空间曲面及其方程
空间曲线及其方程
当给定t t1 时,就得到曲线上的一个点 ( x1 , y1 , z1 ),随着参数的变化可得到曲线上的全
部点.
例 3 如果空间一点 M 在圆柱面 x2 y2 a2上以
角速度 绕z轴旋转,同时又以线速度v沿平行于z 轴的正方向上升(其中 、v都是常数),那么点
M 构成的图形叫做螺旋线.试建立其参数方程.
螺距 h 2b
三、空间曲线在坐标面上的投影
(以后在求三重积分和曲面积分时需要确定 一个立体或曲面在坐标面上的投影)
z
问题:求已知曲线C在xoy面上的 C •( x, y, z)
投影曲线C的方程.
注意:一个点与其在xoy面上的 投影点的x,y坐标相同.
o
y
x C •( x, y,0)
所以求曲线在xoy面上的投影曲线的方程就是 求原曲线上点x,y坐标的关系.
z
o 1y x
要点:
第四节 空间曲线及其方程
空间曲线的一般方程:
F(x, y, z) 0 C : G( x, y, z) 0
空间曲线可看作两个曲面的交线.
x x(t)
空间曲线的参数方程:
y
y(t )
z z(t)
空间曲线在坐标面上的投影: 注意一个点与其投影
点的x,y 坐标相同.
消去变量z 得:H ( x, y) 0 投影柱面
第四节
第七章
空间曲线及其方程
一、空间曲线的一般方程 二、空间曲线的参数方程 三、空间曲线在坐标面上的投影
一、空间曲线的一般方程
空间曲线可看作两个空间曲面的交线.
曲面S1 : F ( x, y, z) 0 曲面S2 : G( x, y, z) 0
曲 线C
:
高等数学第七章:曲面及其方程
4/21
旋转过程中的特征:
如图 设 M (x, y, z),
(1) z z1
(2)点M 到z 轴的距离
z
d M1(0, y1, z1)
M f ( y,z) 0
o
y
d x2 y2 | y1 | x
将 z z1 6; 7 ;
(1)双曲线
x2 a2
z2 c2
1分别绕 x轴和z轴;
绕x 轴旋转
x2 a2
y2 c2
z2
1
旋 转
双
绕z 轴旋转
x2 a2
y2
z2 c2
1
曲 面
x
y z
y2
(2)椭圆
a
2
z2 c2
1绕 y 轴和z轴;
x 0
绕 y 轴旋转
y2 a2
x2 c2
z2
1
0
2
叫圆锥面的
半顶角.试建立顶点在坐标原点,旋转轴为z 轴,
半顶角为 的圆锥面方程. z
解 yoz面上直线方程为 z y cot
圆锥面方程
z x2 y2 cot x
M1(0, y1, z1 )
o
y
M( x, y, z)
例6 将下列各曲线绕对应的轴旋转一周, 求生成的旋转曲面的方程.
4/21
二、旋转曲面
定义 以一条平面 曲线绕其平面上的 一条直线旋转一周 所成的曲面称为旋 转曲面. 这条定直线叫旋转 曲面的轴.
4/21
大学数学_7_4 曲面与曲线
O
x 图7-34
y
例 6 一动点 M 在圆柱面 x 2 y 2 a 2 上以角速度 绕 z 轴旋转时,同时又以线速度 v 沿平行于 z 轴的正方 向上升,( , v都是常数) , 则点 M 的几何轨迹叫做螺旋线 (7-35) ,试建立其参数方程. z 解 取时间 t 为参数,设t 0 时动 点在点 A( a,0,0) 处,在 t 时刻,动点在 点 M ( x, y , z ) 处.过点 M 作 xOy 面的 ' 垂线,则垂足为 M ( x, y,0) .由于 O My AOM ' t , MM ' vt , M’ x 故 x a cos AOM ' a cos t , 图7-35 y a sin AOM ' a sin t , z MM ' vt , x a cos t , 所以螺旋线的参数方程为: y a sin t , z vt.
求曲线: 2 2 z x y 2 2 z x y 在 xOy 面上的投影方程. 例7
从曲线 的方程中消去 z,得 x2 y 2 x2 y 2 , 化简后,得 ( x 2 y 2 )( x 2 y 2 1) 0, 因为 x 2 y 2 0 ,所在曲线 关于 xOy 面的投影柱面方程为 x2 y2 1 (是圆柱面) ,在 xOy 面的投影方程为 1 2 2 x y 2 z 0 (是 xOy 面上的圆). 解
Hale Waihona Puke y2 z2 例 2 将 yOz 面上的椭圆 2 2 1分别绕 z 轴和 y 轴 a b 旋转,求所形成的旋转曲面方程. 解 绕 z 轴旋转而形成的旋转曲面(图 7-28)方程 为 x2 y 2 z 2 z 1 , a2 b2 b x2 y 2 z 2 2 2 1. 即 2 a a b a 绕 y 轴旋转而形成的旋转曲面方程为 y y 2 x2 z 2 a 1, 2 2 x a b 图7-28 x2 y 2 z 2 2 2 1. 即 2 b a b
空间曲面及其方程
116 .
3
3 9
例4 方程 z ( x 1)2 ( y 2)2 1的图形是怎样的?
解 根据题意有 z 1
z
用平面z c去截图形得圆:
( x 1)2 ( y 2)2 1 c (c 1)
当平面z c 上下移动时,
c
得到一系列圆
o
y
圆心在(1,2, c),半径为 1 c x
同理: xoz 坐标面上的已知曲线 f ( x, z) 0 绕
z 轴旋转一周的旋转曲面方程为
f x2 y2 , z 0.
同理: xoz 坐标面上的已知曲线 f ( x, z) 0 绕
x 轴旋转一周的旋转曲面方程为 f x, y2 z2 0.
例6 yoz坐标面上的直线 z a,绕y(za轴旋0)转,试求所得 旋转曲面方程。
的顶点,两直线的夹角
0
2
叫圆锥面的
半顶角.试建立顶点在坐标原点,旋转轴为 z
轴,半顶角为 的圆锥面方程. z
解 yoz 面上直线方程为 z y cot
圆锥面方程
z x 2 y2 cot x
M1(0, y1, z1 )
o
y
M ( x, y, z)
例6 将下列各曲线绕对应的轴旋转一周,求
的准线为xoz平面上的抛物线x2=4z,这类柱面为抛物
柱面。
旋转曲面: 一平面曲线C绕同一平面上的定直线L旋转一周所成 的曲面称为旋转曲面。曲线C称为旋转曲面的母线,直 线L称为旋转曲面的轴。
在这里只研究坐标平
面内的曲线绕该平面内 的坐标轴旋转产生
的曲面。
问题: 设f ( y, z) 0是yoz平面内的一条曲线,绕
平面实际上也是一个柱面,是以xoy平面上的直线 x+y-1=0为准线,而母线平行于oz轴的柱面。
空间曲面及方程
曲面在空间解析几何中被看成是点的几何轨迹.
曲面方程的定义:
如果曲面S 与三元方程F ( x , y , z ) 0 有下述关系:
(1 )曲面 S 上任一点的坐标都满足方程; (2 )不在曲面 S 上的点的坐标都不满足方程; 那么,方程 F ( x , y , z ) 0 就叫做曲面S 的方程, 而曲面 S 就叫做方程的图形.
例如方程 在xoy面上, 表示的曲面 :
z
M
1
o C 表示准线圆C, M
y
在圆C上任取一点 M 1 ( x, y,0) , 过此点作 x 平行z轴的直线l ,对任意 z ,点 M ( x, y, z )
的坐标也满足方程 x y R
一切直线所形成的曲面称为圆 柱面.其上所有点的坐标都满足此方程, 故在空间
2 2 2
化简得所求方程 2 x 6 y 2 z 7 0.
例2. 求通过 x 轴和点( 4, – 3, – 1) 的平面方程. 解: 因平面通过 x 轴 , 故 A D 0
设所求平面方程为
By Cz 0
代入已知点 (4 , 3 , 1) 得
化简,得所求平面方程
f y,
x 2 z 2 0.
例1 将下列各曲线绕对应的轴旋转一周,求 生成的旋转曲面的方程.
x z x 轴和 z 轴; (1)双曲线 2 2 1 分别绕 a c
x2 y2 z2 绕 x 轴旋转 2 1 2 a c x y z 2 1 绕 z 轴旋转 2 a c
• A x+C z+D = 0 表示 平行于 y 轴的平面;
• A x+B y+D = 0 表示 平行于 z 轴的平面; • C z + D = 0 表示 平行于 xOy 面 的平面; • A x + D =0 表示 平行于 yOz 面 的平面; • B y + D = 0 表示 平行于 zOx 面 的平面.
第3讲空间解析几何—曲面、曲线及其方程
第3讲 空间解析几何—曲面、曲线及其方程本节主要内容第三节 曲面及其方程1 曲面方程的概念2 旋转曲面3 柱 面 4二次曲面第四节 空间曲线及其方程1 空间曲线的一般方程2 空间曲线的参数方程3 空间曲线在坐标面上的投影讲解提纲:第七章 空间解析几何与向量代数第三节 曲面及其方程一、 曲面方程的概念空间曲面研究的两个基本问题是:1.已知曲面上的点所满足的几何条件,建立曲面的方程;2.已知曲面方程,研究曲面的几何形状.二、旋转曲面以一条平面曲线绕其平面上的一条直线旋转一周形成的曲面叫做旋转曲面,旋转曲线和定直线分别叫做旋转曲面的母线和轴。
三、柱面平行于定直线并沿定曲线C 移动的直线L 形成的轨迹叫做柱面,定曲线C 叫做柱面的准线,动直线L 叫做柱面的母线。
四、二次曲面三元二次方程0),,(=z y x F 所表示的曲面称为二次曲面。
例题选讲:曲面方程的概念例1 建立球心在点),,(0000z y x M 、半径为R 的球面方程. 解:易得球面方程为2222000()()()x x y y z z R -+-+-=例2 求与原点O 及)4,3,2(0M 的距离之比为1:2的点的全体所组成的曲面方程. 解:易得曲面方程为22224116()(1)()339x y z +++++=。
例3 已知()1,2,3,A ()2,1,4,B - 求线段AB 的垂直平分面的方程.解:设点(,,)M x y z 为所求平面上的任一点,由 A M B M ==整理得26270x y z -+-=。
例4方程2222440x y z x y z ++-++=表示怎样的曲面?旋转曲面例5 将xOz 坐标面上的抛物线25z x =分别绕x 轴旋转一周,求所生成的旋转曲面的方程.解:易得旋转曲面的方程225y z x +=例6 直线L 绕另一条与L 相交的定直线旋转一周, 所得旋转曲面称为叫圆锥面. 两直线的交点称为圆锥面的顶点, 两直线的夹角α)20(πα<<称为圆锥面的半顶角. 试建立顶点在坐标原点, 旋转轴为z 轴, 半顶角为α的圆锥面方程解:在yoz 坐标平面上,直线L 的方程为 c o tz y α= 可得圆锥面的方程为2222()z x y α=+柱面例7 分别求母线平行于x 轴和y 轴,且通过曲线222222216x y z x y z ⎧++=⎨-+=⎩的柱面方程.解:母线平行于x 轴的柱面方程:22316y z -= 母线平行于y 轴的柱面方程:223216x z += 二次曲面.椭球面:1222222=++cz b y a x )0,0,0(>>>c b a抛物面椭圆抛物面 qy p x z 2222+= (同号与q p )双曲抛物面 z qy p x =+-2222 ( p 与q 同号)双曲面单叶双曲面 1222222=-+c z b y a x )0,0,0(>>>c b a双叶双曲面 1222222-=-+c z b y a x )0,0,0(>>>c b a二次锥面 0222222=-+cz b y a x例8 由曲面,0,0,0===z y x 1,122=+=+z y y x 围成的空间区域(在第一卦限部分), 作它的简图.课堂练习 1.求直线11:121x y z L --==绕z 轴旋转所得到的旋转曲面的方程. 2.指出方程221x y -=及22z x =-所表示的曲面. 3 方程()()22234z x y =-+--的图形是怎样的?第四节 空间曲线及其方程一、 空间曲线的一般方程 ⎩⎨⎧==0),,(0),,(z y x G z y x F二、空间曲线的参数方程 ⎪⎩⎪⎨⎧===)()()(t z z t y y t x x三、 空间曲线在坐标面上的投影⇒⎩⎨⎧==.0),,(,0),,(z y x G z y x F ⇒=0),(y x H ⎩⎨⎧==00),(z y x H例题选讲:空间曲线的一般方程例1方程组 221493x y y ⎧+=⎪⎨⎪=⎩表示怎样的曲线?空间曲线的参数方程例2 若空间一点M 在圆柱面222a y x =+上以角速度ω绕z 轴旋转, 同时又以线速度v 沿平行于z 轴的正方向上升 (其中ω、v 是常数), 则点M 构成的图形叫做螺旋线. 试建立其参数方程.解:取时间t 为参数,在t=0时,动点位于x 轴上的一点(,0,0)A a 处。
空间曲线及其方程
-0.5 -1
0
x
0
1
2
0.5
1
y
0.1
0.05
x
z
0
-0.05 x
-1
-0.1
-0.5
0
0.25
0.5
0.75
1
0
0.5 y
1
例6
求曲线 C:z z
4x2 y2 3(x2 y2)
z
在 xoy 面上的投影曲线.
解: 从方程组消去 z, 得
x2 y2 1.
Co
x
所以曲线C在 xoy 面的投影曲线为
2
4
xa2a2cots
y
a 2
sint
(0t2)
za
1 2
12
c
ots
三、空间曲线在坐标面上的投影
设空间曲线 C的一般方程为
z
F(x, y,z) 0, G(x, y,z) 0.
C
y
从 方 程 组 中 消z去 后变 得量 到 方 程
H(x, y)0.
x C
当x、y和z满 足 方 程 , x组 、y必 时定 满 足, 方 这 说 明C曲 上线 的 所 有 点 都 所在 表由 示方 的程 面 上 .
y2
4x
0.
例1 方程组 x2y2 1, 表示怎样的 ? 曲线
2x3z6
z
解 因为 x2y21表示圆, 柱面
2
C
2x3z6表 示 平. 面
x2 y2 2x3z
1 表 6
示
二
者
的.
交线o
10
10
x
5
第三节 空间曲面及方程
即
( x x0 )2 ( y y0 )2 ( z z0 )2 R
x2+y2+z2=R2
故球面方程为: (x-x0)2+(y-y0)2+(z-z0)2=R2 特别,当M0在原点时,球面方程为: 球面方程的一般式为: x2+y2+z2+Ax+By+Cz+D=0 其特征为: (1) x2, y2, z2系数相同; (2)无 xy , xz, yz项。 例: x2+y2+z2 -2x+4z -4=0 配方得(x-1)2+y2+(z+2)2=32
缺谁,母线平行谁
a
o
b y
y a o
x
x
14
柱面
z
(3) 抛物柱面: y2 =2x
母线平行于z 轴,
o x y z
准线为xoy 面上的抛物线:
(4) 平面: y-2z=0 母线平行于x 轴,
y2 =2x
。
y-2z=0
•
准线为yoz 面上的直线: y-2z=0 。
x
y
o
x2 y2 ——— =1 (1) 椭圆柱面: ——— + a2 b2
M•
任取曲面S上点M(x, y, z), 其点必是由曲线L上点M0(x0, y0, z0) 绕 z 轴转旋转而来. 则有: z=z0; x2+ y2 =y0; 因为f (y0, z0)=0, x
• M0
S
L
y
所以f ( x2+ y2 , z)=0.
6
旋转曲面
2、设yoz面上曲线 L: f (y, z)=0 绕 z 轴旋转一周, 所成曲面的方程为:
第四节曲面及其方程
1 h2 b2
— —椭圆
y h
(b h b)
YZc z h
y
-b
a XY
b
x
-c
1
. S位椭置:ax
2 2
by一22、椭球cz面22 1
3. 注意
(1)椭球面可以看成由一变形椭圆运动所产生的轨迹,这椭 圆两对顶点分别在一对有共同顶点的两个正交椭圆ΓXY、ΓYZ上 运动,且 这个动椭圆的平面总是垂直于Y轴;
4
4
S是由曲线y2 z2 1绕Y轴而成的旋转曲面。 4
z
y x
2. 在ZOX 平面内曲线Cf:(x, z) 0
y0
①绕X轴旋转
②绕Z轴旋转
f (x, y2 z2 ) 0
f ( x2 y2 , z) 0
例:作S:x2 y2 z2 1的草图。
xz
解:原式 x2 ( y2 z2 )2 1
2. 截痕(作图) S椭关于各坐标面、轴和原点对称。
S椭
YOZ
交线
YZ
: by
2 2
z2 c2
1
x 0
YZc z h y
S椭
XOY
交线
XY
: ax
2 2
y2 b2
1
z 0
-b x
a XY -c
b
一、椭球面S椭:ax
2 2
y2 b2
z2 c2
1
S椭
:y
h
交线
h: ax
2 2
z2 c2
• 空间曲线 • 求投影曲线
三元方程组 或参数方程 (如, 圆柱螺线)
思考与练习
机动 目录 上页 下页 返回 结束
空间区域在坐标平面上的投影草图画法
空间中的曲面和曲线及二次曲面
第六章 二次型与二次曲面
§6.3 二次曲面
例3. z = xy. 0 1/2 0 解: xy = (x, y, z) 1/2 0 0 0 0 0
x y , z
1 2 1 2 0 先求得正交矩阵Q = 1 2 1 2 0 , 1 0 0 0 1/2 0 1/2 0 0 使QT 1/2 0 0 Q = 0 1/2 0 , 0 0 0 0 0 0
x = acost y = asint z = vt z
(tR
aO x
y
O x
a y
15
a
第六章 二次型与二次曲面
§6.2 空间中的曲面和曲线
2. 维维安尼曲线 x = a (1+cost) 2 x 2 + y 2 + z2 = a 2 y = a sint (xa/2)2 + y2 = a2/4 2 t z = asin 2
第六章
§6.2
二次型与二次曲面
空间中的曲面和曲线
§6.3
二次曲面
2011. 12. 22
1
第六章 二次型与二次曲面
§6.2 空间中的曲面和曲线
§6.2 空间中的曲面和曲线 曲面的一般方程: F(x, y, z) = 0 曲线的一般方程: F(x, y, z) = 0 G(x, y, z) = 0 曲线的参数方程: x = x(t) y = y(t) z = z(t)
b
y
x 2 z2 y = 0, 2 + 2 = 1 a c x2 y2 z = 0, 2 + 2 = 1 a b
当a, b, c中有两个相等时——旋转面 当a = b = c = R时——半径为R的球面
23
空间曲面认识空间曲面的特征与方程
空间曲面认识空间曲面的特征与方程空间曲面是指在三维空间中由曲线无限延伸而成的图形。
它是几何学中一个重要的研究对象,具有丰富的特征和方程。
本文将围绕空间曲面的特征与方程展开论述。
一、空间曲面的特征空间曲面的特征主要包括形状、表达方式和性质等方面。
1. 形状:空间曲面可以有各种形状,如平面、球面、圆柱面、锥面等。
其中,平面是一种特殊的曲面,它是无限大的、无弯曲的。
而球面是一种曲率相等的曲面,它的每一点到球心的距离都相等。
2. 表达方式:空间曲面可以通过方程、参数方程和隐函数方程等方式来表示。
其中,方程法是最常用的表达方式之一。
通过将空间曲面的特征用数学方程表达出来,可以更直观地描述曲面的几何性质。
3. 性质:空间曲面具有各种几何性质,如曲率、切平面和法向量等。
曲率是描述曲面弯曲程度的量,切平面是与曲面相切且与曲面法线垂直的平面,法向量是垂直于曲面的一个向量。
二、空间曲面的方程类型根据空间曲面的特征不同,可以将空间曲面的方程分为若干类型,常见的有点法向式方程、参数方程和球面方程等。
1. 点法向式方程:点法向式方程是一种常用的描述曲面的方式。
它通过给出曲面上的一点和该点的法向量来表示曲面方程。
例如,对于球心在坐标原点、半径为r的球面,其点法向式方程可以表示为(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2,其中(a,b,c)为球心坐标。
2. 参数方程:参数方程是把曲面上的点用参数的形式表示出来。
通常,参数方程是由两个参数u和v的关系所决定的。
例如,对于圆柱面,其参数方程可以表示为x = r*cos(u), y = r*sin(u), z = v,其中r为圆的半径,(u,v)为参数。
3. 球面方程:球面方程是一种特殊的曲面方程,用于描述球面的几何性质。
球面方程可以表示为(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2,其中(a,b,c)为球心坐标,r为球的半径。
三、空间曲面的方程应用空间曲面的方程在实际应用中具有广泛的应用价值。
曲面与空间曲面的总结
曲面与空间曲线的总结椭圆柱面;12222=+yx 122=-y x曲面与空间曲线一.曲面及其方程:1.曲面方程的一般概念: 定义:若曲面上的点的坐标(x,y,z)都满足方程F(x,y,z)=0,而满足此方程的点都在曲面上,则称此方程为 该曲面的方程,而曲面称为此方程的‘图形’。
例1:求与A(2,3,1)和B(4,5,6)等距离的点的运动规迹。
解: 设M(x,y,z)为动点的坐标,动点应满足的条件是 |AM|=|BM|由距离公式得此即所求点的规迹方程,为一平面方程。
2.坐标面及与坐标面平行的平面方程: ①坐标平面xOy 的方程:z=0②过点(a,b,c)且与xOy 面平行的平面方程:z=c③坐标面yOz 、坐标面zOx 以及过(a,b,c)点且分别与之平行的平面方程:x=0; y=0; x=a; y=b 3. 球面方程:①球面的标准方程:以M0(x0,y0,z0)为球心,R 为半径 的球面方程为(x-x0)2+(y-y0)2+(z-z0)2=R2 ②球面的一般方程:x2+y2+z2+Ax+By+Cz+D=0球面方程的特点:平方项系数相同;没有交叉项。
例2:求x2+y2+z2+2x-2y-2=0表示的曲面 解:整理得: (x+1)2+(y-1)2+z2=22故此为一个球心在(-1,1,0),半径为2的球。
4.母线平行于坐标轴的柱面方程:一般我们将动直线l 沿定曲线c 平行移动所形成的轨迹 称为柱面。
其中直线l 称为柱面的母线,定曲线c 称为柱面 的准线。
本章中我们只研究母线平行于坐标轴的柱面方程。
此时有以下结论:若柱面的母线平行于z 轴,准线c 是xOy 面上的一条曲线,其方程为F(x,y)=0,则该柱面的方程为F(x,y)=0; 同理,G(x,z)=0,H(y,z)=0在空间中分别表示母线平行于y 轴和x 轴的柱面。
分析:母线平行于坐标轴的柱面的特点为:平行于某轴,则在其方程中无此坐标项。
第6-4节(曲面、空间曲线及其方程)
江西理工大学理学院第 4 节曲面、空间曲线及其方程江西理工大学理学院一、曲面方程的概念曲面的实例: 水桶的表面、台灯的罩子面等. 曲面在空间解析几何中被看成是点的几何轨迹. 曲面方程的定义:如果曲面 S 与三元方程 F ( x , y , z ) = 0 有下述关系:(1)曲面 S 上任一点的坐标都满足方程; (2)不在曲面 S 上的点的坐标都不满足方程;那么,方程 F ( x , y , z ) = 0 就叫做曲面 S 的方程, 而曲面 S 就叫做方程的图形.江西理工大学理学院以下给出几例常见的曲面.例 1 建立球心在点 M 0 ( x 0 , y0 , z 0 ) 、半径为 R 的球面方程.解设 M ( x , y , z ) 是球面上任一点,根据题意有| MM 0 |= R2 22 2 2( x − x0 )2+ ( y − y0 ) + ( z − z 0 ) = R2所求方程为 ( x − x0 ) + ( y − y0 ) + ( z − z0 ) = R 特殊地:球心在原点时方程为 x + y + z = R2 2 22江西理工大学理学院例 2 求与原点O 及 M 0 ( 2,3,4)的距离之比为1 : 2 的 点的全体所组成的曲面方程.解设 M ( x , y , z ) 是曲面上任一点,| MO | 1 = , 根据题意有 | MM 0 | 2 x2 + y2 + z2( x − 2) + ( y − 3) + (z − 4)2 221 = , 222⎞ 4 ⎞ 116 2 ⎛ ⎛ . 所求方程为 ⎜ x + ⎟ + ( y + 1) + ⎜ z + ⎟ = 3⎠ 3⎠ 9 ⎝ ⎝2江西理工大学理学院例 3 已知 A(1,2,3) , B( 2,−1,4),求线段 AB 的 垂直平分面的方程.解设 M ( x , y , z ) 是所求平面上任一点,根据题意有 | MA |=| MB |,( x − 1) + ( y − 2 ) + ( z − 3 )2 22( x − 2)2 + ( y + 1)2 + ( z − 4)2 , =化简得所求方程 2 x − 6 y + 2 z − 7 = 0.江西理工大学理学院2 2 例4 方程 z = ( x − 1) + ( y − 2) − 1的图形是怎样的?解根据题意有 z ≥ −1用平面 z = c 去截图形得圆:z( x − 1)2 + ( y − 2) 2 = 1 + c (c ≥ −1)当平面 z = c 上下移动时, 得到一系列圆coxy圆心在(1,2, c ),半径为 1 + c半径随c 的增大而增大. 图形上不封顶,下封底.江西理工大学理学院以上几例表明研究空间曲面有两个基本问题: (1)已知曲面作为点的轨迹时,求曲面方程. (讨论旋转曲面) (2)已知坐标间的关系式,研究曲面形状. (讨论柱面、二次曲面)江西理工大学理学院二、旋转曲面定义 以一条平面 曲线绕其平面上的 一条直线旋转一周 所成的曲面称为旋 转曲面. 这条定直线叫旋转 曲面的轴.播放 播放江西理工大学理学院旋转过程中的特征: 如图设 M ( x , y , z ),z⋅ M ( 0, y , z ) ⋅ Md1 1 1(1) z = z1(2)点 M 到 z 轴的距离o x2 2f ( y, z ) = 0yd=x + y =| y1 |2 2将 z = z1 , y1 = ± x + y 代入f ( y1 , z1 ) = 0江西理工大学理学院z = z1 , y1 = ± x 2 + y 2 代入 f ( y1 , z1 ) = 0 将得方程f (± x + y , z = 0,2 2)yoz 坐标面上的已知曲线 f ( y , z ) = 0 绕 z 轴旋转一周的旋转曲面方程.同理: yoz 坐标面上的已知曲线 f ( y , z ) = 0 绕 y 轴旋转一周的旋转曲面方程为f y, ±(x 2 + z 2 = 0.)江西理工大学理学院例 5 直线 L绕另一条与 L相交的直线旋转一周, 所得旋转曲面叫圆锥面.两直线的交点叫圆锥面 ⎛ 0 < α < π ⎞ 叫圆锥面的 的顶点,两直线的夹角 α ⎜ ⎟ 2⎠ ⎝ 半顶角.试建立顶点在坐标原点,旋转轴为 z 轴, 半顶角为α 的圆锥面方程. z解yoz 面上直线方程为 z = y cot α2 2⋅ αoM 1 (0, y1 , z1 )y圆锥面方程z = ± x + y cot αxM ( x , y, z )江西理工大学理学院例6 将下列各曲线绕对应的轴旋转一周,求 生成的旋转曲面的方程.⎧ x2 z2 ⎪ 2 − 2 =1 (1)双曲线 ⎨ a 分别绕 x 轴和 z 轴; c ⎪ y=0 ⎩x2 y2 + z2 绕 x 轴旋转 − =1 2 2 a c x +y z − 2 =1 绕 z 轴旋转 2 a c2 2 2旋 转 双 曲 面⎧ y2 z2 ⎪ 2 + 2 =1 (2)椭圆 ⎨ a 绕 y 轴和 z 轴; c ⎪x = 0 ⎩ y2 x2 + z2 旋 绕 y 轴旋转 + =1 2 2a c x +y z + 2 =1 绕 z 轴旋转 2 a c2 2 2江西理工大学理学院转 椭 球 面⎧ y 2 = 2 pz (3)抛物线 ⎨ 绕 z 轴; ⎩x = 0x 2 + y 2 = 2 pz旋转抛物面江西理工大学理学院三、柱面定义 平行于定直线并沿定曲线 C 移动的直线 L 所形成的曲面称为柱面. 这条定曲线 C 叫柱面的准线 ,动直线 L 叫 柱面的母线. 观察柱面的形 成过程:播放 播放江西理工大学理学院柱面举例zzy = 2x2平面o xo xyyy= x抛物柱面江西理工大学理学院从柱面方程看柱面的特征:只含 x, y 而缺 z 的方程 F ( x , y ) = 0 ,在 空间直角坐标系中表示母线平行于 z 轴的柱 面,其准线为 xoy 面上曲线C . (其他类推)实 例y z + 2 = 1 椭圆柱面 // x 轴 2 b c x2 y2 − 2 = 1 双曲柱面 // z 轴 2 a b 2 抛物柱面 // y 轴 x = 2 pz22江西理工大学理学院四、空间曲线的一般方程空间曲线C可看作空间两曲面的交线.⎧F ( x, y, z ) = 0 ⎨ ⎩G ( x , y , z ) = 0空间曲线的一般方程 特点:曲线上的点都满足 方程,满足方程的点都在 曲线上,不在曲线上的点 不能同时满足两个方程.zS1 S2oxCy江西理工大学理学院⎧ x2 + y2 = 1 例7 方程组 ⎨ 表示怎样的曲线? ⎩2 x + 3 y + 3z = 6解x 2 + y 2 = 1 表示圆柱面,2 x + 3 y + 3 z = 6 表示平面,⎧ x2 + y2 = 1 ⎨ ⎩2 x + 3 y + 3z = 6交线为椭圆.江西理工大学理学院⎧z = a2 − x2 − y2 ⎪ 2 表示怎样的曲线? 例8 方程组 ⎨ a 2 a 2 ⎪( x − ) + y = ⎩ 2 4解z = a2 − x2 − y2上半球面,a 2 a2 2 圆柱面, (x − ) + y = 2 4交线如图.江西理工大学理学院五、空间曲线的参数方程⎧ x = x(t ) ⎪ ⎨ y = y( t ) 空间曲线的参数方程 ⎪ z = z( t ) ⎩当给定 t = t1 时,就 得到曲线上的一个点( x1 , y1 , z1 ),随着参数的变化可得到曲线上的全部点.,0αb +空间曲线投影柱面。
空间曲面及其方程多元函数
向量: 既有大小, 又有方向的量称为向量 (又称矢量).
表示法: 有向线段 M1 M2 , 或 a ,
向量的模 : 向量的大小,
向径 (矢径): 起点为原点的向量.
自由向量: 与起点无关的向量. 单位向量: 模为 1 的向量, 零向量: 模为 0 的向量,
M2 M1
2019年5月23日星期四
10
目录
三角形法则可推广到多个向量相加 .
2019年5月23日星期四
12
目录
上页
下页
返回
a4
a5
a3
a2 a1
2019年5月23日星期四
13
目录
上页
下页
返回
(2) 向量的减法
a
三角不等式
2019年5月23日星பைடு நூலகம்四
14
目录
上页
下页
返回
(3) 数与向量的乘积
是一个数 , 与 a 的乘积是一个新向量, 记作 规定 :
上页
下页
返回
若向量 a 与 b大小相等, 方向相同, 则称 a 与 b 相等, 记作 a=b ;
若向量 a 与 b 方向相同或相反, 则称 a 与 b 平行, 记作 a∥b ; 规定: 零向量与任何向量平行 ;
与 a 的模相同, 但方向相反的向量称为 a 的负向量, 记作-a ;
因平行向量可平移到同一直线上, 故两向量平行又称 两向量共线 .
M 2M 3 (5 7)2 (2 1)2 (3 2)2 6 M1M3 (5 4)2 (2 3)2 (3 1)2 6 M 2M3 M1M3 即 M1M 2M3 为等腰三角形 .
2019年5月23日星期四
曲面曲线方程
z
在 xoy 面上的投影曲线 所围圆域: x y 1, z 0 .
2 2
C
x
o
1
y
思考与练习
1. 指出下列方程的图形:
方 程
x5
x y 9
y x 1
2 2
平面解析几何中
空间解析几何中
平行于 y 轴的直线 平行于 yoz 面的平面 圆心在(0,0) 半径为 3 的圆 斜率为1的直线 以 z 轴为中心轴的 圆柱面 平行于 z 轴的平面
2.画出图形
x 1 (1) y2
z 4 x y (2) yx0
z
2
2
z
2 y
1
o o
o x
2y
x
(3)
x z a
2
2
2
x2 y2 a2
z
a
o
a
y
x
y 5x 1 (4) y x3
z
y 5x 1 y x3
o
y
z
x2 y2 1 (5) 4 9 y3
及 x 1.
z
(1,1)
x
y2 x
o 1
(1,1)
y
x2 y2 z
x 1 z0
(1)范围:
2
2
2
x a,
y b,
z c
y2 z2 1 , b2 c2 x0 x2 z 2 1 a 2 c 2 y0
(2)与坐标面的交线:椭圆
x2 y2 1, 2 2 a b z0
x y z 2 2 1 ( a, b, c 为正数) 2 a b c
8.2空间解析几何与向量代数 曲面方程(4)
z
M 0
y
M'
x=x(t), y=y(t), z=z(t).
x
0
y
解: 设时间 t 为参数. 初始时刻 (t = 0),动
点在 A(a, 0, 0) 处,经 时刻 t , 动点运动到 M(x, y, z).
z M
0
x A
y = | OM' | sin t = a sin t.
y
x A
参数方程
的轨迹叫做柱面. C 叫做准线, l 叫做母线.
定义: 一条平面曲线 绕其平面上一条定直线旋转 一周 所形成的曲面叫做旋转曲面. 轴. 例如 : 该定直线称为旋转
表示母线平行于 z 轴的椭圆柱面. 表示母线平行于 z 轴的平面. (且 z 轴在平面上)
准线 xoz 面上的曲线 l3.
例 设 yz 平面有一已知曲线 C,它的方程为 f (y, z)=0. 将曲线绕 z 轴旋转一周,得一曲面. 求此旋转面的方程。 设旋转面上任一点 M(x, y, z).
x = acos t, y = asin t , z = vt.
在讲直线与平面之关系时,曾介绍过如何求空 间直线在某平面上的投影. 下面介绍一般的空间曲 线在坐标面上的投影. 设空间曲线 C: F1(x, y, z)=0, F2(x, y, z)=0,
z C
若点 M(x, y, z)满足(5.7), 则 (x, y) 满足(5.8). 故 C 上的点均在柱面(5.8)上. 即 C 是柱面 (5.8)上的 一条曲线. 故 C 在 xy 平 面的投影为 H (x , y ) = 0 z=0 (5.9) 投影方程
例5.4 若空间中点 M 在圆柱面 x2+y2=a2上以角速 度 绕 z 轴旋转,同时又以线速度 v 沿平行于 z 轴的正方向上升 (其中, v 都是常数). 则点 M 构成 的图形为螺旋线. 试建立其方程.
空间曲面的方程与位置关系
空间曲面的方程与位置关系空间曲面是三维空间中的一类特殊曲线,其方程和位置关系在数学和几何学中具有重要的意义。
本文将探讨空间曲面的方程表示以及其与位置的关系。
一、空间曲面的方程表示在三维空间中,空间曲面可以通过方程来表示。
方程中包含的变量通常为三个坐标变量(x, y, z),曲面方程可以分为以下几种常见形式:1. 一般式方程:一般式方程是指将空间曲面表示为三个坐标变量的关系式,通常为F(x, y, z) = 0的形式。
其中F(x, y, z)为一个多项式表达式,表示了曲面上各点坐标所满足的关系。
例如,球面的一般式方程为x² + y² + z² - R²= 0,其中R为球面的半径。
2. 参数化方程:参数化方程是指通过给出一个或多个参数变量,将曲面上的点的坐标表示为参数的函数形式。
参数化方程可以描述出曲面上的每一个点,并且方程的形式比较简洁。
例如,球面可以用参数化方程表示为x = Rsinθcosφ,y = Rsinθsinφ,z = Rcosθ,其中θ和φ为参数变量。
3. 隐式方程:隐式方程是指将曲面表示为两个或多个坐标变量之间的关系式,通常为G(x, y, z) = 0的形式。
与一般式方程类似,G(x, y, z)为一个多项式表达式。
例如,圆柱体的隐式方程为x² + y² - R² = 0,其中R为圆柱体的半径。
二、空间曲面与位置的关系空间曲面的方程与位置之间存在着密切的关系,可以通过方程来确定曲面所处的位置和性质。
以下是几个常见的空间曲面与位置关系:1. 平面:平面是一种特殊的空间曲面,其方程可以用一般式方程或者参数化方程表示。
平面的方程中,系数和常数项的取值会决定平面的位置和倾斜程度。
例如,一般式方程Ax + By + Cz + D = 0表示一个平面,其中A、B、C为非零实数,D为常数。
通过A、B、C的取值可以确定平面的法向量和倾斜角度。
空间曲面及其方程
空间曲面及其方程空间曲面是指在三维空间中由一组点构成的曲线、曲面或曲体。
在几何学中,研究空间曲面的形状、性质以及其方程是一项重要的课题。
一、曲面的基本概念曲面可以用数学语言进行描述,其具体形式取决于其类型和特性。
常见的曲面包括球面、圆柱面、抛物面、双曲面等。
1. 球面:球面是以一个固定点为球心,以一定半径为半径的点的集合。
球面方程可表示为(x-a)²+(y-b)²+(z-c)²=r²,其中(a,b,c)为球心坐标,r为半径。
2. 圆柱面:圆柱面由一条直线L(母线)沿着一条平面曲线C(母线曲线)平行移动形成。
圆柱面方程可表示为(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为半径。
3. 抛物面:抛物面是一个像开口碗一样的曲面。
抛物面方程可表示为z=ax²+by²,其中a和b为常数。
4. 双曲面:双曲面分为单叶双曲面和双叶双曲面。
单叶双曲面的方程可表示为(x/a)²+(y/b)²-(z/c)²=1,双叶双曲面的方程可表示为(x/a)²+(y/b)²-(z/c)²=-1。
二、空间曲面的方程表示空间曲面的方程描述了曲面上的所有点的几何特征。
不同类型的曲面有不同的方程形式。
1. 参数方程:使用参数方程可以表示曲面上的每个点。
例如,曲线的参数方程可以写为x=f(u),y=g(u),z=h(u),其中u为参数。
2. 一般方程:一般方程是通过将曲面上的点的坐标表示为x、y和z 的函数来定义。
例如,一般方程可以写为F(x,y,z)=0,其中F是一个关于x、y和z的函数。
3. 隐函数方程:隐函数方程是通过将曲面上的点的坐标表示为一个或多个变量的函数来定义。
例如,隐函数方程可以写为F(x,y,z)=0,其中F是关于x、y和z的方程。
三、空间曲面的性质和应用空间曲面的性质和应用广泛,涉及到几何学、物理学、工程学等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这里的t , .
x a sin , 例如:圆 y 0, 绕z轴旋转一周所得的球面 方程 z a cos
Page 20
x a sin cos x a sin cos z a cos
8.4.5二次曲面
三元二次方程 F x, y, z 0所表示的曲面称为二次 曲面, 而把平面称为一次曲面 .
4
以上表明作为点的几何轨迹的曲面都可以 用它的点的坐标方程来表示.反之,变量x,y,z 之间的方程通常表示一个曲面,因此,在空间 解析几何中关于曲面的研究,主要有下列两个 基本问题:
(1)已知一空间曲面,建立其方程; (2)已知坐标x,y,z之间的一个方程, 研究这个方程表示的曲面形状。
5
练习: 8-4 题1; 题3
Page 23
24
25
26
27
六 双叶双曲面
x y z 2 1 2 2 a b c
2 2 2
28
作业:8-4 题2,题6,题9(1)(3)
29
2 2 2
表示球面 .
6ቤተ መጻሕፍቲ ባይዱ
8.4.2 旋转曲面
7
8
9
例题3. 将下列各曲线绕对应的 轴旋转一周,求 生成的旋转曲面的方程 .
x2 z 2 1xoz面上的双曲线 2 2 1分别绕x轴 a c 和z轴;
10
11
例题4 直线L绕另一条与 L相交的直线旋转一周 所得的旋转曲面叫圆锥 面,两直线的交点为圆
下面我们一块来看看常见的二次曲面的标准方程.
Page 21
Page 22
x2 z2 椭球面是xoz面上的椭圆 2 2 1绕z轴旋转一周, a b x2 y2 z2 所得的曲面为旋转椭球 面 2 1, 2 a c b x2 y2 z2 再沿着y轴方向伸缩 倍,得到 2 2 2 1. a a b c
8.4空间曲面及其方程
8.4.1 曲面方程的概念; 8.4.2旋转曲面; 8.4.3柱面; 8.4.4空间曲面的参数方程; 8.4.5二次曲面
8.4.1曲面方程的概念
Page 2
例题1 设有点A1,2,1和B3,1,4, 求到A, B距离相等的 点的轨迹方程。
解: 由题意知,线段AB的垂直平分面为所 求点的轨迹。
锥面的顶点,两直线的 夹角 0 叫圆锥 2 面的半顶角 .试建立顶点在坐标原点 O,旋转轴为
z轴,半顶角为 的圆锥面方程 .
z
12
练习: 8-4 题4 ,题5
8-4 题4答案: 解:z 2 5 x绕着x轴旋转一周, x没有发生变化, 得到的旋转曲面方程为 即y 2 z 2 5 x.
设P(x,y,z)为所求平面上任意 一点,由于 AP BP
x 1 y 2 z 1
2 2 2
x 32 y 12 z 42 .
化简整理得 2 x y 5 z 10 0.
3
例题2 求到定点M 0 x0 , y0 , z0 为定长R的点的轨迹方程 .
8 - 4题1答案: 设P为所求平面上的一点, 则有 PP 1 PP 2, 得
x 22 y 32 z 12
x 42 y 52 z 62 ,
化简整理得 4 x 4 y 10z 63 0.
8 - 4题3 原方程x 2 y 2 z 2 2 x 4 y 2 z 0可化为 x 2 2 x 1 y 2 4 y 4 z 2 2 z 1 6, 即 x 1 y 2 z 1 6,
y z
2
2
2
5 x,
题5答案:
圆x 2 z 2 9绕z轴旋转一周, z没有发生变化,
得到的旋转曲面方程为
x y
2
2
z
2
2
9,
即x 2 y 2 z 2 9.
13
8.4.3 柱面
14
15
16
17
18
8.4.4空间曲面的参数方程
Page 19
曲面的参数方程通常含 有两个参数的方程, 形如 y y s, t z z s, t . x xs, t