1.384kN
FQBE 1.384kN
FQDC
1 6.23 6 3 3.83kN
6.23
FQCD
1 6.23
6.23
6 3
1.86kN
FQCE
1 6.23
6.23
0.985kN
11
1.384 4.5
1.384
(4) 作FN图 由结点平衡条件求杆端轴力
静定刚架的内力计算及内力图
静定刚架的内力计算及内力图(步骤)求如图所示的刚架内力图:qXD解:(1)求支座反力。
ΣΧ=0 求得XD=q α() ΣMA=0 求得YD=32q α () ΣY=0解得YA=12q α()(2)画轴力图N N AB =-12 q α(压) N AC =- q α(压) N CD =-32q α(压) 求轴力可以从任一侧求,可设为正(即拉),按平衡求出为正值即为拉,负值即为压。
注:轴力图画在哪侧皆可,但一定要标出正负号。
轴力图N 如下;q α32q α(3)剪力图VV AE =0 V EB =- q α V DC =q α V BC =12q α V CB =-32q α v cd=q α 特点:没有荷载部分为平直线,有均布荷载部分为斜直线。
剪力图V 如下剪力图画在哪侧皆可,(4)画弯矩图(刚架内侧受拉为正,外侧受拉为负)区段叠加的控制点为 1 端部 2均布荷载的起止点 3其他的位置可分开求或叠加(一般在一个段内有集中力作用在均布荷载的位置上时,在集中力处分开。
) 先求每根杆两端的弯矩,用虚线连接,段间空载的直接连接,有力的叠加。
M 图特点:1均布荷载:抛物线 2无荷载:直线 3集中力:与力一致的方向产生尖点叠加大小 集中力点处:力的方向叠加Fab l(特别地,当α=b 时代入式子为fl 41) 均布荷载中点:28qlM AB =0 M BA =q α2(左) M DC =0 M CD = q α×2α=2q α2(右)M BC = q α2(上) M CBCD受力处E l22a 0,再用直线连接即可。
注:不管是简支梁与否,受力处的叠加都是加上M=Fabl。
受均布荷载的中点处叠加的弯矩的大小是向力的方向移动M=28ql 注:此处所说的简支是两端有支撑即可。
静定梁和刚架内力分析
(0<x<l ) (0≤x<l)
M
(-)
(c)
x
2.作剪力图和弯矩图:
由剪力方程可知,当 0 <x <l,时(即 AB 段上),剪力为 常数,因此剪力图为一条水平的直线;由弯矩方程可知,AB 梁段上沿着轴线方向弯矩呈线性变化,因此,弯矩图为一条斜 直线,只需求出两个端截面上
F A FQ x m m l
在列平衡方程求解内力时,需事先确定截面内力的方向, 而此时截面内力为未知力,因此,一般假定截面内力沿其正向 作用,则计算得到的正负号就是该截面内力的正负号。 另外,在利用截面法求解前,通常先确定支座反力,因支 座反力并无正负规定,在求支反力前可任意假设正方向。
若结果为正,则表示支反力实际方向与假设方向相同;
上所有外力对该截面形心的力矩的代数和。
其中外力对横截面形心之矩正负号选取规律为: (1)力——不论横截面左侧还是右侧,只要向上就取正,
反之取负;
(2)力偶——横截面左侧顺时针或右侧逆时针取正,反之 取负。 利用上述结论,可以不画分离体的受力图、不列平衡方 程,直接得出横截面的剪力和弯矩。这种方法称为直接法。 直接法将在以后求指定截面内力中被广泛使用。
2
求梁指定截面上的内力的方法: 剪力:梁任一横截面上的剪力在数值上等于该截面一侧梁段 上所有外力在平行于截面方向投影的代数和。 其中外力正负号选取规律为: 横截面左侧梁段上向上的外力取正,横截面右侧梁段上
向下的外力取正;反之取负。
简记为左上右下取正,反之取负。
弯矩:梁任一横截面上的弯矩在数值上等于该截面一侧梁段
若外力或外力偶矩使所考虑的梁段产生向下凸的变形(即 上部受压,下部受拉)时,等式右方取正号,反之,取负号。 此规律可简化记为“下凸弯矩正”或“左顺,右逆弯矩 正” ,相反为负。
第七章静定结构的内力计算
C
B
q a
qa 2
qa
A
a
qa
2
1.求支反力 2.分段 3.截面法求各段杆端内力值 4.用直线或曲线连接各段 5.标出数据、正负、图名
M CB
qa2 2
(下拉)
M CA
qa2 2
(右拉)
qa 2
C2
B
qa 2
2
qa 2
8
A
M
内力图的作法——剪力图
C
B
qa 2
qa
FQAC qa
FQCA 0
3m 1m
5kN
A
C
D
B
5kN 4kN
5m
4kN
5kN
FQDA
M DA
FDA
截面法计算D截面杆端内力
5kN
A
C
D
FNDC
M DC
FDC
4kN
3m 1m
B
5kN 4kN
5m
4kN
截面法计算D截面杆端内力
3m 1m
5kN
A
C
D
B
5kN 4kN
5m
4kN
FNDB
M DB
FQDB
5kN
4kN
内力图的作法——弯矩图
超静定结构
对于具有多余约束的几何不变体系,却不 能由静力平衡方程求得其全部反力和内力,这 类结构称为超静定结构
杆件类型
杆件
内力:轴力、剪力、弯矩 梁式杆
类型:梁、刚架、拱
链杆
内力:轴力 类型:桁架
梁
概念:是一种受弯构件,其轴线为直线, 有单跨和 多跨之分
单跨静定梁
6-2-2静定平面刚架的内力计算和内力图绘制.
(1)刚架任一横截面上的弯矩,其数值等于该截面任一边刚架
上所有外力对该截面形心之矩的代数和。力矩与该截面上规定的 正号弯矩的转向相反时为正,相同时为负。 (2)刚架任一横截面上的剪力,其数值等于该截面任一边刚架上 所有外力在该截面方向上投影的代数和。外力与该截面上正号剪 力的方向相反时为正,相同时为负。
作用点、分布荷载作用的起点和终点等)和杆件的连接点作为控
制截面,按刚架内力计算规律,计算各控制截面上的内力值。
国家共享型教学资源库
四川建筑职业技术学院
(3)按单跨静定梁的内力图的绘制方法,逐杆绘制内力图, 即用区段叠加法绘制弯矩图,由微分关系法绘制剪力图和轴 力图;最后将各杆的内力图连在一起,即得整个刚架的内力 图。
M BE 0
M EB FBx 4.5 62.1 kN m (右侧受拉)
M CE 0
M EC M EB 62.1 kN m
(上侧受拉)
四川建筑职业技术学院
国家共享型教学资源库
(3)绘剪力图。
FS AD FS DA 13.8 kN
FS BE FS EB 13.8 kN
四川建筑职业技术学院
例6-3 绘制图所示简支刚架的内力图。
解 (1)求支座反力。 FAx=16 kN, FBx=12 kN, FBy=24 kN
国。将刚架分为AC、CE、CD和DB
四段,取每段杆的两端为控制截面。这些截面上的内力为
MAC=0 MCA=-2kN/m×6m×3m=-36kN· m (左侧受拉) MCD= MCA=-36 kN· m (上侧受拉) MDC=-12kN×6m +12 kN· m =-60 kN· m (上侧受拉) MDB=-12kN×6m =-72 kN· m (右侧受拉) MBD=0 FSAC=0 FSCA=-2kN/m×6m=-12 kN FSCE= FSEC=16kN FSED=FSDE=-24kN FSDB=FSBD=12kN FNAC=FNCA=-16kN FNCD=FNDC=-12kN FNDB=FNBD=-24kN
工程力学中静定结构的内力计算
a
a
B XB X
YB
∑X=0 XC=XB=25kN ∑Y=0 YC=60-55=5kN ∑X=0 XA=25-40= -15kN
a
5kN
25kN
C
2m
y
25kN Fs 图
C
60kN
55kN
A
20kN· m
15k B N A 5kN
4m
25kN
B 4m
C
25kN 55kN
X
C
P2 P1 k y H A VA a3 b3 B VB H x 三铰拱与相应之简 支梁反力比较: VA =VA ° P3 B VB ° VB =VB ° HA=HB=H= MC°/f k C
P3
a2
a1 b1
b2
H=0
A VA°
P1
k1
P2 C
t
Mk
P1
y
n
k
Nk
∑Mk(F)=0, MK=[VAxk - P1 (xk- a1 )]-Hyk
FVb ×16 – 20 × 4 – 5 ×8 ×12=0
FVa=25KN FVb=35KN FHa=FHb
ΣMc=0
P=20Kn
FHa×4+20 ×4 – 25 ×8=0
FHc
FVc
FHa=30KN
FHa
4m 4m
FVa=25KN
4m
Σ Mo=0 . Mad=0 ΣХ=0. FQad+30=0
桁架的名称
上弦杆
桁高
斜杆 竖杆 下弦杆 跨度
1、按桁架的外形分为:
桁架的分类
a、三角形桁架
b、矩形桁架
《结构力学》静定结构内力计算
只承受竖向荷载和弯矩
FP1 A
FP2
B
C
基本部分:能独立承受外载。 附属部分:不能独立承受外载。
FP
A
B
C
■作用在两部分交接处的集 中力,由基本部分来承担。
FP1
FP2
A B
■基本部分上的荷载不影响附 属部分受力。
■附属部分上的荷载影响基本 部分受力。
先算附属部分, 后算基本部分。
例 确定x值,使支座B处弯矩与AB跨中弯矩相等,画弯矩图
ql ql/2
FQ图 ql
7ql/4 ql
5ql/4 ql/2
3ql/4
ql/2
练习
10kNm 20kN 10kN
10kN/m
1m 1m 1m 1m
1m 1m 10kN/m
10kNm
20kN 10kN 0
0
30kN
10kNm
20kN 10kNm
10kNm
10kNm
20kN 10kN 0
0
30kN
2m 2m
解 (1)求支反力
q=20kN/m FP=40kN
70kN
50kN
(2)取隔离体,求截面内力
MC C FQC
FP=40kN
B 50kN
(2)叠加法作弯矩图
120kNm
+
40kNm
40kNm
=
120kNm
40kNm
40kNm M图
例 试绘制梁的弯矩图。
40kNm
FP=40kN q=20kN/m
26
26
8 FQ图(kN)
6
12
M图(kNm)
24 12
例
解 (1)求支反力
3.3 静定刚架
一刚、结平点面与刚铰架结结点构比特较点::
刚架:由梁和柱组成的含有刚结点的杆件结构
优(点1):将变梁形柱角形度成:一刚个结刚点性处整各体杆,不使能结相构对具转有动较大;的刚度 (2内)力受分力布角比度较:均刚匀结合点理可,以内部承空受间和大传。递弯矩。
q
1 ql 2 8
q
梁
1 ql 2 8
27.5KN
52.5KN
FNDE
M DE
D
FQDE
E
5 kN
52.5kN
MD 0
5kN 4m MDE 0
M DE 20kN m右侧受拉
Fx 0 , FQDE 5kN
Fy 0 , FNDE 52.5kN
16kN / m
2m 5KN C
B
2m
A
DF
E
5KN
4m
1m
⑤ DF杆
F端悬臂,所以:MFD 0
D
C
E
q
l
A
FAx
l /2
FAy
B
FBx
l /2
FBy
例5, 作图示三铰刚架内力图。
D
C
E
q
l
1、求支座反力
MB 0
l FAy l ql 2 0
ql FAy 2
Fy 0
FAy FBy 0
FAx
A
l /2
FAy FCx C
B l /2
FBy
FBx
ql FBy 2
Fx 0 FAx ql FBx 0
D
C
E
② DC杆
取AD隔离体
q
l
3ql
l
第三章:静定梁和静定刚架
二.多跨静定梁 多跨静定梁
第三章 静定梁与静定钢架 二.多跨静定梁 多跨静定梁 基本部分--能独立 基本部分--能独立 1.多跨静定梁的组成 承载的部分。 1.多跨静定梁的组成 承载的部分。 附属部分--不能独 附属部分--不能独 立承载的部分。 立承载的部分。
基、附关系层叠图
练习:区分基本部分和附属部分并画出关系图 练习 区分基本部分和附属部分并画出关系图 第三章 静定梁与静定钢架
ql 2 / 2
Q=0的截面为抛 Q=0的截面为抛 物线的顶点. 物线的顶点.
ql / 2
ql
2
M图 Q图
第三章 静定梁与静定钢架
例: 作内力图
ql 2 / 2
M图 Q图
第三章 静定梁与静定钢架
1.无荷载分布段(q=0),Q图为水平线,M图为斜直线. 1.无荷载分布段 无荷载分布段(q=0),Q图为水平线 图为斜直线 图为水平线,M图为斜直线. 2.均布荷载段(q=常数),Q图为斜直线,M图为抛物线, 2.均布荷载段 常数 图为斜直线 图为抛物线 均布荷载段(q=常数),Q图为斜直线,M图为抛物线, 且凸向与荷载指向相同. 且凸向与荷载指向相同. 3.集中力作用处,Q图有突变,且突变量等于力值; M 3.集中力作用处 图有突变 且突变量等于力值; 集中力作用处,Q图有突变, 图有尖点,且指向与荷载相同. 图有尖点,且指向与荷载相同.
P
1 Pl 4 1 Pl 4
P 1 Pl
4
l/2
q
l/2
l/2
1 2 ql 4
l/2
l/2
ql 1 ql 2 4
l/2
l/2
l 静定梁与静定钢架
§3-2 静定刚架受力分析
一. 刚架的受力特点
飞机结构力学课件3-2
五、静定结构的主要特性
由基本特性可以派生出以下几个特性:
(1)静定结构无初内力:支座微小位移、温度改变、 元件的制造误差不产生反力和内力。 (2)当平衡力系作用在静定结构的某一几何不变部分 上时,只有该几何不变部分受力,其它部分不受力。 (3)在结构某几何不变部分上载荷做等效变换时,载 荷变化部分之外的反力和内力不变。
建立静力平衡方程:
N (x1) H1 500kg
Q( x1 )
R1
375kg
M (x1) H1 h R1 x1
125000 375x1
(0 x1 b / 2)
例1 求图示刚架的内力
2、求内力 (2)求截面内力
再在右段上任取一截面IV-IV,截取分离体:
建立静力平衡方程:
QN((xx22))
空间梁
y
z
x
二、静定刚架组成规则
1、平面刚架的组成规则 (1)逐次连接杆子法:简单刚架
从某一基础或几何不变体开始,每增加一个平面 杆件,用一个刚性接头将该杆件连接在基础上,这样 依次用刚性接头连接杆子,将组成静定的简单刚架。
二、静定刚架组成规则
1、平面刚架的组成规则
(2)逐次连接刚架法:复合刚架
例2 绘制图示刚架的内力图。
(说明:题中如无特别指明,仅绘制弯矩图。)
解:
1、作几何特性分析
1-2-5、5-3-4为两个简 单刚架,并和基础一起形 成三个平面刚片,利用三 刚片规则可知,该刚架为 无多余约束的几何不变体, 故为静定的。
例2 绘制图示刚架的内力图。
(说明:题中如无特别指明,仅绘制弯矩图。)
无多余约束,可 以承弯。
• 平面刚性接头:相当于起3个约束; • 空间刚性接头:相当于起6个约束。
静定梁和刚架内力分析
平面桁架分类: 1. 平行弦桁架 2. 三角形桁架
3. 抛物线桁架
4. 梯形桁架
按几何组成分类 简单桁架 (simple truss)
联合桁架 (combined truss)
复杂桁架 (complicated truss)
按受力特点分类:
1. 梁式桁架
2. 拱式桁架
结点法(nodal analysis method)
FQ图(kN)
9
9
例:作图示多跨静定梁的内力图,并求出各支座反力。
1m
4m
4m
4m
1m
2.静定平面刚架(frame)
悬臂刚架
静 定 刚 架
A
D C
简支刚架
B
三铰刚架
D
E
刚架--具有刚结点的由 直杆组成的结构。
组合式刚架
静定刚架的内力图绘制方法: 一般先求反力,然后求杆段控制 截面弯矩,用叠加法逐个杆段 绘制。
40 D 30
80
FNDE FNED
E
30
FNDC
FNEB
FQ
FN 30 kN
40 kN
80 kN
例3、试作图示刚架的弯矩图 附属 部分
基本 部分
弯矩图如何?
对梁和刚架等受弯结构作内力图的顺序:
1.一般先求反力(不一定是全部反力)。 2.利用截面法求控制截面弯矩。以便将结构用 控制截面拆成为杆段(单元)。 3.在结构图上利用叠加法作每一杆件(单元) 的弯矩图,从而得到结构的弯矩图。
-8 kN
YDE CD 0.75 X DE CE 0.5
0
-33 34.8 19 -8
-33
-33 -8
-33 34.8 19
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静定刚架的内力计算及内力图(步骤)
求如图所示的刚架内力图:
q
XD
解:(1)求支座反力。
ΣΧ=0 求得XD=q α(
) ΣMA=0 求得YD=
3
2
q α () ΣY=0解得YA=
12
q α(
)
(2)画轴力图N N AB =-
12 q α(压) N AC =- q α(压
) N CD =-3
2
q α(压) 求轴力可以从任一侧求,可设为正(即拉),按平衡求出为正值即为拉,负值即为压。
注:轴力图画在哪侧皆可,但一定要标出正负号。
轴力图N 如下;
q α
32
q α
(3)剪力图V
V AE =0 V EB =- q α V DC =q α V BC =
12q α V CB =-3
2
q α v cd=q α 特点:没有荷载部分为平直线,有均布荷载部分为斜直线。
剪力图V 如下
剪力图画在哪侧皆可,
(4)画弯矩图(刚架内侧受拉为正,外侧受拉为负)
区段叠加的控制点为 1 端部 2均布荷载的起止点 3其他的位置可分开求或叠加(一般在一个段内有集中力作用在均布荷载的位置上时,在集中力处分开。
) 先求每根杆两端的弯矩,用虚线连接,段间空载的直接连接,有力的叠加。
M 图特点:1均布荷载:抛物线 2无荷载:直线 3集中力:与力一致的方向产生尖点
叠加大小 集中力点处:力的方向叠加
Fab l
(特别地,当α=b 时代入式子为fl 41
) 均
布荷载中点:2
8
ql
M AB =0 M BA =q α2
(左) M DC =0 M CD = q α×2α=2q α2
(右)
M BC = q α2(上) M CB
CD
受力处E l
22a 0,再用直线连接即可。
注:不管是简支梁与否,受力处的叠加都是加上M=
Fab
l。
受均布荷载的中点处叠加的弯矩的大小是向力的方向移动M=2
8
ql 注:此处所说的简支
是两端有支撑即可。