电力系统实验指导
电力系统自动化实验
发电机开 关(即同 期开关) 微机调 速装置
微机准同 期控制器
示波器
微机磁励 调节器
实验系统详细接线图
第二部分 模拟实验步骤 注意:强电实验!!!
1、无穷大电源系统的投入 ①合上设备的“电源开关”; ②合上“系统开关”(即按其红色按钮); 观察与记录:“系统电压”表的指示值; ③调整“调压器”,将无穷大系统母线电压调为额定值; 通过“电压切换”开关观测三相电压和线电压是否对称合格;
观察与记录:IL、UL、UF、P、Q等变化情况; ④手动方式下,调整“手动励磁”旋钮; 微机方式下,按“增磁”、“减磁”按钮; 即可改变发电机端电压, 观察与记录:IL、UL、UF、f等变化情况。
3、发电机励磁系统的投入 ①励磁方式有手动它励、微机自并励、微机它励等三种可 供选择,(注:在线运行时不可切换方式的选择!!), ②控制方式有恒UF、恒IL、恒、恒Q等四种可供选择,
观察与记录:发电机转速n的变化。
显示切换
2、原动机与调速系统的投入 ④按下“停机/开机”命令按钮,即为“开机”;
开机指示灯亮,观察与记录发电机转速n和功角δ; ⑤手动方式下,调整“电位器”; 微机方式下,按下“增速、(减速)”命令; 控制量在增加、发电机启动并增速; 继续增加控制量,将转速n调为其额定转速(即频率为50Hz)
观察与记录:发电机转速n的变化。
控制量指可控 硅触发电压
3、发电机励磁系统的投入 ①励磁方式有手动它励、微机自并励、微机它励等三种可 供选择,(注:在线运行时不可切换方式的选择!!), ②控制方式有恒UF、恒IL、恒、恒Q等四种可供选择,
本实验选择“恒UF”方式, 按下“恒UF”按钮,即选择了此控制方式; ③合上“励磁开关”,(并注意松开“灭磁开关”),
电力系统仿真实验指导书
电力系统仿真实验指导书本指导书以电力系统仿真实验为主题,介绍了电力系统仿真实验的基本原理、实验步骤以及实验注意事项。
通过本实验的学习,能够加深对电力系统仿真的理解,掌握基本的仿真技术和方法,为后续电力系统相关实验的学习打下基础。
本实验采用仿真软件实现,所需软件主要为MATLAB和SIMULINK。
学生需要提前熟悉MATLAB和SIMULINK的基本操作和常用函数,具备一定的电力系统基础知识。
一、实验原理电力系统仿真实验是通过电力系统的模型来模拟和控制真实电力系统的运行,以实现对电力系统的研究和分析。
通过仿真实验,可以1观察和分析电力系统在不同工况下的运行特性,验证电力系统的稳定性和可靠性,优化电力系统的运行参数等。
电力系统仿真实验的基本原理是将真实电力系统抽象成数学模型,并通过计算机软件来模拟和控制这个数学模型。
模型的输入是电力系统的初始条件和外部扰动,输出是电力系统的动态响应和稳态结果。
通过对模型输入的控制和模型输出的观测,可以实现对电力系统的研究和分析。
二、实验步骤1. 确定仿真实验的目标和内容。
根据实验要求和实验目标,确定仿真实验的内容和范围。
2. 建立电力系统的数学模型。
根据实验要求和实验目标,将电力系统抽象成数学模型,并确定模型的输入和输出。
23. 编写仿真程序。
使用MATLAB和SIMULINK等软件,编写仿真程序,实现对电力系统模型的仿真和控制。
编写的程序应包括模型的输入和输出控制,仿真参数的设置,仿真结果的观测和分析等。
4. 运行仿真程序。
加载仿真程序,设置仿真参数,运行仿真程序,观察仿真结果。
5. 分析仿真结果。
根据仿真结果,分析电力系统的运行特性,验证仿真模型的准确性和有效性。
6. 优化仿真模型和参数。
根据实验结果,对仿真模型和参数进行优化,提高仿真模型的准确性和有效性。
三、实验注意事项31. 熟悉仿真软件的基本操作。
在进行电力系统仿真实验前,需要提前熟悉使用MATLAB和SIMULINK等仿真软件的基本操作和常用函数。
电力系统分析实验指导书
3。
1 电力系统稳定性实验(一)3。
1。
1 实验目的1)加深理解电力系统静态稳定的原理.2) 了解提高电力系统静态稳定的方法.3。
1.2 原理与说明电力系统稳态对称和不对称运行分析,除了包含许多理论概念之外,还有一些重要的“数值概念"。
一条不同电压等级的输电线路,在典型运行方式下,用相对值表示的电压损耗,电压降落等的数值范围,是用于判断运行报表或监视控制系统测量值是否正确的参数依据.因此,除了通过结合实际的问题,让学生掌握此类“数值概念"外,实验也是一条很好的、更为直观、易于形成深刻记忆的手段之一。
实验用一次系统接线图如图3—1所示。
本实验系统是一种物理模型。
原动机采用直流电动机来模拟,当然,它们的特性与大型原动机是不相似的。
原动机输出功率的大小,可通过给定直流电动机的电枢电压来调节。
实验系统用标准小型三相同步发电机来模拟电力系统的同步发电机,虽然其参数不能与大型发电机相似,但也可以看成是一种具有特殊参数的电力系统的发电机。
发电机的励磁系统可以用外加直流电源通过手动来调节,也可以切换到台上的微机励磁调节装置来实现自动调节。
实验台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足相似条件。
“无穷大”母线就直接用实验室的交流电源,因为它是由实际电力系统供电的,因此,它基本上符合“无穷大"母线的条件.实验台上安装有TQDB—III多功能微机保护实验装置,可以用来测量电压、电流、功率和频率。
实验台上还设置了模拟短路故障等控制设备。
图3—1 一次系统接线图3。
1.3 实验项目与方法3。
1。
3。
1 负荷调节实验1)启动机组,满足条件后并网运行,并网后退出同期装置,并网步骤见“同步发电机准同期并列实验"。
2) 将调速装置的工作方式设为“自动”,将励磁装置的工作方式设为“恒Ug”.3)调节调速装置的增速减速按钮,可以调节发电机有功功率输出,调节励磁调节装置的增磁减磁按钮,可以调节发电机输出的无功功率。
电力系统基础实验指导书_
电力系统基础实验指导书北京交通大学电气工程学院电气工程综合实验中心实验1 电力系统运行方式及潮流分析实验一、实验目的1、掌握电力系统主接线电路的建立方法2、掌握辐射形网络的潮流计算方法;3、比较计算机潮流计算与手算潮流的差异;4、掌握不同运行方式下潮流分布的特点。
二、实验内容1、辐射形网络的潮流计算;2、不同运行方式下潮流分布的比较分析三、实验方法和步骤1.辐射形网络主接线系统的建立输入参数(系统图如下):G1:300+j180MV A(平衡节点)变压器B1:变比=18/110,Uk%=14.3%,Pk=230KW,P0=150KW,I0/In=1%;变压器B2、B3:Un=15MVA,变比=110/11 KV,Uk%=10.5%,Pk=128KW,P0=40.5KW,I0/In=3.5%;负荷F1:20+j15MVA;负荷F2:28+j10MV A;线路L1、L2:长度:80km,电阻:0.21Ω/km,电抗:0.416Ω/km,电纳:2.74×10-6S/km。
辐射形网络主接线图2.辐射形网络的潮流计算(1)调节发电机输出电压,使母线A的电压为115KV,运行DDRTS进行系统潮流计算,在监控图页上观察计算结果,并填入下表:(2)手算潮流:变压器B2(B3)潮流计算:线路L1(L2)潮流计算:(3)计算比较误差分析3.不同运行方式下潮流比较分析(1)实验网络结构图如上。
由线路上的断路器切换以下实验运行方式:①双回线运行(L1、L2均投入运行)②单回线运行(L1投入运行,L2退出)对上述两种运行方式分别运行潮流计算功能,将潮流计算结果填入下表:(2)比较分析两种运行方式下线路损耗、母线电压情况四、思考题1、辐射型网络的潮流计算的步骤是什么?2、试分析比较手动潮流计算方法与计算机潮流计算方法的误差,并分析其根源。
3、电力网络的节点类型有那些?试比较分析其特点。
4、对潮流进行控制一般都有哪些措施?实验2 电力系统横向故障分析实验一、实验目的1、对电力系统各种短路现象的认识;2、掌握各种短路故障的电压电流分布特点;3、分析比较仿真运算与手动运算的区别;二、实验内容1.各种短路电流实验观察比较各种短路时的三相电流、三相电压;2.归纳总结各种短路的特点3.仿真运算与手动运算的比较分析三、实验方法和步骤1.辐射形网络主接线系统的建立输入参数(系统图如下):额定电压:220KV;负荷F1:100+j42MV A;负荷处母线电压:17.25V;变压器B1:Un=360MVA,变比=18/220,Uk%=14.3%,Pk=230KW,P0=150KW,I0/In=1%;变压器B2:Un=360MVA,变比=220/18,Uk%=14.3%,Pk=230KW,P0=150KW,I0/In=1%;线路L1、L2:长度:100km,电阻:0.04Ω/km,电抗:0.3256Ω/km。
电力系统部分实验指导
实验的基本要求和安全操作说明一、实验的基本要求WDJS-8000电力系统综合自动化实验平台的实验目的在于使学生掌握系统运行的原理及特性,学会通过故障运行现象及相关数据分析故障原因,并排除故障。
通过实验使学生能够根据实验目的、实验内容及测量数据,进行分析研究,得出必要结论,从而完成实验报告。
在整个实验过程中,必须集中精力,及时认真做好实验。
现按实验过程提出下列具体要求。
1、实验前的准备实验准备即为实验的预习阶段,是保证实验能否顺利进行的必要步骤。
每次实验前都应该预习,才能对实验目的、步骤、结论和注意事项等做到心中有数,从而提高实验质量和效率。
预习应该做到:1.复习教课书有关章节内容,熟悉与本次实验相关的理论知识。
2.认真学习实验指导书,了解本次实验目的和内容,掌握实验原理和方法,仔细阅读实验安全操作说明,明确实验过程中应注意的事项。
3.实验前应写好预习报告,其中应包括实验内容,实验步骤、数据记录表等,经教师检查确认做好了实验前的准备工作,方可开始实验。
认真做好实验前的准备工作,对于培养学生独立工作能力,保护人身安全、实验设备安全和提高实验质量等都是非常重要。
2、实验的进行在完成理论学习、实验预习等环节后,就可进入实验实施阶段。
实验时要做到以下几点:1.预习报告完整,熟悉设备实验开始前,指导老师要对学生的预习报告做检查,要求学生了解本次实验的目的、内容和方法,只有满足此要求后,方能允许实验。
指导老师要对实验设备做详细介绍,学生必须熟悉本次实验所用的各种设备,明确这些设备的功能与使用方法。
2.建立小组,合理分工每次实验都以小组为单位进行,每组人数可有老师安排,不少于3人。
实验进行中,机组的运行控制,数据记录等工作都应该有明确的分工,以保证实验操作协调,实验数据准确。
3.试运行在正式实验开始之前,先熟悉仪表的操作,然后按一定的规范通电接通电力网络,观察所有表计是否正常。
如果出现异常,应该立即切断电源,认真检查并排除故障;如果一切正常,即可正式开始实验。
电力系统分析实验指导书55
电力系统分析实验指导书目录第一部分 THLZD-2型电力系统综合自动化实验平台 (2)简介 (2)第二部分实验的基本要求和安全操作说明 (9)第一章实验的基本要求 (9)第二章安全操作说明 (11)第三部分实验内容 (12)第一章发电机组的起动与运转实验 (12)第二章电力系统功率特性和功率极限实验 (17)第三章电力系统暂态稳定实验 (22)第一部分 THLZD-2型电力系统综合自动化实验平台简介概述THLZD-2型电力系统综合自动化实验平台是一套集多种功能于一体的综合型实验装置,展示了现代电能发出和输送全过程的工作原理。
这套实验装置由THLZD-2电力系统综合自动化实验台(简称“实验台”)、THLZD-2电力系统综合自动化控制柜(简称“控制柜”)、无穷大系统和发电机组和三相可调负载箱等组成。
一、THLZD-2型电力系统综合自动化实验台实验台包括以下单元:1.输电线路单元:采用双回路输电线路,每回输电线路分两段,并设置有中间开关站,可以构成四种不同的联络阻抗。
输电线路的具体结构如下图所示:图1-1 单机-无穷大系统电力网络结构图输电线路分“可控线路”和“不可控线路”,在线路XL4上可设置故障,该线路为“可控线路”,其他线路不能设置故障,为“不可控线路”。
⑴“不可控线路”的操作操作“不可控线路”上的断路器的“合闸”或“分闸”按钮,可投入或切除线路。
按下“合闸”按钮,红色按钮指示灯亮,表示线路接通;按下“分闸”按钮,绿色按钮指示灯亮,表示线路断开。
⑵“可控线路”的操作在“可控线路”上预设有短路点,并在该线路上装有“微机线路保护装置”,可实现过流保护,并具备自动重合闸,通过控制QF4和QF6来实现。
QF4和QF6上的两组指示灯亮或灭分别代表QF4和QF6的A相、B相和C相的三个单相开关的合或分状态。
为了实现非全相运行和分相切除故障,QF4和QF6的分、合控制与“不可控线路”上断路器操作不同,区别如下:正常工作时,按下QF4合闸按钮,三个单相指示灯亮,而QF4红色合闸按钮灯不亮,手动分闸或微机线路保护装置动作三相全跳时,绿色分闸指示灯亮,三个单相指示灯全灭;当保护装置跳开故障相时,故障相的指示灯灭。
电力系统保护实验指导书(精华版)
目录三、电力系统保护实验 (1)实验1 电磁型电流继电器和电压继电器实验 (1)实验2 电磁型时间继电器实验 (7)实验4 中间继电器实验 (11)实验5 6~10KV线路过电流保护实验 (19)实验6 低电压起动过电流保护及过负荷保护实验23三、电力系统保护实验实验1 电磁型电流继电器和电压继电器实验一、实验目的熟悉DL 型电流继电器和DY 型电压继电器的实际结构、工作原理、基本特性;掌握动作电流值、动作电压值及其相关参数的整定方法。
二、预习与思考1、电流继电器的返回系数为什么恒小于1?2、动作电流(压)、返回电流(压)和返回系数的定义是什么?3、实验结果如返回系数不符合要求,你能正确地进行调整吗?4、返回系数在设计继电保护装置中有何重要用途?三、原理说明DL-20c 系列电流继电器用于反映发电机、变压器及输电线路短路和过负荷的继电保护装置中。
DY-20c 系列电压继电器用于反映发电机、变压器及输电线路的电压升高(过电压保护)或电压降低(低电压起动)的继电保护装置中。
DL-20c 、DY-20c 系列继电器的内部接线图见图1-1。
上述继电器是瞬时动作的电磁式继电器,当电磁铁线圈中通过的电流达到或超过整定值时,衔铁克服反作用力矩而动作,且保持在动作状态。
过电流(压)继电器:当电流(压)升高至整定值(或大于整定值)时,继电器立即动作,其常开触点闭合,常闭触点断开。
低电压继电器:当电压降低至整定电压时,继电器立即动作,常开触点断开,常闭触点闭合。
继电器的铭牌刻度值是按电流继电器两线圈串联,电压继电器两线圈并联时标注的指示值等于整定值;若上述二继电器两线圈分别作并联和串联时,则整定值为指示值的2倍。
转动刻度盘上指针,以改变游丝的作用力矩,从而改变继电器动作值。
图1-1 电流(电压)继电器内部接线图12348765DL-21CDY-21C、26C12348765DL-23C DY-23C、28C12348765DY-22C 12348765DY-24C、29C12348765DY-25C图1-2 电流继电器实验接线图图1-3 过(低)电压继电器实验接线图五、验步骤和要求1、绝缘测试单个继电器在新安装投入使用前或经过解体检修后,必须进行绝缘测试,对于额定电压为100伏及以上者,应用1000伏兆欧表测定绝缘电阻;对于额定电压为100伏以下者,则应用500伏兆欧表测定绝缘电阻。
电力系统分析(实验指导书)
电力系统分析 实验指导书安全注意事项:1、实验电压:500V,实验电流:4.2A,具有一定危险性。
2、实验过程中,人体不可接触带电线路,如自耦调压器的接线端、发电机的接线端等。
3、控制柜上的总电源只允许指导老师操作,其他人员不得自行开关。
控制柜上的所有组件必须经指导老师允许并严格按照指令进行操作。
4、实验台上的微机线路保护装置只允许指导老师操作,实验台上的其他组件必须经指导老师允许并严格按照指令进行操作。
第一节发电机组的起动与运转实验一、实验目的1、了解微机调速装置的工作原理、掌握其操作方法。
2、熟悉发电机组中的原动机(直流电动机)的基本特性。
3、掌握发电机组起励建压、解列、停机操作。
二、原理说明本实验平台中,原动机采用直流电动机模拟工业现场的汽轮机或水轮机,调速系统用于设定原动机的转速(即发电机输出电压的频率)和有功功率,励磁系统用于调整发电机输出电压值和无功功率。
图1-1为调速系统的原理结构示意图,图1-2为励磁系统的原理结构示意图。
图1-1 调速系统原理结构示意图A、B、C为墙壁插头电源进线在控制柜中发电机图1-2 励磁系统原理结构示意图装于原动机上的编码器将转速信号以脉冲的形式送入THLZD-2电力系统综合自动化控制柜(以下简称“控制柜”)中的THLWT-3型微机调速装置(以下简称“微机调速装置”),该装置将转速信号转换成电压,和给定电压一起送入ZKS-15型直流电机调速装置(隐装于控制柜中),采用双闭环方式调节原动机的电枢电压,从而改变原动机的转速和输出功率。
发电机输出端的三相交流电压信号送入电量采集模块1,三相交流电流信号经电流互感器也送入电量采集模块1,信号被处理后,计算结果经RS485通信口送入THLWL-3型微机励磁装置(以下简称“微机励磁装置”);发电机的直流励磁电压信号和直流励磁电流信号送入电量采集模块2,信号被处理后,计算结果也经RS485通信口送入微机励磁装置;微机励磁装置根据计算结果输出控制电压,来调节发电机的励磁电流。
电力系统基础实验指导书
电力系统基础实验指导书北京建筑大学建电系实验一一机—无穷大系统稳态运行方式实验一、实验目的1、了解和掌握对称稳定情况下,输电系统的各种运行状态与运行参数的数值变化范围;2、了解和掌握输电系统稳态不对称运行的条件;不对称度运行参数的影响;不对称度运行对发电机的影响等。
二、预习与思考1、何为电压损耗和电压降落?2、影响简单电力系统静态稳定性的因素有哪些?3、提高电力系统静态稳定有哪些措施?三、实验原理电力系统稳态对称和不对称运动分析,除了包含许多理论概念之外,还有一些重要的“数值概念”,为一条不同电压等级的输电线路,在典型运行方式下,用相对值表示的电压损耗,电压降落等的数值范围,是用于判断运行报表或监视控制系统测量值是否正确的参数依据。
因此,除了通过结合实际的问题,让学生掌握此类“数值概念”外,实验也是一条很好的、更为直观的、易于形成的深刻记忆的手段之一。
实验用一次系统接线图如图2-1所示。
XL4A相QF6XL2 QF2C相A相C相系统开关发电机开关发电机QF5QF 3 XL3XL1 QF1本实验系统是一种物理模型。
原动机采用直流电动机来模拟,当然,它们的1特性与大型原动机是不相似的。
原动机输出功率的大小,可通过给定直流电枢电压来调节。
实验系统用标准小型三相同步发电机来模拟电力系统的同步发电机,虽然其参数不能与大型发电机相似,但也可以看成是一种具有特殊参数的电力系统的发电机。
发电机的励磁系统可以用外加直流电源通过手动来调节,也可以切换到台上的微机励磁调节器来实现自动调节。
试验台的输电线路使用多个结成链形的电抗线圈来模拟,其电抗值满足相似条件。
“无穷大”无线就是直接用实验室的交流电源,因此是由实际电力系统供电的,基本上符合“无穷大”母线的条件。
为了进行测量,实验台设置了测量系统,以测量各种电量(电流、电压、功率、频率)。
利用光电编码盘的脉冲信号测量交流发电机的转速,此外,台上还设置了模拟短路故障等控制设备。
电力系统实验指导
实验一自动准同期(一)自动准同期条件测试实验一、实验目的1、掌握实验设备和仪器的使用方法,深入理解准同期条件;2、掌握准同期条件的测试方法.二、预习与思考1、为什么准同期装置都是利用滑差(脉动)电压这一特性进行工作的?2、准同期的条件有哪些?3、什么叫导前时间?什么叫恒定导前时间准同期并列?五、实验内容与步骤根据发电机信号和系统信号测试准同期条件,当电压幅值和频率有变化时,观测对滑差电压Us波形的影响.在我们的实验中,系统电压固定采用380V,50HZ 的电压!1、实验准备1)、打开电脑;2)、合上实验台左侧的断路器;3)、打开LIBVIEW7。
0软件,运行实验届面7.7点击如下图标;检查实验台(界面)各开关状态, EAL—01上的断开指示灯亮(绿灯),合闸指示灯熄灭。
进入实验届面EAL—02双回路中,将实验台上的各开关状态打在OFF(绿色)状态。
4)、点击实验界面的微机控制器;在准同期控制器中点击“允许参数设置”按钮使“参数设置”指示灯亮,这时可以进行参数设置;通过“+”、“—”键选择允许压差,通过“参数设置”修改参数,将允许压差设定为10V(参数设定范围为1%~5%额定电压);再将允许频差设定为0.33HZ(参数设定范围为0~0.4HZ),设置完毕后再次点击“允许参数设置”按钮,这时,参数设置指示灯熄灭,不允许参数设置;关闭控制器;5)、在EAL-17中将励磁开关打开;在微机控制器中的原动机调速器中,“开机方式”自动选择为“微机自动”方式(调速器中),微机自动指示灯亮;6)、在EAL-17中,将励磁开关打开。
将EAL-01的合闸按钮按下。
7)、进入“双回路输出电路”界面,点击合上EAL-02上的系统电压开关“QFS ”; 合上EAL —02上的线路开关QF2、QF6、QF4。
8)、进入“发电机励磁系统"励磁方式选择微机他励“KM5”(合上“KM5”),然后合上“KM3”9)、进入“原动机调速系统"界面,合上“KM1"。
电力系统实验
电章电力系统动态模拟一、电力系统的研究工具电力系统动态模拟也称电力系统物理模拟,是进行电力系统分析和研究的重要方法之一。
电力系统研究方法和其他领域一样,主要采用理论分析和试验研究。
由于电力系统具有多变的参数及其复杂的过渡过程,在进行理论分析的同时必须进行试验研究,二者缺一不可。
电力系统动态模拟实验室就是专门进行电力系统试验研究的重要场所。
电力系统研究工具可以分为两类:数学模拟方法和物理模拟方法。
1.数学模拟方法利用数学模型进行研究称为数学模拟,数学模型是建立在数学方程式的基础上,即当各种物理现象在一定的假设条件下用一组数学方程式来描述原型系统的运动或过程。
它用数学的方法对真实系统的物理特征在计算机上实现实时动态模拟。
2.物理模拟方法利用物理模型进行研究称为物理模拟。
而物理模型则是根据相似原理建立的一种忠实于原系统的物理本质、各项参数按一定比例缩小的模型,在模型上反映的过程和实际系统中的过程相似。
并且模型上的过程和原型的过程具有相同的物理实质,所以电力系统动态模拟也就是电力系统在实验室内的复制品。
二、相似原理1.模拟的基本概念模拟也称仿真,是一种专门用来进行试验研究的方法。
它不是直接对某一实际系统或实际过程进行研究,而是利用模拟理论建立一个对被研究对象进行研究的物理模型,求得模型结果,由此而得到原型系统的结论。
2.模拟的基本原理模拟理论也称相似理论,它指出相似现象间的关系,提出了要使模型与原型系统中的物理现象相似的充分和必要条件。
相似理论在电力系统动态模拟方面的应用:⑴由若干系统组成的复合系统,如果单个系统相似,那么整个系统就是相似。
⑵适用于线性系统中的相似条件,只要其非线性参数的相对特性是重合的,则可推广应用到非线性系统中。
⑶几何上不相似的系统的物理过程,也可以相似。
⑷在电力系统中两个系统相似,那么这两个系统相应元件的标么值参数是相等的。
三、电力系统动态模拟电力系统动态模拟使电力系统物理模拟。
它是根据相似理论建立起来的具有与原型相同物理性质的物理模型。
电力系统综合实验指导书
电力系统综合实验指导书
前
言
实践教学是高等教育结构中的重要组成部分,它承担着科学研究、知识创新、教学 改革和教书育人等学校的主体工作,它对于学生综合素质的培养具有不可替代的作用, 尤其是对于学生创新能力的培养,具有其独特的地位和作用。 本实验讲义根据加强实践教学环节、拓宽专业知识面的教学改革的需要而编写的专 业综合实验讲义,包含三个部分:电力系统综合实验守则、实验内容和附录。在电力系 统综合实实验守则中我们重点电工操作安全守则和学生操作注意事项,在实验内容这部 分,主要详细给出了每个实验的操作步骤、分析方法和实验要求等等。最后在附录部分 , 就该实验中用到的设备做简单的说明,便于参考。 本讲义内容的编写是在该实验设备指导说明书的基础上进行必要的改进,以便于适 应学生的理解的同时力求深入浅出,理论联系实际,注重学生的动手能力,并且具有重 点突出,层次分明,逻辑性强,便于自学。 常秀莲 刘永强 2006-6-27
G S Δ U G US ΔU Δ
(2-1)
并列操作时,要求频率差、电压差和相位差三个条件必须同时满足。 2.准同期条件与冲击电流性质的关系: 为了将合闸电流限制在安全范围内,工程实用的允许偏差取值一般为:
长江大学电信学院自动化系电气工程课程组
四、 实验设备
WDT-III 电力系统综合自动化试验台
五、 实验原理
(一)同步发电机自动准同期控制 将同步发电机并入电力系统的合闸操作通常采用准同期并列方式, 同步发电 机准同期控制器,就是一种能够快速无扰动地将同步发电机投入到电力系统中(并网) 的自动装置。它是一种典型的自动操作(合闸)装置。 (二)准同期控制的理论问题 1.无扰动合闸与准同期并列条件 准同期控制器需要解决的关键技术问题是无扰动合闸。所谓有扰动,就是 指断路器合闸瞬间的合闸冲击电流不等于零。过大的合闸电流会产生大量热量使定子绕 组过热,使绝缘加速老化;过大的合闸电流还会产生危险的电动力,使定子绕组变形受 损;同时,合闸电流的有功分量还会产生有功功率冲击,对机组转轴施加过大的冲击力 矩,严重时会损坏同步发电机的联轴器;此外,过大的冲击电流对电力系统稳定也会产 生不利影响。所以必须严格控制合闸冲击电流,以延长发电机的使用寿命,避免意外事 故发生。 在工程实用上,理想并列条件难以满足。实际中只要合闸冲击电流被限制 在一定范围内,则不会产生任何不利影响,由此提出工程上实用的并列条件是:
电力系统及自动化综合实验指导书1
第三章一机—无穷大系统稳态运行方式实验一、实验目的1.了解和掌握对称稳定情况下,输电系统的各种运行状态与运行参数的数值变化范围;2.了解和掌握输电系统稳态不对称运行的条件;不对称度运行参数的影响;不对称运行对发电机的影响等。
二、原理与说明电力系统稳态对称和不对称运行分析,除了包含许多理论概念之外,还有一些重要的“数值概念”。
为一条不同电压等级的输电线路,在典型运行方式下,用相对值表示的电压损耗,电压降落等的数值范围,是用于判断运行报表或监视控制系统测量值是否正确的参数依据。
因此,除了通过结合实际的问题,让学生掌握此类“数值概念”外,实验也是一条很好的、更为直观、易于形成深刻记忆的手段之一。
实验用一次系统接线图如图2所示。
图2 一次系统接线图本实验系统是一种物理模型。
原动机采用直流电动机来模拟,当然,它们的特性与大型原动机是不相似的。
原动机输出功率的大小,可通过给定直流电动机的电枢电压来调节。
实验系统用标准小型三相同步发电机来模拟电力系统的同步发电机,虽然其参数不能与大型发电机相似,但也可以看成是一种具有特殊参数的电力系统的发电机。
发电机的励磁系统可以用外加直流电源通过手动来调节,也可以切换到台上的微机励磁调节器来实现自动调节。
实验台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足相似条件。
“无穷大”母线就直接用实验室的交流电源,因为它是由实际电力系统供电的,因此,它基本上符合“无穷大”母线的条件。
为了进行测量,实验台设置了测量系统,以测量各种电量(电流、电压、功率、频率)。
为了测量发电机转子与系统的相对位置角(功率角),在发电机轴上装设了闪光测角装置。
此外,台上还设置了模拟短路故障等控制设备。
三、实验项目和方法1.单回路稳态对称运行实验在本章实验中,原动机采用手动模拟方式开机,励磁采用手动励磁方式,然后启机、建压、并网后调整发电机电压和原动机功率,使输电系统处于不同的运行状态(输送功率的大小,线路首、末端电压的差别等),观察记录线路首、末端的测量表计值及线路开关站的电压值,计算、分析、比较运行状态不同时,运行参数变化的特点及数值范围,为电压损耗、电压降落、沿线电压变化、两端无功功率的方向(根据沿线电压大小比较判断)等。
电力系统自动化实验指导书
电力系统自动化实验指导书第一章同步发电机准同期并列实验(一)同步发电机准同期并列实验1、手动准同期2、半自动准同期3、全自动准同期4、准同期条件整定一、实验目的1.加深理解同步发电机准同期并列原理,掌握准同期并列条件;2.掌握模拟式综合整步表的使用方法;3.熟悉同步发电机准同期并列过程。
二、原理与说明将同步发电机并入电力系统的合闸操作通常采用准同期并列方式。
准同期并列要求在合闸前通过调整待并机组的电压和转速,当满足电压幅值和频率条件后,由运行操作人员手动或由准同期控制器自动选择合适时机发出合闸命令,这种并列操作的合闸冲击电流一般很小,并且机组投入电力系统后能被迅速拉入同步。
本实验台采用手动准同期方式。
手动准同期并列,应在正弦整步电压的最低点(同相点)时合闸,考虑到断路器的固有合闸时间,实际发出合闸命令的时刻应提前一个相应的时间或角度。
三、实验项目和方法(一)机组启动与建压1.检查原动机调速上自耦调压器指针是否指在0位置,如不在则应调到0位置;2.合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄;3.励磁调节器选择它励、恒UF运行方式,合上励磁开关;4.把实验台上“同期方式”开关置“OFF”位置;5.合上系统电压开关和线路开关QF1,QF3,检查系统电压接近额定值380V;6.合上原动机开关,调节自耦调压器的输出,电动机将慢慢启动到额定转速;7.当机组转速升到95%以上时,微机励磁调节器自动将发电机电压建压到与系统电压相等。
(二)观察与分析1.操作原动机调速旋钮调整机组转速,记录微机励磁调节器显示的发电机频率。
观察并记录不同频差方向,不同频差大小时的模拟式整步表的指针旋转方向及旋转速度、频率平衡表指针的偏转方向及偏转角度的大小的对应关系;2.操作励磁调节器上的增磁或减磁按钮调节发电机端电压,观察并记录不同电压差方向、不同电压差大小时的模拟式电压平衡表指针的偏转方向和偏转角度的大小的对应关系。
mcgs电力系统实验指导书
M C G S电力系统实验指导书(共26页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第五章单机-无穷大系统稳态运行方式实验一、实验目的1.熟悉远距离输电的线路基本结构和参数的测试方法。
2.掌握对称稳定工况下,输电系统的各种运行状态与运行参数的数值变化范围。
3.掌握输电系统稳态不对称运行的条件、参数和不对称运行对发电机的影响等。
二、原理说明单机-无穷大系统模型,是简单电力系统分析的最基本,最主要的研究对象。
本实验平台建立的是一种物理模型,如下图3-4-1所示。
图3-4-1 单机-无穷大系统示意图发电机组的原动机采用国标直流电动机模拟,但其特性与电厂的大型原动机并不相似。
发电机组并网运行后,输出有功功率的大小可以通过调节直流电动机的电枢电压来调节(具体操作必须严格按照调速器的正确安全操作步骤进行!可参考《微机调速装置基本操作实验》)。
发电机组的三相同步发电机采用的是工业现场标准的小型发电机,参数与大型同步发电机不相似,但可将其看作一种具有特殊参数的电力系统发电机。
实验平台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足相似条件。
“无穷大系统”采用大功率三相自耦调压器,三相自耦调压器的容量远大于发电机的容量,可近似看作无穷大电源,并且通过调压器可以方便的模拟系统电压的波动。
实验平台提供的测量仪表可以方便的测量(电压,电流,功率,功率因数,频率)。
QSZTQ-II(微机准同期系统)上有功角显示,便于直接观察功角变化。
三、实验设备序号型号使用仪器名称数量备注1EAL-01电源输出12EAL-02/03双回路输出电路13EAL-II微机原动机调速1系统14EAL-II微机发电机励磁系统5EAL-II微机准同期系统1四、实验内容与步骤合上总电源开关,合上主电源源开关,输电线路选择XL1和XL3(即闭合QFS、QF1、QF3和QF5,红灯亮。
注释:绿灯亮表示断路器为断开状态,红色亮表示断路器为闭合状态),调节三相调压器,主控屏系统电压表显示380V。
电力系统分析实验指导书(DOC)
在相同的运行条件下〔即系统电压U x、发电机电势保持E q保持不变,即并网前U x=E q〕,测定输电线单回线和双回线运行时,发电机的功一角特性曲线,功率极限值和到达功率极限时的功角值。
同时观察并记录系统中其他运行参数〔如发电机端电压等〕的变化。
将两种情况下的结果加以比拟和分析。
实验步骤:〔1〕输电线路为单回线;〔2〕发电机与系统并列后,调节发电机使其输出的有功和无功功率为零;〔4〕逐步增加发电机输出的有功功率,而发电机不调节励磁;〔5〕观察并记录系统中运行参数的变化,填入表4-1中;〔6〕输电线路为双回线,重复上述步骤,填入表4-2中。
表4-1 单回线表4-2 双回线注意:〔1〕有功功率应缓慢调节,每次调节后,需等待一段时间,观察系统是否稳定,以取得准确的测量数值。
〔2〕当系统失稳时,减小原动机出力,使发电机拉入同步状态。
〔3〕δ2.发电机电势E q不同对系统静态稳定的影响在同一接线及相同的系统电压下,测定发电机电势E q不同时〔E q<U x或E q>U x〕发电机的功一角特性曲线和功率极限。
实验步骤:(1)输电线为单回线,并网前E q<U x;(2)发电机与系统并列后,调节发电机使其输出有功功率为零;(3)逐步增加发电机输出的有功功率,而发电机不调节励磁;〔4〕观察并记录系统中运行参数的变化,填入表4-3中;〔5〕输电线为单回线,并网前E q>U x,重复上述步骤,填入表4-4中。
表4-3 单回线并网前E q<U x表4-4 单回线并网前E q>U x〔二〕手动调节励磁时,功率特性和功率极限的测定给定初始运行方式,在增加发电机有功输出时,手动调节励磁保持发电机端电压恒定,测定发电机的功一角曲线和功率极限,并与无调节励磁时所得的结果比拟分析,说明励磁调节对功率特性的影响。
实验步骤:〔1〕单回线输电线路;〔2〕发电机与系统并列后,使P=0,Q=0,δ=0,校正初始值;〔3〕逐步增加发电机输出的有功功率,调节发电机励磁,保持发电机端电压恒定或无功输出为零;〔4〕观察并记录系统中运行参数的变化,填入表4-5中。
《电力系统》实验指导书
《电力系统》实验指导书常州工学院实验平台认识一:WDT-ⅢC型电力系统综合自动化试验装置简介电力系统综合自动化实验台是一个自动化程度很高的多功能实验平台,它由发电机组、实验操作台、无穷大系统等设备组成。
如附图1-1所示,发电机与无穷大之间采用双回路输电线路,并设有中间开关站,通过中间开关站和单回、双回线路的组合,使发电机与无穷大系统之间可构成四种不同联络阻抗,供系统实验分析比较时使用(如实验二图2所示)。
图1-1 电力系统综合自动化试验台外形图1.发电机组它是由同在一个轴上的三相同步发电机(S N=2.5kV A,V N=400V ,n N=1500r.p.m ),模拟原动机用的直流电动机(P N=2.2 kW,V N=220V )以及测速装置和功率角指示器组成。
直流电动机、同步发电机经弹性联轴器对轴联结后组装在一个活动底盘上构成可移动式机组。
具有结构紧凑、占地少、移动轻便等优点,机组的活动底盘有四个螺旋式支脚和三个橡皮轮,将支脚旋下即可开机实验。
2.试验操作台它是由输电线路及保护单元、功率调节和同期单元,仪表测量和短路故障模拟单元等组成。
输电线路采用具有中间开关站的双回路输电线路模型,并对其中一段线路设有“YHB-A微机保护装置”,此线路的过流保护还具有单相自动重合闸功能。
功率调节和同期单元,由“TGS-03B微机调速装置”、“WL-04B微机励磁调节器”、“HGWT-03B微机准同期控制器”等微机型的自动装置和其相对应的手动装置组成。
仪表测量和短路故障模拟单元由各种测量表计及其切换开关、各种带灯操作按钮以及观测波形用的测试孔和各种类型的短路故障操作等部分组成。
在做电力系统试验时,全部的操作均在试验操作屏台上进行。
3.无穷大系统无穷大电源是由15kV A的自耦调压器组成。
通过调整自耦调压器的电压可以改变无穷大母线的电压。
试验操作台的“操作面板”上有模拟接线图、操作按钮和切换开关以及指示灯和测量仪表等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一自动准同期(一)自动准同期条件测试实验一、实验目的1、掌握实验设备和仪器的使用方法,深入理解准同期条件;2、掌握准同期条件的测试方法。
二、预习与思考1、为什么准同期装置都是利用滑差(脉动)电压这一特性进行工作的?2、准同期的条件有哪些?3、什么叫导前时间?什么叫恒定导前时间准同期并列?五、实验内容与步骤根据发电机信号和系统信号测试准同期条件,当电压幅值和频率有变化时,观测对滑差电压Us波形的影响。
在我们的实验中,系统电压固定采用380V,50HZ 的电压!1、实验准备1)、打开电脑;2)、合上实验台左侧的断路器;3)、打开LIBVIEW7.0软件,运行实验届面7.7点击如下图标;检查实验台(界面)各开关状态, EAL-01上的断开指示灯亮(绿灯),合闸指示灯熄灭。
进入实验届面EAL-02双回路中,将实验台上的各开关状态打在OFF(绿色)状态。
4)、点击实验界面的微机控制器;在准同期控制器中点击“允许参数设置”按钮使“参数设置”指示灯亮,这时可以进行参数设置;通过“+”、“-”键选择允许压差,通过“参数设置”修改参数,将允许压差设定为10V(参数设定范围为1%~5%额定电压);再将允许频差设定为0.33HZ(参数设定范围为0~0.4HZ),设置完毕后再次点击“允许参数设置”按钮,这时,参数设置指示灯熄灭,不允许参数设置;关闭控制器;5)、在EAL-17中将励磁开关打开;在微机控制器中的原动机调速器中,“开机方式”自动选择为“微机自动”方式(调速器中),微机自动指示灯亮;6)、在EAL-17中,将励磁开关打开。
将EAL-01的合闸按钮按下。
7)、进入“双回路输出电路”界面,点击合上EAL-02上的系统电压开关“QFS ”; 合上EAL-02上的线路开关QF2、QF6、QF4。
8)、进入“发电机励磁系统”励磁方式选择微机他励“KM5”(合上“KM5”),然后合上“KM3”9)、进入“原动机调速系统”界面,合上“KM1”。
10)进入“微机控制器”,控制方式选择“恒FU ”运行方式(励磁调节器中按下“恒FU ”按钮),“恒FU ”指示灯亮。
然后点击最左下方的“开机”等调速器中将发电机频率调到50HZ 左右,励磁调节器中自动将发电机电压幅值调到线电压380V ;(实验界面显示的是相电压,大约220V 左右)2、操作步骤1)、在微机控制器中,找到准同期控制器2)、在原动机控制器中,点击数字示波器。
在虚拟示波器中,在点击仪器选择中选择“准同期”在通道一中选择“滑差电压”按钮,显示滑差电压波形;(把虚拟示波器的电压幅值打到最大,周期也是)3)、改变速度①、点击实验界微机控制器中原动机调速器;②、调速器上,通过“加速”或“减速”按钮(此时“加速”“减速”指示灯将相应的闪烁)改变发电机的转速,发电机转速显示屏来显示,频率通过准同期控制器的显示屏来显示,记录发电机的频率和转速;③、观察并记录准同期控制器中旋转灯光整步表上灯光旋转方向及旋转速度与频差方向及频差大小的对应关系;④、观察并记录准同期控制器中滑差电压(正弦整步电压)波形,观察并记录整步表旋转速度与滑差电压的周期关系;⑤、关闭示波器,然后通过调速器上“退出”按钮关闭调速器。
4)、改变电压幅值①、通过“增磁”或“减磁”按钮(此时“增磁”“减磁”指示灯将相应的闪烁)改变发电机的电压,发电机电压通过显示屏来显示,记录励磁调节器显示的发电机的电压;(应缓慢调节“增磁”和“减磁”按钮,线电压不要超过420V)②、观察并记录准同期控制器中显示的不同的电压差方向、不同的电压差大小③、观察并记录准同期控制器中滑差电压波形;观察并记录电压幅值差大小与滑差电压最小幅值间的关系;观察并记录滑差电压幅值达到最小值时刻所对应的整步表灯光位置;④、关闭示波器、准同期控制器;6)、进行灭磁操作和停机操作(具体操作方法参考实验十三);7)、关闭软件,然后关闭实验台电源。
七、实验报告1、理论分析与测试观察结果是否一致,为什么?2、在合闸时相角误差产生的主要原因有哪些?3、根据记录的滑差电压波形,分析滑差电压受哪些因素的影响?(二)线性整步电压测试实验一、实验目的熟悉线性整步电压形成的原理和基本特征二、预习与思考线性整步电压由什么信号转换而成的?1、操作步骤1)、在微机控制器中,找到准同期控制器2)、在原动机控制器中,点击数字示波器。
在虚拟示波器中,在“点击仪器选择”中选择“准同期”在通道一中选择“三角波”按钮,显示三角波波形;3)、改变原电机速度a、通过“加速”或“减速”按钮(此时“加速”“减速”指示灯将相应的闪烁)改变发电机的转速,发电机转速显示屏来显示,频率通过准同期控制器的显示屏来显示,记录发电机的频率和转速;b、观察并记录准同期控制器中旋转灯光整步表上灯光旋转方向及旋转速度与频差方向及频差大小的对应关系;c、观察并记录准同期控制器中三角波(线性整步电压)波形,观察并记录整步表旋转速度与线性整步电压的周期关系;d、关闭示波器,然后通过调速器上“退出”按钮关闭调速器。
4)、改变电压幅值①、通过“增磁”或“减磁”按钮(此时“增磁”“减磁”指示灯将相应的闪烁)改变发电机的电压,发电机电压通过显示屏来显示,记录励磁调节器显示的发电机的电压;(应缓慢调节“增磁”和“减磁”按钮,线电压不要超过420V)②观察并记录准同期控制器中显示的不同的电压差方向、不同的电压差大小③观察并记录准同期控制器中线性整步电压波形;观察并记录电压幅值差大小与线性整步电压最小幅值间的关系;观察并记录线性整步电压幅值达到最小值时刻所对应的整步表灯光位置;④、关闭示波器、准同期控制器;5)、进行灭磁操作和停机操作(具体操作方法参考实验十三);6)、关闭软件,然后关闭实验台电源。
六、注意事项1、频率差不要超过0.5HZ;2、电压差不超过额定电压的10%;七、实验报告分析线性整步电压波形的变化规律。
(三)导前时间整定及测量实验一、实验目的掌握导前时间整定的原理和方法1、操作步骤1)、在微机控制器中,找到准同期控制器2)、在原动机控制器中,点击数字示波器。
在虚拟示波器中,在点击仪器选择中选择“准同期”在通道一中选择“冲击电流”按钮,显示冲击电流波形;3)、在控制器中点击“允许参数设置”按钮使“参数设置”指示灯亮,这时可以进行参数设置;通过“+”、“-”键选择允许压差,通过“参数设置”将允许压差设定为3V;将允许频差设定为0.3HZ,将导前时间设定为0.1s,设置完毕后再次点击“允许参数设置”按钮,这时,参数设置指示灯熄灭,不允许参数设置;4)、将“准同期方式”选择为“全自动”方式,按下“同期命令”按钮,此时,同期命令指示灯亮,同期命令被启动,等待自动并网.5)、并网后进行解列操作,即调节“加速”“减速”“增磁”“减磁”使有功、无功功率都为零时,断开发电机开关“QFG”;6)、重复1)~5)操作,观察不同越前时间下,并列过程有何异同,填入表3-1中。
(实测开关时间在“双回路输出电路”界面中读)表3-1据此,估算出开关操作回路故有时间的大致范围,根据上次开关的实测合闸时间,整定导前时间。
8)、进行灭磁操作和停机操作(具体操作方法参考实验十三);9)、关闭准同期控制器、调速器、励磁调节器等;10)、关闭软件,然后关闭实验台电源。
五、注意事项1、实测合闸时间在参数整定中查看;2、在“同期命令”指示灯熄灭时才能进行参数设置。
六、实验报告1、记录合闸时间2、分析和闸冲击电流的大小与哪些因素有关?(四) 压差闭锁和整定实验一、实验目的掌握压差闭锁原理及整定方法。
二、预习与思考什么是压差闭锁?为什么要对压差进行整定? 1、实验步骤1)、在微机控制器中,找到准同期控制器2)、在原动机控制器中,点击数字示波器。
在虚拟示波器中,在点击仪器选择中选择“准同期”在通道一中选择“压差闭锁波形”按钮,显示压差闭锁波形;3)、在准同期控制器中,点击“允许参数设置”按钮使“参数设置”指示灯亮,这时可以进行参数设置;通过“+”、“-”键选择允许压差,通过“参数设置”将允许压差设定为10V ;设置完毕后再次点击“允许参数设置”按钮,这时,参数设置指示灯熄灭,不允许参数设置;“同期方式”选择“手动”方式;4)、通过“+”“-”切换屏幕显示内容,观察当前发电机电压FU 、系统电压X U 以及实际电压差U ∆、允许电压差,并观察“压差闭锁”指示灯的状态;当XU =380V,FU =380V 时,“压差闭锁”指示灯应熄灭;5)、当XU =380 V 时,通过“增磁”或“减磁”按钮改变发电机的励磁电流,使发电机电压F U 在(370V-386V )内变化,当11F X U U U V∆=-≥时,“压差闭锁”指示灯应亮,当9F XU U U V∆=-≤时,“压差闭锁”U∆指示灯应熄灭,此时压差闭锁的范围就应该为10V±。
将实验测得的数据填入表3-1中。
6)、进行灭磁操作和停机操作(具体操作方法参考实验十三);7)、关闭励磁调节器、调速器、准同期控制器;8)、关闭软件,然后关闭实验台电源。
表3-1七、实验报告1、将实验数据填入表3-1中;2、根据实验数据绘制压差闭锁波形。
(五) 频差方向及频差闭锁与整定实验一、实验目的熟悉频差闭锁原理、作用及整定方法。
二、预习与思考什么是频差闭锁?为什么要对频差进行整定?什么是频差方向?2、操作步骤将允许频差设定在某一档,调节发电机电压的频率,观察频差闭锁指示灯及测试点“三角波与频差闭锁波形”的波形变化。
具体操作如下:1)、在微机控制器中,找到准同期控制器2)、在原动机控制器中,点击数字示波器。
在虚拟示波器中,在点击仪器选择中选择“准同期”在通道一中选择“频差闭锁波形”按钮,显示频差闭锁波形;3)、在准同期控制器中,点击“允许参数设置”按钮使“参数设置”指示灯亮,这时可以进行参数设置;通过“+”、“-”键选择允许频差,通过“参数设置”将允许频差设定为0.3HZ ,设置完毕后再次点击“允许参数设置”按钮,这时,参数设置指示灯熄灭,不允许参数设置;将“同期方式”选择为“手动”方式;4)、在调速器中通过“加速”、“减速”按钮改变发电机的频率,在准同期控制器观察“频差闭锁”指示灯状态,并通过“三角波与频差闭锁波形”观察和记录波形;并且在控制器的显示频上观察频率差,当F X f f >时,0f ∆>;5)、重复1)-4)操作,通过“参数设置”将允许频差设定为0.2HZ ;在调速器中通过“加速”、“减速”按钮改变发电机的频率,在准同期控制器观察“频差闭锁”指示灯状态,并通过“频差闭锁波形”观察和记录波形;6)、进行灭磁操作和停机操作(具体操作方法参考实验十三); 7)、关闭软件,然后关闭实验台电源。