因式分解与分式的计算练习题(题型全)
因式分解及分式的计算测验题(题型全)
分式计算练习二周案序 总案序 审核签字一.填 空: 1.x 时,分式42-x x 有意义; 当x时,分式1223+-x x 无意义; 2.当x= 时,分式2152x x --的值为零;当x 时,分式xx --112的值等于零.3.如果ba=2,则2222b a b ab a ++-= 4.分式ab c 32、bc a 3、ac b 25的最简公分母是 ; 5.若分式231-+x x 的值为负数,则x 的取值范围是 .6.已知2009=x 、2010=y ,则()⎪⎪⎭⎫⎝⎛-+⋅+4422y x y x y x = .二.选 择: 1.在31x+21y, xy 1 ,a +51 ,—4xy , 2x x , πx 中,分式的个数有( )A 、1个B 、2个C 、3个D 、4个 2.如果把yx y322-中的x 和y 都扩大5倍,那么分式的值( )A 、扩大5倍B 、不变C 、缩小5倍D 、扩大4倍3.下列各式:()xx x x y x x x 2225,1,2 ,34 ,151+---π其中分式共有( )个。
A 、2 B 、3 C 、4 D 、54.下列判断中,正确的是( )A 、分式的分子中一定含有字母 B 、当B=0时,分式BA 无意义 C 、当A=0时,分式BA 的值为0(A 、B 为整式) D 、分数一定是分式5.下列各式正确的是( )A 、11++=++b a x b x a B 、22xy x y = C 、()0,≠=a ma na m n D 、a m a n m n --= 6.下列各分式中,最简分式是( )A 、()()y x y x +-8534B 、y x x y +-22C 、2222xy y x y x ++D 、()222y x yx +- 7.下列约分正确的是( ) A 、313m m m +=+ B 、212y x y x -=-+ C 、123369+=+a b a b D 、()()yx a b y b a x =-- 8.下列约分正确的是( )A 、326x x x = B 、0=++y x y x C 、x xy x y x 12=++ D 、214222=y x xy 9.(更易错题)下列分式中,计算正确的是( )A 、32)(3)(2+=+++a c b a c bB 、b a b a b a +=++122C 、1)()(22-=+-b a b a D 、x y y x xy y x -=---1222 10.若把分式xyyx 2+中的x 和y 都扩大3倍,那么分式的值( )A 、扩大3倍B 、不变C 、缩小3倍D 、缩小6倍 11.下列各式中,从左到右的变形正确的是( )A 、y x y x y x y x ---=--+-B 、y x y x y x y x +-=--+-C 、yx yx y x y x -+=--+- D 、y x y x y x y x +--=--+-12.若0≠-=y x xy ,则分式=-xy 11 ( ) A 、xy 1 B 、x y - C 、1 D 、-113. 若x 满足1=xx,则x 应为( )A 、正数 B 、非正数 C 、负数 D 、非负数14.已知0≠x ,xx x 31211++等于( ) A 、x 21 B 、1 C 、x 65 D 、x 61115、(多转单约分求值)已知113x y -=,则55x xy yx xy y+---值为( )A 、72-B 、72C 、27D 、72-三.化简:1.m m -+-3291222. a+2-a -243. 22221106532x yx y y x ÷⋅ 4.ac ac bc c b ab b a -+-++ 5.262--x x ÷4432+--x x x 6.224)2222(x x x x x x -⋅-+-+- 7. 22224421yxy x y x y x y x ++-÷+-- 8.1111-÷⎪⎭⎫ ⎝⎛--x xx 9. m n n n m m m n n m -+-+--210.⎪⎪⎭⎫⎝⎛++÷--ab b a b a b a 22222 11.⎪⎭⎫ ⎝⎛--+÷--13112x x x x 12.(22+--x x x x )24-÷x x 13. 1⎪⎭⎫⎝⎛⋅÷÷a b b a b a 32492314..()2211n m m n m n -⋅⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛+; 15.168422+--x x x x ,其中x =5.分式计算练习一1. 2234xy z ·(-28z y )等于( ) A .6xyz B .-23384xy z yz- C .-6xyz D .6x 2yz2. 下列各式中,计算结果正确的有( )①;2)1(2223n m mn n m =-∙ ②8b a b a b a 32326)43(-=-÷; ③(;1)()b a b a b a b a +=+∙-⋅+ ④(2232)()()ba b a b a b a =-÷-∙- A.1个 B.2个 C.3个 D.4个3. 下列公式中是最简分式的是( )A .21227b aB .22()a b b a --C .22x y x y ++D .22x y x y--4. (2008黄冈市)计算()ab a bb aa+-÷的结果为( ) A .a b b - B .a b b + C .a b a - D .a b a+5. 计算34x x y -+4x y y x +--74yx y-得( )A .-264x y x y +- B .264x yx y+- C .-2 D .2二 计算:(1)2223x y mn ·2254m n xy ÷53xym n . (2)2216168m m m -++÷428m m -+·22m m -+(3)(-2b a )2÷(b a -)·(-34b a )3. (4)21x x --x-1. 三、 先化简,再求值:1、232282x x x x x +-++÷(2x x -·41x x ++).2、22)11(yxy y x y y x -÷-++, 其中x=-45. 其中2-=x ,1=y .3、已知a=25,25-=+b ,4、已知3=a ,2-=b ,求2++b a a b 得值。
因式分解与分式
1、用提公因式法把多项式进行因式分解【知识精读】如果多项式的各项有公因式,根据乘法分配律的逆运算,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。
提公因式法是因式分解的最基本也是最常用的方法。
它的理论依据就是乘法分配律。
多项式的公因式的确定方法是:(1)当多项式有相同字母时,取相同字母的最低次幂。
(2)系数和各项系数的最大公约数,公因式可以是数、单项式,也可以是多项式。
下面我们通过例题进一步学习用提公因式法因式分解 【分类解析】1. 把下列各式因式分解(1)-+--+++a x a b x a c xa xm m m m 2213 (2)a a b a b a a b b a ()()()-+---32222 分析:(1)若多项式的第一项系数是负数,一般要提出“-”号,使括号内的第一项系数是正数,在提出“-”号后,多项式的各项都要变号。
解:-+--=--+++++a x a b xa c x a x a x a x b x c x m m m m m 221323()(2)有时将因式经过符号变换或将字母重新排列后可化为公因式,如:当n 为自然数时,()()()()a b b a a b b a n n n n -=--=----222121;,是在因式分解过程中常用的因式变换。
解:a a b a b a a b b a ()()()-+---32222 )243)((]2)(2))[(()(2)(2)(222223b b ab a b a a b b a a b a b a a b a ab b a a b a a ++--=+-+--=-+-+-=2. 利用提公因式法简化计算过程 例:计算1368987521136898745613689872681368987123⨯+⨯+⨯+⨯分析:算式中每一项都含有9871368,可以把它看成公因式提取出来,再算出结果。
解:原式)521456268123(1368987+++⨯==⨯=987136813689873. 在多项式恒等变形中的应用 例:不解方程组23532x y x y +=-=-⎧⎨⎩,求代数式()()()22332x yx y x x y +-++的值。
八年级数学因式分解和分式方程经典试题汇总
因式分解与分式方程经典试题1.=++-==+xy y x xy y x 6,2,222则已知 。
=-+--==-3223,23b ab b a a ab b a 多项式,已知 。
2.是,则的边长,且是ABC ac c ab b ABC c b a ∆+=+∆22,,22 三角形。
3.),另一个因式为的一个因式是(的多项式,若关于3122--+x ax x x 。
4.的值为的一个因式,则是已知k x kx x 1232+++ 。
(这里我需要指出的是2x 项的系数为两因式x 项系数的乘积,常数项是两因式常数的乘积,因此我们可以设另一因式为)4(+kx ,然后利用对应项系数相等求得)多项式m a a +-322含有因式3-a ,求m 并分解多项式。
5.的可能的值可以是因式,则能用完全平方公式分解若多项式m mx x 42++ 。
6.已知36442++mx x 是完全平方式,那么m 的值是 。
7.若整式142++Q x 是完全平方式,请你写出一个满足条件的单项式Q 是 。
8.的值是,则能分解为若m n x x mx x ))(3(152++-+ 。
9.多项式229)1(b ab k a +-+能用乘法公式因式分解,则k= 。
10.若))(2)(4(24b x x x a x -++=-,则=a ,=b 。
11.若=+++-=+yxy x y xy x y x 35322211,则 。
12.已知=++++=+22222211yxy y xy y x y x ,则 。
13.若=+---=-abb a b ab a b a 7222411,则 。
14.已知=++=+n m m n n m n m ,求711 。
15.已知,,124-=-=+xy y x 求1111+++++y x x y 的值。
16.,则,设060.22=-+>>ab b a b a 的值等于a b b a -+ 。
17.若=+=+-2221013aa a a ,则 。
(因式分解分式)单元测试卷
(因式分解\分式)单元测试卷一、填空题:(每空格2分,共42分)1、 直接写出因式分解的结果:①2332255y x y x -= ②_________________22=+++n n na a a ③_____________________942=-x ④=+-3632a a 2、 若是完全平方式162+-mx x ,那么m=________。
若n x x ++1242是一个完全平方式,则n = 。
3、 如果_________;,2,52222=+=+==+y x xy y x xy y x 则4、 利用因式分解简便计算(必须写出完整计算过程)①____________________________________________75.225.722=-②______________________________________1443824382=+⨯+=5、 多项式.____________96922的公因式是与++-x x x6、 分式22-+x x 等于0,则x . 当x 时,分式354-+x x 有意义. 7、 ab a 21,312的最简公分母是 . 3912+-m m m 与的最简公分母是 . 8、 分式方程331-=-+x k x x 无解,则k=______. 9、分式方程134313=---+x x x 的解是_______. 10、件商品,进价为50元,售价为a 元,利润率为_____________.11、一项工作,甲要5小时才可完成,乙要x 小时完成,若甲乙合作, 3小时可完成_____________12、某班学生到距学校12千米的烈士陵园扫墓,一部分人骑自行车先行,经0.5时后,其余的人乘汽车出发,结果他们同时到达.已知汽车的速度是自行车的3倍,求自行车和汽车的速度.若设自行车的速度为x 千米/时,根据以上条件可列分式方程:_______________________________13、种原料和乙种原料的每千克单价比是2:3,将价值200元的甲种原料有价值100元的乙混合后,单价为9元,求甲的单价。
最新因式分解及分式的计算练习题(题型全)
分式计算练习二周案序 总案序 审核签字一.填 空: 1.x 时,分式42-x x 有意义; 当x 时,分式1223+-x x 无意义; 2.当x= 时,分式2152x x --的值为零;当x 时,分式xx --112的值等于零.3.如果b a=2,则2222b a b ab a ++-=4.分式ab c 32、bc a 3、ac b25的最简公分母是 ; 5.若分式231-+x x 的值为负数,则x 的取值范围是 .6.已知2009=x 、2010=y ,则()⎪⎪⎭⎫⎝⎛-+⋅+4422y x y x y x = .二.选 择: 1.在31x+21y, xy 1 ,a +51 ,—4xy , 2xx , πx中,分式的个数有( )A 、1个B 、2个C 、3个D 、4个 2.如果把yx y322-中的x 和y 都扩大5倍,那么分式的值( )A 、扩大5倍B 、不变C 、缩小5倍D 、扩大4倍3.下列各式:()xx x x y x x x 2225,1,2 ,34 ,151+---π其中分式共有( )个。
A 、2 B 、3 C 、4 D 、54.下列判断中,正确的是( )A 、分式的分子中一定含有字母 B 、当B=0时,分式BA 无意义 C 、当A=0时,分式BA 的值为0(A 、B 为整式) D 、分数一定是分式5.下列各式正确的是( )A 、11++=++b a x b x a B 、22x y x y = C 、()0,≠=a ma na m n D 、a m a n m n --= 6.下列各分式中,最简分式是( )A 、()()y x y x +-8534B 、y x x y +-22C 、2222xy y x y x ++ D 、()222y x y x +- 7.下列约分正确的是( ) A 、313m m m +=+ B 、212y x y x -=-+ C 、123369+=+a ba b D 、()()y x a b y b a x =--8.下列约分正确的是( )A 、326x x x = B 、0=++y x y x C 、x xy x y x 12=++ D 、214222=y x xy 9.(更易错题)下列分式中,计算正确的是( )A 、32)(3)(2+=+++a c b a c bB 、b a b a b a +=++122C 、1)()(22-=+-b a b a D 、x y y x xy y x -=---1222 10.若把分式xyyx 2+中的x 和y 都扩大3倍,那么分式的值( )A 、扩大3倍B 、不变C 、缩小3倍D 、缩小6倍 11.下列各式中,从左到右的变形正确的是( )A 、y x y x y x y x ---=--+-B 、y x y x y x y x +-=--+-C 、yx y x y x y x -+=--+- D 、y x yx y x y x +--=--+-12.若0≠-=y x xy ,则分式=-xy 11 ( ) A 、xy 1B 、x y -C 、1D 、-113. 若x 满足1=xx,则x 应为( )A 、正数 B 、非正数 C 、负数 D 、非负数14.已知0≠x ,xx x 31211++等于( ) A 、x 21 B 、1 C 、x 65 D 、x 61115、(多转单约分求值)已知113x y -=,则55x xy yx xy y+---值为( )A 、72- B 、72 C 、27 D 、72-三.化简:1.m m -+-3291222. a+2-a -243. 22221106532xyx y y x ÷⋅4.ac ac bc c b ab b a -+-++ 5.262--x x ÷4432+--x x x6.224)2222(x x x x x x -⋅-+-+-7. 22224421y xy x y x y x y x ++-÷+-- 8.1111-÷⎪⎭⎫ ⎝⎛--x x x 9. mn nn m m m n n m -+-+--210.⎪⎪⎭⎫⎝⎛++÷--ab b a b a b a 22222 11.⎪⎭⎫ ⎝⎛--+÷--13112x x x x12.(22+--x x x x )24-÷x x 13. 1⎪⎭⎫⎝⎛⋅÷÷a b b a b a 32492314..()2211n m m n m n -⋅⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛+; 15.168422+--x x x x ,其中x =5.分式计算练习一1. 2234xy z ·(-28z y )等于( ) A .6xyz B .-23384xy z yz- C .-6xyz D .6x 2yz 2. 下列各式中,计算结果正确的有( )①;2)1(2223n m mn n m =-• ②8b a b a b a 32326)43(-=-÷; ③(;1)()b a ba b a b a +=+•-⋅+ ④(2232)()()b a b a b a b a =-÷-•-A.1个B.2个C.3个D.4个3. 下列公式中是最简分式的是( )A .21227b aB .22()a b b a --C .22x y x y ++D .22x y x y--4. (2008黄冈市)计算()ab a bb aa+-÷的结果为( ) A .a b b - B .a b b + C .a b a - D .a b a+5. 计算34x x y -+4x y y x +--74yx y-得( ) A .-264x y x y +- B .264x yx y+- C .-2 D .2二 计算:(1)2223x y mn ·2254m n xy ÷53xym n . (2)2216168m m m -++÷428m m -+·22m m -+(3)(-2b a )2÷(b a -)·(-34b a)3. (4)21x x --x-1.三、 先化简,再求值:1、232282x x x x x +-++÷(2x x -·41x x ++).2、22)11(yxy y x y y x -÷-++, 其中x=-45. 其中2-=x ,1=y .3、已知a=25,25-=+b ,4、已知3=a ,2-=b ,求2++ba ab 得值。
整数因式分解、分式练习题
整式因式分解题型一:直接提公因式1.因式分解:xy -y = 2.分解因式:2x x += . 3.分解因式:24_________.x x -= 4.分解因式:2a 2-4a= . 5.因式分解:2x 3-x 2=______________. 6.分解因式:ax+ay= .7. 分解因式:24_________.x x -= 8.分解因式:23x x += . 题型二:直接用公式平方差公式:))((22b a b a b a -+=-完全平方公式:222)(b ab a b a ++=+ 222)(b ab a b a +-=- 立方和公式、立方差公式、十字交叉(中考不作要求)1.分解因式:225x -= .2.分解因式:24x -=______.3.因式分解:21a -= ,4.分解因式:x 2-9=______.5.因式分解:229x y -=_______________.6.分解因式:=-142x ____________________.7.分解因式:41242++x x = . 8.分解因式:2168()()x y x y --+-= . 题型三:把代数式作为一个整体(整体思维)1. (2011山东莱芜)分解因式(a+b)3-4(a+b)=______________.2. (2011山东威海)分解因式: =+---16)(8)(2y x y x .3. (2011江苏南通)分解因式:3m (2x -y )2-3mn 2=题型四:分组分解法(分组再套公式)1.分解因式:321a a a +--=_________________ 2、因式分解:bc ac ab a -+-2=_______________. 3.因式分解:22a b ac bc -++ . 4、因式分解:y y x x ---22=___________. 三一分法:(一般三项一组的都会用到完全平方公式)1、 因式分解:19622-+-y xy x =_____________2、因式分解:=-+-xy y x 22522_____ ________ 综合:题型五:先提公因式,再套平方差或者完全平方公式。
因式分解与分式综合复习测试题
因式分解与分式综合检测一 选择题1. 下列变形正确的是 ( )A .22a ab b +=+ B .2a a b ab = C .a ax b ax = D .2a abb b =2、下列各式的分解因式:①()()2210025105105p q q q -=+- ②()()22422m n m n m n --=-+-③()()2632x x x -=+- ④221142x x x ⎛⎫--+=-- ⎪⎝⎭正确的个数有( ) A 、0 B 、1 C 、2 D 、33.下列多项式,不能运用平方差公式分解的是( )A.42+-mB.22y x --C.122-y x D.412-x 4.若4x 2-mxy +9y 2是一个完全平方式,则m 的值为( ) A.6 B.±6 C.12 D.±12 5. 下列因式分解错误的是( )A .22()()x y x y x y -=+- B .2269(3)x x x ++=+ C .2()x xy x x y +=+ D .222()x y x y +=+ 6.若()()26323----x x 有意义,则x 的取值范围是( )A .3>xB .2<xC .3≠x 或2≠xD .3≠x 且2≠x 7.下列各式中,能用完全平方公式分解因式的是( ).A.4x 2-2x +1B.4x 2+4x -1C.x 2-xy +y 2 D .x 2-x +128.把代数式269mx mx m -+分解因式,下列结果中正确的是A .2(3)m x +B .(3)(3)m x x +-C .2(4)m x -D .2(3)m x - 9、已知正方形的面积是()22168x x cm -+(x >4cm),则正方形的周长是( ) A 、()4x cm - B 、()4x cm - C 、()164x cm - D 、()416x cm -10、下列变形正确的是( ) A .x y x y x y x y -+--=-+ B .x y x y x y x y -+-=--+ C .x y x y x y x y -++=--- D .x y x yx y x y-+-=---+ 二、耐心填一填1.分解因式:244x x ---=_____________。
代数式、整式、分式、因式分解精选训练题
代数式、整式、分式、因式分解精选训练题一、选择题1.计算12-的值为( ) A .2B .12C .2-D .1-2.计算:11()(6-= ) A .6-B .6C .16-D .163.下列各式从左到右的变形为分解因式的是( ) A .32321836x y x y =B .2(2)(3)6m m m m +-=--C .289(3)(3)8x x x x x +-=+-+D .26(2)(3)m m m m --=+-4.计算211x xx x--÷的结果是( ) A .2x B .2x -C .xD .x -5.如果1(0.1)a -=-,0(2022)b =-,23()2c -=-,那么a 、b 、c 三个数的大小为()A .b c a >>B .c b a >>C .b a c >>D .c a b >>6.单项式232x y-的系数和次数分别是( )A .3-,2B .12-,3C .32-,2D .32-,37.下列计算正确的是( ) A .22(3)9a a +=+ B .222(9)189x y x xy y -=-+ C .22(23)469a a a +=++D .222()2x y x xy y -+=-+8.若关于x 的多项式2(2)(24)x ax x ++-展开合并后不含2x 项,则a 的值是( ) A .0B .12C .2D .2-9.已知多项式2ax bx c ++,其因式分解的结果是(1)(4)x x +-,则abc 的值为()A .12B .12-C .6D .6-10.下列等式中,从左到右的变形是因式分解的是( ) A .2(2)2x x x x +=+ B .22(3)69x x x -=-+ C .211()x x x x+=+D .29(3)(3)x x x -=+-11.下列四个式子中在有理数范围内能因式分解的是( ) A .21x +B .2x x +C .221x x +-D .21x x -+12.下列从左边到右边的变形,属于因式分解的是( ) A .2(2)(3)6x x x x -+=+- B .2(2)24x x -=- C .24414(1)1x x x x -+=-+D .3(1)(1)x x x x x -=-+13.下列各式中.是因式分解的是( ) A .292(9)2m m m m -+=-+ B .3()33m n m n +=+ C .2244(2)m m m ++=+D .2223623(2)m m m m --=-+14.下列分式的变形正确的是( )A .33a ab b +=+B .22a a b b=C .2a ab b b =D .a aa b a b-=-++ 15.如果分式1xx +有意义,那么x 的取值范围( ) A .0x ≠ B .1x ≠ C .1x =- D .1x ≠-16.若分式中22aba W+的a 和b 都扩大3倍,且分式的值不变,则W 可以是( ) A .3B .bC .2bD .3b17.下列分式是最简分式的是( ) A .93b aB .22aba bC .a ba b+- D .2aa ab- 18.计算32(3)x y -的结果是( ) A .329x yB .629x yC .326x yD .626x y -19.若2(3)(5)15x x x mx -+=+-,则m 的值为( )A .8-B .2C .2-D .5-20.在下列计算中,正确的是( ) A .4482a a a ⋅=B .236(2)8a a -=-C .347a a a +=D .623a a a ÷=21.下列计算正确的是( ) A .2221x x -= B .22234a a a -+=-C .3(1)31a a +=+D .2(1)22x x -+=--22.若29x mx ++是完全平方式,则m 的值是( ) A .3±B .6-C .6D .6±23.单项式24m n-的系数和次数是( )A .系数是14,次数是3B .系数是14-,次数是3C .系数是14-,次数是2D .系数是3,次数是14-24.一个多项式与221x x +-的和是32x +,则这个多项式为( ) A .251x x -++B .23x x -++C .251x x ++D .23x x --25.下列多项式中,能进行因式分解的是( ) A .22x y +B .32x y x y +C .x y +D .1y +26.下列多项式,能用平方差公式分解的是( ) A .224x y -+B .2294x y +C .22(2)x y +-D .224x y --27.下列等式中,从左到右的变形是因式分解的是( ) A .2(3)(3)9x x x +-=- B .22(2)44x x x +=++ C .2(3)(5)215x x x x -+=+-D .222469(23)x xy y x y -+=-28.将下列多项式因式分解,结果中不含有3x +因式的是( ) A .29x -B .23x x +C .269x x -+D .269x x ++29.多项式2224333126x y x y x y --的公因式是( )A .223x y zB .22x yC .223x yD .323x y z30.下列式子运算结果为1x +的是( )A .2211x x x x -⋅+ B .11x- C .2211x x x +++D .111x x x +÷- 31.下列选项中最简分式是( )A .23x x x+B .224x C .211x x +- D .211x + 32.若234a b c ==,且0abc ≠,则32a bc a+-的值是( ) A .2B .2-C .3D .3-33.下列式子:33,,,21x y a xx a π++,其中是分式的是( ) A .4个 B .3个 C .2个 D .1个34.下列各式中,运算正确的是( )A .11223x x x +=B .2112111x x x +=+-- C .2642142y x x y y⋅=D .221323y xy x y÷=35.下列运算正确的是( ) A .222a a a +=B .235a a a ⋅=C .236(2)8a a -=D .222()a b a b +=+36.下列计算正确的是( ) A .2222a a a ⋅= B .321a a a-⋅= C .235()a a =D .222()a b a ab b -=++37.下列变形中,从左到右不是因式分解的是( ) A .22(2)x x x x -=- B .2221(1)x x x ++=+ C .24(2)(2)x x x -=+-D .22(1)x x x+=+38.若多项式2x bx c ++因式分解的结果为(2)(3)x x -+,则b c +的值为( ) A .5-B .1-C .5D .639.已知223A x x =--,2234B x x =-+,则A B -等于( ) A .21x x --B .21x x -++C .2357x x --D .27x x -+-40.已知23x y -=,则代数式221744x xy y -++的值为( ) A .434B .134C .3D .4二、填空题41.多项式23223x y xy y --+的次数是 .42.已知2b a=,则2222444a ab b a b ++=- .43.若210y y m ++是一个完全平方式,则m = . 44.单项式232x y -的系数为 . 45.若分式2xx-有意义,则x 的取值范围是 . 46.计算:223()2a b ---= . 47.若分式242a a -+的值为零,则a 的值是 .48.因式分解22mx mx m ++= .49.若2610x x -+=,则242461x x x =++ .50.分解因式:2327a -= . 三、解答题51.计算:2213[4.5(3)2]2x x x x ---+.52.先化简,再求值:23(2)[15(2)]a a b a b -----,其中1a =,5b =-.53.因式分解:(1)2()6()m a b n a b ---;(2)222(91)36a a +-;(3)222(5)8(5)16x x -+-+.54.因式分解: (1)229a b -;(2)22242a ab b -+.55.计算:(1)22()()x x y x y -++;(2)[(2)2()()]y x y x y x y x --+-÷;56.先化简,再求值:228(2)22x xx x x x +÷+---,其中1x =.57.先化简,再求值:23211(1)x x x x---÷,其中20x x -.。
因式分解与分式
因式分解练习题例1、下列各式的变形中,是否是因式分解,为什么?(5个式子均不是) (1)()()1122+-+=+-y x y x y x ; (2)()()2122--=+-x x x x ; (3)232236xy xy y x ⋅=;(4)()()()()221a y x a x y y x --=-+-;(5) .96962⎪⎭⎫ ⎝⎛++=++x x xy y xy y x1. 提公因式法——形如ma mb mc m a b c ++=++()2. 运用公式法——平方差公式:a b a b a b 22-=+-()(),完全平方公式:a ab b a b 2222±+=±()()2222222a b c ab bc ca a b c +++++=++3. 十字相乘法 x p q x pq x p x q 2+++=++()()()()()()22a p q ab p qb a pb a qb +++⋅=++4. 分组分解法 (适用于四次或四项以上,①分组后能直接提公因式 ②分组后能直接运用公式)。
例2、因式分解(本题只给出最后答案) (1) ;823x x -2(2)(2)x x x =+-(2) .9622224y y x y x +-222(3)y x =-(3) ;6363223abc c a b a a --+3()(2)a a c a b =-+(4) ().4222222a c b c b -+-()()()()b c a b c a b c a b c a =-+++--+--(5) 121164+--n n a b a =14(2)(2)n a b a b a -+- (6) ;361222422y xy y y x +--2(6)(6)y x y x y =-+--(7) .2939622++-+-y x y xy x(31)(32)x y x y =----例3、因式分解(本题只给出答案)1、()();742--+x x =(3)(5)x x +-2、()();563412422++---x x x x22(44)(45)x x x x =----3、()()()()566321+--+-x x x x22(44)(45)x x x x =----4、().566)67(22+--+-x x x x22(44)(45)x x x x =----小结: 1、 因式分解的意义左边 = 右边 ↓ ↓多项式 整式×整式(单项式或多项式)2、 因式分解的一般步骤3、多项式有因式乘积项 → 展开 → 重新整理 → 分解因式因式分解1、;25942n m -2、;4482--a a3、()();44y x y x --+4、;12222c b a ab +--5、()();2222b a cd d c ab +++6、;4215322222y a xy a x a --7、;186323b ab b a b a -+-8、.41422a b a -+-9、()().20158122-++-a a a(1)如果(-1-b )·M =b 2-1,则M =_______.(2)若x 2+ax +b 可以分解成(x +1)(x -2),则a =_______,b =_______. (3)若9x 2+2(m -4)x +16是一个完全平方式,则m 的值为_______. (4)分解因式a 2(b -c )-b +c =_______. (5)分解因式xy -2y -2+x =_______. (6)在实数范围内分解因式x 3-4x =_______.分式和分式方程知识点总结1.(2014•温州,第4题4分)要使分式有意义,则x 的取值应满足( )2.(2014•毕节地区,第10题3分)若分式的值为零,则x 的值为( )3. ( 2014•福建泉州,第10题4分)计算:+= .4. (2014•泰州,第14题,3分)已知a 2+3ab +b 2=0(a ≠0,b ≠0),则代数式+的值等于 . 5.(2014年山东泰安,第21题4分)化简(1+)÷的结果为 .6.先化简,再求值:(a 2b +ab )÷,其中a =+1,b =﹣1.7解方程: 730100-=x x. 8 解分式方程:+=1.二、填空题1. (2013浙江省舟山,11,4分)当x 时,分式x-31有意义. 2. (2013福建福州,14,4分)化简1(1)(1)1m m -++的结果是 . 3. (2013山东泰安,22 ,3分)化简:(2x x+2-x x-2)÷xx 2-4的结果为 。
因式分解和分式
龙文教育学科教师辅导讲义课 题因式分解,分式教学内容专题一、因式分解一、因式分解的意义:因式分解是把一个多项式化成几个整式的乘积形式注意:①结果应是整式乘积,而不能是分式或者是n 个整式的积与某项的和差形式;②因式分解与整式的乘法在运算过程上是完全相反的。
例01.下列四个从左到右的变形,是因式分解的是( )A .1)1)(1(2-=-+x x xB .))(())((m n a b n m b a --=--C .)1)(1(1--=+--b a b a abD .)32(322mm m m m --=-- 二、因式分解的方法类型一、提公因式法提公因式时应注意:⑴如果多项式的第一项系数是负的一般要提出“-”号,使括号内的第一项系数为正; ⑵公因式的系数和字母应分别考虑:①系数是各项系数的最大公约数; ②字母是各项共有的字母,并且各字母的指数取次数最低的。
例01.在下面因式分解中,正确的是( )A .)5(522x x y y xy y x +=-+B .2)()()()(c b a c a b c b a c b c b a a ---=+-++-+--C .)1)(2()2()2(2--=-+-x a x a x a xD .)12(2422232--=--b b ab ab ab ab 例02.把y x y x y x 3234268-+-分解因式的结果为 。
例03.分解因式:323)(24)(18)(6x y x y y x ---+--.说明:⑴观察题目结构特征 ⑵对于)(y x -与)(x y -的符号有下面的关系:⎪⎪⎩⎪⎪⎨⎧--=--=---=- 3322)()(,)()(),(x y y x x y y x x y y x例04.解方程:0)2313)(21(6)1823)(612(=-++-+x x x x例05.不解方程组⎩⎨⎧=+=-,134,32n m n m 求:32)2(2)2(5m n n m n ---的值.类型二、公式法1、利用平方差公式因式分解:()()b a b a b a -+=-22注意:①条件:两个二次幂的差的形式; ②平方差公式中的a 、b 可以表示一个数、一个单项式或一个多项式;③在用公式前,应将要分解的多项式表示成22b a -的形式,并弄清a 、b 分别表示什么。
初二上因式分解和分式计算经典习题(含答案)
一.解答题(共40小题)1.将下列各式分解因式.(1)﹣6a2+12a﹣6;(2)3a3b﹣27ab3;(3)(x2+2)2﹣12(x2+2)+36;(4)(x2+2x)2﹣(2x+4)2.2.把下列各式分解因式:(1)2x2﹣5x﹣3(2)a2(x﹣2a)2﹣a(2a﹣x)3(3)(x2﹣3)2﹣4x2(4)a2﹣2a+b2﹣2b+2ab+1(5)(x﹣y)(x2+3xy+y2)﹣5xy(x﹣y)(6)(a﹣3b)2﹣4c2+12ab3.把下列各式分解因式:(1)(a2+a+1)(a2﹣6a+1)+12a2;(2)(2a+5)(a2﹣9)(2a﹣7)﹣91;(3);(4)(x4﹣4x2+1)(x4+3x2+1)+10x4;(5)2x3﹣x2z﹣4x2y+2xyz+2xy2﹣y2z.4.分解因式:(注意使用正确的解答格式)(1)3ax3﹣30ax2+75ax(2)(4m2+9)2﹣144m2(3)﹣5a2b﹣10a2b3+15a4b(4)5a3b(a﹣b)3﹣15a4b3(b﹣a)2(5)3x2+2x+(6)(8a2+b2)2﹣(a2+8b2)2(7)(x2+4x+8)2+3x(x2+4x+8)+2x2(8)a2+2a+1+4b2﹣4ab﹣4b5.分解因式(1)20a3x﹣45ay2x(2)1﹣9x2(3)4x2﹣12x+9(4)4x2y2﹣4xy+1(5)p2﹣5p﹣36(6)y2﹣7y+12(7)3﹣6x+3x2(8)﹣a+2a2﹣a3(9)m3﹣m2﹣20m6.因式分解:①﹣6(2a﹣b)2﹣4(b﹣2a)2②6(x+y)2﹣2(x﹣y)(x+y)③﹣3(x﹣y)2﹣(y﹣x)3④3a(m﹣n)﹣2b(n﹣m)⑤9(a﹣b)(a+b)﹣3(a﹣b)2⑥3a(a+b)(a﹣b)﹣2b(b﹣a)7.将下列各式因式分解:(1)5a3b(a﹣b)3﹣10a4b3(b﹣a)2;(2)(b﹣a)2+a(a﹣b)+b(b﹣a);(3)(3a﹣4b)(7a﹣8b)+(11a﹣12b)(8b﹣7a);(4)x(b+c﹣d)﹣y(d﹣b﹣c)﹣c﹣b+d.8.因式分解:(1)x2+3(x+y)+3﹣y2+(x﹣y)(2)x2﹣4y2+4x+4(3)(x2+3x+2)(x2+7x+12)+1(4)(2a+5)(a2﹣9)(2a﹣7)﹣91(5)x3﹣3x2+4(6)24x3﹣26x2+9x﹣19.分解因式:(1)6a2b﹣4a3b3﹣2ab(2)25m2﹣n2(3)4x2+12xy+9y2(4)a2(x﹣y)﹣b2(x﹣y)(5)﹣2a2x4+16a2x2﹣32a2(6)(a2﹣a)2﹣(a﹣1)2.10.因式分解(1)﹣15xy﹣5x2(2)2(x﹣1)2﹣x+1(3)x2﹣4y2(4)(x+2y)2﹣y2(5)x2﹣12x+36(6)x2+7x﹣8.11.因式分解①4m2﹣16n2②(a﹣b)(3a+b)2+(a+3b)2(b﹣a)③(x2+2x)2+2(x2+2x)+1④(a2+4)2﹣16a2⑤(x+2)(x+4)+1⑥(x2+4x)2﹣x2﹣4x﹣2012.分解因式:(1)﹣3x2y+6xy2﹣12xy(2)81﹣m4(3)2x2﹣4xy+2y2(4)(x+2)(x﹣2)﹣513.因式分解(1)3x﹣12x2(2)x2﹣9x﹣10(3)x﹣2xz+z﹣4y(4)25(m+n)2﹣4(m﹣n)2.14.分解因式:(1)2a3﹣8a(2)4a(x﹣y)﹣2b(y﹣x)(3)(x2+4)2﹣16x2(4)2xy﹣x2+1﹣y2.15.因式分解:(1)a2b+ab2;(2)﹣2m3+8m2﹣12m;(3)4x2﹣36;(4)(x﹣1)(x﹣3)+1.16.利用因式分解计算(1)3x3﹣3x2+9x(2)a4﹣8a2b2+16b4(3)20202﹣2022×2018(4)2.132+2.13×5.74+2.872 17.因式分解:(1)2x2+2x(2)a3﹣a(3)(x﹣y)2﹣4(x﹣y)+4(4)x2+2xy+y2﹣9.18.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)x4﹣y4;(5)x2﹣4(x﹣1).19.用双十字相乘法分解因式:(1)x﹣8xy+15y+2x﹣4y﹣3;(2)3x2﹣11xy+6y2﹣xz﹣4yz﹣2z2;(3)6x2﹣5xy﹣6y2+2x+23y﹣20;(4)x2﹣6xy+9y2﹣5xz+15yz+6z2;(5)a2﹣3b2﹣3c2+10bc﹣2ca﹣2ab;(6)x2﹣2y2﹣3z2+xy+7yz+2xz;(7)x2﹣y2+5x+3y+4.20.把下列各式分解因式:(1)a2﹣14ab+49b2(2)a(x+y)﹣(a﹣b)(x+y);(3)121x2﹣144y2;(4)3x4﹣12x2.21.计算:(1)(2a﹣b)(2a+b)﹣a(3a﹣2b);(2)(﹣x)÷.22.计算:(1)a(a+2b)﹣(a+1)2+2a.(2)(1﹣)÷.23.计算:(1)(﹣)﹣1﹣25÷23+(π﹣3.14+2020)0;(2)÷﹣m.24.计算:(1);(2).25.计算:(1);(2);(3).26.先化简,再求值:(1),其中x=﹣3;(2),其中a=.27.计算:(1)m(m﹣2)+(m﹣1)2;(2)(x﹣1+)÷.28.计算:(1);(2)(a+2﹣).29.计算下列各式:(1)(12a3﹣6a2+3a)÷3a;(2)(x+y)(x2﹣xy+y2);(3);(4).30.计算(1)(﹣3a)2•2a2;(2);(3);(4).31.计算:(1);(2).32.(1)计算:;(2)先化简,再求值:,其中a=﹣2,b=.33.计算(1)(2a+3b)(2a﹣3b)﹣(a+2b)2.(2)(x﹣3﹣)÷.34.计算:(1)a(2﹣a)+(a+1)2;(2)(+x﹣1)÷.35.(1)计算:;(2)先化简,再求值:,其中.36.计算:(1);(2).37.计算:(1)﹣()﹣1+|1﹣|;(2)(1﹣)÷.38.(1)你发现了吗?()2=×,()﹣2==×=×,由上述计算,我们发现()2()﹣2;(2)请你通过计算,判断()3与()﹣3之间的关系;(3)我们可以发现:()﹣m()m(ab≠0);(4)利用以上的发现计算:()﹣3×()4.39.计算:(1)(﹣2x)(x﹣3y);(2)(3x﹣5)2﹣(2x+7)2;(3)计算:,并求当a=2时原式的值.40.(1)先化简,再求值:÷,其中a=﹣1.(2)解不等式组,并把它的解集在数轴上表示出来.2020年12月02日157****5865的初中数学组卷参考答案与试题解析一.解答题(共40小题)1.将下列各式分解因式.(1)﹣6a2+12a﹣6;(2)3a3b﹣27ab3;(3)(x2+2)2﹣12(x2+2)+36;(4)(x2+2x)2﹣(2x+4)2.【分析】(1)先提公因式,再用完全平方公式分解即可;(2)先提公因式,再用平方差公式;(3)先用完全平方公式,再用平方差公式;(4)两次用平方差公式.【解答】解:(1)原式=﹣6(a2﹣2a+1)=﹣6(a﹣1)2;(2)原式=3ab(a2﹣9b2)=3ab(a+3b)(a﹣3b);(3)原式=(x2+2﹣6)2=(x+2)2(x﹣2)2;(4)原式=(x2+2x+2x+4)(x2+2x﹣2x﹣4)=(x+2)2(x2﹣4)=(x+2)3(x﹣2).【点评】本题主要考查提公因式法分解因式和利用完全平方公式及平方差公式分解因式,注意分解因式要彻底.2.把下列各式分解因式:(1)2x2﹣5x﹣3(2)a2(x﹣2a)2﹣a(2a﹣x)3(3)(x2﹣3)2﹣4x2(4)a2﹣2a+b2﹣2b+2ab+1(5)(x﹣y)(x2+3xy+y2)﹣5xy(x﹣y)(6)(a﹣3b)2﹣4c2+12ab【分析】(1)利用十字相乘法分解因式;(2)先提公因式,再化简;(3)先利用平方差公式,再根据十字相乘法分解因式;(4)分组后利用完全平方公式分解因式;(5)先提公因式,再利用完全平方公式分解因式;(6)先化简,再分组后利用平方差公式分解因式.【解答】解:(1)2x2﹣5x﹣3,=(x﹣3)(2x+1);(2)a2(x﹣2a)2﹣a(2a﹣x)3,=a(x﹣2a)2(2a+x﹣2a),=ax(x﹣2a)2;(3)(x2﹣3)2﹣4x2,=(x2﹣3)2﹣(2x)2,=(x2﹣2x﹣3)(x2+2x﹣3),=(x﹣3)(x+1)(x﹣1)(x+3);(4)a2﹣2a+b2﹣2b+2ab+1,=(a2+2ab+b2)﹣(2a+2b)+1,=(a+b)2﹣2(a+b)+1,=(a+b﹣1)2;(5)(x﹣y)(x2+3xy+y2)﹣5xy(x﹣y),=(x﹣y)(x2+3xy+y2﹣5xy),=(x﹣y)3;(6)(a﹣3b)2﹣4c2+12ab,=a2﹣6ab+9b2﹣4c2+12ab,=(a2+6ab+9b2)﹣(2c)2,=(a+3b﹣2c)(a+3b+2c).【点评】本题考查了因式分解,一提,二套,三检查,注意分解要彻底.3.把下列各式分解因式:(1)(a2+a+1)(a2﹣6a+1)+12a2;(2)(2a+5)(a2﹣9)(2a﹣7)﹣91;(3);(4)(x4﹣4x2+1)(x4+3x2+1)+10x4;(5)2x3﹣x2z﹣4x2y+2xyz+2xy2﹣y2z.【分析】(1)令a2+1=b,先把式子整理,可知是将一个三项式进行因式分解,考虑运用十字相乘法,再将b=a2+1回代,继续分解即可;(2)先将a2﹣9分解为(a﹣3)(a+3),把(a﹣3)与(2a+5)结合,(a+3)与(2a﹣7)结合,整理之后,运用十字相乘法分解;(3)设x+y=a,xy=b,代入原式,先把式子整理,可知是将一个四项式进行因式分解,考虑运用分组分解法.此时b2+2b+1可组成完全平方公式,可把此三项分为一组,再运用平方差公式分解,再提取公因式法分解因式即可;(4)令x4+1=a,先把式子整理,可知是将一个三项式进行因式分解,考虑运用十字相乘法,再将a=x4+1回代,继续分解即可;(5)可将一二项作为第一组,三四项作为第二组,五六项作为第三组,提取公因式2x ﹣z以后,将余下的多项式运用完全平方公式继续分解.【解答】解:(1)令a2+1=b,则原式=(b+a)(b﹣6a)+12a2=b2﹣5ab﹣6a2+12a2=b2﹣5ab+6a2=(b﹣2a)(b﹣3a)=(a2+1﹣2a)(a2+1﹣3a)=(a﹣1)2(a2﹣3a+1);(2)原式=[(2a+5)(a﹣3)][(a+3)(2a﹣7)]﹣91=(2a2﹣a﹣15)(2a2﹣a﹣21)﹣91=(2a2﹣a)2﹣36(2a2﹣a)+224=(2a2﹣a﹣28)(2a2﹣a﹣8)=(a﹣4)(2a+7)(2a2﹣a﹣8);(3)设x+y=a,xy=b,则原式=b(b+1)+(b+3)﹣2(a+)﹣(a﹣1)2=(b2+2b+1)﹣a2=(b+1+a)(b+1﹣a)=(xy+1+x+y)(xy+1﹣x﹣y)=(x+1)(y+1)(y﹣1)(x﹣1);(4)令x4+1=a,则原式=(a﹣4x2)(a+3x2)+10x4=a2﹣x2a﹣2x4=(a﹣2x2)(a+x2)=(x4+1﹣2x2)(x4+1+x2)=(x+1)2(x﹣1)2(x2+x+1)(x2﹣x+1);(5)原式=(2x3﹣x2z)+(﹣4x2y+2xyz)+(2xy2﹣y2z)=x2(2x﹣z)﹣2xy(2x﹣z)+y2(2x﹣z)=(2x﹣z)(x2﹣2xy+y2)=(2x﹣z)(x﹣y)2.【点评】本题考查了平方差公式,完全平方公式,十字相乘法,分组分解法分解因式.如果题目给出的不是一个多项式的形式,需要先把式子整理,再分解因式.本题属于竞赛题型,有一定难度.4.分解因式:(注意使用正确的解答格式)(1)3ax3﹣30ax2+75ax(2)(4m2+9)2﹣144m2(3)﹣5a2b﹣10a2b3+15a4b(4)5a3b(a﹣b)3﹣15a4b3(b﹣a)2(5)3x2+2x+(6)(8a2+b2)2﹣(a2+8b2)2(7)(x2+4x+8)2+3x(x2+4x+8)+2x2(8)a2+2a+1+4b2﹣4ab﹣4b【分析】因式分解时,有公因式要先提取公因式,然后再利用公式法或十字相乘法进行分解,分解的结果要分解到不能再分解为止.【解答】解:(1)3ax3﹣30ax2+75ax=3ax(x2﹣10x+25)=3ax(x﹣5)2(2)(4m2+9)2﹣144m2=(4m2+9+12m)(4m2+9﹣12m)=(2m+3)2(2m﹣3)2(3)﹣5a2b﹣10a2b3+15a4b=﹣5a2b(1+2b2﹣3a2)(4)5a3b(a﹣b)3﹣15a4b3(b﹣a)2=5a3b(a﹣b)2(a﹣b﹣3ab2)(5)3x2+2x+=(9x2+6x+1)=(3x+1)2(6)(8a2+b2)2﹣(a2+8b2)2=(8a2+b2+a2+8b2)(8a2+b2﹣a2﹣8b2)=9×7(a2+b2)(a2﹣b2)=63(a2+b2)(a﹣b)(a+b);(7)(x2+4x+8)2+3x(x2+4x+8)+2x2=(x2+4x+8+x)(x2+4x+8+2x)=(x2+5x+8)(x+2)(x+4)(8)a2+2a+1+4b2﹣4ab﹣4b=(a+1)2﹣4b(a+1)+4b2=(a+1﹣2b)2【点评】本题考查了提取公因式法与公式法的综合运用,熟练掌握因式分解的方法并具有整体思想是解题的关键.5.分解因式(1)20a3x﹣45ay2x(2)1﹣9x2(3)4x2﹣12x+9(4)4x2y2﹣4xy+1(5)p2﹣5p﹣36(6)y2﹣7y+12(7)3﹣6x+3x2(8)﹣a+2a2﹣a3(9)m3﹣m2﹣20m【分析】(1)(7)(8)(9)可先提取公因式,然后再利用十字相乘法进行因式分解;(2)(3)(4)(5)(6)可直接利用十字相乘法进行因式分解得到最后的结果.【解答】解:(1)原式=5ax(4a2﹣9y2)=5ax(2a+3y)(2a﹣3y);(2)原式=(1+3x)(1﹣3x);(3)原式=(2x)2﹣12x+9=(2x﹣3)2;(4)原式=(2xy﹣1)2;(5)原式=(p+4)(p﹣9);(6)原式=(y﹣3)(y﹣4);(7)原式=3(x2﹣2x+1)=3(x﹣1)2;(8)原式=﹣a(a2﹣2a+1)=﹣a(a﹣1)2;(9)原式=m(m2﹣m﹣20)=m(m+4)(m﹣5).【点评】十字相乘法能把某些二次三项式分解因式.这种方法的关键是把二次项系数a 分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号.当无法用十字相乘法的方法时用求根公式法可分解因式.6.因式分解:①﹣6(2a﹣b)2﹣4(b﹣2a)2②6(x+y)2﹣2(x﹣y)(x+y)③﹣3(x﹣y)2﹣(y﹣x)3④3a(m﹣n)﹣2b(n﹣m)⑤9(a﹣b)(a+b)﹣3(a﹣b)2⑥3a(a+b)(a﹣b)﹣2b(b﹣a)【分析】利用提取公因式法分解因式得出即可.【解答】解:①﹣6(2a﹣b)2﹣4(b﹣2a)2=﹣10(2a﹣b)2②6(x+y)2﹣2(x﹣y)(x+y)=2(x+y)[3(x+y)﹣(x﹣y)]=2(x+y)(2x+4y)=4(x+y)(x+2y);③﹣3(x﹣y)2﹣(y﹣x)3=﹣3(x﹣y)2+(x﹣y)3=(x﹣y)2(﹣3+x﹣y);④3a(m﹣n)﹣2b(n﹣m)=3a(m﹣n)+2b(m﹣n)=(m﹣n)(3a+2b);⑤9(a﹣b)(a+b)﹣3(a﹣b)2=3(a﹣b)[3(a+b)﹣(a﹣b)]=3(a﹣b)(2a+4b)=6(a﹣b)(a+2b);⑥3a(a+b)(a﹣b)﹣2b(b﹣a)=3a(a+b)(a﹣b)+2b(a﹣b)=(a﹣b)(3a2+3ab+2b).【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.7.将下列各式因式分解:(1)5a3b(a﹣b)3﹣10a4b3(b﹣a)2;(2)(b﹣a)2+a(a﹣b)+b(b﹣a);(3)(3a﹣4b)(7a﹣8b)+(11a﹣12b)(8b﹣7a);(4)x(b+c﹣d)﹣y(d﹣b﹣c)﹣c﹣b+d.【分析】均直接提取公因式即可因式分解.【解答】解:(1)5a3b(a﹣b)3﹣10a4b3(b﹣a)2=5a3b(a﹣b)2(a﹣b﹣2ab2)(2)(b﹣a)2+a(a﹣b)+b(b﹣a)=(a﹣b)(a﹣b+a﹣b)=2(a﹣b)2;(3)(3a﹣4b)(7a﹣8b)+(11a﹣12b)(8b﹣7a)=(7a﹣8b)(3a﹣4b﹣11a+12b)=8(7a﹣8b)(b﹣a)(4)x(b+c﹣d)﹣y(d﹣b﹣c)﹣c﹣b+d=(b+c﹣d)(x+y﹣1).【点评】考查了因式分解的知识,解题的关键是仔细观察题目,并确定公因式.8.因式分解:(1)x2+3(x+y)+3﹣y2+(x﹣y)(2)x2﹣4y2+4x+4(3)(x2+3x+2)(x2+7x+12)+1(4)(2a+5)(a2﹣9)(2a﹣7)﹣91(5)x3﹣3x2+4(6)24x3﹣26x2+9x﹣1【分析】(1)根据分组分解法先分组,再提公因式和运用公式,可分解因式;(2)根据分组分解法先分组,再运用公式,可分解因式;(3)先将x2+3x+2和x2+7x+12利用十字相乘法分解因式,再分组相乘,运用整体的思想,根据完全平方公式,可分解因式;(4)先将a2﹣9分解因式,再重新组合相乘,运用整体思想,可分解因式;(5)将﹣3x2拆项后变为x2﹣4x2,重新分组后,可分解因式;(6)将﹣26x2拆项后变为﹣6x2﹣20x2,重新分组后,可分解因式.【解答】解:(1)x2+3(x+y)+3﹣y2+(x﹣y),=x2﹣y2+3(x+y)+3+(x﹣y),=(x﹣y)(x+y)+(x﹣y)+3(x+y)+3,=(x﹣y)(x+y+1)+3(x+y+1),=(x+y+1)(x﹣y+3);(2)x2﹣4y2+4x+4,=(x+2)2﹣4y2,=(x+2+2y)(x+2﹣2y);(3)(x2+3x+2)(x2+7x+12)+1,=(x+1)(x+2)(x+3)(x+4)+1,=(x2+5x+4)(x2+5x+6)+1,=(x2+5x)2+10(x2+5x)+24+1,=(x2+5x+5)2;(4)(2a+5)(a2﹣9)(2a﹣7)﹣91,=[(2a+5)(a﹣3)][(2a﹣7)(a+3)]﹣91,=(2a2﹣a﹣15)(2a2﹣a﹣21)﹣91,=(2a2﹣a)2﹣15(2a2﹣a)﹣21(2a2﹣a)+224,=(2a2﹣a)2﹣36(2a2﹣a)+224,=(2a2﹣a﹣8)(2a2﹣a﹣28),=(a﹣4)(2a+7)(2a2﹣a﹣8);(5)x3﹣3x2+4,=x3+x2﹣4x2+4,=x2(x+1)﹣4(x2﹣1),=x2(x+1)﹣4(x+1)(x﹣1),=(x+1)(x2﹣4x+4),=(x+1)(x﹣2)2;(6)24x3﹣26x2+9x﹣1,=(24x3﹣6x2)﹣20x2+9x﹣1,=6x2(4x﹣1)﹣(20x2﹣9x+1),=6x2(4x﹣1)﹣(4x﹣1)(5x﹣1),=(4x﹣1)(6x2﹣5x+1),=(4x﹣1)(2x﹣1)(3x﹣1).【点评】本题考查了因式分解,综合利用了提公因式法,分组分解法,公式法,十字相乘法分解因式.9.分解因式:(1)6a2b﹣4a3b3﹣2ab(2)25m2﹣n2(3)4x2+12xy+9y2(4)a2(x﹣y)﹣b2(x﹣y)(5)﹣2a2x4+16a2x2﹣32a2(6)(a2﹣a)2﹣(a﹣1)2.【分析】(1)直接提取公因式2ab即可;(2)利用平方差公式分解因式;(3)利用完全平方公式分解因式;(4)先提取公因式(x﹣y),再对余下的多项式利用平方差公式继续分解;(5)此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式和继续分解,再利用平方差公式分解因式;(6)先利用利用平方差公式分解因式,再利用完全平方公式分解因式和平方差公式分解因式.【解答】解:(1)6a2b﹣4a3b3﹣2ab=2ab(3a﹣2a2b2﹣1);(2)25m2﹣n2=(5m+n)(5m﹣n);(3)4x2+12xy+9y2=(2x+3y)2;(4)a2(x﹣y)﹣b2(x﹣y)=(x﹣y)(a2﹣b2)=(x﹣y)(a+b)(a﹣b);(5)﹣2a2x4+16a2x2﹣32a2=﹣2a2(x4+8x2﹣16)=﹣2a2(x2﹣4)2=﹣2a2(x+2)2(x﹣2)2;(6)(a2﹣a)2﹣(a﹣1)2=(a2﹣a+a﹣1)(a2﹣a﹣a+1)=(a2﹣1)(a2﹣2a+1)=(a+1)(a﹣1)(a﹣1)2=(a+1)(a﹣1)3.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.10.因式分解(1)﹣15xy﹣5x2(2)2(x﹣1)2﹣x+1(3)x2﹣4y2(4)(x+2y)2﹣y2(5)x2﹣12x+36(6)x2+7x﹣8.【分析】(1)根据提公因式法分解;(2)先根据完全平方公式展开,再运用十字相乘法分解;(3)运用平方差公式分解;(4)运用平方差公式分解;(5)运用完全平方公式分解;(6)运用十字相乘法分解.【解答】解:(1)﹣15xy﹣5x2=﹣5x(3y+x);(2)2(x﹣1)2﹣x+1=2x2﹣4x+2﹣x+1=2x2﹣5x+3=(x﹣1)(2x﹣3);(3)x2﹣4y2=(x+2y)(x﹣2y);(4)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y);(5)x2﹣12x+36=(x﹣6)2;(6)x2+7x﹣8=(x﹣1)(x+8).【点评】此题考查了因式分解﹣分组分解法以及十字相乘法,熟练掌握因式分解的方法是解本题的关键.11.因式分解①4m2﹣16n2②(a﹣b)(3a+b)2+(a+3b)2(b﹣a)③(x2+2x)2+2(x2+2x)+1④(a2+4)2﹣16a2⑤(x+2)(x+4)+1⑥(x2+4x)2﹣x2﹣4x﹣20【分析】①先提公因式,再利用平方差公式因式分解;②先提公因式,再利用平方差公式因式分解;③利用完全平方公式因式分解;④先利用平方差公式,再利用完全平方公式因式分解;⑤先根据多项式乘多项式的运算法则计算,再利用完全平方公式因式分解;⑥利用十字相乘法和完全平方公式因式分解.【解答】解:①4m2﹣16n2=4(m2﹣4n2)=4(m+2n)(m﹣2n);②(a﹣b)(3a+b)2+(a+3b)2(b﹣a)=(a﹣b)(3a+b)2﹣(a+3b)2(a﹣b)=(a﹣b)[(3a+b)2﹣(a+3b)2]=(a﹣b)[(3a+b)+(a+3b)][(3a+b)﹣(a+3b)]=(a﹣b)(4a+4b)(2a﹣2b)=8(a﹣b)2(a+b);③(x2+2x)2+2(x2+2x)+1=(x2+2x+1)2=(x+1)4;④(a2+4)2﹣16a2=(a2+4)2﹣(4a)2=(a2+4a+4)(a2﹣4a+4)=(a+2)2(a﹣2)2;⑤(x+2)(x+4)+1=x2+6x+8+1=x2+6x+9=(x+3)2;⑥(x2+4x)2﹣x2﹣4x﹣20=(x2+4x)2﹣(x2+4x)﹣20=(x2+4x﹣5)(x2+4x+4)=(x+5)(x﹣1)(x+2)2.【点评】本题考查的是多项式的因式分解,掌握提公因式法,公式法和十字相乘法因式分解的一般步骤是解题的关键.12.分解因式:(1)﹣3x2y+6xy2﹣12xy(2)81﹣m4(3)2x2﹣4xy+2y2(4)(x+2)(x﹣2)﹣5【分析】(1)提取公因式﹣3xy即可求解;(2)两次运用平方差公式分解因式;(3)此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解;(4)两次运用平方差公式分解因式.【解答】解:(1)﹣3x2y+6xy2﹣12xy=﹣3xy(x﹣2y+4);(2)81﹣m4=(9+m2)(9﹣m2)=(9+m2)(3﹣m)(3+m);(3)2x2﹣4xy+2y2=2(x2﹣2xy+y2)=2(x﹣y)2;(4)(x+2)(x﹣2)﹣5=x2﹣4﹣5=x2﹣9=(x+3)(x﹣3).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.13.因式分解(1)3x﹣12x2(2)x2﹣9x﹣10(3)x2﹣2xz+z2﹣4y2(4)25(m+n)2﹣4(m﹣n)2.【分析】(1)利用提公因式法因式分解;(2)利用十字相乘法因式分解;(3)先利用完全平方公式,再利用平方差公式因式分解;(4)利用平方差公式因式分解.【解答】解:(1)3x﹣12x2=3x(1﹣4x);(2)x2﹣9x﹣10=(x﹣10)(x+1);(3)x2﹣2xz+z2﹣4y2=(x﹣z)2﹣4y2=(x﹣z+2y)(x﹣z﹣2y);(4)25(m+n)2﹣4(m﹣n)2.=(5m+5n+2m﹣2n)(5m+5n﹣2m+2n)=(7m+3n)(3m+7n).【点评】本题考查的是因式分解,掌握提公因式法、公式法进行因式分解的一般步骤是解题的关键.14.分解因式:(1)2a3﹣8a(2)4a(x﹣y)﹣2b(y﹣x)(3)(x2+4)2﹣16x2(4)2xy﹣x2+1﹣y2.【分析】(1)先提公因式、再用平方差公式因式分解;(2)利用提公因式法进行因式分解;(3)先利用平方差公式,再利用完全平方公式因式分解;(4)先利用完全平方公式,再利用平方差公式因式分解.【解答】解:(1)2a3﹣8a=2a(a2﹣4)=2a(a+2)(a﹣2);(2)4a(x﹣y)﹣2b(y﹣x)=2(x﹣y)(2a+b);(3)(x2+4)2﹣16x2=(x2+4+4x)(x2+4﹣4x)=(x+2)2(x﹣2)2;(4)2xy﹣x2+1﹣y2=1﹣(x﹣y)2=(1+x﹣y)(1﹣x+y).【点评】本题考查的是因式分解,掌握提公因式法、公式法进行因式分解的一般步骤是解题的关键.15.因式分解:(1)a2b+ab2;(2)﹣2m3+8m2﹣12m;(3)4x2﹣36;(4)(x﹣1)(x﹣3)+1.【分析】(1)提取公因式ab因式分解即可求解;(2)提取公因式﹣2m因式分解即可求解;(3)此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有2项,可采用平方公式差继续分解;(4)先展开整理,再采用完全平方公式分解因式.【解答】解:(1)a2b+ab2=ab(a+b);(2)﹣2m3+8m2﹣12m=﹣2m(m2﹣4m+6);(3)4x2﹣36=4(x2﹣9)=4(x+3)(x﹣3);(4)(x﹣1)(x﹣3)+1=x2﹣4x+3+1=x2﹣4x+4=(x﹣2)2.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.16.利用因式分解计算(1)3x3﹣3x2+9x(2)a4﹣8a2b2+16b4(3)20202﹣2022×2018(4)2.132+2.13×5.74+2.872【分析】(1)用提取公因式法分解因式即可;(2)运用完全平方公式和平方差公式分解因式即可;(3)运用平方差公式公式分解因式,即可得出结果;(4)运用完全平方公式分解因式,即可得出结果.【解答】解:(1)3x3﹣3x2+9x=3x(x2﹣x+3);(2)a4﹣8a2b2+16b4=(a2﹣4b2)2=(a+2b)2(a﹣2b)2;(3)20202﹣2022×2018=20202﹣(2020+2)(2020﹣2)=20202﹣(20202﹣22)=22=4;(4)2.132+2.13×5.74+2.872=2.132+2×2.13×2.87+2.872=(2.13+2.87)2=52=25.【点评】本题考查了因式分解的应用;熟练掌握因式分解的方法是解题的关键.17.因式分解:(1)2x2+2x(2)a3﹣a(3)(x﹣y)2﹣4(x﹣y)+4(4)x2+2xy+y2﹣9.【分析】(1)直接提取公因式2x即可;(2)先提公因式a,然后利用平方差公式展开即可;(3)直接利用完全平方公式因式分解即可;(4)采用三一分组后即可利用公式法进行因式分解.【解答】解:(1)2x2+2x=2x(x+1)(2)a3﹣a=a(a2﹣1)=a(a+1)(a﹣1)(3)(x﹣y)2﹣4(x﹣y)+4=(x﹣y﹣2)2(4)x2+2xy+y2﹣9=(x2+2xy+y2)﹣32=(x+y)2﹣32=(x+y+3)(x+y﹣3)【点评】本题考查了因式分解的知识,题目中涉及到了提公因式法、公式法及分组分解法,特别是两种方法的综合运用更是分解因式的难点.18.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)x4﹣y4;(5)x2﹣4(x﹣1).【分析】(1)提取公因式x即可分解因式;(2)利用平方差公式分解因式;(3)先提取公因式﹣y,再根据完全平方公式进行二次分解;(4)两次利用平方差公式分解因式;(5)先展开式子,再根据完全平方公式即可分解因式.【解答】解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3=﹣y(9x2﹣6xy+y2)=﹣y(3x﹣y)2;(4)x4﹣y4;=(x2+y2)(x2﹣y2)=(x2+y2)(x+y)(x﹣y);(5)x2﹣4(x﹣1)=x2﹣4x+4=(x﹣2)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.19.用双十字相乘法分解因式:(1)x2﹣8xy+15y2+2x﹣4y﹣3;(2)3x2﹣11xy+6y2﹣xz﹣4yz﹣2z2;(3)6x2﹣5xy﹣6y2+2x+23y﹣20;(4)x2﹣6xy+9y2﹣5xz+15yz+6z2;(5)a2﹣3b2﹣3c2+10bc﹣2ca﹣2ab;(6)x2﹣2y2﹣3z2+xy+7yz+2xz;(7)x2﹣y2+5x+3y+4.【分析】而对于形如ax2+bxy+cy2+dx+ey+f的x,y的二元二次式也可以用十字相乘法来分解,如图2,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk 乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k);【解答】解:(1)x2﹣8xy+15y2+2x﹣4y﹣3;∴x2﹣8xy+15y2+2x﹣4y﹣3=(x﹣3y﹣1)(x﹣5y+3);(2)3x2﹣11xy+6y2﹣xz﹣4yz﹣2z2;∴3x2﹣11xy+6y2﹣xz﹣4yz﹣2z2=(3x﹣2y+2z)(x﹣3y﹣z);(3)6x2﹣5xy﹣6y2+2x+23y﹣20;∴6x2﹣5xy﹣6y2+2x+23y﹣20=(3x+2y﹣5)(2x﹣3y+4);(4)x2﹣6xy+9y2﹣5xz+15yz+6z2;∴x2﹣6xy+9y2﹣5xz+15yz+6z2=(x﹣3y﹣2z)(x﹣3y﹣3z);(5)a2﹣3b2﹣3c2+10bc﹣2ca﹣2ab;=a2﹣2ab﹣3b2﹣2ca+10bc﹣3c2;∴a2﹣3b2﹣3c2+10bc﹣2ca﹣2ab=(a+b﹣3c)(a﹣3b+c);(6)x2﹣2y2﹣3z2+xy+7yz+2xz;=x2+xy﹣2y2+2xz+7yz﹣3z2,∴x2﹣2y2﹣3z2+xy+7yz+2xz=(x﹣y+3z)(x+2y﹣z);(7)x2﹣y2+5x+3y+4.∴x2﹣y2+5x+3y+4=(x+y)(x﹣y)+5x+3y+4=(x+y+1)(x﹣y+4).【点评】此题是因式分解﹣双十字相乘法,主要考查了二元二次多项式的分解因式的方法,解本题的关键是选好那个字母当做常数对待,再用十字相乘法分解.20.把下列各式分解因式:(1)a2﹣14ab+49b2(2)a(x+y)﹣(a﹣b)(x+y);(3)121x2﹣144y2;(4)3x4﹣12x2.【分析】(1)直接利用完全平方公式进行因式分解即可;(2)提取公因式(x+y)即可;(3)直接利用平方差公式因式分解即可;(4)先提取公因式3x2,然后再利用平方差公式因式分解即可.【解答】解:(1)a2﹣14ab+49b2=a2﹣2×7ab+(7b)2=(a﹣7b)2(2)a(x+y)﹣(a﹣b)(x+y)=(x+y)(a﹣a+b)=b(x+y);(3)121x2﹣144y2;=(11x)2﹣(12y)2=(11x+12y)(11x﹣12y)(4)3x4﹣12x2=3x2(x2﹣4)=3x2(x+2)(x﹣2)【点评】本题考查了用公式法和提公因式法因式分解的知识,解题时候首先考虑提公因式法,然后考虑采用公式法,分解一定要彻底.21.计算:(1)(2a﹣b)(2a+b)﹣a(3a﹣2b);(2)(﹣x)÷.【分析】(1)先分别进行多项式与多项式(平方差公式)、多项式与单项式的乘法运算,再合并同类项即可.(2)先对分式通分合并同类项再进行约分计算即可.【解答】解:(1)原式=4a2﹣b2﹣3a2+2ab=a2﹣b2+2ab;(2)原式====.【点评】本题主要考查了整式和分式的混合运算,解决问题的关键是掌握混合运算的顺序.分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律运算,会简化运算过程.22.计算:(1)a(a+2b)﹣(a+1)2+2a.(2)(1﹣)÷.【分析】(1)先去括号,然后合并同类项;(2)先通分,然后化除法为乘法进行约分化简.【解答】解:(1)原式=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1;(2)原式=×=×=.【点评】本题主要考查了分式的混合运算,单项式乘多项式,完全平方公式,去括号时,注意符号的变化,难度不大.23.计算:(1)(﹣)﹣1﹣25÷23+(π﹣3.14+2020)0;(2)÷﹣m.【分析】(1)根据负整数指数幂、同底数幂的除法和零指数幂可以解答本题;(2)根据分式的除法和减法可以解答本题.【解答】解:(1)(﹣)﹣1﹣25÷23+(π﹣3.14+2020)0=(﹣2)﹣22+1=(﹣2)﹣4+1=﹣5;(2)÷﹣m=﹣m=﹣m=﹣.【点评】本题考查分式的混合运算、整式的混合运算,解答本题的关键是明确它们各自的计算方法.24.计算:(1);(2).【分析】(1)根据零指数幂的意义以及负整数指数幂的意义即可求出答案.(2)根据分式的运算法则即可求出答案.【解答】解:(1)原式===.(2)原式===.【点评】本题考查实数和分式的运算,解题的关键是熟练运用运算法则,本题属于基础题型.25.计算:(1);(2);(3).【分析】(1)先计算乘方、将除法转化为乘法、同时对除式因式分解,再约分即可;(2)先将原式转化为同分母分式的减法,再根据法则计算即可;(3)根据分式的混合运算顺序和运算法则计算可得答案.【解答】解:(1)原式=•==;(2)原式=﹣==;(3)原式=•+=+==.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.26.先化简,再求值:(1),其中x=﹣3;(2),其中a=.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得答案.【解答】解:(1)原式=,将x=﹣3代入:原式=.(2)原式==,将代入:原式=.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.27.计算:(1)m(m﹣2)+(m﹣1)2;(2)(x﹣1+)÷.【分析】(1)先算乘法,再合并同类项即可;(2)先算括号内的加法,再把除法变成乘法,最后算乘法即可.【解答】解:(1)原式=m2﹣2m+m2﹣2m+1=2m2﹣4m+1;(2)原式=÷=•=﹣.【点评】本题考查了整式的混合运算和分式的混合运算,能正确根据运算法则进行化简是解此题的关键.28.计算:(1);(2)(a+2﹣).【分析】(1)根据分式的除法可以解答本题;(2)根据分式的减法和除法可以解答本题.【解答】解:(1)==;(2)(a+2﹣)====.【点评】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.29.计算下列各式:(1)(12a3﹣6a2+3a)÷3a;(2)(x+y)(x2﹣xy+y2);(3);(4).【分析】(1)根据多项式除以单项式法则求出即可;(2)先根据多项式乘以多项式法则进行计算,再合并同类项即可;(3)先根据分式的加减法则进行计算,再进行化简即可;(4)先把分式的分子和分母分解因式,同时把除法变成乘法,再根据分式的乘法法则进行化简即可.【解答】解:(1)(12a3﹣6a2+3a)÷3a=4a2﹣2a+1;(2)(x+y)(x2﹣xy+y2)=x3﹣x2y+xy2+x2y﹣xy2+y3=x3+y3;(3)原式====3;(4)原式=••=2.【点评】本题考查了多项式乘以多项式法则,多项式除法单项式法则,分式的加减法则,分式的乘除法则等知识点,能灵活运用知识点进行化简和计算是解此题的关键.30.计算(1)(﹣3a)2•2a2;(2);(3);(4).【分析】(1)先计算乘方,再计算单项式乘单项式即可;(2)直接利用同分母分式相加减的运算法则计算,继而约分即可;(3)根据分式的加减运算顺序和运算法则计算可得答案;(4)根据分式的混合运算顺序和运算法则计算可得答案.【解答】解:(1)原式=9a2•2a2=18a4;(2)原式===2;(3)原式=﹣===﹣;(4)原式=•=.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.31.计算:(1);(2).【分析】(1)先根据同分母的分式相减法则进行计算,再化成最简分式即可;(2)先把除法变成乘法,再根据分式的乘法法则求出即可.【解答】解:(1)原式===a﹣1;(2)原式=•=1.【点评】本题考查了分式的混合运算,能灵活运用分式的运算法则进行化简是解此题的关键.32.(1)计算:;(2)先化简,再求值:,其中a=﹣2,b=.【分析】(1)根据有理数的乘方、绝对值和负整数指数幂、零指数幂可以解答本题;(2)根据分式的加法和除法可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.【解答】解:(1)=﹣1+3﹣(﹣8)+1=﹣1+3+8+1=11;(2)=÷[﹣]=()=÷==,当a=﹣2,b=时,原式==﹣.【点评】本题考查分式的化简求值、绝对值、负整数指数幂、零指数幂,解答本题的关键是明确它们各自的计算方法.33.计算(1)(2a+3b)(2a﹣3b)﹣(a+2b)2.(2)(x﹣3﹣)÷.【分析】(1)根据平方差公式和完全平方公式可以解答本题;(2)根据分式的减法和除法可以解答本题.【解答】解:(1)(2a+3b)(2a﹣3b)﹣(a+2b)2=4a2﹣9b2﹣a2﹣4ab﹣4b2=3a2﹣13b2﹣4ab;(2)(x﹣3﹣)÷===﹣.【点评】本题考查分式的混合运算、整式的混合运算,解答本题的关键是明确它们各自的计算方法.34.计算:(1)a(2﹣a)+(a+1)2;(2)(+x﹣1)÷.【分析】(1)利用单项式乘以多项式法则、完全平方公式及合并同类项法则化简整式即可;(2)先通分再加减,最后做除法.【解答】解:(1)原式=2a﹣a2+a2+2a+1=4a+1;(2)原式=÷=×=x(x﹣1)=x2﹣x.【点评】本题考查了整式和分式的混合运算,掌握整式、分式的运算法则和乘法公式是解决本题的关键.35.(1)计算:;(2)先化简,再求值:,其中.【分析】(1)根据负整数指数幂、零指数幂、绝对值可以解答本题;(2)根据分式的加法可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.【解答】解:(1)=4+1+﹣1﹣2=4﹣;(2)=====,当时,原式==.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.36.计算:(1);(2).【分析】(1)根据分式乘法和平方差公式、完全平方公式可以解答本题;(2)根据分式的减法和乘法可以解答本题.【解答】解:(1)==;(2)===3(x+2)﹣(x﹣2)=3x+6﹣x+2=2x+8.【点评】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.37.计算:(1)﹣()﹣1+|1﹣|;(2)(1﹣)÷.【分析】(1)根据实数的运算法则即可求出答案.(2)根据分式的运算法则即可求出答案.【解答】解:(1)原式=2﹣3+﹣1=﹣1+﹣1=﹣2.(2)原式=÷=•=.【点评】本题考查学生的运算,解题的关键是熟练运用分式的运算以及实数的运算法则,本题属于基础题型.38.(1)你发现了吗?()2=×,()﹣2==×=×,由上述计算,我们发现()2=()﹣2;(2)请你通过计算,判断()3与()﹣3之间的关系;(3)我们可以发现:()﹣m=()m(ab≠0);(4)利用以上的发现计算:()﹣3×()4.【分析】(1)根据负整数指数幂及有理数乘方的性质计算,再比较即可求解;(2)根据负整数指数幂及有理数乘方的性质计算,再比较即可求解;(3)根据负整数指数幂及有理数乘方的性质计算,再比较即可求解;(4)根据负整数指数幂先化简,结合利用有理数乘方的性质计算,再相乘即可求解.【解答】解:(1)()2=,()﹣2=,∴()2=()﹣2;故答案为=;(2)()3=,()﹣3=,∴()3=()﹣3;(3),故答案为=;(4)原式=====.【点评】本题主要考查负整数指数幂,有理数乘法,有理数的乘方,灵活运用相关性质法则是解题的关键.39.计算:(1)(﹣2x)(x﹣3y);(2)(3x﹣5)2﹣(2x+7)2;(3)计算:,并求当a=2时原式的值.【分析】(1)根据单项式乘以多项式法则求出即可;(2)先根据完全平方公式进行计算,再合并同类项即可;(3)先通分,变成同分母的分式,再根据同分母的分式相加减法则进行计算,最后代入求出即可.【解答】解:(1)(﹣2x)(x﹣3y)=﹣2x2+6xy;(2)(3x﹣5)2﹣(2x+7)2=(9x2﹣30x+25)﹣(4x2+28x+49)=9x2﹣30x+25﹣4x2﹣28x﹣49=5x2﹣58x﹣24;(3)=﹣===,当a=2时,原式==﹣.【点评】本题考查了整式的混合运算和分式的加减及求值,能正确根据整式的运算法则和分式的加减法则进行化简是解此题的关键.40.(1)先化简,再求值:÷,其中a=﹣1.(2)解不等式组,并把它的解集在数轴上表示出来.【分析】(1)先把除法变成乘法,算乘法,最后代入求出即可;(2)先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:(1)原式=•=,当a=﹣1时,原式==2;(2),∵解不等式①得:x>﹣2,解不等式②得:x≤4,∴不等式组的解集是:﹣2<x≤4,在数轴上表示为:.【点评】本题考查了分式的混合运算和求值,解一元一次不等式组和在数轴上表示不等式组的解集等知识点,能正确根据分式的运算法则进行化简是解(1)的关键,能求出不等式组的解集是解(2)的关键.。
分解因式分式练习题
分解因式是代数学中非常重要的一个概念,也是解题的基础。
在分解因式的过程中,我们将一个复杂的分式表达式拆分为简单的因式相乘形式,以便更好地进行计算和理解。
在这篇文档中,我们将提供一些分解因式分式的练习题,帮助你巩固对分解因式的理解和运用。
1. 分解下列分式:a) (x+2)/(x^2-4)解答:首先,我们可以将分子和分母分别进行因式分解。
分子x+2不可约,而分母可以分解成(x+2)(x-2)。
因此,原式可以写为:(x+2)/[(x+2)(x-2)]最后,我们可以约去相同的因子(x+2),得到简化后的分式:1/(x-2)b) (4x^3-8)/(x^2-x)解答:对于分子,我们可以提取公因子4,得到4(x^3-2)。
对于分母,我们可以将其分解成x(x-1)。
因此,原式可以写为:4(x^3-2)/(x(x-1))在这个分式中,我们无法进一步约分。
2. 分解下列分式为部分分式的形式:a) (3x^2+5)/(x^3-x)解答:首先,我们需要确保分子的次数小于分母的次数。
在这种情况下,我们需要进行长除法的运算:(3x^2+5)/(x^3-x) = 0 + (3x^2+5)/(x^3-x)接下来,我们将分子进行因式分解,可得:(3x^2+5)/(x^3-x) = 0 + (3x^2+5)/(x(x-1))将这个分式拆分成两个部分分式:(3x^2+5)/(x(x-1)) = A/x + B/(x-1)其中A和B是待定系数。
使用通分的方法,化简上述等式,可得:(3x^2+5)/(x(x-1)) = (A(x-1) + Bx)/(x(x-1))比较等式两边的系数,我们可以得到下面的方程组:3x^2 + 5 = (A(x-1) + Bx)3x^2 + 5 = (A + B)x - Ax + A通过比较系数,我们可以得到:3x^2 = Ax + Bx (系数相等)5 = -Ax + A (常数项相等)解这个方程组,我们可以得到A = 5/2 和 B = -3/2。
因式分解与认识分式测试题
2023-2023学年度第一学期初三数学第4周测试(考试时间40分钟,总分值100分)班级姓名成绩一、选择题(每题3分,共18分.将你的答案填在后面的答题栏内)I.以下由左边到右边的变形,哪个是因式分解?()A.2πR+2πr=2π(R+r)B.a(a-b)=a2-abC.x+1=x(1÷-)D.-2«+1=a(a-2)+1X2 .假设多项式f一皿一35因式分解为(%-5)(尤+7),那么加的值是()A.2B.-2C.12D.-123 .以下各个分解因式中正确的选项是()A. 1Oab2C+6ac2+2ac=2ac(5b2+3c)B. (a-b)y-(b-a)2=(a-b)2(a-b+∖)C. x(bc-a)-y(a-b-c)-a+b-c=(b+c-a)(x+y-I)D. (a-2b)(3a+/?)-5(2b-a)2=(a-2b)(∖∖b-2d)4 .假设(-4+勿/=储一/,那么P等于()A.一α-Z?B.—a+bC.ci-bD.α+Z?-X+Z=(X-')2成立,那么女的值是(5.假设等式一A.1 B1 C1 D.±-2 4 44.把分式邛中的小〃都扩大到原来的3倍,那么分式的值()abC.缩小到原来的JD.不变二、填空题(每题3分,共12分)6 .如果二次三项式χ2+aγ-i 可分解为(无一2)(χ+Z?),那么4+力的值是.7 .(x 2-y 2),(x+y)2,(-2x-2y)的公因式是.8 .当机=时,关于X 的多项式4d +侬+J ■是完全平方式 49 .X=I 时分式叶殳无意义,x=4时分式的值为零,那么々+6=.x-a三、解答题(共70分)10 .用简便方法计算(每题5分,共20分):(1) 6.12+12.2×3.9+3.92;(2)5×20232-5×20232;⑶2023+20232-20232; (4)4.7×11.3+53×1.13-0.9×113.12.(1)22∞5+22(XM -22∞3能被5整除吗?为什么?(5分).(2) 20232+2×2023+1能被2023整除吗?为什么?(5分)13.把以下各式因式分解(每题5分,共20分):(1)(X-y)4+x(x-yf-y(x-y)3 (2)-√+8x 2-16;(3)(/??+2n)2-6m -12π+9;(4)(x+A)(x+G+1)+1 4 14.化简以下分式(每题5分,共10分):MX+3y)+y(y-x)(1) 4-x 2X 2-2X6(5分)JT二5+d+2χ+ι=o,求一二2'的值2y-xy 16.15分)x÷-=3,求f+,■的值.X X"。
因式分解、不等式与分式方程
因式分解、不等式与分式方程一、分解因式1. 因式分解概念:把一个多项式化成几个整式的积的形式,也叫分解因式。
2. 因式分解的方法:⎪⎩⎪⎨⎧⎩⎨⎧±=+±+-=-)(2:))((2222b a b ab a b a b a b a 完全平方式平方差公式:公式法分解以是字母)的因子(可以是数也可提公因式法:提取公共 练习:1.分解因式 m 3 – 4m = . 解因式:3222b ab b a +-=2.因式分解:=+-m mx mx 2422 .分解因式:a 3-2a 2+a=_______________.=++222y xy x 。
分解因式:=+-122x x3.因式分解:y y x 92-=___________.分解因式:x ²y-xy ²= .4.分解因式:m 2—2m= .分解因式:=-442x5.因式分解:162-x = .分解因式:4χ2-y 2= .6、计算:(-3x 2)3=________。
7、因式分解:x 2-4=_____分解因式:3a 2b -4ab =________________ 分解因式:34x x -= 因式分解:2()1xy -= 分解因式x 2-9y 2=_______. 分解因式:29a -= 因式分解:x 2-9=_____________________ 把x x 43-分解因式,结果为_________________________下列多项式中,能用公式法分解因式的是( )(A )xy x -2 (B )xy x +2 (C )22y x + (D )22y x - 把代数式 322363x x y xy -+分解因式,结果正确的是A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y -二、解不等式y y y1、不等式110320.x x ⎧+>⎪⎨⎪-⎩,≥的解集是( ) A .-31<x ≤2 B .-3<x ≤2 C .x ≥2 D .x <-3 2、 关于x 的方程12mx x -=的解为正实数,则m 的取值范围是( )A .m ≥2B .m ≤2C .m >2D .m <23、把不等式x+2>4的解表示在数轴上,正确的是( )4、不等式组320,10x x ->⎧⎨+⎩≥的解集在数轴上表示正确是的是( )5、不等式26,2 1.x x -<⎧⎨-+>⎩的解集是( )A .x >-3B .x >3C .-3<x <3D .无解6、不等式组⎩⎨⎧≤-<+5148x x x 的解集是:A. 5≤xB. 53≤<-xC.53≤<xD. 3-<x7、下列不等式变形正确的是( )(A)由a >b ,得a -2<b -2 (B)由a >b ,得-2a <-2b(C)由a >b ,得a >b (D)由a >b ,得a 2>b 28、不等式组⎩⎨⎧-<++≤14242x x x x 的正整数解有:( )(A ) (B )(C ) (D )(A )1个 (B )2个 (C )3个 (D )4个9、不等式组2312x x x x +>⎧⎪⎨⎪⎩≥-3的解集是 10、请你写出一个满足不等式2x -1<6的正整数x 的值: .11、不等式-032>-x 的解是_______________12、不等式组2113x x +>-⎧⎨+⎩2,≤.的整数解为_______. 13、不等式组⎩⎨⎧>-<-21312x x 的解集是___________.三、分式方程1.方程23+x =11+x 的解为( ) A .x =54 B .x = -21 C .x =-2 D .无解 2. 分式方程0242=+-xx 的根是( ) . A.2-=x B. 0=x C.2=x D.无实根3.分式方程3x -2=1的解是( ) A .x =5 B .x =1 C .x =-1 D .x =24.分式方程131x x x x +=--的解为 A .1x = B .1x =- C .3x = D .3x =-5.分式方程xx 321=-的解是( ) (A)-3 (B) 2 (C)3(D)-26.分式方程131x x x x +=--的解为 A .1x = B .1x =- C .3x = D .3x =-7.将分式方程13)1(251+=++-x x x x 去分母整理后得:(A )018=+x (B )038=-x(C )0272=+-x x (D )0272=--x x8.分式方程xx x -=+--23123的解是( ) A .2 B .1 C .-1 D .-29.分式方程01111=-++x x 的解是 ( ) A .x = 1 B .x = -1 C . x = 0 D .21=x二、填空题 1.分式方程112x =-的解是 ▲ . 2.分式方程2231x x x x =+-的解x =________. 3.方程121x x=-的解是 . 4.方程 1x –2 = 2x 的解是5.方程x x 132=-的解为x =___________. 6.方程4131x +=-的解为 . 7.分式方程456x x x x -=-+的解是 .8.方程035=-+x x x 的解是 。
因式分解50题
因式分解50题一.解答题(共50小题)1.因式分解:3(x+y)(x﹣y)﹣(x﹣y)2.2.分解分式:m2﹣3m.3.因式分解:2x2﹣4x.4.因式分解:(x﹣1)(x+4)+4.5.分解因式:(1)3m(b﹣c)﹣2n(c﹣b)(2)(a﹣b)(a﹣4b)+ab.6.(1)计算:(﹣2x2y3)2•(x﹣1y)3(2)分解因式:(a﹣b)(x﹣y)﹣(b﹣a)(x+y)7.因式分解:(1)2m(a﹣b)﹣3n(b﹣a);(2)8x2﹣2(x﹣y)2.8.因式分解:(2a﹣b)(3a﹣2)+b(2﹣3a)9.因式分解:(a﹣3)2+(3﹣a)10.分解因式:(2m+3n)(2m﹣n)﹣n(2m﹣n)11.已知:x+y=6,xy=4,求下列各式的值(1)x2+y2;(2)(x﹣y)2;(3)x2y+xy2.12.(1)分解因式x(x﹣a)+y(a﹣x)(2)分解因式x3y﹣10x2y+25xy13.分解因式:x2﹣9+3x(x﹣3)14.ax2+2a2x+a3.15.因式分解:9(a﹣b)(a+b)﹣3(a﹣b)216.把下列各式因式分解(1)a(x﹣y)+b(x﹣y)(2)(x+1)(x﹣1)﹣317.因式分解:(1)x2﹣10x(2)﹣8ax2+16axy﹣8ay218.因式分解:4a(x﹣y)﹣2b(y﹣x)19.因式分解:2x3﹣24x2+54x.20.因式分解:(1)3a(x﹣y)﹣5b(y﹣x)(2)x6﹣x2y4.21.将下列各式分解因式(1)x4+x3+x(2)x(x﹣y)+2y(y﹣x)22.分解因式:3x(a﹣b)﹣6y(b﹣a)23.因式分解:6p(p+q)﹣4q(p+q).24.因式分解(1)x2﹣9;(2)(x2+4)2﹣16x2.25.分解因式:(3m﹣1)2﹣(2m﹣3)2.26.分解因式:x4﹣(3x﹣2)2.27.分解因式:(m+1)(m﹣9)+8m.28.因式分解:2m(2m﹣3)+6m﹣1.29.因式分解:(1)16x2﹣9y2(2)(x2+y2)2﹣4x2y2.30.(2x+5)2﹣(2x﹣5)2.31.分解因式:(Ⅰ)4a2﹣b2(Ⅱ)4+12(x﹣y)+9(x﹣y)2 32.分解因式:(1)﹣x2﹣4y2+4xy(2)(x﹣1)2+2(x﹣5)33.分解因式:9(x+y)2﹣(x﹣y)2.34.因式分解:(x﹣y)2+6(y﹣x)+9=.35.因式分解(x2+4y2)2﹣16x2y236.分解因式:m2﹣(2m+3)2.37.因式分解:4+12(x﹣y)+9(x﹣y)2.38.分解因式:(x+2y)2﹣6x(x+2y)+9x2.39.分解因式:(x﹣1)2+2(x﹣5).40.(1)2x2+2y2﹣6xy(2)x2﹣y241.把下列多项式因式分解:(1)x2﹣9;(2)4x2﹣3y(4x﹣3y).42.分解因式:(1)16x2﹣8xy+y2;(2)a2(x﹣y)﹣b2(x﹣y).43.因式分解:25x2﹣9(x﹣2y)244.因式分解:a2+2a(a+1)+(a+1)245.分解因式:(x+2)(x﹣6)+16.46.因式分解:(1)x2﹣6x+9;(2)m2﹣n2+(m﹣n).47.因式分解:(1)(x+3)2﹣16;(2)x4﹣18x2+81.48.因式分解:9x2﹣6x+1.49.因式分解:(x+y)2﹣4(x+y﹣1)50.因式分解:(2a+b)2﹣(a+2b)2因式分解二一.解答题(共50小题)1.分解因式:(1)2x2﹣8.(2)(y+1)(y+2)+.2.因式分解:(1)a3﹣2a2+a;(2)4a2(2x﹣y)+b2(y﹣2x).3.因式分解:(1)ax2﹣4a;(2)x(x﹣6)+9.4.因式分解:(1)3a2﹣27;(2)(x﹣1)(x﹣3)+1.5.因式分解(1)x3﹣4x2+4x(2)a2(x﹣y)﹣4(x﹣y)6.分解因式:(1)9x2﹣1.(2)4xy2﹣4x2y﹣y3.7.分解因式:(1)4x2﹣12x+9;(2)x2(3y﹣6)+x(6﹣3y).8.分解因式:(1)3x2﹣27y2;(2)4x2y+y3﹣4xy2.9.把下列各式分解因式:(1)4x2y﹣4xy2+y3;(2)x4﹣1.(1)36﹣25x2;(2)x2y﹣4xy﹣5y.11.因式分解:(1)a2﹣ab;(2)2x2﹣2.12.因式分解:(1)2x2﹣4xy+2y2(2)(m﹣n)3+4(n﹣m)13.因式分解:(1)﹣2x2+4x﹣2;(2)x2(x﹣2)+4(2﹣x).14.因式分解:(1)4a2﹣9;(2)2x2y﹣8xy+8y.15.因式分解:(1)x3﹣2x2y+xy2;(2)(x+2y)2﹣x2.16.分解因式:(1)4x2﹣36;(2)(x﹣2)2﹣2x+4.17.分解因式:(1)a3b﹣ab3;(2)3a2﹣12a+12.18.分解因式:(1)a2+2a;(2)x2﹣16.19.分解因式:(1)2x2﹣18;(2)a2﹣4ab+4b2﹣9.(1)xy﹣x+y﹣1;(2)a(a﹣2b)+(b﹣1)(b+1).21.因式分解:x2﹣4xy+4y2﹣1 22.因式分解:2x2﹣4xy+3x﹣6y 23.因式分解:(1)1﹣x2+2xy﹣y2(2)25(x+y)2﹣36(x﹣y)2 24.3ax﹣18by+6bx﹣9ay25.分解因式:x3﹣2x2﹣3x26.因式分解:(1)x2﹣4x﹣12(2)a3﹣4a2+4a27.(1)因式分解:x3﹣4x;(2)x2﹣4x﹣1228.因式分解(1)x2﹣x﹣6;(2)ax2﹣2axy+ay229.分解因式:x2﹣2xy﹣8y2.30.因式分解:x2﹣2x+(x﹣2)31.因式分解(1)2mx2﹣8my2(2)a2﹣6a﹣2732.因式分解:x2+x﹣233.分解因式:(1)2a2﹣8(2)(x﹣1)2﹣2(x﹣1)﹣3 34.因式分解:3x2﹣12x+935.3x3﹣24x2+48x.36.(m2﹣2m)2﹣3(m2﹣2m)﹣4.37.因式分解:(1)a4﹣5a2﹣36;(2)x2﹣4x+4﹣4y2 38.因式分解(1)2x2﹣7x+3;(2)6x2﹣7x﹣5(3)5x2+6xy﹣8y239.分解因式:a3+7a2b﹣18ab2.40.分解因式:x+12﹣x2.41.因式分解:x4﹣3x2+1.42.因式分解:2a4﹣20a2+18.43.分解因式:(x+y)2﹣5(x+y)﹣644.因式分解(a)y2﹣3y﹣18(b)(x﹣1)2﹣3x﹣15.45.把下列各式因式分解:(1)x2+3x﹣130;(2)6y2+19y+15;(3)x2﹣9xy﹣36y2;(4)2a2x2﹣abxy﹣3b2y2;(5)10(x+2)2﹣29(x+2)+10;(6)(a2﹣a)2﹣14(a2﹣a)+24.46.(a)因式分解x2+8x+15(b)由此因式分解(a﹣100)2+8(a﹣100)+15.47.因式分解(1)6x2﹣7x+2;(2)x4﹣13x2+36;(3)(x2+7x+6)(x2+5x+6)+x2.48.分解因式:(1)x2+3x+2;(2)x2﹣x﹣20;(3)2x2﹣5x+2;(4)6x2﹣5x+1.49.分解因式:(1)x2+6x+8;(2)8a3﹣b3;(3)x2﹣2x﹣1;(4)4(x﹣y+1)+y(y﹣2x)50.分解因式:(1)x2y2+5xy﹣6;(2)x4+11x2y2﹣12y4;(3)x2+4xy+x+2y+4y2﹣6;(4)(x2+4x+8)2+3x(x2+4x+8)+2x2;(5)(x2+x+1)(x2+x+2)﹣12;(6)(2x2﹣3x+1)2﹣22x2+33x﹣1;(7)(x+1)(x+2)(x+3)(x+4)﹣8;(8)(a2﹣2a)2﹣7(a2﹣2a)﹣8.。
分解因式`、分式及分式方程单元练习题
分解因式:2x2﹣18;﹣a2+6ab﹣9b2x2(m﹣n)+y2(n﹣m)a2﹣4ab+4b2﹣9解不等式组:先化简,再求值:(+2)÷,其中a=+1,b=﹣1.解方程:﹣1=;因式分解:8a2﹣2b2﹣a3+2a2b﹣ab24xy2﹣4x2y﹣y31﹣a2+4ab﹣4b2解不等式:先化简,再求值:,其中x=,y=.解方程:﹣1=因式分解:4ax2+2a2x+a3x2+12x﹣7.x2﹣2x+(x﹣2).2x2﹣5x﹣3(p﹣4)(p+1)+6解不等式组,并把它的解集在数轴上表示出来先化简:(1+)÷,请在﹣1,0,1,2,3当中选一个合适的数a代入求值.解方程:因式分解:x2+2x﹣3x3﹣3x2+2x.x2﹣4xy+4y2﹣1(x﹣1)(x﹣3)+12x2﹣4xy+3x﹣6y解不等式组,并写出它的所有整数解先化简:÷(a+1)+,再在﹣1≤a≤1中选取一个你喜欢的整数a的值代入求值,解方程:﹣1=解方程:.先化简,再求值:(1+)÷,其中a=﹣1.利用因式分解计算:121×0.13+12.1×0.9﹣1.21×12证明:两个连续偶数的平方差一定是4的倍数.先化简,再求值:,其中x=.先化简,再求值(x+1﹣).其中x=﹣2.先化简,再求值:(+2)÷,其中x 的值从不等式组的整数解中选取.已知:a2+3a﹣=0,求代数÷(a+2﹣)的值.已知P=(a≠±b)(1)化简P;(2)若点(a,b)在一次函数y=x+1的图象上,求P的值.已知△ABC的三边长a、b、c满足条件:a4﹣b4+(b2c2﹣a2c2)=0.试判断△ABC的形状.已知a+b=5,ab=3,(1)求a2b+ab2的值;(2)求a2+b2的值;(3)求(a2﹣b2)2的值.已知关于x的方程.(1)m取何值时,方程的解为x=4;(2)m取何值时,方程有增根.已知关于x的分式方程+=.(1)若方程的增根为x=2,求m的值;(2)若方程有增根,求m的值;(3)若方程无解,求m的值.。
分式、因式分解整式乘除综合知识点及练习
整式的乘除法。
因式分解和分式复习基本概念一.整式的除乘法 1。
同底数幂的乘法:mn m n a a a +=,(m,n 都是正整数),即同底数幂相乘,底数不变,指数相加。
2。
幂的乘方:()m nmna a=,(m ,n 都是正整数),即幂的乘方,底数不变,指数相乘.3.积的乘方:()n n nab a b =,(n 为正整数),即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
4。
整式的乘法:(1)单项式的乘法法则:一般地,单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式乘多项式法则:单项式与多项式相乘,就是根据乘法分配律,用单项式乘多项式的每一项,再把所得的积相加.可用下式表示:m (a +b +c )=ma +mb +mc (a 、b 、c 都表示单项式)(3)多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.5.乘法公式:(1)平方差公式:平方差公式可以用语言叙述为“两个数的和与这两个的差积等于这两个数的平方差",即用字母表示为:(a +b )(a -b )=a 2-b 2;其结构特征是:公式的左边是两个一次二项式的乘积,并且这两个二项式中有一项是完全相同的,另一项则是互为相反数,右边是乘式中两项的平方差.(2)完全平方公式:完全平方公式可以用语言叙述为“两个数和(或差)的平方,等于第一数的平方加上(或减去)第一数与第二数乘积的2倍,加上第二数的平方”,即用字母表示为:(a +b )2=a 2+2ab +b 2;(a -b )2=a 2-2ab +b 2;其结构特征是:左边是“两个数的和或差”的平方,右边是三项,首末两项是平方项,且符号相同,中间项是2ab ,且符号由左边的“和”或“差”来确定. 在完全平方公式中,字母a 、 b 都具有广泛意义,它们既可以分别取具体的数,也可以取一个单项式、一个多项式或代数式(3)添括号时,如果括号前面是正号,括到括号里的各项都不变号;如果括号前面是负号,括到括号里的各项都变号。
因式分解练习题(分式分解法)
因式分解练习题(分式分解法)题目一将下面的分式进行因式分解:\[ \frac{2x^2 - 18}{y^2 - 9} \]解法:首先,我们可以观察到分子和分母都是两个平方数之差。
我们可以将其分解成两个平方根的乘积,即:\[ \frac{2x^2 - 18}{y^2 - 9} = \frac{2(x^2 - 9)}{(y^2 - 9)} \]接下来,我们可以继续因式分解分子和分母。
分子为差平方公式的形式,可以写成:\[ \frac{2(x - 3)(x + 3)}{(y - 3)(y + 3)} \]最终,我们得到了分式的因式分解形式。
题目二将下面的分式进行因式分解:\[ \frac{x^2y - 25xy}{3y^2 - 15y} \]解法:首先,我们可观察到分子和分母中都有一个共同因数,即\(xy\)。
我们可以提取出这个公因式,得到:\[ \frac{xy(x - 25)}{3y(y - 5)} \]接下来,我们可以继续因式分解分子和分母。
分子和分母都是差平方公式的形式,可写成:\[ \frac{xy(x - 5)(x + 5)}{3y(y - 5)} \]最终,我们得到了分式的因式分解形式。
题目三将下面的分式进行因式分解:\[ \frac{4a^2 - 16b^2}{9a^2 - 36} \]解法:首先,我们可以观察到分子和分母都是两个平方数之差。
我们可以将其分解成两个平方根的乘积,即:\[ \frac{4a^2 - 16b^2}{9a^2 - 36} = \frac{4(a^2 - 4b^2)}{9(a^2 - 4)} \]接下来,我们可以继续因式分解分子和分母。
分子为差平方公式的形式,可以写成:\[ \frac{4(a - 2b)(a + 2b)}{9(a - 2)(a + 2)} \]最终,我们得到了分式的因式分解形式。
结论通过分式分解法,我们可以将给定的分式进行因式分解,得到其最简形式。
因式分解、分式及二次根式
28.计算 .
29.计算: .
30.先化简,再求值: ,其中 .
31.先化简,再求值: ,其中 是不等式组 的整数解.
32.(1)计算: ;(2)化简并求值: ,其中 , .
33.计算:
(1) (2)
34.先化简,再求值: ,其中 .
19.若分式 的值为0,则x的值为______.
20.若分式 有意义,则 的取值范围是_______________.
21.计算 的结果等于__________.
三、解答题
22.先化简,再求值: ,其中 .
23.先化简,再求值:ห้องสมุดไป่ตู้,其中 .
24.计算: .
25.(1) .
(2)化简 .
26.先化简,再求值: ,其中 .
一、单选题
1.估计 的值应在()
A.1和2之间B.2和3之间C.3和4之间D.4和5之间
2.若分式 的值为0,则 的值是()
A.2或-2B.2C.-2D.0
3.计算 的结果为
A. B. C. D.
4.若分式 的值为零,则x的值是( )
A.3B.-3C.±3D.0
5.计算 的结果为()
A.1B.3C. D.
6.若分式 的值为0,则x的值是()
A.2B.0C.-2D.-5
7.已知 , ,则式子 的值是()
A.48B. C.16D.12
8.化简 的结果为( )
A. B.a﹣1C.aD.1
9.下列分解因式正确的是()
A. B.
C. D.
二、填空题
10.分解因式:16﹣x2=__________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式计算练习二周案序 总案序 审核签字一.填 空: 1.x 时,分式42-x x 有意义; 当x时,分式1223+-x x 无意义; 2.当x= 时,分式2152x x --的值为零;当x 时,分式xx --112的值等于零.3.如果b a=2,则2222ba b ab a ++-= 4.分式ab c 32、bc a 3、ac b25的最简公分母是 ; 5.若分式231-+x x 的值为负数,则x 的取值围是 .6.已知2009=x 、2010=y ,则()⎪⎪⎭⎫⎝⎛-+⋅+4422y x y x y x = .二.选 择: 1.在31x+21y, xy 1 ,a +51 ,—4xy , 2xx , πx中,分式的个数有( )A 、1个B 、2个C 、3个D 、4个 2.如果把yx y322-中的x 和y 都扩大5倍,那么分式的值( )A 、扩大5倍B 、不变C 、缩小5倍D 、扩大4倍3.下列各式:()xx x x y x x x 2225,1,2 ,34 ,151+---π其中分式共有( )个。
A 、2 B 、3 C 、4 D 、54.下列判断中,正确的是( )A 、分式的分子中一定含有字母 B 、当B=0时,分式BA 无意义 C 、当A=0时,分式BA 的值为0(A 、B 为整式) D 、分数一定是分式5.下列各式正确的是( )A 、11++=++b a x b x a B 、22x y x y = C 、()0,≠=a ma na m n D 、a m a n m n --=6.下列各分式中,最简分式是( )A 、()()y x y x +-8534B 、y x xy +-22 C 、2222xy y x y x ++ D 、()222y x y x +- 7.下列约分正确的是( ) A 、313m m m +=+ B 、212y x y x -=-+ C 、123369+=+a ba b D 、()()y x a b y b a x =--8.下列约分正确的是( )A 、326x x x = B 、0=++y x y x C 、x xy x y x 12=++ D 、214222=y x xy 9.(更易错题)下列分式中,计算正确的是( )A 、32)(3)(2+=+++a c b a c bB 、b a b a b a +=++122C 、1)()(22-=+-b a b a D 、x y y x xy y x -=---1222 10.若把分式xyyx 2+中的x 和y 都扩大3倍,那么分式的值( )A 、扩大3倍B 、不变C 、缩小3倍D 、缩小6倍 11.下列各式中,从左到右的变形正确的是( )A 、y x y x y x y x ---=--+-B 、y x y x y x y x +-=--+-C 、yx y x y x y x -+=--+- D 、y x yx y x y x +--=--+-12.若0≠-=y x xy ,则分式=-x y 11 ( ) A 、xy1B 、x y -C 、1D 、-113. 若x 满足1=xx,则x 应为( )A 、正数 B 、非正数 C 、负数 D 、非负数14.已知0≠x ,xx x 31211++等于( ) A 、x 21 B 、1 C 、x 65 D 、x 61115、(多转单约分求值)已知113x y -=,则55x xy yx xy y+---值为( )A 、72-B 、72C 、27D 、72-三.化简:1.m m -+-3291222. a+2-a -243. 22221106532xyx y y x ÷⋅4.ac ac bc c b ab b a -+-++ 5.262--x x ÷4432+--x x x6.224)2222(x x x x x x -⋅-+-+-7. 22224421yxy x y x y x y x ++-÷+-- 8.1111-÷⎪⎭⎫ ⎝⎛--x x x 9. mn nn m m m n n m -+-+--210.⎪⎪⎭⎫⎝⎛++÷--ab b a b a b a 22222 11.⎪⎭⎫ ⎝⎛--+÷--13112x x x x12.(22+--x x x x )24-÷x x 13. 1⎪⎭⎫⎝⎛⋅÷÷a b b a b a 32492314..()2211n m m n m n -⋅⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛+; 15.168422+--x x x x ,其中x =5.分式计算练习一1. 2234xy z ·(-28z y )等于( ) A .6xyz B .-23384xy z yz- C .-6xyz D .6x 2yz2. 下列各式中,计算结果正确的有( )①;2)1(2223n m mn n m =-• ②8b a b a b a 32326)43(-=-÷; ③(;1)()b a ba b a b a +=+•-⋅+ ④(2232)()()b a b a b a b a =-÷-•-A.1个B.2个C.3个D.4个3. 下列公式中是最简分式的是( )A .21227b aB .22()a b b a --C .22x y x y ++D .22x y x y--4. (2008黄冈市)计算()ab a bb aa+-÷的结果为( ) A .a b b - B .a b b + C .a b a - D .a b a+5. 计算34x x y -+4x y y x +--74yx y-得( ) A .-264x y x y +- B .264x yx y+- C .-2 D .2二 计算:(1)2223x y mn ·2254m n xy ÷53xym n . (2)2216168m m m -++÷428m m -+·22m m -+(3)(-2b a )2÷(b a -)·(-34b a)3. (4)21x x --x-1.三、 先化简,再求值:1、232282x x x x x +-++÷(2x x -·41x x ++).2、22)11(yxy y x y y x -÷-++, 其中x=-45. 其中2-=x ,1=y .3、已知a=25,25-=+b ,4、已知3=a ,2-=b ,求2++ba ab 得值。
求2211()2ab a b a ab b +⋅++的值.第一章《因式分解》练习题一、选择题1. 下列各式中能用完全平方公式进行因式分解的是( ) (A )21xx ++ (B )221x x +- (C )21x - (D )269x x -+2、下列式子从左到右变形是因式分解的是( ) A .a 2+4a-21=a (a+4)-21 B .a 2+4a-21=(a-3)(a+7) C .(a-3)(a+7)=a 2+4a-21 D .a 2+4a-21=(a+2)2-25 3、下列因式分解正确的是( ) A .x 2-y 2= (x -y ) 2B .a 2+a +1=(a +1) 2C .xy -x =x (y -1)D .2x +y = 2(x +y )4、下列因式分解中正确的个数为 ①()3222xxy x x x y ++=+;②()22442x x x ++=+;③()()22x y x y x y -+=+-。
A .3个B .2个C .1个D .0个 5、将下列多项式分解因式,结果中不含因式1x -的是( ) A .21x -B .(2)(2)x x x -+-C .221x x -+D .221x x ++6、下列四个多项式中,能因式分解的是( )7、 若2242ab a b -=-=,,则a b +的值为( ).(A )2-(B )2 (C )1 (D )28、把代数式2218x -分解因式,结果正确的是( )A .22(9)x -B .22(3)x -C .2(3)(3)x x +-D .2(9)(9)x x +-9. 若代数式x 2+ax 可以分解因式,则常数a 不可以取( ) A .﹣1 B .0 C.1 D .2二、填空题10. ab=3,a-2b=5,则a 2b-2ab 2的值是 . 11. 当a=9时,代数式a 2+2a+1的值为 .12. 81x 2-kxy+49y 2是一个完全平方式,则k 的值为三、计算题 1、因式分解(1)6m -42m 3 (4)-3ab 2-6a 2b -12ab (8)3(a -b ) 2+6(b -a )(5)2.34×13.2+0.66×13.2-26.4 (9)x (x -y ) 2-y (y -x ) 2(11)22419b a - (12)33364xy y x - (10)41681x -,(13)22363ay axy ax ++ (14)1)(2)(2++-+b a b a (15)-x 2-6x -9(16)8 (a 2+1)-16a (17)()96++x x (19)()221+x 24x -2.先分解因式,再计算求值:已知.32,52=-=+b a b a 求22205b a -的值3、已知x 、y 是二元一次方程组⎩⎨⎧=+=-54232y x y x 的解,求代数式x 2-4y 2的值4.证明:若n 为正整数,则22)12()12(--+n n 一定能被8整除。
四.附加题 1、已知x-y=2,求21x 2-xy+21y 22、当x 取何值时,整式222++x x 取得最小值?最小值是多少?八年级数学阶段性测试题一.选 择:1.下列各式中能用完全平方公式进行因式分解的是( ) (A )21xx ++ (B )221x x +- (C )21x - (D )269x x -+2.下列因式分解中正确的个数为 ①()3222x xy x x x y ++=+; ②()22442x x x ++=+;③()()22xy x y x y -+=+-。
A .3个 B .2个 C .1个 D .0个3.将下列多项式分解因式,结果中不含因式1x -的是( ) A .21x -B .(2)(2)x x x -+- C .221x x -+D .221x x ++4. 若221142ab a b -=-=,,则a b +的值为( ).(A )12-(B )12 (C )1 (D )25. 下列各式中,计算结果正确的有( )①;2)1(2223n m mn n m =-• ②8b a b ab a 32326)43(-=-÷; ③(;1)()b a b a b a b a +=+•-⋅+ ④(2232)()()ba b a b a b a =-÷-•-A.1个B.2个C.3个D.4个6. 下列公式中是最简分式的是( )A .21227b aB .22()a b b a --C .22x y x y ++D .22x y x y--7.在31x+21y, xy 1 ,a +51 ,—4xy , 2xx , πx中,分式的个数有( )A 、1个B 、2个C 、3个D 、4个 8.如果把yx y322-中的x 和y 都扩大5倍,那么分式的值( )A 、扩大5倍B 、不变C 、缩小5倍D 、扩大4倍9.若0≠-=y x xy ,则分式=-x y 11 ( ) A 、xy1B 、x y -C 、1D 、-1 10.下列约分正确的是( )A 、326x x x =B 、0=++y x y xC 、x xy x y x 12=++D 、214222=y x xy11.下列各式中,从左到右的变形正确的是( )A 、y x y x y x y x ---=--+- B 、y x y x y x y x +-=--+- C 、yx y x y x y x -+=--+- D 、y x yx y x y x +--=--+-12.已知0≠x ,xx x 31211++等于( ) A 、x 21 B 、1 C 、x 65 D 、x 611二.填 空:1. ab=3,a-2b=5,则a 2b-2ab 2的值是 .2.25x 2-kxy+64y 2是一个完全平方式,则k 的值为3.分解因式:8(a-b)2-12(b-a)=4.x 时,分式42-x x有意义;当x 时,分式x x --112的值等于零.5.分式ab c 32、bc a 3、acb25的最简公分母是 ;6.已知2014=x 、2015=y ,则()⎪⎪⎭⎫⎝⎛-+⋅+4422y x y x y x = .三、因式分解(1)2m 2-18 (2)-6ab 3-6a 3b+12a 2b 2(3)4a(x -2) 2-2b(2-x )3(4)21×4.32-4.3×3.3+21×3.32、(5)41681x -,(6)1)(2)(2++-+b a b a(7)8 (a 2+1)-16a (8)()221+x 24x -四、计算:1.mm -+-329122 2. a+2-a -24 3.21x x --x-1.4.ac ac bc c b ab b a -+-++ 5.262--x x ÷4432+--x x x6.1111-÷⎪⎭⎫ ⎝⎛--x x x 7.(-2b a )2÷(b a -)·(-34b a )3.8.2223x y mn·2254m n xy ÷53xym n . 9. m n n n m m m n n m -+-+--210 2216168m m m -++÷428m m -+·22m m -+ 11.(22+--x xx x )24-÷x x五、 先化简,再求值:22)11(yxy y x y y x -÷-++, 其中2-=x ,1=y .。