(中学教材全解)七年级数学上册 第一章 有理数检测题 新人教版
七年级数学上册第一章《有理数》检测题4(含解析)新人教版(2021年整理)
七年级数学上册 第一章《有理数》检测题 4(含解析)(新版)新人教版
《有理数》
一、单选题 1.下列各组数中不相等的是( ). A. (-2)2 与-22 B. (-2)2 与 22 C. (-2)3 与-23 D. |-2|3 与|-23| 2.-(-1)3 的值等于( ). A. 0 B. 1 C.检测题 4(含解析)(新版)新人教版
本题考核知识点:正负数的应用。 解题关键点:理解正负数的意义.
9.D
【解析】
【分析】
根据有理数的定义、分类以及正负数表示一对具有相反意义的量,即可作出
判断.
【详解】
选项 A,零是整数,但不是正数,也不是负数,选项 A 错误;
选项 B,有理数可分为正有理数、负有理数和 0,选项 B 错误;
七年级数学上册 第一章《有理数》检测题 4(含解析)(新版)新人教版
故选:C 【点睛】 本题考核知识点:有理数(正负数)的意义。 解题关键点:理解 0 的意义。 7.B 【解析】 【分析】 先把除法运算化为乘法运算,再根据有理数乘法法则进行计算。 【详解】
×(-6)÷(— )×6= ×(-6)×(-6)×6=36 故选:B 【点睛】 本题考核知识点:有理数乘除法. 解题关键点:把除法转化为乘法. 8.C 【解析】 【分析】 根据各个数的绝对值进行判断,绝对值越大,说明离标准质量越远.或是直接 从个数与原点的距离进行判断。 【详解】 因为:|+0.9|>|-3。6|〉|+2.5|〉|—0.8|。或:—0.8 离原点最近; 所以,最接近标准是 C。 故选:C 【点睛】
15.如果全班某次数学成绩的平均成绩为 83 分,某同学考了 85 分,记作+ 2 分,那么得 90 分记作__________分,-5 分表示的是________分. 16.太阳与地球的平均距离大约是 150 000 000 千米,数据 150 000 000 用科学记数法表示为 _______.
新人教版初中数学七年级数学上册第一单元《有理数》检测卷(包含答案解析)(1)
一、选择题1.下列各组运算中,其值最小的是( ) A .2(32)--- B .(3)(2)-⨯- C .22(3)(2)-+- D .2(3)(2)-⨯-2.丁丁做了4道计算题:① 2018(1)2018-=;② 0(1)1--=-;③ 1111326-+-=;④11()122÷-=-请你帮他检查一下,他一共做对了( )道 A .1道 B .2道C .3道D .4道3.如果a =14-,b =-2,c =324-,那么︱a ︱+︱b ︱-︱c ︱等于( )A .-12 B .112C .12D .-1124.某测绘小组的技术员要测量A ,B 两处的高度差(A ,B 两处无法直接测量),他们首先选择了D ,E ,F ,G 四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A ,B 之间的高度关系为( ) A .B 处比A 处高 B .A 处比B 处高 C .A ,B 两处一样高 D .无法确定5.下列说法正确的是( ) A .近似数1.50和1.5是相同的 B .3520精确到百位等于3600 C .6.610精确到千分位D .2.708×104精确到千分位 6.围绕保障疫情防控、为企业好困解难,财政部门快速行动,持续加大资金投入,截至2月14日,各级财政已安排疫情防控补助资金901.5亿元,把“901.5”用科学记数法表示为( ) A .109.01510⨯ B .39.01510⨯ C .29.01510⨯ D .109.0210⨯ 7.-1+2-3+4-5+6+…-2011+2012的值等于A .1B .-1C .2012D .10068.如果a ,b ,c 为非零有理数且a + b + c = 0,那么a b c abc a b c abc+++的所有可能的值为( A .0 B .1或- 1 C .2或- 2 D .0或- 2 9.计算-3-1的结果是( )A .2B .-2C .4D .-410.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第六次后剩下的绳子长度为()A.312⎛⎫⎪⎝⎭米B.512⎛⎫⎪⎝⎭米C.612⎛⎫⎪⎝⎭米D.1212⎛⎫⎪⎝⎭米11.按键顺序是的算式是()A.(0.8+3.2)÷45=B.0.8+3.2÷45=C.(0.8+3.2)÷45=D.0.8+3.2÷45=12.已知实数m、n在数轴上的对应点的位置如图所示,则下列判断正确的是()A.m>0 B.n<0 C.mn<0 D.m-n>0二、填空题13.按下面程序计算,若开始输入x的值为正数,最后输出的结果为656,则满足条件所有x的值是___.14.绝对值不大于2.1的所有整数是____,其和是____.15.用计算器求2.733,按键顺序是________;使用计算器计算时,按键顺序为,则计算结果为________.16.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2020厘米的线段AB,则线段AB盖住的整点个数是______.17.阅读理解:根据乘方的意义,可得:22×23=(2×2)×(2×2×2)=25.请你试一试,完成以下题目:(1)a3•a4=(a•a•a)•(a•a•a•a)=__;(2)归纳、概括:a m•a n=__;(3)如果x m=4,x n=9,运用以上的结论,计算:x m+n=__.18.气温由﹣20℃下降50℃后是__℃.19.如果数轴上原点右边 8 厘米处的点表示的有理数是 32,那么数轴上原点左边 12 厘米处的点表示的有理数是__________.20.已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为______千米.三、解答题21.已知:b是最小的正整数,且a、b满足(c-5)2+|a+b|= 0请回答问题:(1)请直接写出a 、b 、c 的值: a = ,b = ,c = ,(2)数轴上a , b , c 所对应的点分别为A ,B ,C ,则 B ,C 两点间的距离为 ; (3)在(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动了t 秒,①此时A 表示的数为 ;此时B 表示的数为 ;此时C 表示的数为 ;②若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC - AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.22.计算: (1)152|18|()263-⨯-+; (2)20203221124(2)3()3-+÷--⨯.23.计算:(1)2×(-3)3-4×(-3) (2)-22÷(12-13)×(-58) 24.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣4,+10,﹣8,﹣6,+13,﹣10. (1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米? (3)守门员全部练习结束后,他共跑了多少米? 25.计算:2202013(1)(2)4(1)2-÷-⨯---+-.26.计算:(1)14-25+13 (2)42111|23|()823---+-⨯÷【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A根据有理数乘除和乘方的运算法则计算出结果,再比较大小即可. 【详解】A ,()23225---=-; B ,()()326-⨯-=; C ,223(3)(2)941=++=-- D ,2(3)(2)9(2)18-⨯-=⨯-=- 最小的数是-25 故选:A . 【点睛】本题考查了有理数的混合运算和有理数大小的比较,熟练掌握相关的法则是解题的关键.2.A解析:A 【分析】根据乘方的意义以及有理数的减法、乘法、除法法则,有理数加减混合运算法则即可判断. 【详解】①2018(1)1-=,故本小题错误; ②0(1)1--=,故本小题错误; ③1113267-+-=-,故本小题错误; ④11()122÷-=-,正确; 所以,他一共做对了1题. 故选A . 【点睛】本题考查了有理数的乘方、加法以及除法法则,熟练掌握运算法则是解题关键.3.A解析:A 【分析】逐一求出三个数的绝对值,代入原式即可求解. 【详解】1144a =-=,22b =-=,332244c =-= ∴原式=13122442+-=- 故答案为A .本题考查了求一个数的绝对值,有理数加减法混合运算,正数的绝对值为本身,0的绝对值为0,负数的绝对值是它的相反数.4.B解析:B 【分析】根据题意列出算式,A ,B 之间的高度差A B h h -,结果大于0,则A 处比B 处高,结果小于0,则B 处比A 处高,结果等于0,则A ,B 两处一样高. 【详解】 根据题意,得:()()()()()A D E D F E G F B G h h h h h h h h h h ---------=A D E D F E G F B G h h h h h h h h h h --+-+-+-+ =A B h h -将表格中数值代入上式,得()()4.5 1.70.8 1.9 3.6 1.5A B h h -=------= ∵1.5>0 ∴A B h h > 故选B . 【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.5.C解析:C 【分析】相似数和原值是不相同的;3520精确到百位是3500;2.708×104精确到十位. 【详解】A 、近似数1.50和1.5是不同的,A 错B 、3520精确到百位是3500,B 错 D 、2.708×104精确到十位. 【点睛】本题考察相似数的定义和科学计数法.6.C解析:C 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】901.5=9.015×102.故选:C.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.D解析:D【解析】解:原式=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2011+2012)=+1+1+1+…+1=1006.故选D.点睛:本题考查了有理数的混合运算,正确根据式子的特点进行正确分组是关键.8.A解析:A【分析】根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:∵a、b、c为非零有理数,且a+b+c=0∴a、b、c只能为两正一负或一正两负.①当a、b、c为两正一负时,设a、b为正,c为负,原式=1+1+(-1)+(-1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(-1)+(-1)+1=0,综上,a b c abca b c abc+++的值为0,故答案为:0.【点睛】此题考查了绝对值,有理数的混合运算,熟练掌握运算法则是解本题的关键.9.D解析:D【解析】试题-3-1=-3+(-1)=-(3+1)=-4.故选D.10.C解析:C【分析】根据乘方的意义和题意可知:第2次后剩下的绳子的长度为(12)2米,那么依此类推得到第六次后剩下的绳子的长度为(12)6米.【详解】∵1-12=12,∴第2次后剩下的绳子的长度为(12)2米;依此类推第六次后剩下的绳子的长度为(12)6米.故选C.【点睛】此题主要考查了乘方的意义.其中解题是正确理解题意是解题的关键,能够根据题意列出代数式是解题主要步骤.11.B解析:B【分析】根据计算器的使用方法,结合各项进行判断即可.【详解】解:按下列按键顺序输入:则它表达的算式是0.8+3.2÷45=,故选:B.【点睛】此题主要考查了计算器的应用,根据有理数的输入方法正确输入数据是解题关键.12.C解析:C【解析】从数轴可知m小于0,n大于0,从而很容易判断四个选项的正误.解:由已知可得n大于m,并从数轴知m小于0,n大于0,所以mn小于0,则A,B,D 均错误.故选C.二、填空题13.131或26或5或【分析】利用逆向思维来做分析第一个数就是直接输出656可得方程5x+1=656解方程即可求得第一个数再求得输出为这个数的第二个数以此类推即可求得所有答案【详解】用逆向思维来做:第一解析:131或26或5或45.利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是45,∴满足条件所有x的值是131或26或5或45.故答案为131或26或5或45.【点睛】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.14.﹣2﹣10120【分析】找出绝对值不大于21的所有整数求出之和即可【详解】绝对值不大于21的所有整数有﹣2﹣1012之和为﹣2﹣1+0+1+2=0故答案为:﹣2﹣1012;0【点评】此题考查了绝对值解析:﹣2,﹣1,0,1,2 0【分析】找出绝对值不大于2.1的所有整数,求出之和即可.【详解】绝对值不大于2.1的所有整数有﹣2、﹣1、0、1、2,之和为﹣2﹣1+0+1+2=0,故答案为:﹣2,﹣1,0,1,2;0【点评】此题考查了绝对值的意义和有理数的加法,熟练掌握运算法则是解本题的关键.15.73xy3=-2【分析】首先确定使用的是xy键先按底数再按yx键接着按指数最后按等号即可【详解】解:(1)按照计算器的基本应用用计算机求2733按键顺序是273xy3=;(2)-8×5÷20=-40解析:73,x y,3,=-2【分析】首先确定使用的是x y键,先按底数,再按y x键,接着按指数,最后按等号即可.【详解】解:(1)按照计算器的基本应用,用计算机求2.733,按键顺序是2.73、x y、3、=;(2)-8×5÷20=-40÷20=-2.此题主要考查了利用计算器进行数的乘方,关键是计算器求幂的时候指数的使用方法.16.2020或2021【分析】分线段AB的端点与整点重合和不重合两种情况考虑重合时盖住的整点是线段的长度+1不重合时盖住的整点是线段的长度由此即可得出结论【详解】若线段的端点恰好与整点重合则1厘米长的线解析:2020或2021【分析】分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【详解】若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点不与整点重合,则1厘米长的线段盖住1个整点,因为202012021+=,所以2020厘米长的线段AB盖住2020或2021个整点.故答案为:2020或2021.【点睛】本题考查了数轴,解题的关键是找出长度为n(n为正整数)的线段盖住n或n+1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.17.a7am+n36【分析】(1)根据题意乘方的意义7个a相乘可以写成a7即可解决;(2)根据题意总结规律可以知道是几个相同的数相乘指数相加即可解决;(3)运用以上的结论可以知道:xm+n=xm•xn即解析:a7 a m+n 36【分析】(1)根据题意,乘方的意义,7个a相乘可以写成a7即可解决;(2)根据题意,总结规律,可以知道是几个相同的数相乘,指数相加即可解决;(3)运用以上的结论,可以知道:x m+n=x m•x n,即可解决问题.【详解】解:(1)根据材料规律可得a3•a4=(a•a•a)•(a•a•a•a)=a7;(2)归纳、概括:a m•a n=m na a a a⎛⎫⎛⎫⎪⎪⎪⎪⎝⎭⎝⎭=a m+n;(3)如果x m=4,x n=9,运用以上的结论,计算:x m+n=x m•x n=4×9=36.故答案为:a7,a m+n,36.【点睛】本题主要考查了有理数的乘方的认识,能够读懂乘方的意义并且能够仿照例题写出答案是解决本题的关键.18.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键.19.﹣48【分析】数轴上原点右边8厘米处的点表示的有理数是32即单位长度是cm即1cm表示4个单位长度数轴左边12厘米处的点表示的数一定是负数再根据1cm表示4个单位长度即可求得这个数的绝对值【详解】数解析:﹣48【分析】数轴上原点右边 8厘米处的点表示的有理数是 32,即单位长度是14cm,即 1cm表示 4个单位长度,数轴左边12厘米处的点表示的数一定是负数,再根据 1cm表示 4个单位长度,即可求得这个数的绝对值.【详解】数轴左边 12 厘米处的点表示的有理数是﹣48.故答案为﹣48.【点睛】本题主要考查了在数轴上表示数.借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小既直观又简捷.20.5×108【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>1时n是正数;当原数解析:5×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】150 000 000将小数点向左移8位得到1.5,所以150 000 000用科学记数法表示为:1.5×108,故答案为1.5×108.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.三、解答题21.(1)-1;1;5;(2)4;(3)①-1-t;1+2t;5+5t;②BC-AB的值为2,不随着时间t的变化而改变.【分析】(1)先根据b是最小的正整数,求出b,再根据c2+|a+b|=0,即可求出a、c;(2)由(1)得B和C的值,通过数轴可得出B、C的距离;(3)①在(2)的条件下,通过运动速度和运动时间可表示出A、B、C;②先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.【详解】解:(1)∵b是最小的正整数,∴b=1.∵(c-5)2+|a+b|=0,∴a=-1,c=5;故答案为:-1;1;5;(2)由(1)知,b=1,c=5,b、c在数轴上所对应的点分别为B、C,B、C两点间的距离为4;(3)①点A以每秒1个单位长度的速度向左运动,运动了t秒,此时A表示的数为-1-t;点B以每秒2个单位长度向右运动,运动了t秒,此时B表示的数为1+2t;点C以5个单位长度的速度向右运动,运动了t秒,此时C表示的数为5+5t.②BC-AB的值不随着时间t的变化而改变,其值是2,理由如下:∵点A都以每秒1个单位的速度向左运动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴BC=5+5t–(1+2t)=3t+4,AB=1+2t–(-1-t)=3t+2,∴BC-AB=(3t+4)-(3t+2)=2.【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.22.(1)6;(2)-5【分析】(1)先去掉绝对值,然后根据乘法分配律即可解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)152|18|()263-⨯-+ =18×(12﹣56+23) =18×12﹣18×56+18×23=9﹣15+12=6;(2)20203221124(2)3()3-+÷--⨯ =﹣1+24÷(﹣8)﹣9×19=﹣1+(﹣3)﹣1=﹣5.【点睛】 此题主要考查有理数的混合运算,熟练掌握混合运算顺序是解题关键.23.(1)-42;(2)15【分析】(1)先算乘方、乘法,再算加减法即可;(2)先算括号和乘方,再算乘除即可.【详解】(1)原式 =2(27)12⨯-+=-54+12= 42-.(2)原式 =154()68-÷⨯- =5468⨯⨯=15.【点睛】本题考查了有理数的运算,掌握运算法则及运算顺序是关键.24.(1)回到了球门线的位置;(2)11米;(3)56米【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【详解】解:(1)(+5)+(﹣4)+(+10)+(﹣8)+(﹣6)+(+13)+(﹣10)=(5+10+13)-(4+8+6+10)=28-28=0.答:守门员最后回到了球门线的位置;(2)(3)|+5|+|﹣4|+|+10|+|﹣8|+|﹣6|+|+13|+|﹣10|=5+4+10+8+6+13+10=56(米).答:守门员全部练习结束后,他共跑了56米.【点睛】本题考查了正数和负数以及有理数加减运算的应用等知识点,解题的关键是理解“正”和“负”的相对性,确定具有相反意义的量.25.33【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】 解:2202013(1)(2)4(1)2-÷-⨯---+-=1(2)4192-÷⨯--+ =192(2)4-⨯⨯--+ =3641-+=33.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 26.(1)2;(2)4【分析】(1)根据有理数的加减运算,即可求出答案;(2)先计算乘方、绝对值、然后计算乘除,再计算加减运算,即可得到答案.【详解】解:(1)14251311132-+=-+=;(2)42111|23|()823---+-⨯÷=1 11834--+⨯⨯=26-+=4.【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则进行解题.。
(常考题)人教版初中数学七年级数学上册第一单元《有理数》检测(包含答案解析)(1)
一、选择题1.下列运算正确的有( )①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭; ④()30.10.0001-=-;⑤22433-=-A .1个B .2个C .3个D .4个2.下列计算中,错误的是( ) A .(2)(3)236-⨯-=⨯= B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--=3.下列计算正确的是( ) A .|﹣3|=﹣3 B .﹣2﹣2=0 C .﹣14=1D .0.1252×(﹣8)2=1 4.2--的相反数是( ) A .12-B .2-C .12D .25.2017年12月17日,第二架国产大型客机C919在上海浦东国际机场完成首次飞行.飞行时间两个小时,飞行的高度达到15000英尺.15000用科学记数法表示是( ) A .0.15×105B .15×103C .1.5×104D .1.5×1056.下列正确的是( ) A .5465-<- B .()()2121--<+- C .1210823--> D .227733⎛⎫--=-- ⎪⎝⎭7.如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作(). A .+0.02克 B .-0.02克 C .0克 D .+0.04克 8.若|a |=1,|b |=4,且ab <0,则a +b 的值为( )A .3±B .3-C .3D .5±9.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案( ) A .少5B .少10C .多5D .多1010.下列四个式子,正确的是( ) ①33.834⎛⎫->-+ ⎪⎝⎭;②3345⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭;③ 2.5 2.5->-;④125523⎛⎫-->+ ⎪⎝⎭. A .③④ B .①C .①②D .②③11.计算-2的结果是( )A .0B .-2C .-4D .4 12.计算(-2)2018+(-2)2019等于( )A .-24037B .-2C .-22018D .22018二、填空题13.在有理数3.14,3,﹣12 ,0,+0.003,﹣313,﹣104,6005中,负分数的个数为x ,正整数的个数为y ,则x+y 的值等于__. 14.3-的平方的相反数的倒数是___________. 15.绝对值不大于2.1的所有整数是____,其和是____. 16.计算:5213(15.5)65772⎛⎫⎛⎫⎛⎫-+++-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________.17.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2020厘米的线段AB ,则线段AB 盖住的整点个数是______.18.点A ,B 表示数轴上互为相反数的两个数,且点A 向左平移8个单位长度到达点B ,则这两点所表示的数分别是____________和___________. 19.已知4a a =>,6b =,则+a b 的值是________. 20.给下面的计算过程标明运算依据: (+16)+(-22)+(+34)+(-78) =(+16)+(+34)+(-22)+(-78)① =[(+16)+(+34)]+[(-22)+(-78)]② =(+50)+(-100)③ =-50.④①______________;②______________;③______________;④______________.三、解答题21.某路公交车从起点经过A ,B ,C ,D 站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数))到终点下车还有多少 人;(2)车行驶在____站至___ 站之间时,车上的乘客最多;(3)若每人乘坐一站需买票0.5元,问该车出车一次能收入多少钱?列式计算. 22.计算 (1)442293⎛⎫-÷⨯- ⎪⎝⎭2;(2)313242⎛⎫⨯⨯- ⎪⎝⎭3()32490.5234-⨯-÷+-. 23.计算: (1)117483612⎛⎫-+-⨯ ⎪⎝⎭; (2)20213281(2)(3)3---÷⨯-.24.定义:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷等.类比有理数的乘方,我们把222÷÷记作32,读作“2的下3次方”,一般地,把n 个(0)a a ≠相除记作n a ,读作“a 的下n 次方”.理解:(1)直接写出计算结果:32=_______.(2)关于除方,下列说法正确的有_______(把正确的序号都填上); ①21a =(0)a ≠;②对于任何正整数n ,11n =; ③433=4;④负数的下奇数次方结果是负数,负数的下偶数次方结果是正数. 应用:(3)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?例如:241111222222()2222=÷÷÷=⨯⨯⨯=(幂的形式)试一试:将下列除方运算直接写成幂的形式:65=_______;91()2-=________;(4)计算:3341()(2)2(8)24-÷--+-⨯-. 25.计算: (1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭26.计算:(1)()()128715--+--; (2)()()3241223125---÷+⨯--.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【分析】根据有理数加减乘除运算法则,和乘方的运算法则逐一判断即可. 【详解】()151530--=-,故①错误;11111511211223412121255⎛⎫÷-+=÷=⨯= ⎪⎝⎭,故②错误; 2217492339⎛⎫⎛⎫-=-=⎪ ⎪⎝⎭⎝⎭,故③错误;()30.10.001-=-,故④错误;22433-=-,故⑤正确; 故选A . 【点睛】本题考查了有理数的运算,乘方的运算,关键是熟练掌握有理数的运算法则.2.C解析:C 【分析】根据有理数的运算法则逐一判断即可. 【详解】(2)(3)236-⨯-=⨯=,故A 选项正确;()144282⎛⎫÷-=⨯-=- ⎪⎝⎭,故B 选项正确; 363(6)9--=-+-=-,故C 选项错误;()()2399--=--=,故D 选项正确;故选C . 【点睛】本题考查了有理数的运算,重点是去括号时要注意符号的变化.3.D解析:D 【分析】根据绝对值的性质,有理数的减法法则,有理数的乘方法则即可求出答案. 【详解】A 、原式=3,故A 错误;B 、原式=﹣4,故B 错误;C 、原式=﹣1,故C 错误;D 、原式=[0.125×(﹣8)]2=1,故D 正确. 故选:D . 【点睛】本题考查了绝对值的化简,有理数的运算法则,熟练掌握有理数运算的运算法则是本题的关键,要注意符号变号问题.4.D解析:D 【分析】|-2|去掉绝对值后为2,而-2的相反数为2. 【详解】2--的相反数是2,故选:D . 【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0.5.C解析:C 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】15000用科学记数法表示是1.5×104. 故选C . 【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.A解析:A 【分析】根据不等式的性质对各选项进行判断即可. 【详解】 解:(1)∵5465>,∴5465-<-,故选项A 符合题意; (2)∵-(-21)=21,+(-21)=-21,21>-21,∴()()2121--+->,故选项B 错误; (3)∵11210=108223---<,故选项C 错误;(4)∵227=-733--,227=733⎛⎫-- ⎪⎝⎭,∴227733⎛⎫---- ⎪⎝⎭<;故选:A.【点睛】此题主要考查了有理数的大小比较,熟练掌握有理数比较大小的方法是解答此题的关键.7.B解析:B【解析】-0.02克,选A.8.A解析:A【分析】通过ab<0可得a、b异号,再由|a|=1,|b|=4,可得a=1,b=﹣4或者a=﹣1,b=4;就可以得到a+b的值【详解】解:∵|a|=1,|b|=4,∴a=±1,b=±4,∵ab<0,∴a+b=1-4=-3或a+b=-1+4=3,故选A.【点睛】本题主要考查了绝对值的运算,先根据题意确定绝对值符号中数的正负再计算结果,比较简单.9.D解析:D【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D.10.D解析:D【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.【详解】①∵33 3.754⎛⎫-+=-⎪⎝⎭,33.83 3.754>=,∴33.834⎛⎫-<-+⎪⎝⎭,故①错误;②∵33154420⎛⎫--==⎪⎝⎭,21335502⎛⎫--==⎪⎝⎭,1512 2020>,∴3345⎛⎫⎛⎫-->--⎪ ⎪⎝⎭⎝⎭,故②正确;③∵ 2.5 2.5-=,2.5 2.5>-,∴ 2.5 2.5->-,故③正确;④∵111523623⎛⎫--==⎪⎝⎭,217533346+==,3334 66<,∴125523⎛⎫-->+⎪⎝⎭,故④错误.综上,正确的有:②③.故选:D.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.11.A解析:A【详解】解:因为|-2|-2=2-2=0,故选A.考点:绝对值、有理数的减法12.C解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.二、填空题13.4【解析】负分数为:﹣﹣3共2个;正整数为:36005共2个则x+y=2+2=4故答案为4【点睛】本题主要考查了有理数的分类熟记有理数的分类是解决此题的关键解析:4【解析】负分数为:﹣12,﹣313,共2个;正整数为: 3, 6005共2个,则x+y=2+2=4,故答案为4.【点睛】本题主要考查了有理数的分类,熟记有理数的分类是解决此题的关键.14.【分析】根据倒数相反数平方的概念可知【详解】−3的平方是99的相反数是-9-9的倒数是故答案为【点睛】此题考查倒数相反数平方的概念及性质解题关键在于掌握各性质定义解析:1 9 -【分析】根据倒数,相反数,平方的概念可知.【详解】−3的平方是9,9的相反数是-9,-9的倒数是1 9 -故答案为1 9 -.【点睛】此题考查倒数,相反数,平方的概念及性质.解题关键在于掌握各性质定义.15.﹣2﹣10120【分析】找出绝对值不大于21的所有整数求出之和即可【详解】绝对值不大于21的所有整数有﹣2﹣1012之和为﹣2﹣1+0+1+2=0故答案为:﹣2﹣1012;0【点评】此题考查了绝对值解析:﹣2,﹣1,0,1,2 0【分析】找出绝对值不大于2.1的所有整数,求出之和即可.【详解】绝对值不大于2.1的所有整数有﹣2、﹣1、0、1、2,之和为﹣2﹣1+0+1+2=0,故答案为:﹣2,﹣1,0,1,2;0【点评】此题考查了绝对值的意义和有理数的加法,熟练掌握运算法则是解本题的关键.16.0【分析】将同分母的分数分别相加再计算加法即可【详解】原式故答案为:0【点睛】此题考查有理数的加法计算法则掌握有理数加法的运算律:交换律和结合律是解题的关键解析:0【分析】将同分母的分数分别相加,再计算加法即可.【详解】原式5213615.5510100772⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-=-+= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.故答案为:0.【点睛】此题考查有理数的加法计算法则,掌握有理数加法的运算律:交换律和结合律是解题的关键.17.2020或2021【分析】分线段AB的端点与整点重合和不重合两种情况考虑重合时盖住的整点是线段的长度+1不重合时盖住的整点是线段的长度由此即可得出结论【详解】若线段的端点恰好与整点重合则1厘米长的线解析:2020或2021【分析】分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【详解】若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点不与整点重合,则1厘米长的线段盖住1个整点,因为202012021+=,所以2020厘米长的线段AB盖住2020或2021个整点.故答案为:2020或2021.【点睛】本题考查了数轴,解题的关键是找出长度为n(n为正整数)的线段盖住n或n+1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.18.-4【解析】试题解析:-4【解析】试题两点的距离为8,则点A、B距离原点的距离是4,∵点A,B互为相反数,A在B的右侧,∴A、B表示的数是4,-4.19.2或-10【分析】利用绝对值的代数意义确定出a与b的值即可求出所求【详解】解:∵|a|=4>a|b|=6∴a=-4b=6或-6当a=-4b=6时a+b=-4+6=2;当a=-4b=-6时a+b=-4解析:2或-10【分析】利用绝对值的代数意义确定出a与b的值,即可求出所求.【详解】解:∵|a|=4>a,|b|=6,∴a=-4,b=6或-6,当a=-4,b=6时,a+b=-4+6=2;当a=-4,b=-6时,a+b=-4-6=-10.故答案为:2或-10.【点睛】此题考查了有理数的加法,以及绝对值,熟练掌握绝对值的代数意义是解本题的关键.20.①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则相关运算律:交换律:a+b=b+a;结合律(a+b)+c=a+(b+c)依此即可求解【详解】第①步交换了加解析:①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则,相关运算律:交换律:a+b=b+a;结合律(a+b)+c=a+(b+c).依此即可求解.【详解】第①步,交换了加数的位置;第②步,将符号相同的两个数结合在一起;第③步,利用了有理数加法法则;第④步,同样应用了有理数的加法法则.故答案为加法交换律;加法结合律;有理数加法法则;有理数加法法则.【点睛】考查了有理数的加法,关键是熟练掌握计算法则,灵活运用运算律简便计算.三、解答题21.(1)30;(2)B,C;(3)71.5元.【分析】(1)根据正负数的意义,上车为正数,下车为负数,求出A、B、C、D站以及终点站的人数,即可得解;(2)根据(1)的计算解答即可;(3)根据各站之间的人数,乘票价0.5元,然后计算即可得解.【详解】解:(1)根据题意可得:到终点前,车上有16+15-3+12-4+7-10+8-11=30,即30人;故到终点下车还有30人.故答案为:30;(2)根据图表:A 站人数为:16+15-3=28(人)B 站人数为:28+12-4=36(人)C 站人数为:36+7-10=33(人)D 站人数为:33+8-11=30(人)易知B 和C 之间人数最多.故答案为:B ;C ;(3)根据题意:(16+28+36+33+30)×0.5=71.5(元).答:该出车一次能收入71.5元.【点睛】本题考查了正数和负数,有理数的混合运算,读懂图表信息,求出各站点上的人数是解题的关键.22.(1)16-;(2)34 【分析】(1)按照有理数的四则运算进行运算即可求解;(2)按照有理数的四则运算法则进行运算即可,先算乘方,注意符号.【详解】解:(1)原式944163616499=-⨯⨯=-⨯=-, (2)原式113924()(8)8444=⨯--⨯-⨯+ 39324=-++ 34=, 【点睛】本题考查有理数的加减乘除乘方运算法则,先算乘方,再算乘除,最后算加减,有括号先算括号内的,计算过程中细心即可.23.(1)36-;(2)26.【分析】(1)利用乘法分配律进行简便运算即可;(2)先算乘方,再算乘除,最后计算加减即可.【详解】解:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭ 1174848483612=-⨯+⨯-⨯16828=-+-36=-;(2)20213281(2)(3)3---÷⨯- 31(89)8=---⨯⨯ 127=-+26=.【点睛】本题考查了有理数的混合运算,掌握有理数运算的相关运算法则并灵活运用运算律准确计算是解题的关键.24.(1)12;(2)①②④;(3)41()5,7(2)-;(4)26-. 【分析】(1)根据a n 表示“a 的下n 次方”的意义进行计算即可;(2)根据a n 表示“a 的下n 次方”的意义计算判断即可;(3)根据a n 表示“a 的下n 次方”的意义,表示出56,91()2-=7(2)-,进而得出答案; (4)按照有理数的运算法则进行计算即可.【详解】(1)23=2÷2÷2=2×12×12=12, 故答案为:12; (2)当a≠0时,a 2=a÷a =1,因此①正确;对于任何正整数n ,1n =1÷1÷1÷…÷1=1,因此②正确;因为34=3÷3÷3÷3=19,而43=4÷4÷4=14,因此③不正确; 根据有理数除法的法则可得,④正确;故答案为:①②④; (3)56=5÷5÷5÷5÷5÷5=5×15×15×15×15×15=(15)4, 同理可得,91()2-==(−2)7, 故答案为:(15)4,(−2)7; (4)3341()(2)2(8)24-÷--+-⨯-=16×(-18)-8+(-8)×2=-2-8-16=−26.【点睛】本题考查有理数的混合运算,理解“a n ,表示a 的下n 次方”的意义是正确计算的前提. 25.(1)6;(2)58. 【分析】(1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++ 675=-++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.26.(1)2-;(2)7.【分析】(1)先去括号,再进行有理数运算即可;(2)根据有理数混合运算顺序和运算法则计算可得.【详解】解:(1)12﹣(﹣8)+(﹣7)﹣15=12+8﹣7﹣15=(12+8)+(﹣7﹣15)=20﹣22=﹣2(2)﹣12﹣(﹣2)3÷45+3×|1﹣(﹣2)2|=﹣12﹣(﹣8)×54+3×|1﹣4|=﹣12+10+3×|﹣3|=﹣12+10+9=7【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.。
新人教版初中数学七年级数学上册第一单元《有理数》检测题(答案解析)
一、选择题1.下列运算正确的有( )①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭; ④()30.10.0001-=-;⑤22433-=- A .1个 B .2个 C .3个 D .4个2.数轴上点A 和点B 表示的数分别为-4和2,若要使点A 到点B 的距离是2,则应将点A向右移动( )A .4个单位长度B .6个单位长度C .4个单位长度或8个单位长度D .6个单位长度或8个单位长度3.定义一种新运算2x y x y x+*=,如:2212122+⨯*==.则()(42)1**-=( ) A .1 B .2 C .0 D .-24.下列说法中,其中正确的个数是( ) (1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a 表示正有理数,则-a 一定是负数;(4)a 是大于-1的负数,则a 2小于a 3A .1B .2C .3D .45.如果|a |=-a ,下列成立的是( )A .-a 一定是非负数B .-a 一定是负数C .|a |一定是正数D .|a |不能是0 6.一件商品原售价为2000元,销售时先提价10%;再降价10%,现在的售价与原售价相比( )A .提高20元B .减少20元C .提高10元D .售价一样 7.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( ) A .1,2B .1,3C .4,2D .4,3 8.下列正确的是( )A .5465-<-B .()()2121--<+-C .1210823-->D .227733⎛⎫--=-- ⎪⎝⎭ 9.下列结论错误的是( )A .若a ,b 异号,则a ·b <0,a b <0B .若a ,b 同号,则a ·b >0,a b >0 C .a b -=a b -=-a b D .a b--=-a b 10.绝对值大于1且小于4的所有整数的和是( ) A .6B .–6C .0D .4 11.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >0 12.已知 1b a 0-<<< ,那么 a b,a b,a 1,a 1+-+- 的大小关系是( )A .a b a b a 1a 1+<-<-<+B .a 1a b a b a 1+>+>->-C .a 1a b a b a 1-<+<-<+D .a b a b a 1a 1+>->+>-二、填空题13.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是16-、9,现以点C 为折点,将放轴向右对折,若点A 对应的点A '落在点B 的右边,若3A B '=,则C 点表示的数是______.14.已知四个互不相等的整数a ,b ,c ,d 满足abcd=77,则a+b+c+d=___________. 15.运用加法运算律填空:(1)[(-1)+2]+(-4)=___=___;(2)117+(-44)+(-17)+14=____=____.16.分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出17.气温由﹣20℃下降50℃后是__℃.18.绝对值小于100的所有整数的积是______.19.根据二十四点算法,现有四个数3、4、6、10,每个数用且只用一次进行加、减、乘、除,使其结果等于24,则列式为___=24.20.(1)用四舍五入法,对5.649取近似值,精确到0.1的结果是____;(2)用四舍五入法,把1 999.508取近似值(精确到个位),得到的近似数是____;(3)用四舍五入法,把36.547精确到百分位的近似数是____.三、解答题21.计算下列各题:(1)(14﹣13﹣1)×(﹣12); (2)(﹣2)3+(﹣3)×[(﹣4)2﹣6].22.计算:(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)131121346⎛⎫-⨯-+ ⎪⎝⎭ 23.计算:()22216232⎫⎛-⨯-- ⎪⎝⎭24.给出四个数:3,4--,2,6,计算“24点”,请列出四个符合要求的不同算式. (可运用加、减、乘、除、乘方运算,可用括号;注意:例如4(123)24⨯++=与(213)424++⨯=只是顺序不同,属同一个算式.)算式1:_________________;算式2_______________;算式3:_________________;算式4_______________;25.(1)在图所示的数轴上标出以下各数:52-,-5.5,-2,+5, 132 (2)比较以上各数的大小,用“<”号连接起来;(3) 若点A 对应 5.5-,点B 对应132,请计算点A 与点B 之间的距离.26.计算:(1)22123()0.8(5)35⎡⎤-⨯--÷-⎢⎥⎣⎦(2)5233(2)4()(12)1234⨯-+-+--⨯-【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据有理数加减乘除运算法则,和乘方的运算法则逐一判断即可.【详解】()151530--=-,故①错误;11111511211223412121255⎛⎫÷-+=÷=⨯= ⎪⎝⎭,故②错误; 2217492339⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故③错误; ()30.10.001-=-,故④错误;22433-=-,故⑤正确; 故选A .【点睛】本题考查了有理数的运算,乘方的运算,关键是熟练掌握有理数的运算法则. 2.C解析:C【分析】A 点移动后可以在B 点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C .【点睛】本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.3.C解析:C【分析】先根据新定义计算出4*2=2,然后再根据新定义计算2*(-1)即可.【详解】 4*2=4224+⨯ =2, 2*(-1)= ()2212+⨯- =0. 故(4*2)*(-1)=0.故答案为C .【点睛】定义新运算是近几年的热门题型,首先要根据新运算正确列出算式,本题考查了有理数混合运算,根据新运算定义正确列出算式并熟练掌握有理数的运算法则是解答本题的关键. 4.C解析:C【解析】【分析】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.【详解】解:(1)有理数中,绝对值最小的数是0,符合题意;(2)有理数不是整数就是分数,符合题意;(3)当a 表示正有理数,则-a 一定是负数,符合题意;(4)a 是大于-1的负数,则a 2大于a 3,不符合题意,故选:C .【点睛】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.此题考查了有理数的乘方,正数与负数,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.5.A解析:A【分析】根据绝对值的性质确定出a 的取值范围,再对四个选项进行逐一分析即可.【详解】∵|a|=-a ,∴a≤0,A 、正确,∵|a|=-a ,∴-a≥0;B 、错误,-a 是非负数;C 、错误,a=0时不成立;D 、错误,a=0时|a|是0.故选A .【点睛】本题考查的是绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.6.B解析:B【分析】根据题意可列式现在的售价为()()2000110110⨯+%⨯-%,即可求解.【详解】解:根据题意可得现在的售价为()()20001101101980⨯+%⨯-%=(元),所以现在的售价与原售价相比减少20元,故选:B .【点睛】本题考查有理数运算的实际应用,根据题意列出算式是解题的关键.7.A解析:A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30, 30+4×3=42,故选A .点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.8.A解析:A【分析】根据不等式的性质对各选项进行判断即可.【详解】解:(1)∵5465>,∴5465-<-,故选项A 符合题意; (2)∵-(-21)=21,+(-21)=-21,21>-21,∴()()2121--+->,故选项B 错误; (3)∵11210=108223---<,故选项C 错误; (4)∵227=-733--,227=733⎛⎫-- ⎪⎝⎭,∴227733⎛⎫---- ⎪⎝⎭<; 故选:A .【点睛】此题主要考查了有理数的大小比较,熟练掌握有理数比较大小的方法是解答此题的关键. 9.D解析:D【解析】根据有理数的乘法和除法法则可得选项A 、B 正确;根据有理数的除法法则可得选项C 正确;根据有理数的除法法则可得选项D 原式=a b,选项D 错误,故选D. 10.C解析:C【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0.故选C .11.C解析:C【解析】从数轴可知m 小于0,n 大于0,从而很容易判断四个选项的正误.解:由已知可得n大于m,并从数轴知m小于0,n大于0,所以mn小于0,则A,B,D 均错误.故选C.12.C解析:C【分析】根据有理数大小比较的法则分别进行解答,即可得出答案.【详解】解:∵-1<b<a<0,∴a+b<a+(-b)=a-b.∵b>-1,∴a-1=a+(-1)<a+b.又∵-b<1,∴a-b=a+(-b)<a+1.综上得:a-1<a+b<a-b<a+1,故选:C.【点睛】本题主要考查了实数大小的比较,熟练掌握有理数大小比较的法则和有理数的加法法则是解题的关键.二、填空题13.【分析】根据可得点为12再根据与以为折点对折即为中点即可求解【详解】解:翻折后在右侧且所以点为12∵与以为折点对折则为中点即【点睛】本题考查数轴上两点间的距离得到为中点是解题的关键解析:2-【分析】根据3A B'=可得点A'为12,再根据A与A'以C为折点对折,即C为A,A'中点即可求解.【详解】解:翻折后A'在B右侧,且3A B'=.所以点A'为12,∵A与A'以C为折点对折,则C为A,A'中点,即1216:22C-=-.【点睛】本题考查数轴上两点间的距离,得到C为A,A'中点是解题的关键.14.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd 的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4解析:4±【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a 、b 、c 、d 的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.15.(-1)+(-4)+2-3117+(-17)+(-44)+1470【分析】(1)根据同号相加的特点利用加法的交换律先计算(-1)+(-4);(2)利用抵消的特点利用加法的交换律和结合律进行简便计算【解析:[(-1)+(-4)]+2 -3 [117+(-17)]+[(-44)+14] 70【分析】(1)根据同号相加的特点,利用加法的交换律,先计算(-1)+(-4);(2)利用抵消的特点,利用加法的交换律和结合律进行简便计算.【详解】(1)同号相加较为简单,故:[(-1)+2]+(-4)=[(-1)+(-4)]+2=-3(2)117和(-17)可通过抵消凑整,(-44)和14也可通过抵消凑整,故:117+(-44)+(-17)+14=[117+(-17)]+[(-44)+14]=70.【点睛】本题考查有理数加法的简算,解题关键是灵活利用加法交换律和结合律,凑整进行简算. 16.0【分析】根据图表运算程序把输入的值-1-2分别代入进行计算即可得解【详解】当输入时输出的结果为;当输入时输出的结果为故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算是基础题读懂图表理解运 解析:0【分析】根据图表运算程序,把输入的值-1,-2分别代入进行计算即可得解.【详解】当输入1-时,输出的结果为14(3)514351-+---=-++-=;当输入2-时,输出的结果为24(3)524350-+---=-++-=.故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算,是基础题,读懂图表理解运算程序是解题的关键. 17.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键.18.0【分析】先找出绝对值小于100的所有整数再求它们的乘积【详解】:绝对值小于100的所有整数为:0±1±2±3…±100因为在因数中有0所以其积为0故答案为0【点睛】本题考查了绝对值的性质要求掌握绝解析:0【分析】先找出绝对值小于100的所有整数,再求它们的乘积.【详解】:绝对值小于100的所有整数为:0,±1,±2,±3,…,±100,因为在因数中有0所以其积为0.故答案为0.【点睛】本题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.19.6÷3×10+4【分析】灵活利用运算符号将34610连接使结果为24即可解答本题【详解】由题意可得6÷3×10+4故答案为:6÷3×10+4【点睛】本题考查了有理数的混合运算关键是明确题意进行灵活变解析:6÷3×10+4【分析】灵活利用运算符号将3、4、6、10连接,使结果为24即可解答本题.【详解】由题意可得,6÷3×10+4.故答案为:6÷3×10+4.【点睛】本题考查了有理数的混合运算,关键是明确题意,进行灵活变化,最终求出问题的答案.20.(1)56(2)2000(3)3655【分析】(1)精确到哪一位即对下一位的数字进行四舍五入据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可【详解】解解析:(1)5.6 (2)2000 (3)36.55【分析】(1)精确到哪一位,即对下一位的数字进行四舍五入,据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可.【详解】解:(1)5.649≈5.6.(2)1999.58≈2000(3)36.547≈36.55故答案为:5.6;2000;36.55【点睛】本题考查了近似数:经过四舍五入得到的数为近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位的说法.三、解答题21.(1)13;(2)-38【分析】(1)根据乘法分配律可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.【详解】解:(1)(14﹣13﹣1)×(﹣12) =14×(﹣12)﹣13×(﹣12)﹣1×(﹣12) =(﹣3)+4+12=13;(2)(﹣2)3+(﹣3)×[(﹣4)2﹣6]=(﹣8)+(﹣3)×(16﹣6)=(﹣8)+(﹣3)×10=(﹣8)+(﹣30)=﹣38.【点睛】本题考查有理数的混合计算,掌握有理数混合运算的顺序,会利用简便运算简化运算是解题关键.22.(1)1;(2)9-【分析】(1)先算括号里面的,再算括号外面的即可;(2)根据乘法分配律计算即可;【详解】(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,11463⎡⎤=-+-⨯⎢⎥⎣⎦, 121=-+=;(2)131121346⎛⎫-⨯-+ ⎪⎝⎭, ()()()431121212346=-⨯--⨯+-⨯, 16929=-+-=-;【点睛】 本题主要考查了有理数的混合运算,准确计算是解题的关键.23.2【分析】原式先计算乘方,再运用乘法分配律计算,最后进行加减运算即可.【详解】解:()22216232⎫⎛-⨯-- ⎪⎝⎭=2136()432⨯-- =213636432⨯-⨯- =24-18-4=2.【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.24.()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【分析】由241212,=+ 可得()342624,-⨯-+⨯=由()2438=-⨯-,可得()()342624,-⨯-+-=由()24124,=-⨯- 可得()()643224,⨯-⨯-+=由()2446=-⨯-,可得()()()()43624624-⨯--÷=-⨯-=,从而可得答案.【详解】解:算式1:()()3426121224,-⨯-+⨯=+=算式2:()()()()34263824,-⨯-+-=-⨯-=算式3:()()()()643224124,⨯-⨯-+=-⨯-=算式4:()()()()()()43624334624,-⨯--÷=-⨯--=-⨯-=故答案为:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,注意本题答案不唯一,这是一道开放性的题目,同时考查了学生的逆向思维.25.(1)画图见解析;(2) 5.5-<52-<2-<132<+5;(3)9. 【分析】(1)先画数轴,根据数轴上原点左边的为负数,原点右边的为正数,在数轴上描出对应各数的点即可得到答案; (2)根据数轴上的数,右边的数大于左边的数,直接用“<”连接即可得到答案;(3)数轴上点A 与点B 对应的数分别为,a b ,则AB a b =-或b a -,根据以上结论代入数据直接计算即可得到答案. 【详解】 解:(1)如图,在数轴上表示各数如下:(2)因为数轴上的数,右边的数总大于左边的数:所以按从小到大排列各数为:5.5-<52-<2-<132<+5 (3)因为:A 表示 5.5-,B 表示132, 所以:点A 与点B 之间的距离为: ()13 5.5 3.5 5.599.2AB =--=+== 【点睛】本题考查的是利用数轴上的点表示有理数,利用数轴比较有理数的大小,数轴上两点之间的距离,绝对值的含义,掌握以上知识是解题的关键.26.(1)13;(2)10. 【分析】(1)依据有理数的混合运算的运算顺序和法则依次运算即可;(2)分别计算乘法、绝对值和后面用乘法分配律计算,再将结果相加、减.【详解】解:(1)原式=127 90.8()95⎡⎤-⨯-÷-⎢⎥⎣⎦=95 ()() 527 -⨯-=13;(2)原式=52364[(12)(12)(12)] 1234-++⨯--⨯--⨯-=64(589)-++-++=6412-++=10.【点睛】本题考查有理数的混合运算.解决此题的关键是正确把握运算顺序和每一步的运算法则.注意运算律的运用.。
新人教版初中数学七年级数学上册第一单元《有理数》检测题(包含答案解析)(4)
一、选择题1.13-的倒数的绝对值( ) A .-3 B .13- C .3 D .132.下列运算正确的有( ) ①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭; ④()30.10.0001-=-;⑤22433-=- A .1个B .2个C .3个D .4个 3.若b<0,刚a ,a+b ,a-b 的大小关系是( )A .a<a <+b -b aB .<a<a-b a+bC .a<<a-b a+bD .<a<a+b a-b 4.下列四种说法:①减去一个数,等于加上这个数的相反数;②两个互为相反数的数和为0;③两数相减,差一定小于被减数;④如果两个数的绝对值相等,那么这两个数的和或差等于零.其中正确的说法有( )A .4个B .3个C .2个D .1个 5.下列各式中,不相等的是( ) A .(﹣5)2和52B .(﹣5)2和﹣52C .(﹣5)3和﹣53D .|﹣5|3和|﹣53| 6.已知n 为正整数,则()()2200111n -+-=( ) A .-2B .-1C .0D .2 7.已知a 、b 在数轴上的位置如图所示,将a 、b 、-a 、-b 从小到排列正确的一组是( )A .-a <-b <a <bB .-b <-a <a <bC .-b <a <b <-aD .a <-b <b <-a 8.计算112123123412542334445555555555⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++---+++++⋯++⋯+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值( )A .54B .27C .272D .0 9.计算2136⎛⎫--- ⎪⎝⎭的结果为( )A .-12B .12C .56D .5610.如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作().A .+0.02克B .-0.02克C .0克D .+0.04克 11.已知有理数a ,b 满足0ab ≠,则||||a b a b +的值为( ) A .2± B .±1 C .2±或0 D .±1或0 12.下面说法中正确的是 ( )A .两数之和为正,则两数均为正B .两数之和为负,则两数均为负C .两数之和为0,则这两数互为相反数D .两数之和一定大于每一个加数二、填空题13.数轴上表示有理数-3.5与4.5两点的距离是___________.14.若230x y ++-= ,则x y -的值为________.15.运用加法运算律填空:(1)[(-1)+2]+(-4)=___=___;(2)117+(-44)+(-17)+14=____=____.16.A ,B ,C 三地的海拔高度分别是50-米,70-米,20米,则最高点比最低点高______米.17.点A ,B 表示数轴上互为相反数的两个数,且点A 向左平移8个单位长度到达点B ,则这两点所表示的数分别是____________和___________.18.已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为______千米.19.已知2x =,3y =,且x y <,则34x y -的值为_______.20.若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()a a b cd b++-=___________. 三、解答题21.计算(1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭; (2)3221(2)(3)⎡⎤÷---⎣⎦;(3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭. 22.如图,数轴上A ,B 两点之间的距离为30,有一根木棒MN ,设MN 的长度为x .MN 数轴上移动,M 始终在左,N 在右.当点N 移动到与点A ,B 中的一个重合时,点M 所对应的数为9,当点N 移动到线段AB 的中点时,点M 所对应的数是多少?23.计算:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭; (2)20213281(2)(3)3---÷⨯-. 24.计算 (1) ()375244128⎛⎫---⨯- ⎪⎝⎭(2) ()212382455-+--÷-⨯25.计算题: (1)()()121876---+-+;(2)()231513221428⎫⎛---⨯-+ ⎪⎝⎭; (3)2111(3)[]()63⨯--÷-. 26.计算: (1)13|38|44⎛⎫--+- ⎪⎝⎭(2)2202111(1)236⎛⎫-+⨯-÷ ⎪⎝⎭ (3)22110.51339⎛⎫⨯-÷ ⎪⎝⎭ (4)157(48)2812⎡⎤⎛⎫-⨯--+ ⎪⎢⎥⎝⎭⎣⎦【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】 首先求13-的倒数,然后根据绝对值的含义直接求解即可.【详解】 13-的倒数为-3,-3绝对值是3, 故答案为:C .【点睛】本题考查了倒数和绝对值的概念,熟练掌握概念是解题的关键.2.A解析:A【分析】根据有理数加减乘除运算法则,和乘方的运算法则逐一判断即可.【详解】()151530--=-,故①错误;11111511211223412121255⎛⎫÷-+=÷=⨯= ⎪⎝⎭,故②错误; 2217492339⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故③错误; ()30.10.001-=-,故④错误;22433-=-,故⑤正确; 故选A .【点睛】本题考查了有理数的运算,乘方的运算,关键是熟练掌握有理数的运算法则.3.D解析:D【分析】根据有理数减法法则,两两做差即可求解.【详解】∵b<0∴()0a a b b -+=->,()0a b a b --=->∴()a a b >+,()a b a ->∴()()a b a a b ->>+故选D .【点睛】本题考查了有理数减法运算,减去一个负数等于加上这个数的相反数.4.B解析:B【分析】根据有理数的减法运算法则对各小题分析判断即可得解.【详解】①减去一个数等于加上这个数的相反数,故本小题正确;②互为两个相反数的两数相加得零,故本小题正确;③减数是负数时,差大于被减数,故本小题错误;④如果两个数的绝对值相等,这两个数可能相等,也可能互为相反数,故本小题正确; 综上所述,正确的有①②④共3个.故选B .【点睛】本题考查了相反数的定义,有理数的减法,是基础题,熟记运算法则是解题的关键. 5.B解析:B【分析】本题运用有理数的乘方,相反数以及绝对值的概念进行求解.【详解】选项A :22(5)(5)(5)5-=--=选项B :22(5)(5)(5)525-=--==;25(55)25-=-⨯=-∴22(5)5-≠-选项C :3(5)(5)(5)(5)125-=---=-;35(555)125-=-⨯⨯=-∴33(5)5-=-选项D :35555555125-=-⨯-⨯-=⨯⨯=;35(555)125125-=-⨯⨯=-= ∴3355-=-故选B .【点睛】本题考查了有理数的乘方,相反数(只有正负号不同的两个数互称相反数),绝对值(一个有理数的绝对值是这个有理数在数轴上的对应点到原点的距离),其中正数和零的绝对值是其本身,负数的绝对值是它的相反数. 6.C解析:C【解析】【分析】根据-1的偶次幂等于1,奇次幂等于-1,即可求得答案.【详解】∵n为正整数,∴2n为偶数.∴(-1)2n+(-1)2001=1+(-1)=0故选C.【点睛】此题考查了有理数的乘方,关键点是正确的判定-1的偶次幂等于1,奇次幂等于-1.7.D解析:D【解析】【分析】根据数轴表示数的方法得到a<0<b,且|a|>b,则-a>b,-b>a,然后把a,b,-a,-b从大到小排列.【详解】∵a<0<b,且|a|>b,∴a<-b<b<-a,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.8.C解析:C【分析】根据有理数的加减混合运算先算括号内的,进而即可求解.【详解】解:原式=﹣12+1﹣32+2﹣52+3﹣72+…+27=27×1 2=272.故选:C.【点睛】本题考查了有理数的加减混合运算,解决本题的关键是寻找规律.9.A解析:A【分析】根据有理数加减法法则计算即可得答案.【详解】2136⎛⎫--- ⎪⎝⎭=2136-+ =12-. 故选:A .【点睛】本题考查有理数的加减,有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,一个数同零相加,仍得这个数,有理数减法法则:减去一个数,等于加上这个数的相反数.10.B解析:B【解析】-0.02克,选A.11.C解析:C【分析】根据题意得到a 与b 同号或异号,原式利用绝对值的代数意义化简即可得到结果.【详解】∵0ab ≠,∴当0a >,0b <时,原式110=-=;当0a >,0b >时,原式112=+=;当0a <,0b <时,原式112=--=-;当0a <,0b >时,原式110=-+=.故选:C .【点睛】本题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.12.C解析:C【详解】A. 两数之和为正,则两数均为正,错误,如-2+3=1;B. 两数之和为负,则两数均为负,错误,如-3+1=-2;C. 两数之和为0,则这两数互为相反数,正确;D. 两数之和一定大于每一个加数,错误,如-1+0=-1,故选C.【点睛】根据有理数加法法则:绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0.可得出结果.二、填空题13.8【解析】试题分析:有理数-35与45两点的距离实为两数差的绝对值解:由题意得:有理数−35与45两点的距离为|−35−45|=8故答案为8 解析:8【解析】试题分析:有理数-3.5与4.5两点的距离实为两数差的绝对值.解:由题意得:有理数−3.5与4.5两点的距离为|−3.5−4.5|=8.故答案为8.14.【分析】先利用绝对值的非负性求出xy 的值代入求解即可【详解】解:由题意得解得∴故答案为:【点睛】本题考查了绝对值的非负性解题的关键是熟练掌握绝对值的非负性解析:5-【分析】先利用绝对值的非负性求出x 、y 的值,代入求解即可.【详解】解:由题意得,230x y ++-=20,30x y +=-=解得 2x =-, 3y =,∴235-=--=-x y ,故答案为: 5.-【点睛】本题考查了绝对值的非负性,解题的关键是熟练掌握绝对值的非负性.15.(-1)+(-4)+2-3117+(-17)+(-44)+1470【分析】(1)根据同号相加的特点利用加法的交换律先计算(-1)+(-4);(2)利用抵消的特点利用加法的交换律和结合律进行简便计算【解析:[(-1)+(-4)]+2 -3 [117+(-17)]+[(-44)+14] 70【分析】(1)根据同号相加的特点,利用加法的交换律,先计算(-1)+(-4);(2)利用抵消的特点,利用加法的交换律和结合律进行简便计算.【详解】(1)同号相加较为简单,故:[(-1)+2]+(-4)=[(-1)+(-4)]+2=-3(2)117和(-17)可通过抵消凑整,(-44)和14也可通过抵消凑整,故:117+(-44)+(-17)+14=[117+(-17)]+[(-44)+14]=70.【点睛】本题考查有理数加法的简算,解题关键是灵活利用加法交换律和结合律,凑整进行简算.16.90【分析】先根据有理数的大小比较法则得出最高点和最低点再列出运算式子计算有理数的减法即可得【详解】因为所以最高点的海拔高度为20米最低点的海拔高度米则(米)即最高点比最低点高90米故答案为:90【解析:90【分析】先根据有理数的大小比较法则得出最高点和最低点,再列出运算式子,计算有理数的减法即可得.【详解】>->-,因为205070-米,所以最高点的海拔高度为20米,最低点的海拔高度70--=+=(米),则20(70)207090即最高点比最低点高90米,故答案为:90.【点睛】本题考查了有理数的大小比较法则、有理数减法的实际应用,依据题意,正确列出运算式子是解题关键.17.-4【解析】试题解析:-4【解析】试题两点的距离为8,则点A、B距离原点的距离是4,∵点A,B互为相反数,A在B的右侧,∴A、B表示的数是4,-4.18.5×108【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>1时n是正数;当原数解析:5×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】150 000 000将小数点向左移8位得到1.5,所以150 000 000用科学记数法表示为:1.5×108,故答案为1.5×108.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.19.-6或-18【分析】先依据绝对值的性质求得xy 的值然后再代入计算即可【详解】解:∵∴∵∴当x=2y=3时;当x=-2y=3时故答案为:-6或-18【点睛】此题考查了有理数的混合运算以及绝对值熟练掌握解析:-6或-18【分析】先依据绝对值的性质求得x 、y 的值,然后再代入计算即可.【详解】解:∵2x =,3y =,∴2x =±,3=±y .∵x y <,∴2x =±,3y =,当x=2,y=3时,346x y -=-;当x=-2,y=3时,3418x y -=-.故答案为:-6或-18.【点睛】此题考查了有理数的混合运算以及绝对值,熟练掌握绝对值的代数意义是解本题的关键. 20.2【分析】利用相反数倒数的性质确定出a+bcd 的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运解析:2【分析】利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值.【详解】解:根据题意得:a+b=0,cd=1,1a b=- 则原式=0+1-(-1)=2.故答案为:2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 三、解答题21.(1)22;(2)2117-;(3)54-.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算括号内的运算,最后除法运算即可得到结果; (3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;【详解】(1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭ 112(24)(24)(24)243⎛⎫⎛⎫=-⨯-+-⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭12616=-+=22;(2)3221(2)(3)⎡⎤÷---⎣⎦()2189=÷--()2117=÷-2117=-; (3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭ 255104=-⨯+ 54=-. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.点M 所对应的数为24或-6.【分析】设MN=x ,然后分类计算即可:①当点N 与点A 重合时,点M 所对应的数为9,则点N 对应的数为x+9;②当点N 与点B 重合时,点M 所对应的数为9,则点N 对应的数为x+9.【详解】设MN=x ,①当点N 与点A 重合时,点M 所对应的数为9,则点N 对应的数为x+9,∵AB=30,∴当N 移动到线段AB 的中点时,点N 对应的数为x+9+15=x+24,∴点M 所对应的数为x+24-x=24;②当点N 与点B 重合时,点M 所对应的数为9,则点N 对应的数为x+9,∵AB=30,∴当N 移动到线段AB 的中点时,点N 对应的数为x+9-15=x-6,∴点M 所对应的数为x-6-x=-6;综上,点M 所对应的数为24或-6.【点睛】本题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.数形结合并分类讨论是解题的关键.23.(1)36-;(2)26.【分析】(1)利用乘法分配律进行简便运算即可;(2)先算乘方,再算乘除,最后计算加减即可.【详解】解:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭ 1174848483612=-⨯+⨯-⨯ 16828=-+-36=-;(2)20213281(2)(3)3---÷⨯- 31(89)8=---⨯⨯ 127=-+26=.【点睛】本题考查了有理数的混合运算,掌握有理数运算的相关运算法则并灵活运用运算律准确计算是解题的关键.24.(1)47;(2)4925 【分析】(1)根据乘法分配律,求出算式的值是多少即可;(2)先计算乘方及绝对值运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解: ()375244128⎛⎫---⨯- ⎪⎝⎭ =18+14+15=47(2)()212|38|2455-+--÷-⨯ =11452455⎛⎫-+-⨯-⨯ ⎪⎝⎭=24 125 + 49 25=【点睛】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.25.(1)29;(2)5-;(3)4【分析】(1)根据有理数的加减法即可解答本题;(2)根据有理数的乘方和乘法分配律即可解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【详解】解:(1)|-12|-(-18)+(-7)+6=12+18+(-7)+6=30+(-7)+6=23+6=29;(2)23151(32)(21)428 ---⨯-+=3513 132()428 -+⨯-+=3513 1323232428 -+⨯-⨯+⨯=-1+24-80+52 =-5;(3)16×[1-(-3)2]÷(−13)=16×(1-9)×(-3)=16×(-8)×(-3)=4.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.26.(1)4;(2)13;(3)14-;(4)26.【分析】(1)先把绝对值化简,再进一步计算可得答案;(2)先计算乘方、除法转化为乘法,再进一步计算即可;(4)先算括号里面的,再把除法化为乘法,进一步计算即可;(4)利用乘法分配律展开,再进一步计算即可.【详解】(1)13 |38|44⎛⎫--+- ⎪⎝⎭=13 544 --=5-1 =4;(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭=1 1269-+⨯⨯=-1+4 3=13;(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭=211 1()1 369⨯-÷=519() 3610⨯-⨯=14 -;(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦=157 (48)()(48)(48)2812 -⨯---⨯+-⨯=24+30-28=26.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.。
七年级数学上册第一章《有理数》检测题5(含解析)新人教版(2021年整理)
七年级数学上册第一章《有理数》检测题5(含解析)(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册第一章《有理数》检测题5(含解析)(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册第一章《有理数》检测题5(含解析)(新版)新人教版的全部内容。
《有理数》单元检测题一、单选题1.如果a+b<0,并且ab>0,那么()A. a<0,b<0 B. a>0,b>0 C. a<0,b>0 D. a>0,b<02.两数相减,如果差等于减数的相反数,那么下列结论中正确的是()A.减数一定是零 B.被减数一定是零C.原来两数互为相反数 D.原来两数的和等于13.|﹣2|的倒数是()A. 2 B.﹣ C.﹣2 D.4.计算:|-|的倒数是( )A. B.- C. 3 D.-35.下列各数中,绝对值最大的数是A. 5 B. C. 0 D.6.下列说法:①0的相反数是0;②-1与1.5互为相反数;③-(+2)和+(-2)互为相反数;④a的相反数是-a;⑤-(+1)是-(-1)的相反数.其中正确的有()A. 1个 B. 2个 C. 3个 D. 4个7.下列说法中正确的是()A.近似数17.4与17。
40的精确度一样B.近似数88。
0万精确到十分位C.近似数59。
60精确到0。
1D.由四舍五入得到的数6。
96×105精确到千位8.若与互为相反数,则的值为 ( )A. 27 B. 9 C.–9 D. 19.下列判断大小正确的是( )A.|-2|>|-5| B.-|-2|〉0 C. |-(+3)|<-(-2)D.-|-|〉-10.下面是小卢做的数学作业,其中正确的是( )①0-(+)=;②0-(-7)=7;③(+)-0=-;④(-)+0=-.A.①② B.①③ C.①④ D.②④11.6.0009精确到千分位是()A. 6.0 B. 6。
人教版七年级上册数学 第一章 有理数 单元检测试卷(含答案解析)
人教版七年级上册数学第一章有理数单元检测试卷(含答案解析)人教版七年级上册数学第一章有理数单元检测试卷(含答案解析)第一部分:选择题(每小题3分,共30分)1. 下列数中能表示自然数的是()。
A. -3B. 0C. -2D. 22. 判断下列各式的真假()。
① -5 > -10 ② -6 < 3 ③ -2 > -1 ④ 0 > -1A. √√×√B. ×√×√C. ××√×D. √××√3. 若a > b,b > 0,则下列各式中一定成立的是()。
① a^2 > b^2 ② a - b > 0 ③ a^2 - b^2 > 0A. √√√B. √√×C. ×√√D. ××√4. 若x > -2,y < 0,则下列哪个不正确()。
A. x^2 > 4B. xy < 0C. x - y > 0D. x^2 + y < 05. 若a > b,则不正确的是()。
A. a + 2 > b + 2B. a - 2 > b - 2C. a × 2 > b × 2D. a ÷ 2 > b ÷ 26. 若x > 1,则不等式2x - 3 > 1的解集是()。
A. (0, 2)B. (2, +∞)C. (-∞, 0)D. (1, +∞)7. 若x < 0,y > 2,则不等式3x + 1 < 5y - 7的解集是()。
A. (-∞, -3)B. (3, +∞)C. (-∞, 3)D. (-3, +∞)8. 若x + y > 0,y < 0,则x的取值范围是()。
A. (0, +∞)B. (-∞, 0)C. (0, -∞)D. (-∞, +∞)9. 若a < 0,b < 0,则不等式a^2 - b^2 < 0的解集是()。
全解七年级数学上第1章有理数检测题及答案解析
全解七年级数学上第1章有理数检测题及答案解析【本检测题满分:100分,时刻:90分钟】一、选择题(每小题3分,共24分)1.假如+20%表示增加20%,那么-6%表示( )A.增加14%B.增加6%C.减少6%D.减少26%2.下列说法中错误的是( )A.0既不是正数,也不是负数B.0是自然数,也是整数,也是有理数C.若仓库运进物资5 t 记作+5 t ,那么运出物资5 t 记作-5 tD.一个有理数不是正数,那它一定是负数3.(2020·重庆中考)在-4,0,-1,3这四个数中,最大的数是( )A.-4B.0C.-1D.34.(2020·山东泰安中考)若( )-(-2)=3,则括号内的数是( )A. -1B.1C.5D.-55.有理数,a b 在数轴上对应的位置如图所示,则( )A.0a b +<B.0a b +>C.0a b -=D.0a b ->第5题图 第6题图6.(山东菏泽中考)如图,数轴上的A ,B ,C 三点所表示的数分别为a ,b ,c , 其中AB BC =,假如a c b >>,那么该数轴的原点O 的位置应该在( ) A.点A 的左边 B.点A 与点B 之间 C.点B 与点C 之间 D.点C 的右边7.(2020·成都中考)今年5月,在成都举行的世界机场都市大会上,成都新机场规划蓝图首次亮相.新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的都市,按照远期规划,新机场将建的4个航站楼的总面积约为126万平方米.用科学记数法表示126万为( ) A.126× B.1.26× C.1.26× D.1.26×8.(南京中考)运算12-7×(-4)+8÷(-2)的值是( )A.-24B.-20 C.6 D.36二、填空题(每小题3分,共24分)9.(2020·四川乐山中考)的倒数是________.10.若x 的相反数是3,y =5,则x y +的值为_________.11.甲、乙两同学进行数字猜谜游戏:甲说:一个数a 的相反数确实是它本身,乙说:一个数b 的倒数也等于它本身,请你猜一猜b a +=_______.12.( 2020·江苏连云港中考)数轴上表示-2的点与原点的距离是 .13.运算 2 015 2 016(0.25)(4)-⨯-=______.14.运算(-2.5)×0.37×1.25×(-4)×(-8)=_________.15.运算(-72)÷(-9)=_______.16.观看下列各式:12345633,39,327,381,3243,3729,,======你能从中发觉底数为3的幂的个位数字有什么规律吗?依照你发觉的规律回答: 2 0123的个位数字是________.三、解答题(共52分)17.(4分)把下列各数填在相应的大括号内:5,-2,1.4,23-,0,-3.141 59. 正数:{ ,…};非负整数:{ ,…};整数:{ ,…};负分数:{ ,…}.18.(9分)运算下列各题:(1)(+4.3)-(-4)+(-2.3)-(+4);(2)-4-2×32+(-2×32);(3)(-48)÷3(2)--(-25)×(-4)+2(2)-.19.(5分)已知:3,2,a b ==且a b <,求3()a b +的值.20.(5分)在数轴上标出下列各数:0.5,-4,-2.5,2,-0.5,并把它们用“>”连接起来.21.(9分)比较下列各对数的大小.18.解:(1)(+4.3)-(-4)+(-2.3)-(+4)=4.3+4-2.3-4=2.(2)-4-2×32+(-2×32)=-4-64-64=-132.(3)(-48)÷32-﹙﹚-(-25)×(-4)+22-﹙﹚=6-100+4=-90. 19.解:因为a =3,因此a =±3.因为b =2,因此b =±2.又因为a b <,因此a =-3,b =±2.因此333()(32)1a b +=-+==-(-1)或333()(32)5125a b +=--=-=-(). 20.解:如图.第20题图把它们用“>”连接起来为:2>0.5>-0.5>-2.5>-4.21.解:(1)因为|-4+5|=1,|-4|+|5|=9,因此|-4+5|<|-4|+|5|.(2)因为25525,232==,因此2552<.(3)因为22318⨯=,2(23)36⨯=,因此2223(23)⨯<⨯.22.解:因为-6+(-3)+(-1)+(-2)+(+7)+(+3)+(+4)+(-3)+(-2)+(+1)=-2,因此与标准质量相比较,这10袋小麦总计少了2 kg. 10袋小麦的总质量是1 500-2=1 498(kg).每袋小麦的平均质量是1 498÷10=149.8(kg).23.解:因为a的相反数为-2,b的倒数为12-,c的绝对值为2,因此a=2,b=-2,c=±2,因此2a b c++=2+(-2)+(±2)2=2-2+4=4.24.解:(1)因为(+8)+(+4)+(-10)+(-3)+(+6)+(-5)=0,因此将第6名乘客送到目的地时,老王刚好回到上午动身点.(2)因为(+8)+(+4)+(-10)+(-3)+(+6)+(-5)+(-2)+(-7)+(+4)+(+6)+(-9)+(-11)=-19,X|k | B| 1 . c |O |因此将最后一名乘客送到目的地时,老王距上午动身点19 km.(3)因为|+8|+|+4|+|-10|+|-3|+|+6|+|-5|+|-2|+|-7|+|+4|+|+6|+|-9|+|-11|=75(km),75×0.4=30(L),因此这天上午老王耗油30 L.。
新人教版初中数学七年级数学上册第一单元《有理数》检测(答案解析)(1)
一、选择题1.下列运算正确的有( )①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭; ④()30.10.0001-=-;⑤22433-=- A .1个B .2个C .3个D .4个 2.在-1,2,-3,4,这四个数中,任意三数之积的最大值是( ) A .6B .12C .8D .24 3.如图是北京地铁一号线部分站点的分布示意图,在图中以正东为正方向建立数轴,有如下四个结论: ①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14;上述结论中,所有正确结论的序号是( )A .①②③B .②③④C .①④D .①②③④ 4.下列说法正确的是( )A .近似数1.50和1.5是相同的B .3520精确到百位等于3600C .6.610精确到千分位D .2.708×104精确到千分位 5.绝对值大于1小于4的整数的和是( ) A .0 B .5 C .﹣5 D .106.若|x|=7|y|=5x+y>0,,且,那么x-y 的值是 ( ) A .2或12B .2或-12C .-2或12D .-2或-12 7.当A 地高于海平面152米时,记作“海拔+152米”,那么B 地低于海平面23米时,记作( )A .海拔23米B .海拔﹣23米C .海拔175米D .海拔129米8.若1<x <2,则|2||1|||21x x x x x x ---+--的值是( ) A .﹣3B .﹣1C .2D .1 9.计算-2的结果是( ) A .0B .-2C .-4D .4 10.计算(-2)2018+(-2)2019等于( )A .-24037B .-2C .-22018D .22018 11.已知 1b a 0-<<< ,那么 a b,a b,a 1,a 1+-+- 的大小关系是( )A .a b a b a 1a 1+<-<-<+B .a 1a b a b a 1+>+>->-C .a 1a b a b a 1-<+<-<+D .a b a b a 1a 1+>->+>- 12.下列各式计算正确的是( )A .826(82)6--⨯=--⨯B .434322()3434÷⨯=÷⨯C .20012002(1)(1)11-+-=-+D .-(-22)=-4二、填空题13.计算(﹣1)÷6×(﹣16)=_____. 14.(1)-23与25的差的相反数是_____. (2)若|a +2|+|b -3|=0,则a -b =_____.(3)-13的绝对值比2的相反数大_____. 15.把35.89543精确到百分位所得到的近似数为________.16.填空:(1)____的平方等于9;(2)(-2)3=____;(3)-14+1=____;(4)23×212⎛⎫ ⎪⎝⎭=____. 17.运用加法运算律填空:(1)[(-1)+2]+(-4)=___=___;(2)117+(-44)+(-17)+14=____=____.18.截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为_____.19.计算:(-0.25)-134⎛⎫- ⎪⎝⎭+2.75-172⎛⎫+ ⎪⎝⎭=___. 20.某班同学用一张长为1.8×103mm ,宽为1.65×103mm 的大彩色纸板制作一些边长为3×102mm 的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.三、解答题21.点A 、B 在数轴上所表示的数如图所示,回答下列问题:(1)将A 在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C ,求出B 、C 两点间的距离是多少个单位长度?(2)若点B 在数轴上移动了m 个单位长度到点D ,且A 、D 两点间的距离是3,求m 的值.22.计算:(1)-8+14-9+20(2)-72-5×(-2) 3+10÷(1-2) 1023.计算:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭; (2)20213281(2)(3)3---÷⨯-. 24.计算: (1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦(2)6÷(-2)3-|-22×3|+3÷2×12+1; 25.阅读下面材料:在数轴上6与1-所对的两点之间的距离:6(1)7--=;在数轴上2-与3所对的两点之间的距离:235--=;在数轴上8-与4-所对的两点之间的距离:(8)(4)4---=;在数轴上点A 、B 分别表示数a 、b ,则A 、B 两点之间的距离AB a b b a =-=-. 回答下列问题:(1)数轴上表示2-和5-的两点之间的距离是_______;数轴上表示数x 和3的两点之间的距离表示为_______;数轴上表示数_______和_______的两点之间的距离表示为2x +;(2)七年级研究性学习小组在数学老师指导下,对式子23x x ++-进行探究: ①请你在草稿纸上画出数轴,当表示数x 的点在2-与3之间移动时,32x x -++的值总是一个固定的值为:_______.②请你在草稿纸上画出数轴,要使327x x -++=,数轴上表示点的数x =_______.26.计算(1)28()5(0.4)5+----;(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭; (3)2336()(2)()(6)575⨯---⨯-+-⨯; (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦; (5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据有理数加减乘除运算法则,和乘方的运算法则逐一判断即可.【详解】()151530--=-,故①错误;11111511211223412121255⎛⎫÷-+=÷=⨯= ⎪⎝⎭,故②错误; 2217492339⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故③错误; ()30.10.001-=-,故④错误;22433-=-,故⑤正确; 故选A .【点睛】本题考查了有理数的运算,乘方的运算,关键是熟练掌握有理数的运算法则.解析:B【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大.【详解】∵乘积最大时一定为正数∴-1,-3,4的乘积最大为12故选B.【点睛】本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.3.D解析:D【分析】数轴上单位长度是统一的,利用图象,根据两点之间单位长度是否统一,判断即可.【详解】:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6,故①说法正确;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12,故②说法正确;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7,故③说法正确;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14,故④说法正确.故选:D.【点睛】本题考查了数轴表示数,数轴的三要素是:原点,正方向和单位长度,因此本题的关键是确定原点的位置和单位长度.4.C解析:C【分析】相似数和原值是不相同的;3520精确到百位是3500;2.708×104精确到十位.【详解】A、近似数1.50和1.5是不同的,A错B、3520精确到百位是3500,B错D、2.708×104精确到十位.【点睛】本题考察相似数的定义和科学计数法.解析:A【解析】试题绝对值大于1小于4的整数有:±2;±3.-2+2+3+(3)=0.故选A .6.A解析:A【分析】由绝对值性质可知x 和y 均有两种可能取值,再根据x+y>0排除不可能取值,代入求值即可.【详解】 由x 7=可得x=±7,由y 5=可得y=±5,由x+y>0可知:当x=7时,y=5;当x=7时,y=-5,则x y 75122-=±=或,故选A【点睛】绝对值具有非负性,因此去绝对值时要根据题干条件全面考虑.7.B解析:B【解析】由已知,当A 地高于海平面152米时,记作“海拔+152米”,那么B 地低于海平面23米时,则应该记作“海拔-23米”,故选B.8.D解析:D【分析】在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.【详解】解:12x <<,20x ∴-<,10x ->,0x >,∴原式1111=-++=,故选:D .【点睛】 本题主要考查了绝对值,代数式的化简求值问题.解此题的关键是在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.9.A解析:A【详解】解:因为|-2|-2=2-2=0,故选A.考点:绝对值、有理数的减法10.C解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.11.C解析:C【分析】根据有理数大小比较的法则分别进行解答,即可得出答案.【详解】解:∵-1<b<a<0,∴a+b<a+(-b)=a-b.∵b>-1,∴a-1=a+(-1)<a+b.又∵-b<1,∴a-b=a+(-b)<a+1.综上得:a-1<a+b<a-b<a+1,故选:C.【点睛】本题主要考查了实数大小的比较,熟练掌握有理数大小比较的法则和有理数的加法法则是解题的关键.12.C解析:C【分析】原式各项根据有理数的运算法则计算得到结果,即可作出判断.【详解】--⨯=--=-,错误,不符合题意;A、82681220B 、433392234448÷⨯=⨯⨯=,错误,不符合题意; C 、20012002(1)(1)110-+-=-+=,正确,符合题意;D 、-(-22)=4,错误,不符合题意;故选:C .【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.二、填空题13.【分析】根据有理数乘除法法则进行计算【详解】解:(-1)÷6×(-)=-×(−)=故答案为【点睛】此题考查了有理数的乘除法熟练掌握法则是解本题的关键 解析:136. 【分析】 根据有理数乘除法法则进行计算.【详解】解:(-1)÷6×(-16), =-16×(−16), =136. 故答案为136. 【点睛】 此题考查了有理数的乘除法,熟练掌握法则是解本题的关键.14.-5【分析】(1)先计算两个数的差再计算相反数即可;(2)由绝对值的非负性求出ab 的值再求出答案即可;(3)由题意列出式子进行计算即可得到答案【详解】解:(1)根据题意则;(2)∵|a +2|+|b - 解析:1615 -5 123【分析】 (1)先计算两个数的差,再计算相反数即可;(2)由绝对值的非负性,求出a 、b 的值,再求出答案即可;(3)由题意列出式子进行计算,即可得到答案.【详解】解:(1)根据题意,则221616()()351515---=--=; (2)∵|a +2|+|b -3|=0,∴20a +=,30b -=,∴2a =-,3b =,∴235a b -=--=-;(3)根据题意,则111(2)22333---=+=; 故答案为:1615;5-;123. 【点睛】 本题考查了绝对值的意义,相反数,列代数式求值,解题的关键是熟练掌握题意,正确的列出式子,从而进行解题.15.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答解析:90【分析】要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.【详解】解:35.89543可看到9在百分位上,后面的5等于5,往前面进一位,所以有理数35.89543精确到百分位的近似数为35.90,故答案为:35.90.【点睛】本题考查了精确度,精确到哪一位,即对下一位的数字进行四舍五入.16.3或-3-802【分析】根据乘方的法则计算即可【详解】解:(1)32=9(-3)2=9所以3或-3的平方等于9;(2)(-2)3=-2×2×2=-8;(3)-14+1=-1+1=0;(4)23×=8解析:3或-3 -8 0 2【分析】根据乘方的法则计算即可.【详解】解:(1)32=9,(-3)2=9,所以3或-3的平方等于9;(2)(-2)3=-2×2×2=-8;(3)-14+1=-1+1=0;(4)23×212⎛⎫⎪⎝⎭=8×14=2.故答案为:3或-3;-8;0;2.【点睛】本题考查了有理数乘方运算,熟记法则和乘方的意义是解决此题的关键.17.(-1)+(-4)+2-3117+(-17)+(-44)+1470【分析】(1)根据同号相加的特点利用加法的交换律先计算(-1)+(-4);(2)利用抵消的特点利用加法的交换律和结合律进行简便计算【解析:[(-1)+(-4)]+2 -3 [117+(-17)]+[(-44)+14] 70【分析】(1)根据同号相加的特点,利用加法的交换律,先计算(-1)+(-4);(2)利用抵消的特点,利用加法的交换律和结合律进行简便计算.【详解】(1)同号相加较为简单,故:[(-1)+2]+(-4)=[(-1)+(-4)]+2=-3(2)117和(-17)可通过抵消凑整,(-44)和14也可通过抵消凑整,故:117+(-44)+(-17)+14=[117+(-17)]+[(-44)+14]=70.【点睛】本题考查有理数加法的简算,解题关键是灵活利用加法交换律和结合律,凑整进行简算.18.051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10nn 为整数位数减1【详解】解:1051万=10510000=1051×107故答案为:1051×107【点睛】本题考查了科学解析:051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.【详解】解:1051万=10510000=1.051×107.故答案为:1.051×107.【点睛】本题考查了科学记数法-表示较大的数,科学记数法中a的要求和10的指数n的表示规律为关键,19.-175【分析】根据减法法则将减法全部转化为加法同时把分数化成小数然后利用加法的交换结合律进行计算【详解】解:原式=-025+325+275-75=(-025-75)+(325+275)=-775+解析:-1.75【分析】根据减法法则将减法全部转化为加法,同时把分数化成小数,然后利用加法的交换结合律进行计算.【详解】解:原式=-0.25+3.25+2.75-7.5=(-0.25-7.5)+( 3.25+2.75)=-7.75+6=-1.75.故答案为:-1.75.【点睛】本题考查了有理数加减混合运算,一般思路是先把加减法统一为加法,然后利用加法的运算律进行计算.20.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)解析:30【分析】分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可.【详解】解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5,∵纸板张数为整数,∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5,∴最多能制作5×6=30(张).故答案为30.【点睛】本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键.三、解答题21.(1)B、C两点间的距离是3个单位长度;(2)m的值为2或8.【分析】(1)利用数轴上平移左移减,右移加可求点C所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC=|2﹣5|=3;(2)分类考虑当点D在点A的左侧与右侧,利用AD=3,求出点D所表示的数,再利用BD=m求出m的值即可.【详解】解:(1)点C所表示的数为﹣3﹣1+9=5,∴BC=|2﹣5|=3.(2)当点D在点A的右侧时,点D所表示的数为﹣3+3=0,所以点B移动到点D的距离为m=|2﹣0|=2,当点D在点A的左侧时,点D所表示的数为﹣3﹣3=﹣6,所以点B移动到点D的距离为m=|2﹣(﹣6)|=8,答:m的值为2或8.【点睛】本题考查数轴上平移,两点距离问题,利用AD 的距离分类讨论点D 的位置是解题关键. 22.(1)17;(2)1.【分析】(1)原式利用加法结合律相加即可求出值;(2)原式先计算乘方运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解:(1)814920--++()()=891420--++=17-+34=17(2)2310752+()(1012)--⨯-÷-()1=4958+10--⨯-÷=49+40+10-=1【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.(1)36-;(2)26.【分析】(1)利用乘法分配律进行简便运算即可;(2)先算乘方,再算乘除,最后计算加减即可.【详解】解:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭ 1174848483612=-⨯+⨯-⨯ 16828=-+-36=-;(2)20213281(2)(3)3---÷⨯- 31(89)8=---⨯⨯ 127=-+26=.【点睛】本题考查了有理数的混合运算,掌握有理数运算的相关运算法则并灵活运用运算律准确计算是解题的关键.24.(1)23-;(2)-11【分析】(1)先计算乘方及括号,再计算乘法,最后计算加减法;(2)先计算乘方和绝对值,再计算乘除法,最后计算加减法.【详解】(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦=111(2)23--⨯⨯- =113-+=23-; (2)6÷(-2)3-|-22×3|+3÷2×12+1 =116(8)123122÷--+⨯⨯+ =3312144--++ =-11.【点睛】 此题考查含乘方的有理数的混合运算,掌握运算顺序及运算法则是解题的关键. 25.(1)3;|x−3|;x ,-2;(2)5;−3或4.【分析】(1)根据题意找出数轴上任意点间的距离的计算公式,然后进行计算即可;(2)①先化简绝对值,然后合并同类项即可;②分为x >3和x <−2两种情况讨论.【详解】解:(1)数轴上表示−2和−5的两点之间的距离为:|−2−(−5)|=3;数轴上表示数x 和3的两点之间的距离为:|x−3|;数轴上表示数x 和−2的两点之间的距离表示为:|x +2|;故答案为:3,|x−3|,x ,-2;(2)①当x 在-2和3之间移动时,|x +2|+|x−3|=x +2+3−x=5;②当x >3时,x−3+x +2=7,解得:x=4,当x <−2时,3−x−x−2=7.解得x=−3,∴x=−3或x=4.故答案为:5;−3或4.【点睛】本题主要考查的是绝对值的定义和化简,根据题意找出数轴上任意两点之间的距离公式是解题的关键.26.(1)3;(2)3;(3)667-;(4)3-;(5)315.4【分析】 (1)先把运算统一为省略加号的和的形式,再利用加法的运算律,把互为相反数的两数先加,从而可得答案;(2)先把除法转化为乘法,再利用乘法的分配律把运算化为:()()()1573636363612-⨯-+⨯--⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(3)把原式化为:()233662557-⨯+-⨯-⨯,逆用乘法的分配律,同步进行乘法运算,最后计算减法即可得到答案; (4)先计算小括号内的运算与乘方运算,再计算中括号内的运算,再计算乘法运算,最后计算加减运算即可得到答案;(5)先计算乘方运算,同步把除法转化为乘法,再计算小括号内的减法运算,同步进行乘法运算,最后计算加法运算即可得到答案.【详解】解:(1)28()5(0.4)5+---- 2850.45=--+ 3.=(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ ()157363612⎛⎫=-+-⨯- ⎪⎝⎭()()()1573636363612=-⨯-+⨯--⨯- 123021=-+3.=(3)2336()(2)()(6)575⨯---⨯-+-⨯ ()233662557=-⨯+-⨯-⨯ 2366557⎛⎫=-⨯+- ⎪⎝⎭ 667=--667=- (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦ ()()1132212⎡⎤⎛⎫=---+-⨯--- ⎪⎢⎥⎝⎭⎣⎦ ()313212⎛⎫=---+⨯-+ ⎪⎝⎭ ()31212⎛⎫=---⨯-+ ⎪⎝⎭131=--+3.=-(5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦ ()()1=2.5101632100⨯-⨯-- ()1164=--- 1164=-+ 315.4= 【点睛】本题考查的是含乘方的有理数的混合运算,乘法分配律的应用,掌握运算法则与运算顺序是解题的关键.。
人教版数学七年级上册第一章有理数-测试题含答案(共两份)
人教版数学七年级上册第一章有理数测试题(一)一、填空题(每小题3分,共30分)1.-2+2=__________,+2-(-2)=______.2.=-+--+-)3(2)32()31(________.3.10_______5-=+-,6________312-=--.4.比-5大6的数是________.5.+2减去-1的差是_______.6.甲潜水员所在高度为-45米,乙潜水员在甲的上方15米处,则乙潜水员的所在的高度是__________.7.把(-12)-(-13)+(-14)-(+15)+(+16)统一成加法的形式是________________,写成省略加号的形式是_________________,读作.8.写出两个负数的差是正数的例子:.9.1-3+5―7+……+97―99=____________.10.结合生活经验....,对式子(+6)+(-9)=-3作出解释:.二、选择题(每题2分,共20分)11.室内温度是150C,室外温度是-30C,则室外温度比室内温度低()(A)120C(B)180C(C)-120C(D)-180C12.下列代数和是8的式子是()(A)(-2)+(+10)(B)(-6)+(+2)(C))212()215(-+-(D))3110()312(-+13.下列运算结果正确的是()(A)-6-6=0(B)-4-4=8(C)1125.0811-=--(D)25.1811(125.0=--14.数轴上表示―10与10这两个点之间的距离是()(A)(B)10(C)20(D)无法计算15.2个有理数相加,若和为负数,则加数中负数的个数()(A)有2个(B)只有1个(C)至少1个(D)也可能是0个16.数-4与-3的和比它们的绝对值的和()(A)大7(B)小7(C)小14(D)相等17.若三个有理数的和为0,则下列结论正确的是()(A)这三个数都是0(B)最少有两个数是负数(C)最多有两个正数(D)这三个数是互为相反数18.一个数的绝对值小于另一个数的绝对值,则这两个数的和是(A)正数(B)负数(C)零(D)不可能是零19.绝对值等于32的数与213-的和等于()(A)218(B)614(C)2182120-或(D)614652--或20.两个数的差是负数,则这两个数一定是()(A)被减数是正数,减数是负数(B)被减数是负数,减数是正数(C)被减数是负数,减数也是负数(D)被减数比减数小三、解答题(共50分)21.(24分)计算下列各题:(1))8()9()2()5(--++-+-(2))8()2()7()15()3(15-++-++--++-(3))3()85.1(432()75.0(85.0++-++-++(4)⎥⎦⎤⎢⎣⎡----31()325(2(5)4331()21(1--+--(6)111174417431115-+-22.(8分)列式计算:(1)―3与32-的差.(2).―2与―3的倒数的和23.(8分)某面粉厂购进标有50千克的面粉10袋,复称时发现误差如下(超过记为正,不足记为负):+0.6,+1.8,―2.2,+0.4,―1.4,―0.9,+0.3,+1.5,+0.9,―0.8问:该面粉厂实际收到面粉多少千克?24.(10分)某中学位于东西方向的人民路上,这天学校的王老师出校门去家访,她先向东走100米到聪聪家,再向西走150米到青青家,再向西走200米到刚刚家,请问:(1)聪聪家与刚刚家相距多远?(2)如果把这条人民路看作一条数轴,以向东为正方向,以校门口为原点,请你在这条数轴上标出他们三家与学校的大概位置(数轴上一格表示50米).(3)聪聪家向西210米是体育场,体育场所在点所表示的数是多少?(4)你认为可用什么办法求数轴上两点之间的距离?答案一.1.0,42.-63.-5,3234.15.36.-30米7.(-12)+(+13)+(-14)+(-15)+(+16),-12+13-14-15+16-12,有两种读法8.开放题9.-5010.开放题二.11.B 12.A 13.D 14.C 15.C 16.C 17.C 18.D 19.D 20.D 三.21.(1)10(2)0(3)0(4)313-(5)125(6)622.(1)312323----)=((2)321312-⎪⎭⎫⎝⎛---=23.10×50+0.2=500.224.(1)350米(2)略(3)-110(4)21x x d -=人教版数学七年级上册第一章有理数测试题(二)一、仔细填一填(每空2分,共32分)1.一个数与-0.5的积是1,则这个数是_________.2.在,)1(10中-―1叫做_________,运算的结果叫做__________.3.近似数2.13万精确到__________位有个有效数字.4.用计算器按的顺序按鍵,所得的结果是______.5.平方得9的数是,一个数的立方是它本身,则这个数是___________.3.6÷9=6.根据下列语句列出算式,并计算其结果:2减去43与432的积,算式是,其计算结果是.7.所有绝对值小于4的整数的积是____________,和是.8.计算:=-⨯-20042003)5.0()2(__________;(-2)100+(-2)101=.9.两个有理数,它们的商是-1,则这两个有理数的关系是_.10.将一根长1米的木棒,第一次截去一半,第二次截去剩下的一半,如此截下去,截至第五次,剩下的木棒长是________米.二、精心选一选(每题3分,共30分)11.2007-的倒数是()(A)2007-(B)2007(C)20071(D)20071-12.(-3)4表示()(A)-3个4相乘(B)4个-3相乘(C)3个4相乘(D)4个3相乘13.下列四个式子:①―(―1),②1--,③(―1)3,④(―1)8.其中计算结果为1的有()(A)1个(B)2个(C)3个(D)4个14.下列计算正确的是()(A)09)3(3=+-(B)36)9()4(-=-⨯-(C)13223=÷(D)4)2(23=-÷-15.2007年中国月球探测工程的“嫦娥一号”卫星将发射升空飞向月球。
精品解析:人教版初中数学七年级上册第一章 《有理数》单元检测题(解析版)
【答案】①②④
【解析】
【分析】根据a*b=a2-ab-5,可以判断各个小题是否正确,从而可以解答本题.
【详解】∵a*b=a2-ab-5,
∴(-3)*(-2)=(-3)2-(-3)×(-2)-5=9-6-5=-2,故①正确,
【答案】①.1或-1,②.积,③.0;
【解析】
【详解】分析:倒数等于本身的数为1和-1,相反数等于本身的数为0.
详解:一个数的倒数是它本身,这个数是1和-1,互为倒数的两个数的积是1,一个数的相反数是它本身这个数是0.
点睛:本题主要考查的是倒数和相反数的性质,属于基础题型.理解定义是解题的关键.
14.已知 ,则 的值等于______.
【答案】D
【解析】
【详解】A、一个数的绝对值一定比0大,有可能等于0,故此选项错误;
B、一个数的相反数一定比它本身小,负数的相反数,比它本身大,故此选项错误;
C、绝对值等于它本身的数一定是正数,0的绝对值也等于其本身,故此选项错误;
D、最小的正整数是1,正确;
故选:D.
5.﹣ 的绝对值是( )
A.﹣ B. C.﹣ D.
A.1B.﹣1C. D.﹣
【答案】B
【解析】
【分析】因为只有符号不同的两个数是互为相反数,互为相反数的和等于0,根据相反数的性质可得:x﹣4+2﹣3x=0,解得:x=-1.
【详解】因为x﹣4与2﹣3x互为相反数,
所以x﹣4+2﹣3x=0,
解得:x=-1.
故选B.
【点睛】本题主要考查相反数 性质,解决本题的关键是要熟练掌握相反数的性质.
七年级数学上册第一章《有理数》检测卷-人教版(含答案)
七年级数学上册第一章《有理数》检测卷-人教版(含答案)题号 一 二 三总分 19 20 21 22 23 24分数一、选择题:(每题3分,共30分) 1.用科学记数法表示316000000为( )A.3.16×107B.3.16×108C.31.6×107D.31.6×106 2.1.998精确到0.01的近似数是( ) A .2B .2.0C .1.99D .2.003.下列说法正确的是( ).A .有理数分为正有理数和负有理数B .正数和负数互为有理数C .0的倒数、绝对值、相反数都是0D .相反数是其本身的数只有一个 4.计算 的结果是( )A.B.C.D.5、若x 是3的相反数,|y|=4,则x-y 的值是( ) A.-7 B.1 C.-1或7 D.1或-7 6.若有理数,,满足,,则( ) A .6B .8C .4D .4或87.若,,且,同号,则式子的值是( ) A .B .C .或D .或8.不改变原式的值,将6-(+3)-(+7)+(-2)写成省略加号的和的形式是( )A .-6-3+7-2B .6-3-7-2C .6-3+7-2D .6+3-7-29.已知abc >0,则式子:=( ) A .3B .﹣3或1C .﹣1或3D .1a b c 2a b -=6b c -=a c -=3a =4b =a b a b +7111-77-||||||a b c a b c++10.我国是最早认识负数并进行相关运算的国家.在古代数学名著《九章算术》里,就记载了利用算筹实施“正负术”的方法,图1表示的是计算3+(-4)的过程.按照这种方法,图2表示的过程应是在计算()A. (−5)+(−2)B. (−5)+2C. 5+(−2)D. 5+2二、填空题: (每题3分,24分)11.如果a与-2互为相反数,那么a等于___.12.0.2的绝对值是________,倒数是________.13. 计算:|−3|−4=________.14. 某天广元市天气预报显示:我市的最高气温是零上6∘C,最低气温是零下3∘C.我们把零上6∘C记为+6∘C,那么零下3∘C可记为________∘C.15. 用科学记数法表示的数为1.05×106,则原来的数是________.16. 当C=________时,代数式|C−4|+3有最小值是________. 17.已知|x|=2,|y|=5,且x>y,则x+y=.18.数轴上从左到右的三个点A,B,C所对应的数分别为a,b,c.其中AB=2017,BC=1000,如图所示.(1)若以B为原点,则a+b+c=________.(2)若原点O在A,B两点之间,则|a|+|b|+|b﹣c|=________.三.解答题(共46分,19题6分,20 ---24题8分)19、计算下列各题:(1)﹣4﹣28﹣(﹣29)+(﹣24) (2)(﹣2)×(﹣5)÷(﹣5)+9.(3) (4)20、在数轴上表示下列各数,并把它们用“<”连接起来(请填写题中原数)21、高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米):+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?22、已知有理数a、b在同上对应的点如图.(1)在数轴上标-a、-b对应的点.(2)用“>”或“<”填空.a+b 0,b-a 0.(3)用“<”连结a,b,0,-a,-b.(4)化简.23.如图A在数轴上所对应的数为﹣2.(1)点B在点A右边距A点4个单位长度,点B所对应的数是;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,则A、B两点间距离为;(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.24、阅读材料:小兰在学习数轴时发现:若点M、N表示的数分别为﹣1、3,则线段MN的长度可以这样计算:|﹣1﹣3|=4或|3﹣(﹣1)|=4,那么当点M、N表示的数分别为m、n时,线段MN的长度可以表示为|m﹣n|或|n﹣m|.请你参考小兰的发现,解决下面的问题.在数轴上,点A、B、C分别表示数a、b、c.给出如下定义:若|a﹣b|=2|a﹣c|,则称点B为点A、C的双倍绝对点.(1)如图1,a=﹣1.①若c=2,点D、E、F在数轴上分别表示数﹣3、5、7,在这三个点中,点______是点A、C的双倍绝对点;②若|a﹣c|=2,则b=______;(2)若a=3,|b﹣c|=5,B为点A、C的双倍绝对点,则c的最小值为______;(3)线段PQ在数轴上,点P、Q分别表示数﹣4、﹣2,a=3,|a﹣c|=2,线段PQ与点A、C同时沿数轴正方向移动,点A、C的速度是每秒1个单位长度,线段PQ的速度是每秒3个单位长度.设移动的时间为t(t>0),当线段PQ上存在点A、C的双倍绝对点时,求t的取值范围.参考答案一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案 B D D C C A B B C A二、填空题11.212.0.2 513.−114. −315. 105000016.4,317.解:∵|x|=2,|y|=5,∴x=±2,y=±5.∵x>y,∴x=2,y=﹣5或x=﹣2,y=﹣5.∴x+y=2+(﹣5)=﹣3或x+y=﹣2+(﹣5)=﹣7.故答案为:﹣3或﹣7.18.-1017,3017.三、解答题19、(1)原式=﹣27;(2)原式=7.(3)原式=(4)原式=-4.20、略21、解:(1)17+(﹣9)+7+(﹣15)+(﹣3)+11+(﹣6)+(﹣8)+5+16=15(千米),答:养护小组最后到达的地方在出发点的北方距出发点15千米;(2)第一次17千米,第二次15+(﹣9)=6,第三次6+7=13,第四次13+(﹣15)=﹣2,第五次﹣2+(﹣3)=﹣5,第六次﹣5+11=6,第七次6+(﹣6)=0,第八次0+(﹣8)=﹣8,第九次﹣8+5=﹣3,第十次﹣3+16=13,答:最远距出发点17千米;(3)(17+|﹣9|+7+|﹣15|+|﹣3|+11+|﹣6|+|﹣8|+5+16)×0.5=97×0.5=48.5(升),答:这次养护共耗油48.5升.22、(1)略;(2)<,>;(3);(4)=23、(1)点B在点A右边距A点4个单位长度,点B所对应的数是 2 ;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,则A、B两点间距离为 12 ;(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.(3)解:在(2)的条件下,经过4秒或者8秒,A、B两点相距4个单位。
人教版初中七年级数学上册第一章《有理数》测试题(含答案解析)
人教版初中七年级数学上册第一章《有理数》测试题(含答案解析)一、选择题1.(0分)2--的相反数是()A.12-B.2-C.12D.2D解析:D【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】2--的相反数是2,故选:D.【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0.2.(0分)下列各数中,互为相反数的是()A.+(-2)与-2 B.+(+2)与-(-2) C.-(-2)与2 D.-|-2|与+(+2)D解析:D【解析】【分析】先将各选项中的数字化简,然后根据相反数的定义进行判断即可.【详解】A. +(-2)=-2,-2=-2,故A选项中的两个数不互为相反数;B. +(+2)=2, -(-2)=2,故B选项中的两个数不互为相反数;C. -(-2)=2,2=2,故C选项中的两个数不互为相反数;D. -|-2|=-2,+(+2)=2,-2与2互为相反数,故D选项中的两个数互为相反数,故选D.【点睛】本题考查了相反数的概念,涉及了绝对值化简等,熟练掌握相关知识是解题的关键. 3.(0分)已知a、b在数轴上的位置如图所示,将a、b、-a、-b从小到排列正确的一组是()A.-a<-b<a<b B.-b<-a<a<bC.-b<a<b<-a D.a<-b<b<-a D解析:D【解析】【分析】根据数轴表示数的方法得到a<0<b,且|a|>b,则-a>b,-b>a,然后把a,b,-a,-b从大到小排列.【详解】∵a <0<b ,且|a|>b ,∴a <-b <b <-a ,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.4.(0分)下列有理数大小关系判断正确的是( )A .11910⎛⎫-->-⎪⎝⎭ B .010>- C .33-<+D .10.01->- A 解析:A【分析】先化简各式,然后根据有理数大小比较的方法判断即可.【详解】 ∵1199⎛⎫--= ⎪⎝⎭,111010--=-,11910>-, ∴11910⎛⎫-->-- ⎪⎝⎭,故选项A 正确; ∵1010-=,010<, ∴010<-,故选项B 不正确; ∵33-=,33+=, ∴33-=+,故选项C 不正确; ∵11-=,0.010.01-=,10.01>,∴10.01-<-,故选项D 不正确.故选:A .【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.5.(0分)在数轴上距原点4个单位长度的点所表示的数是( ).A .4B .-4C .4或-4D .2或-2C解析:C【解析】解:距离原点4个单位长度的点在原点的左边和右边各有一个,分别是4和-4,故选C .6.(0分)用计算器求243,第三个键应按()A.4 B.3 C.y x D.=C 解析:C【解析】用计算器求243,按键顺序为2、4、y x、3、=.故选C.点睛:本题考查了熟练应用计算器的能力,解题关键是熟悉不同的按键功能.7.(0分)如果a,b,c为非零有理数且a + b + c = 0,那么a b c abca b c abc+++的所有可能的值为(A.0 B.1或- 1 C.2或- 2 D.0或- 2A解析:A【分析】根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:∵a、b、c为非零有理数,且a+b+c=0∴a、b、c只能为两正一负或一正两负.①当a、b、c为两正一负时,设a、b为正,c为负,原式=1+1+(-1)+(-1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(-1)+(-1)+1=0,综上,a b c abca b c abc+++的值为0,故答案为:0.【点睛】此题考查了绝对值,有理数的混合运算,熟练掌握运算法则是解本题的关键.8.(0分)一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案()A.少5 B.少10 C.多5 D.多10D解析:D【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D.9.(0分)计算-3-1的结果是()A.2 B.-2 C.4 D.-4D解析:D【解析】试题-3-1=-3+(-1)=-(3+1)=-4.故选D.10.(0分)计算(-2)2018+(-2)2019等于( )A .-24037B .-2C .-22018D .22018C 解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.二、填空题11.(0分)23(2)0x y -++=,则x y 为______.﹣8【分析】根据绝对值的非负性和偶次方的非负性求出xy 的值然后代入代数式中计算即可【详解】解:∵∴x-3=0y+2=0解得:x=3y=﹣2∴==﹣8故答案为:﹣8【点睛】本题考查代数式求值绝对值乘方解析:﹣8【分析】根据绝对值的非负性和偶次方的非负性求出x 、y 的值,然后代入代数式中计算即可.【详解】解:∵23(2)0x y -++=,∴x-3=0,y+2=0,解得:x=3,y=﹣2,∴x y =3(2)-=﹣8,故答案为:﹣8.【点睛】本题考查代数式求值、绝对值、乘方运算,熟练掌握绝对值和偶次方的非负性是解答的关键. 12.(0分)(1)-23与25的差的相反数是_____. (2)若|a +2|+|b -3|=0,则a -b =_____. (3)-13的绝对值比2的相反数大_____.-5【分析】(1)先计算两个数的差再计算相反数即可;(2)由绝对值的非负性求出ab 的值再求出答案即可;(3)由题意列出式子进行计算即可得到答案【详解】解:(1)根据题意则;(2)∵|a +2|+|b - 解析:1615 -5 123【分析】 (1)先计算两个数的差,再计算相反数即可;(2)由绝对值的非负性,求出a 、b 的值,再求出答案即可;(3)由题意列出式子进行计算,即可得到答案.【详解】解:(1)根据题意,则221616()()351515---=--=; (2)∵|a +2|+|b -3|=0,∴20a +=,30b -=,∴2a =-,3b =,∴235a b -=--=-;(3)根据题意,则111(2)22333---=+=; 故答案为:1615;5-;123. 【点睛】 本题考查了绝对值的意义,相反数,列代数式求值,解题的关键是熟练掌握题意,正确的列出式子,从而进行解题.13.(0分)我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克,某地今年计划栽种这种超级杂交稻30万亩,预计今年这种超级杂交稻的产量_____千克(用科学记数法表示)46×108【分析】本题已知的是亩产量和亩数要求总产量就要利用三者之间的关系式先计算总产量通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案【详解】解:依题意得: 解析:46×108【分析】本题已知的是亩产量和亩数,要求总产量,就要利用三者之间的关系式先计算总产量.通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案.【详解】解:依题意得:820×300000=246000000=2.46×108.故答案为:2.46×108.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.(0分)33278.5 4.5 1.67--=____(精确到千分位)【分析】根据有理数的运算法则进行运算再精确到精确到千分位【详解】故答案为【点睛】此题主要考查近似数解题的关键是熟知有理数的运算法则解析: 2.559-【分析】根据有理数的运算法则进行运算,再精确到精确到千分位.【详解】33278.5 4.55231.6 2.56 2.5597823543--=-≈- 故答案为 2.559-.【点睛】此题主要考查近似数,解题的关键是熟知有理数的运算法则.15.(0分)运用加法运算律填空:(1)[(-1)+2]+(-4)=___=___;(2)117+(-44)+(-17)+14=____=____.(-1)+(-4)+2-3117+(-17)+(-44)+1470【分析】(1)根据同号相加的特点利用加法的交换律先计算(-1)+(-4);(2)利用抵消的特点利用加法的交换律和结合律进行简便计算【 解析:[(-1)+(-4)]+2 -3 [117+(-17)]+[(-44)+14] 70【分析】(1)根据同号相加的特点,利用加法的交换律,先计算(-1)+(-4);(2)利用抵消的特点,利用加法的交换律和结合律进行简便计算.【详解】(1)同号相加较为简单,故:[(-1)+2]+(-4)=[(-1)+(-4)]+2=-3(2)117和(-17)可通过抵消凑整,(-44)和14也可通过抵消凑整,故:117+(-44)+(-17)+14=[117+(-17)]+[(-44)+14]=70.【点睛】本题考查有理数加法的简算,解题关键是灵活利用加法交换律和结合律,凑整进行简算. 16.(0分)气温由﹣20℃下降50℃后是__℃.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键. 17.(0分)在数轴上与表示 - 2的点的距离为3个单位长度的点所表示的数是 _________ .-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时当点在表示-2的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-2的点的左边时数为-2-3=-5;②当点在表示-2的点的解析:-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时,当点在表示-2的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-2的点的左边时,数为-2-3=-5;②当点在表示-2的点的右边时,数为-2+3=1;故答案为-5或1.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况.在数轴上到一个点的距离相等的点有两个,一个在这个点的左边,一个在这个点的右边.18.(0分)若2(1)20a b -+-=,则2015()a b -= _______________.-1【分析】直接利用偶次方的性质以及绝对值的性质得出ab 的值进而得出答案【详解】由题意得:a -1=0b ﹣2=0解得:a =1b =2故=(1﹣2)2015=-1故答案为-1【点睛】本题考查了非负数的性质解析:-1【分析】直接利用偶次方的性质以及绝对值的性质得出a ,b 的值,进而得出答案.【详解】由题意得:a -1=0,b ﹣2=0,解得:a =1,b =2,故2015()a b -=(1﹣2)2015=-1.故答案为-1.【点睛】本题考查了非负数的性质,正确得出a ,b 的值是解题的关键.19.(0分)(1)用四舍五入法,对5.649取近似值,精确到0.1的结果是____;(2)用四舍五入法,把1 999.508取近似值(精确到个位),得到的近似数是____;(3)用四舍五入法,把36.547精确到百分位的近似数是____.(1)56(2)2000(3)3655【分析】(1)精确到哪一位即对下一位的数字进行四舍五入据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可【详解】解解析:(1)5.6 (2)2000 (3)36.55【分析】(1)精确到哪一位,即对下一位的数字进行四舍五入,据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可.【详解】解:(1)5.649≈5.6.(2)1999.58≈2000(3)36.547≈36.55故答案为:5.6;2000;36.55【点睛】本题考查了近似数:经过四舍五入得到的数为近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位的说法.20.(0分)绝对值小于4.5的所有负整数的积为______.24【分析】找出绝对值小于45的所有负整数求出之积即可【详解】解:绝对值小于45的所有负整数为:-4-3-2-1∴积为:故答案为:24【点睛】此题考查了有理数的乘法以及绝对值熟练掌握运算法则是解本题解析:24【分析】找出绝对值小于4.5的所有负整数,求出之积即可.【详解】解:绝对值小于4.5的所有负整数为:-4,-3,-2,-1,∴积为:4(3)(2)(1)24-⨯-⨯-⨯-=,故答案为:24.【点睛】此题考查了有理数的乘法,以及绝对值,熟练掌握运算法则是解本题的关键.三、解答题21.(0分)计算:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭;(2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭; 解析:(1)6;(2)11.【分析】(1)先变成省略括号和形式,同时把小数化分数,把分数相加,同号相加,最后异号相加即可;(2)先算乘方,去绝对值和带分数化假分数,再计算乘法,最后计算加减法即可.【详解】解:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭, =1312744+-+, =1217+-,=13-7,=6;(2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭, =()351124444⎛⎫++⨯--⨯- ⎪⎝⎭=11235++-=11.【点睛】本题考查含有乘方的有理数混合,掌握有理数混合运算的法则,解答的关键是熟练掌握运算法则和运算顺序.22.(0分)计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭. 解析:(1)1;(2)-1.【分析】(1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解.【详解】(1)()()()923126--⨯-+÷-=962--=1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭=11 891632 -+-÷=1 893216-+-⨯=892-+-=-1.【点睛】此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.23.(0分)将n个互不相同的整数置于一排,构成一个数组.在这n个数字前任意添加“+”或“-”号,可以得到一个算式.若运算结果可以为0,我们就将这个数组称为“运算平衡”数组.(1)数组1,2,3,4是否是“运算平衡”数组?若是,请在以下数组中填上相应的符号,并完成运算;1 2 3 4 =(2)若数组1,4,6,m是“运算平衡”数组,则m的值可以是多少?(3)若某“运算平衡”数组中共含有n个整数,则这n个整数需要具备什么样的规律?解析:(1)是,+1-2-3+4=0;(2)m=±1,±3,±9,±11;(3)这n个整数互不相同,在这n个数字前任意添加“+”或“-”号后运算结果为0.【分析】(1)根据“运算平衡”数组的定义即可求解;(2)根据“运算平衡”数组的定义得到关于m的方程,解方程即可;(3)根据“运算平衡”数组的定义可以得到n个数的规律.【详解】解:(1)数组1,2,3,4是“运算平衡”数组,+1-2-3+4=0;(2)要使数组1,4,6,m是“运算平衡”数组,有以下情况:1+4+6+m=0;-1+4+6+m=0;1-4+6+m=0;1+4-6+m=0;1+4+6-m=0;-1-4+6+m=0;-1+4-6+m=0;-1+4+6-m=0;1-4-6+m=0;1-4+6-m=0;1+4-6-m=0;-1-4-6+m=0;-1-4+6-m=0,-1+4-6-m=0,1-4-6-m=0;-1-4-6-m=0;共16中情况,经计算得m=±1,±3,±9,±11;(3)这n个整数互不相同,在这n个数字前任意添加“+”或“-”号后运算结果为0.【点睛】本题考查了新定义问题,理解“运算平衡”数组的定义是解题关键.24.(0分)计算:(1)157(36)2612⎛⎫--⨯-⎪⎝⎭(2)2138(2)3⎛⎫⨯-+÷-⎪⎝⎭解析:(1)33;(2)1.【分析】(1)根据乘法分配律可以解答本题;(1)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)原式=157(36)(36)(36)2612⨯--⨯--⨯-= -18+30+21=33; (2)原式= -1+2=1.【点睛】 本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.25.(0分)计算:(1)23(2)14⎛⎫-⨯- ⎪⎝⎭;(2)2331(2)592-+-⨯--÷. 解析:(1)1-;(2)47-.【分析】(1)原式先计算乘方和括号内,然后再计算乘法即可得到答案;(2)原式先计算乘方和化简绝对值,再计算乘除法,最后计算加减运算即可得到答案.【详解】解:(1)23(2)14⎛⎫-⨯- ⎪⎝⎭ 3414⎛⎫=⨯- ⎪⎝⎭ 144⎛⎫=⨯- ⎪⎝⎭1=-.(2)2331(2)592-+-⨯--÷ 21(8)593=-+-⨯-⨯ 1406=---47=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.26.(0分)某市质量监督局从某公司生产的婴幼儿奶粉中,随意抽取了20袋进行检查,超过标准质量的部分记为正数,不足的部分记为负数,抽查的结果如下表:(1)这批样品每袋的平均质量比标准质量多(或少)多少克?(2)若每袋奶粉的标准质量为480克,则抽样检测的这些奶粉的总质量是多少克? 解析:(1)多1.75克;(2)9635克【分析】(1)先计算出平均质量,若正则比标准质量多,若负则比标准质量少;(2)抽样总质量等于标准总质量加上超出的质量,或等于平均每袋质量乘以抽取的袋数.【详解】解:(1)()()15505551035110203520 1.571-÷=÷=⎡⨯+-⨯+⎤⎣⨯++⨯++⎦⨯⨯(克).所以这批样品每袋的平均质量比标准质量多1.75克.(2)()5428001.56793+⨯=(克)所以抽样检测的这些奶粉的总质量为9635克.【点睛】本题考查了有理数的混合运算和正负数的意义.有理数混合运算的顺序:先算乘除再算加减,有括号的先算括号里面的.27.(0分)计算:(1)()110822⎫⎛---÷-⨯-⎪⎝⎭(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭ 解析:(1)12- ;(2)0【分析】(1)先去绝对值,同时把除变乘,再计算乘法,最后加减即可(2)先计算乘方和括号内的,把除变乘,再计算乘法,最后加减法即可【详解】(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ =1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ =102--=-12(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭=()()2386154-⨯---⨯-=243660--+=0【点睛】本题考查有理数的混合运算,解答的关键是熟练掌握运算法则和运算顺序.28.(0分)计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭解析:(1)6;(2)58. 【分析】 (1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++ 675=-++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.。
人教版七年级上册数学第一章有理数检测题带答案
人教版数学七年级上册第一章有理数综合能力测试一、选择题(共10 小题,每小题 3 分,共30 分)1.在下列有理数中,、、、、,正分数的个数为()A. 4B. 3C. 2D. 12.下列四组数中,其中每组三个都不是负数的是()①,,;②,,;③,,;④,,.A. ①、②B. ①、③C. ②、④D. ③、④3.点,,和原点在数轴上的位置如图所示,点,,对应的有理数为,,(对应顺序暂不确定).如果,,,那么表示数的点为()A. 点MB. 点NC. 点PD. 点O4.用四舍五入法取近似数:精确到十分位是()A. 24B. 24.00C. 23.9D. 24.05.下列说法正确的个数是()①是绝对值最小的有理数;②一个有理数不是正数就是负数;③数轴上原点两侧的数互为相反数;④两个数比较,绝对值大的反而小;⑤一个有理数不是整数就是分数;⑥相反数大于本身的数是负数.A. 1B. 2C. 3D. 46.如果向右走步记作,那么向左走步记作()A. +B. -C. +2D. -27.有理数,在数轴上的位置如图所示,则下列关系式:①;②;③;④;⑤,其中正确的个数有()A. 1个B. 2个C. 3个D. 4个8.的绝对值是()A. 9B. -9C. 1/9D. -1/99.下列说法正确的是()A. -a是负数B. 没有最小的正整数C. 有最大的负整数D. 有最大的正整数10.下列计算中正确的是()A. (-5)-(-3)=-8B. (+5)-(-3)=2C. (-5)-(+3)=-8D. (-5)-(+3)=2二、填空题(共10 小题,每小题 3 分,共30 分)11.在数轴上,3和-5所对应的点之间的距离是________,到3和—5所对应的两点的距离相等的点所对应的有理数是_________,它的倒数是_____.12.计算________,________.13.我市某天的最高气温是,最低气温是,那么当天的日温差是________.14.温度比低________,海拔比海拔________要低.15.在数、、、、…、、的每个数字前添上“+”或“-”,使得算出的结果是一个最小的非负数,请写出符合条件的式子:________.16.的倒数是________;的相反数是________;的倒数的绝对值是________.17.若有理数,满足条件:,,,则________.18.的倒数是________;的相反数是________.19.计算:________.20.计算:________.三、解答题(共6 小题,每小题10 分,共60 分)21.用简便方法计算:①;②;③;④.22.用科学记数法表示下列各数:我国陆地面积大约为;全球每小时约有污水排人江河湖海;全世界人口数大约为人;澳大利亚的领土面积大约为;(5)光年大约等于万亿千米.23.有一张厚度为毫米的纸片,对折一次后的厚度是毫米.对折两次后的厚度是多少毫米?假设这张纸能无限折叠下去,那么对折次后的厚度是多少毫米?(结果用科学记数法表示,精确到千位)24.某工艺厂计划一周生产工艺品个,平均每天生产个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减(单位:个)写出该厂星期一生产工艺品的数量;本周产量中最多的一天比最少的一天多生产多少个工艺品?请求出该工艺厂在本周实际生产工艺品的数量;已知该厂实行每周计件工资制,每生产一个工艺品可得元,若超额完成任务,则超过部分每个另奖元,少生产一个扣元.试求该工艺厂在这一周应付出的工资总额.25.计算机存储容量的基本单位是字节,用表示,计算机中一般用(千字节)或(兆字节)或(吉字节)作为存储容量的计算单位,它们之间的关系为,,.一种新款电脑的硬盘存储容量为,它相当于多少?(结果用科学记数法表示,精确到百万位)26.先阅读,再解题:因为,,,…所以参照上述解法计算:.答案与解析一、选择题(共10 小题,每小题 3 分,共30 分)1.在下列有理数中,、、、、,正分数的个数为()A. 4B. 3C. 2D. 1【答案】C【解析】【分析】根据有理数的分类,直接判断即可.【详解】根据有理数的分类,既是正数又是分数,正分数有:2.03456、,有两个.故选:C.【点睛】本题考查了有理数的分类,熟记有理数的分类是解决此类问题的关键.2.下列四组数中,其中每组三个都不是负数的是()①,,;②,,;③,,;④,,.A. ①、②B. ①、③C. ②、④D. ③、④【答案】B【解析】【分析】根据负数的意义,前面有“-”号,小于0的数是负数,据此解答即可.【详解】下列四组数:①2,|-7|,-(-);②-(-6),-|-3|,0;③-(-5),,-(-|-6|);④-[-(-6)],-[+(-2)],0中,三个数都不是负数的是①、③组.故选:B.【点睛】本题考查了正数和负数的知识点,关键是要知道小于0的数是负数.3.点,,和原点在数轴上的位置如图所示,点,,对应的有理数为,,(对应顺序暂不确定).如果,,,那么表示数的点为()A. 点MB. 点NC. 点PD. 点O【答案】A【解析】【分析】根据数轴和ab<0,a+b>0,ac>bc,可以判断a、b、c对应哪一个点,从而可以解答本题.【详解】∵ab<0,a+b>0,∴数a表示点M,数b表示点P或数b表示点M,数a表示点P,则数c表示点N,∴由数轴可得,c>0,又∵ac>bc,∴a>b,∴数b表示点M,数a表示点P,即表示数b的点为M.故选:A.【点睛】本题考查了数轴,解题的关键是明确数轴的特点能根据题目中的信息,判断各个数在数轴上对应哪一个点.4.用四舍五入法取近似数:精确到十分位是()A. 24B. 24.00C. 23.9D. 24.0【答案】D【解析】【分析】根据近似数的精确度,把百分位上的数子6进行四舍五入即可.【详解】23.96≈24.0(精确到十分位).故选:D.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.5.下列说法正确的个数是()①是绝对值最小的有理数;②一个有理数不是正数就是负数;③数轴上原点两侧的数互为相反数;④两个数比较,绝对值大的反而小;⑤一个有理数不是整数就是分数;⑥相反数大于本身的数是负数.A. 1B. 2C. 3D. 4【答案】C【解析】【分析】根据题目中给出的信息,对错误的举出反例即可解答本题.【详解】0是绝对值最小的有理数,故①正确;正数、0和负数统称为有理数,故②错误;5和-3在原点两侧,而5和-3不是相反数,故③错误;8的绝对值大于6的绝对值,而8大于6,故④错误;整数和分数统称为有理数,故⑤正确;相反数大于本身的数是负数,故⑥正确.故选:C.【点睛】本题考查了数轴、有理数、相反数的知识点,解题的关键是能将错误的举出反例.6.如果向右走步记作,那么向左走步记作()A. +B. -C. +2D. -2【答案】D【解析】【分析】根据向右走3步记作+3,可以得到向左走2步记作什么,本题得以解决.【详解】∵向右走3步记作+3,∴向左走2步记作-2,故选:D.【点睛】本题考查了正数和负数,解题的关键是明确正数和负数在题目中的实际意义.7.有理数,在数轴上的位置如图所示,则下列关系式:①;②;③;④;⑤,其中正确的个数有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据各点在数轴上的位置,判断⑤,根据加法和减法法则确定②③;可通过计算或特殊值法确定④.【详解】由数轴知,a<0.b>0,|a|>|b|,b>a.因为|a|>|b|=b,所以①正确;a-b=a+(-b)<0,故②不正确;由于|a|>|b|,a+b取a的符号,所以a+b<0,故③不正确;,因为a+b<0,ab<0,所以>0,故④正确;由于点b在点a的右侧,所以⑤错误.综上,正确的有①④.故选:B.【点睛】本题考查了有理数的加减和有理数的大小比较.由数轴确定a、b的正负a、b和绝对值间的关系是解决本题的关键.8.的绝对值是()A. 9B. -9C. 1/9D. -1/9【答案】A【解析】【分析】根据绝对值的性质解答即可.【详解】|-9|=9.故选:A.【点睛】本题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.9.下列说法正确的是()A. -a是负数B. 没有最小的正整数C. 有最大的负整数D. 有最大的正整数【答案】C【解析】【分析】根据正数的定义进行解答,整数:像-2,-1,0,1,2这样的数称为整数.【详解】A、当a<0时,-a是正数,故本选项错误;B、最小的正整数是1,故本选项错误;C、最大的负整数是-1,故本选项正确;D、没有最大的正整数,故本选项错误.故选:C.【点睛】本题考查了有理数中的整数,特别注意:最小的正整数是1,最大的负整数是-1,没有最大的正整数.10.下列计算中正确的是()A. (-5)-(-3)=-8B. (+5)-(-3)=2C. (-5)-(+3)=-8D. (-5)-(+3)=2【答案】C【解析】【分析】根据有理数的减法运算法则,减去一个数等于加上这个数的相反数对各选项进行计算即可得解.【详解】A、(-5)-(-3)=-5+3=-2,故本选项错误;B、(+5)-(-3)=5+3=8,故本选项错误;C、(-5)-(+3)=-5-3=-8,故本选项正确;D、(-5)-(+3)=-5-3=-8,故本选项错误.故选:C.【点睛】本题考查了有理数的减法,熟记运算法则是解题的关键.二、填空题(共10 小题,每小题 3 分,共30 分)11.在数轴上,3和-5所对应的点之间的距离是________,到3和—5所对应的两点的距离相等的点所对应的有理数是_________,它的倒数是_____.【答案】8,-1,-1【解析】根据求数轴上两点之间的距离等于较大的数减去较小的数,到数轴上两点的距离相等的点所对应的有理数是这两个数的平均数,即可求出结果3和-5所对应的点之间的距离是:3-(-5)=8,到3和-5所对应的两点的距离相等的点所对应的有理数是:(3-5)÷2=-1,它的倒数是-1.12.计算________,________.【答案】(1). (2).【解析】【分析】先判断π-3.15<0,再根据一个负数的绝对值是它的相反数求解;先判断2-π<0,再根据一个负数的绝对值是它的相反数求解.【详解】∵π<3.15,∴π-3.15<0,∴|π-3.15|=3.15-π;∵2<π,∴2-π<0,∴|2-π|=π-2.故答案为3.15-π;π-2.【点睛】本题考查了绝对值的定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零.13.我市某天的最高气温是,最低气温是,那么当天的日温差是________.【答案】【解析】【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【详解】6-(-2),=6+2,=8(℃).故答案为:8.【点睛】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.14.温度比低________,海拔比海拔________要低.【答案】(1). (2).【解析】【分析】温度-10℃比-2℃低多少℃,意思是-10比-2小多少;海拔-15m比海拔多少m要低25m,意思是比-15多25的数是多少.【详解】∵(-2)-(-10)=8,-15+25=10.∴温度-10℃比-2℃低8℃,海拔-15m比海拔10m要低25m.【点睛】本题考查了加减法在实际生活中的应用,解题的关键是掌握有理数的减法法则:减去一个数等于加上这个数的相反数是解题的关键.15.在数、、、、…、、的每个数字前添上“+”或“-”,使得算出的结果是一个最小的非负数,请写出符合条件的式子:________.【答案】【解析】【分析】由(1+2010)﹣(2+2009)+(3+2008)﹣(4+2007)+…+(1003+1008)﹣(1004+1007)+1006﹣1005﹣1=0+1﹣1=0,因为1到2010的和为奇数,所以不论如何加减最后值一定为奇数.所以0是最小的非负数.【详解】∵(1+2010)﹣(2+2009)+(3+2008)﹣(4+2007)+…+(1003+1008)﹣(1004+1007)+1006﹣1005﹣1=0+1﹣1=0,0为最小的非负数,∴符合条件的式子:1﹣2+3﹣4+5﹣6+…+2006﹣2007+2008﹣2009+2010.故答案为:1﹣2+3﹣4+5﹣6+…+2006﹣2007+2008﹣2009+2010.【点睛】本题主要考查有理数的加减混合运算,关键在于推出(1+2010)﹣(2+2009)+(3+2008)﹣(4+2007)+…+(1003+1008)﹣(1004+1007)+1006﹣1005=0,然后去掉括号即可.16.的倒数是________;的相反数是________;的倒数的绝对值是________.【答案】(1). (2). (3).【解析】【分析】依据倒数、相反数、绝对值的定义解答即可.【详解】的倒数是-3;的相反数是;的倒数的绝对值.故答案为:(1). (2). (3). .【点睛】本题考查了倒数、相反数、绝对值的性质,熟练掌握相关概念是解题的关键.17.若有理数,满足条件:,,,则________.【答案】或【解析】【分析】根据异号得负和绝对值的性质确定出a、b的值,然后相减即可得解.【详解】∵ab<0,|a|=4,|b|=5,∴a=4时,b=-5,a-b=4-(-5)=4+5=9,a=-4时,b=5,a-b=-4-5=-9,∴a-b=9或-9.故答案为:9或-9.【点睛】本题考查了有理数的乘法,绝对值的性质,有理数的减法,熟记运算法则和性质确定出a、b的对应情况是解题的关键.18.的倒数是________;的相反数是________.【答案】(1). (2).【解析】【分析】根据倒数、相反数的定义,进行解答【详解】的倒数是3,的相反数是.故答案为:3,.【点睛】本题考查了倒数,相反数的概念及性质.若两个数的乘积是1,我们就称这两个数互为倒数;只有符号不同的两个数互为相反数,0的相反数是0.19.计算:________.【答案】【解析】【分析】原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【详解】原式=(,故答案为:5.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则.20.计算:________.【答案】【解析】【分析】通过逆用分数减法法则,将式中各分数转化成两个数之差,使得中间项可以互相抵消,从而达到简化计算的目的.【详解】原式==..故答案为:.【点睛】本题考查了分数减法的逆运算.主要是运用了同分母的分数相加的运算法则的逆运算进行对一个分数的拆分进而得出答案.三、解答题(共6 小题,每小题10 分,共60 分)21.用简便方法计算:①;②;③;④.【答案】①;②;③;④.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】①;②;③;④.【点睛】考查了有理数的乘法,注意灵活运用运算律简便计算.22.用科学记数法表示下列各数:我国陆地面积大约为;全球每小时约有污水排人江河湖海;全世界人口数大约为人;澳大利亚的领土面积大约为;(5)光年大约等于万亿千米.【答案】(1);(2);(3);(4);(5).【解析】【分析】根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数,得出即可.【详解】(1);(2);(3);(4);(5)万亿.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,解题的关键是要正确确定a的值以及n的值.23.有一张厚度为毫米的纸片,对折一次后的厚度是毫米.对折两次后的厚度是多少毫米?假设这张纸能无限折叠下去,那么对折次后的厚度是多少毫米?(结果用科学记数法表示,精确到千位)【答案】(1)对折次的对折两次的厚度是毫米;(2)对折次的厚度大约是毫米.【解析】【分析】(1)根据对折一次的厚度是0.1×21毫米,可知对折2次的厚度是0.1×22毫米;(2)根据(1)中的规律即可得出结论.【详解】(1)对折次的对折两次的厚度是毫米;对折次的对折两次的厚度是毫米(毫米).答:对折次的厚度大约是毫米.【点睛】本题考查了科学记数法与有效数字,有理数的乘方,根据题意找出每次对折后纸片厚度的规律是解答此题的关键.24.某工艺厂计划一周生产工艺品个,平均每天生产个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减(单位:个)写出该厂星期一生产工艺品的数量;本周产量中最多的一天比最少的一天多生产多少个工艺品?请求出该工艺厂在本周实际生产工艺品的数量;已知该厂实行每周计件工资制,每生产一个工艺品可得元,若超额完成任务,则超过部分每个另奖元,少生产一个扣元.试求该工艺厂在这一周应付出的工资总额.【答案】(1)305个;(2) 26个;(3) 2110套;(4)127100元.【解析】【分析】(1)根据表格将300与5相加即可求得周一的产量;(2)由表格中的数字可知星期六产量最高,星期五产量最低,用星期六对应的数字与300相加求出产量最高的量,同理用星期五对应的数字与300相加求出产量最低的量,两者相减即可求出所求的个数;(3)由表格中的增减情况,把每天对应的数字相加,利用互为相反数的两数和为0,且根据同号及异号两数相加的法则计算后,与300与7的积相加即可得到工艺品一周共生产的个数;(4)用计划的2100乘以单价60元,加超额的个数乘以50,减不足的个数乘以-80,即为一周工人的工资总额.【详解】:(1)周一的产量为:300+5=305个;(2)由表格可知:星期六产量最高,为300+(+16)=316(个),星期五产量最低,为300+(-10)=290(个),则产量最多的一天比产量最少的一天多生产316-290=26(个);(3)300×7+[(+5)+(-2)+(-5)+(+15)+(-10)+(+16)+(-9)]=2100+10=2110(个).答:即该工艺厂在本周实际生产工艺品的数量是2110个;(4)(+5)+(-2)+(-5)+(+15)+(-10)+(+16)+(-9)=10个,根据题意得该厂工人一周的工资总额为:2110×60+50×10=127100(元).【点睛】本题考查了有理数的混合运算的应用,认真阅读,理解题意是解此类题的关键.25.计算机存储容量的基本单位是字节,用表示,计算机中一般用(千字节)或(兆字节)或(吉字节)作为存储容量的计算单位,它们之间的关系为,,.一种新款电脑的硬盘存储容量为,它相当于多少?(结果用科学记数法表示,精确到百万位)【答案】它相当于.【解析】【分析】1Gb=210Mb,1Mb=210Kb,根据这个关系求出80Gb=210×210×80=8.38×107Kb,然后结果保留到百万位即可.【详解】∵1Gb=210Mb,1Mb=210Kb,∴80Gb=210×210×80,将其转化成a×10n的形式∴210×210×80≈8.4×107Kb.答:它相当于8.4×107Kb.【点睛】本题考查用科学记数法表示较大的数.科学记数法在实际生活中有着广泛的应用,给我们记数带来方便,考查科学记数法就是考查我们应用数学的能力.26.先阅读,再解题:因为,,,…所以参照上述解法计算:.【答案】.【解析】【分析】根据题中给出的材料可知利用通分的逆运算把分式拆成两个分数的加法或减法的形式,可使计算简便.【详解】原式.【点睛】本题考查了有理数的混合运算,解题的关键是熟悉分数的通分方法,利用通分的逆运算把分式拆成两个分数的加法或减法的形式,可使计算简便.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 有理数检测题
(本检测题满分:100分,时间:90分钟)
一、选择题(每小题3分,共30分)
1.如果表示增加,那么表示( )
A.增加
B.增加
C.减少
D.减少 2.有理数在数轴上表示的点如图所示,则的大小关系是( ) A.
B. C. D.
3.下列说法正确的个数是( )
①一个有理数不是整数就是分数;
②一个有理数不是正数就是负数;
③一个整数不是正的,就是负的;
④一个分数不是正的,就是负的.
A.1
B. 2
C. 3
D. 4
4.在2
11-,2.1,2-,0 ,()2--中,负数的个数有( ) A.2个 B.3个 C.4个 D.5个
5.有理数、在数轴上对应的位置如图所示,则( ) A.<0 B.>0 C.-0 D.->0
6.在-5,-10
1,-3.5,-0.01,-2,-212各数中, 最大的数是( ) A.-212 B.-101 C .-0.01 D.-5 7.(2012•武汉中考)某市年在校初中生的人数约为万.数用科学记数法表示为( ) A. B. C. D.
8.用四舍五入法按要求对0.05019分别取近似值,其中错误的是( )
A.0.1(精确到0.1)
B.0.05(精确到百分位)
C.0.05(精确到千分位)
D.0.050 2(精确到0.0001)
9.小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二 次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是( )
A.90分
B.75分
C.91分
D.81分
10.若规定“!”是一种数学运算符号,且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,⋯,则
!98!100的值为( ) A.49
50 B. C. D. 二、填空题(每小题3分,共24分) 11.31-的倒数是____;3
21的相反数是____. 12.在数轴上,点所表示的数为2,那么到点的距离等于3个单位长度的点所表示的数是 .
13.若0<<1,则a ,2a ,1a
的大小关系是 . 第5题图
14.+5.7的相反数与-7.1的绝对值的和是 .
15.已知每辆汽车要装4个轮胎,则51只轮胎至多能装配 辆汽车.
16.-9、6、-3这三个数的和比它们绝对值的和小 .
17. 一家电脑公司仓库原有电脑100台,一个星期调入、调出的电脑记录是:调入38台,调出42台,调入27台,调出33台,调出40台,则这个仓库现有电脑 台.
18. 规定﹡,则(-4)﹡6的值为 .
三、解答题(共46分)
19.(6分)计算下列各题:
(1)
(2)
20.(8分)比较下列各对数的大小: (1)54-与4
3-; (2)54+-与54+-; (3)25与52; (4)232⨯与2)32(⨯. 21.(6分)10袋小麦以每袋150千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:,与标准质量相比较,这10袋小麦总计超过或不足多少千克?10袋小麦总质量是多少千克?每袋小麦的平均质量是多少千克?
22.(6分)若,求32---+-x y y x 的值.
23.(6分)小虫从某点O 出发在一直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:cm ):
.
问:(1)小虫是否回到原点O ?
(2)小虫离开出发点O 最远是多少厘米?
(3)在爬行过程中,如果每爬行1 cm 奖励一粒芝麻,则小虫共可得到多少粒芝麻?
24.(6分)同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与 -2两数在数轴上所对的两点之间的距离.试探索:
(1)求|5-(-2)|=______.
(2)找出所有符合条件的整数,使得=7,这样的整数是_____.
25.(8分)李强靠勤工俭学的收入维持上大学费用,表中是李强某一周的收支情况表,记
(2)照这个情况估计,李强一个月(按30天计算)能有多少节余?
(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?
第一章 有理数检测题参考答案
1.C 解析:在一对具有相反意义的量中,把其中的一个量规定为“正”的,那么与它意义相反的量就是“负”的.“正”和“负”相对,所以如果表示增加,那么表示减少.
2.D 解析:由数轴可知,
所以其在数轴上的对应点如图所示,
3.B 解析:整数和分数统称为有理数,所以①正确;有理数包括正数、
负数和零,所以②③不正确;分数包括正分数和负分数,所以④正确.故选B.
4.A 解析:负数有211-,2-,所以有2个.故选A.
5.A 解析:是负数, 是正数,离原点的距离比离原点的距离大,所以,故选A.
6.C 解析:可将这些数标在数轴上,最右边的数最大.也可以根据:负数比较大小,绝对值大的反而小.故选C.
7.B 解析:.故选B .
8.C 解析:C 应该是0.050. 9.C 解析:小明第四次测验的成绩是故选C.
10.C 解析:根据题意可得:100!=100×99×98×97×…×1,98!=98×97×…×1, ∴
1××97×981××98×99×100!98!100 ==100×99=9 900,故选C . 11. 解析:根据倒数和相反数的定义可知的倒数为的相反数是. 12. 解析:点所表示的数为2,到点的距离等于3个单位长度的点所表示的数
有两个,分别位于点的两侧,分别是 13 解析:当0<<1时, 14.1.4 解析:的相反数为,的绝对值为7.1,所以+5.7的相反数与-7.1的绝对值的和是
15.12 解析:51÷4=12……3.所以51只轮胎至多能装配12辆汽车.
16.24 解析:,,所以. 17.50 解析:将调入记为“+”,调出记为“-”,则根据题意有
所以这个仓库现有电脑50台.
18.-9 解析:根据﹡,得(-4)﹡6.
19.解:(1)
(2)
20.解:(1)所以
(2)=1,=9,所以<.
(3)
(4)
21.分析:将十个数相加,若和为正,则为超过的千克数,若和为负,则为不足的千克数;若将这个数加1 500,则为这10袋小麦的总千克数;再将10袋小麦的总千克数除以10,就为每袋小麦的平均质量.
解:∵
∴ 与标准质量相比较,这10袋小麦总计少了2 kg.
10袋小麦的总质量是1 500-2=1 498(kg ).
每袋小麦的平均质量是
22.解:当 所以原式=-1.
23.分析:(1)若将爬过的路程(向右爬行记为正,向左爬行记为负)相加和为0,则小虫回到原点.(2)可画图直观看出.(3)将所给数的绝对值相加即为所奖励的芝麻数.
解:(1)∵ ,∴ 小虫最后回到原点O .
(2)12㎝.
(3)5+3-+10++8-+6-+12++10-=54,∴ 小虫可得到54粒芝麻.
24.分析:(1)直接去括号,再按照去绝对值的方法去绝对值就可以了.
(2)要求的整数值可以进行分段计算,令或时,分为3段进行计算,最后确定的值.
解:(1)7.
(2)令或,则或. 当时,,
∴ ,∴ . 当时,,
∴ ,,
∴ . 当2时,,
∴ ,,∴ .
∴ 综上所述,符合条件的整数有:-5,-4,-3,-2,-1,0,1,2.
25.分析:(1)七天的收入总和减去支出总和即可;
(2)首先计算出平均一天的节余,然后乘30即可;
(3)计算出这7天支出的平均数,即可作为一个月中每天的支出,乘30即可求得.
解:(1)由题意可得(元).
(2)由题意得:14÷7×30=60(元).
(3)根据题意得:10+14+13+8+10+14+15=84,84÷7×30=360(元).
答:(1)到这个周末,李强有14元节余.
(2)照这个情况估计,李强一个月(按30天计算)能有60元节余.
(3)按以上的支出水平,李强一个月(按30天计算)至少有360元收入才能维持正常 开支.。