导线应力弧垂分析(1-6节)
导线应力弧垂分析(1-6节)
第二章导线应力弧垂分析·导线的比载·导线应力的概念·悬点等高时导线弧垂、线长和应力关系·悬挂点不等高时导线的应力与弧垂·水平档距和垂直档距·导线的状态方程·临界档距·最大弧垂的计算及判断·导线应力、弧垂计算步骤·导线的机械特性曲线[内容提要及要求]本章是全书的重点,主要是系统地介绍导线力学计算原理。
通过学习要求掌握导线力学、几何基本关系和悬链线方程的建立;掌握临界档距的概念和控制气象条件判别方法;掌握导线状态方程的用途和任意气象条件下导线最低点应力的计算步骤;掌握代表档距的概念和连续档导线力学计算方法;了解导线机械物理特性曲线的制作过程并明确它在线路设计中的应用。
第一节导线的比载字体大小小中大作用在导线上的机械荷载有自重、冰重和风压,这些荷载可能是不均匀的,但为了便于计算,一般按沿导线均匀分布考虑。
在导线计算中,常把导线受到的机械荷载用比载表示。
由于导线具有不同的截面,因此仅用单位长度的重量不宜分析它的受力情况。
此外比载同样是矢量,其方向与外力作用方向相同。
所以比载是指导线单位长度、单位截面积上的荷载,常用的比载共有七种,计算公式如下:1.自重比载导线本身重量所造成的比载称为自重比载,按下式计算(2-1)式中:g1—导线的自重比载,N/m.mm2;m0一每公里导线的质量,kg/km;S—导线截面积,mm2。
2.冰重比载导线覆冰时,由于冰重产生的比载称为冰重比载,假设冰层沿导线均匀分布并成为一个空心圆柱体,如图2-1所示,冰重比载可按下式计算:(2-2)式中:g2—导线的冰重比载,N/m.mm2;b—覆冰厚度,mm;d—导线直径,mm;S—导线截面积,mm2。
图2-1覆冰的圆柱体设覆冰圆筒体积为:取覆冰密度,则冰重比载为:3.导线自重和冰重总比载导线自重和冰重总比载等于二者之和,即g3=g1+g2(2-3)式中:g3—导线自重和冰重比载总比载,N/m.mm2。
输电线路基础导线应力弧垂分析第五节水平档距和垂直档距
第二章 导线应力弧垂分析
第五节 水平档距和垂直档距
一、水平档距和水平荷载 悬挂于杆塔上的一档导线,由于风压作用而引起的水平荷载将由 两侧杆塔承担。 风压水平荷载是沿线长均布的荷载。 在平抛物线近似计算中, 我们假定一档导线长等于档 距,若设每米长导线上的风 压荷载为p,则AB档(如图25-1所示)导线上的风压荷载 P1=p l 1,由AB两杆塔平均承 担;AC档导线上的风压荷 载P2=p l2,由AC两杆塔平均 承担。对A杆来说,所要承 图 2-5-1 水平档距和垂直档距 担的总风压荷载为
m1、m2分别为 l1档和 l 2档中导线最低点对档距中点的偏移值,由式 (2-4-7)可得
m1
o h1
gl1
m2
o偏移方向,A杆的垂直 档距为
图 2-5-1 水平档距和垂直档距
lv l v1 l v 2
o h1 h2 l1 o h1 l 2 o h2 lh 2 gl1 2 gl2 g l1 l 2
2 v2 2
1
1
⑸两档距导线最低点均落在相应的档距范围之外,且B、C悬点均比 l l v为正值,A悬 A悬点低,即 lv1 l1 m1 ,l 2 m , l v1、 l v2均为正值, 2 点受下压力作用。这种情况一般出现在位于山顶的杆塔,垂直档距 较大,杆塔所受下压力较大,工程中常称之为压档。
2 v2 2
l v为负值,导 ⑶情况和(b)相似,但这时| lv1 || lv 2 |,所以 lv1 lv 2 0 , 线传递到A悬点的垂直力G=gA l v为负值,即方向向上的作用力,称 为受上拔力作用。
⑷两档距导线的最低点均落在相应的档距范围之外,且B、C悬点均 l l1 l 比A悬点高,即两侧垂直档距分量分别为:lv1 m1 , 2 m , 2 l l l l l l m 2 且 , 。所以 v= v1+ v2<0, v为负值,A悬点受上拔 m2 2 2 力作用。
《输电线路基础》第章-导线应力弧垂分析-第节-导线的状态讲解课件 (二)
《输电线路基础》第章-导线应力弧垂分析-第节-导线的状态讲解课件 (二)
1. 导线应力
- 导线在使用过程中会受到拉力的作用,这种拉力会导致导线产生应力。
- 导线应力的大小与导线的材料、直径、长度以及受力情况有关。
- 导线应力的大小对导线的使用寿命和安全性都有着重要的影响。
2. 弧垂分析
- 弧垂是指导线在两个支点之间的下垂程度。
- 弧垂大小与导线的张力、跨距、重量以及环境温度等因素有关。
- 弧垂分析是对导线状态进行评估的重要手段。
3. 导线状态
- 导线状态包括张力状态、弧垂状态、振动状态等。
- 张力状态是指导线受到的拉力大小,它会影响导线的应力和弧垂。
- 弧垂状态是指导线在两个支点之间的下垂程度,它会影响导线的张力和应力。
- 振动状态是指导线在风力等外力作用下的振动情况,它会影响导线的疲劳寿命和安全性。
4. 导线状态的评估
- 导线状态的评估是对导线安全性和使用寿命的重要保障。
- 导线状态的评估需要考虑导线的材料、直径、长度、跨距、环境温
度等因素。
- 导线状态的评估需要借助弧垂分析等手段,对导线的状态进行全面、准确的评估。
5. 导线状态的调整
- 当导线状态不符合要求时,需要采取相应的调整措施。
- 导线状态的调整可以通过调整张力、增加支点、更换导线等方式实现。
- 导线状态的调整需要根据具体情况进行,以保障导线的安全性和使
用寿命。
应力弧垂通用曲线
导线的通用应力弧垂曲线图安岳供电公司 李荣久编制一、通用应力弧垂曲线图绘制方法只要导线的弹性系数E 、热膨胀系数α、自重比载g 1相同,就可以用同一幅应力弧垂通用曲线图。
城镇架空配电线路的档距一般不超过50m ,通常都不设计拉线而以能承受较大张力的杆塔作为转角和终端杆塔。
导线的最大设计应力一般不是由其基本安全系数而是由杆塔能承受的许用张力控制,因此每一种导线的最大设计应力都不是固定的。
在这种情况下,用应力弧垂通用曲线就有突出的优点。
1. 应力曲线。
计算公式为221()24g E nl y σσ=- ,以y 为纵坐标,nl 为横坐标,并给σ以选定值和以nl 为自变数,便可绘制出很多nl 与y 的关系曲线,即应力曲线群。
2. 弧垂曲线。
计算公式为 2212()8()83()g nl E nf y nf nl =-,同样,给定nf 以各种值,便可绘制出nl 与y 的关系曲线,即弧垂曲线群。
3. 温差尺。
温差尺的计算式为 ()x b y E t t E t αα=-=∆,以Δt 等于5或10的倍数值代入式中求得y 值,以此y 值为坐标画横线,即得温差尺线群。
式中 E —导线的弹性系数,N/mm 2;α—导线的热膨胀系数,1/℃;g 1—导线的自重比载, N/ m. mm 2;σb 、σx —分别为控制气象条件和待求气象条件的导线应力,N/mm 2,g b 、g x — 分别为控制气象条件和待求气象条件的比载,N/ m. mm 2,n —比载比率,n = g/ g 1,g 根据计算气象条件选用g 6或g 7,n b = g b / g 1, n x = g x / g 1;t b 、 t x —分别为控制气象条件和待求气象条件的气温,℃;l —导线的代表档距,m 。
二、使用方法1. 确定控制条件。
在有覆冰地区,最低气温、覆冰和最大风速气象条件都可能为控制条件,在最大使用应力确定后,可以用前面计算临界档距的方法确定控制条件及其控制范围,也可以在图中直接查找某一代表档距的控制条件。
第二章导线应力弧垂分析
第二章 导线应力弧垂分析第八节 最大弧垂的计算及判断字体大小小中大设计塔杆高度、校验导线对地面、水面或被跨越物间的安全距离,以及按线路路径的纵断面图排定杆塔位置等,都必须计算最大弧垂。
最大弧垂可能在最高温度时或最大垂直比载时出现。
为了求得最大弧垂,直观的办法是将两种情况下的弧垂计算出来加以比较,即可求得最大弧垂发生在什么情况下。
但为了简便起见,一般先判定出现最大弧垂的气象条件,然后计算出此气象条件下的弧垂,即为最大弧垂。
判断出现最大弧垂的气象条件,可用下面两种方法。
一、临界温度法若在某一温度,导线自重所产生的弧垂与最大垂直比载(有冰无风)时的弧垂相等,则此温度称为临界温度,用t c 表示。
在临界温度的气象条件下比载g=g1,温度t=t c,相应的弧垂为(2-75)以最大垂直比载时的g3、t3、σ3为n状态,以临界温度时的g1、t1、为把上式化简,于是可解得临界温度为(式中t c—临界温度,℃;t3—覆冰时大气温度,℃;σ3—覆冰无风时的导线应力,MPa;α—导线温度线膨胀系数,1/℃;E—导线的弹性系数,N/mm2;g1—导线自重的比载, N/m.mm2;g3—导线覆冰时的垂直比载,N/m.mm2。
将计算出的临界温度t c与最高温度t max相比较,当t max>t c时,最高温度时的弧垂f1为最大弧垂;当t max<t c时,覆冰时的弧垂f3为最大弧垂。
二、临界比载法如果最高温度时导线的弧垂与某一比载在温度t3下所产生的弧垂相等,则此比载称为临界比载,用g c表示。
在最高温度气象条件下,比载g=g1,温度t=t max,应力σ=σ1,弧垂。
由临界比载定义可知:f1=f3,从而可得下式由上式解出g c为(2-78)式中g c—临界比载,N/m.mm2;t max—最高温度,℃;t3—覆冰时大气温度,℃;g1—导线自重的比载,N/m.mm2;σ1—最高温度、比载为时的导线应力,MPa;α—导线温度线膨胀系数,1/℃;E—导线的弹性系数,N/mm2。
导线应力弧垂分析结果汇报(6节)
第二章导线应力弧垂分析·导线的比载·导线应力的概念·悬点等高时导线弧垂、线长和应力关系·悬挂点不等高时导线的应力与弧垂·水平档距和垂直档距·导线的状态方程·临界档距·最大弧垂的计算及判断·导线应力、弧垂计算步骤·导线的机械特性曲线[内容提要及要求]本章是全书的重点,主要是系统地介绍导线力学计算原理。
通过学习要求掌握导线力学、几何基本关系和悬链线方程的建立;掌握临界档距的概念和控制气象条件判别方法;掌握导线状态方程的用途和任意气象条件下导线最低点应力的计算步骤;掌握代表档距的概念和连续档导线力学计算方法;了解导线机械物理特性曲线的制作过程并明确它在线路设计中的应用。
第一节导线的比载作用在导线上的机械荷载有自重、冰重和风压,这些荷载可能是不均匀的,但为了便于计算,一般按沿导线均匀分布考虑。
在导线计算中,常把导线受到的机械荷载用比载表示。
由于导线具有不同的截面,因此仅用单位长度的重量不宜分析它的受力情况。
此外比载同样是矢量,其方向与外力作用方向相同。
所以比载是指导线单位长度、单位截面积上的荷载,常用的比载共有七种,计算公式如下:1.自重比载导线本身重量所造成的比载称为自重比载,按下式计算(2-1)式中:g1—导线的自重比载,N/m.mm2;m0一每公里导线的质量,kg/km;S—导线截面积,mm2。
2.冰重比载导线覆冰时,由于冰重产生的比载称为冰重比载,假设冰层沿导线均匀分布并成为一个空心圆柱体,如图2-1所示,冰重比载可按下式计算:(2-2)式中:g2—导线的冰重比载,N/m.mm2;b—覆冰厚度,mm;d—导线直径,mm;S—导线截面积,mm2。
图2-1覆冰的圆柱体设覆冰圆筒体积为:取覆冰密度,则冰重比载为:3.导线自重和冰重总比载导线自重和冰重总比载等于二者之和,即g3=g1+g2(2-3)式中:g3—导线自重和冰重比载总比载,N/m.mm2。
【2019年整理】导线应力弧垂分析
第二章导线应力弧垂分析·导线的比载·导线应力的概念·悬点等高时导线弧垂、线长和应力关系·悬挂点不等高时导线的应力与弧垂·水平档距和垂直档距·导线的状态方程·临界档距·最大弧垂的计算及判断·导线应力、弧垂计算步骤·导线的机械特性曲线[内容提要及要求]本章是全书的重点,主要是系统地介绍导线力学计算原理。
通过学习要求掌握导线力学、几何基本关系和悬链线方程的建立;掌握临界档距的概念和控制气象条件判别方法;掌握导线状态方程的用途和任意气象条件下导线最低点应力的计算步骤;掌握代表档距的概念和连续档导线力学计算方法;了解导线机械物理特性曲线的制作过程并明确它在线路设计中的应用。
第一节导线的比载作用在导线上的机械荷载有自重、冰重和风压,这些荷载可能是不均匀的,但为了便于计算,一般按沿导线均匀分布考虑。
在导线计算中,常把导线受到的机械荷载用比载表示。
由于导线具有不同的截面,因此仅用单位长度的重量不宜分析它的受力情况。
此外比载同样是矢量,其方向与外力作用方向相同。
所以比载是指导线单位长度、单位截面积上的荷载,常用的比载共有七种,计算公式如下:1.自重比载导线本身重量所造成的比载称为自重比载,按下式计算(2-1)式中:g1—导线的自重比载,N/m.mm2;m0一每公里导线的质量,kg/km;S—导线截面积,mm2。
2.冰重比载导线覆冰时,由于冰重产生的比载称为冰重比载,假设冰层沿导线均匀分布并成为一个空心圆柱体,如图2-1所示,冰重比载可按下式计算:(2-2)式中:g2—导线的冰重比载,N/m.mm2;b—覆冰厚度,mm;d—导线直径,mm;S—导线截面积,mm2。
图2-1覆冰的圆柱体设覆冰圆筒体积为:取覆冰密度,则冰重比载为:3.导线自重和冰重总比载导线自重和冰重总比载等于二者之和,即g3=g1+g2(2-3)式中:g3—导线自重和冰重比载总比载,N/m.mm2。
导线和避雷线的弧垂和应力
悬点不等高时导线的线长为
编辑ppt
22
5.5 导线的状态方程式
导线气象条件变化,导线上作用的荷载或环境温度 发生变化时,导线线长会随之发生变化,进而引起导 线的应力、弧垂发生相应的变化。这种导线应力随气 象条件变化的规律的数学表达式叫做状态方程式。
2.小高差档距水平弧垂计算:
悬点不等高时的水平弧垂实质上就是等效挡距的中 点弧垂:
编辑ppt
18
将悬点A、B的等效挡距lA、lB的计算公式代入上式:
编辑ppt
19
【例5-1】
某110kV输电线路中有一挡跨越线路,已知导线悬 点高HA=50m, HB=62m,交叉跨越点高程HP =47m, 挡距1=300m,交叉跨越点距两悬点的水平距离 1a=200m, lb=100m,导线最小应力σo = 50N/mm2,比载g=34. 047X 10-3N/(m·mm2 )。试 校验交叉跨越距离能否满足要求。
编辑ppt
44
5、导线、避雷线初伸长的弥补方法
恒定降温法: 初伸长补偿方法 线路设计规程规定,导线和避雷线的塑性伸长对 弧垂的影响,一般用降温法补偿,镀锌钢绞线可 采用降低温度10℃;钢芯铝绞线可采用下表所 列值。
编辑ppt
45
5. 9. 3施工紧线时的观测弧垂
在连续挡的施工紧线时,从一个耐张段中选出一个 或几个观测挡进行弧垂观测。为了使一个耐张段的各 挡弧垂都能满足要求,弧弧垂观测挡应力求符合两个 条件:即挡距较大及悬挂点高度差较小的挡
5. 9导线安装曲线
5.9.1导线的安装曲线
安装曲线就是以挡 距为横坐标,以弧垂 曲线和张力为纵坐标, 利用导线的状态方程 式,计算出各种可能 的安装气象条件下, 不同挡距时的弧垂和 张力。
应力弧垂
• 1、小高差档距导线弧垂的计算 • (1)任意一点弧垂计算 • 先求悬点A、B两点的纵坐标
yA
• 高度差为:
g 2 0
x
2 A
yB
g 2 0
2 xB
• 式中
g 2 2 h y A yB x A xB 2 0
X——悬点A、B至导线最低点的水平距离
• 则任意一点弧垂为
A 0 gyA B 0 gyB
• 导线悬点高差为
g 2 2 h y A yB xA xB 2 0
• 导线最低点偏离档距中点的偏移值为
m
0h
gl
2
• 结合以上公式,即得悬点应力计算式
• • 规程规定。悬点的应力可比弧垂最低点高10%,即悬点应力允许 为最低点应力的1.1倍。
叁、导线应力弧垂分析
概述 导线的解析 方程 悬点等高时
导线弧垂应
力及线长的 计算
悬点不等高 时导线弧垂 应力及线长 的计算
架空输配电线路设计、施工、运行中关注的主
要技术指标之一为弧垂,特别是导线长度的微 小变化,会引起弧垂和拉力的很大变化。
档距:相邻杆塔中心线间的水平距离 弧垂:导线上任意点至导线两侧悬挂点的连接线之间的铅锤距离
2
1 g 3 3 L l A lB l l A B 2 2 24 0
gl h Ll 2 24 0 2l
2 3
2
谢
谢
观
赏
f x y A hx y g 2 o l Al B
g 2 0
xB x x A x
• 式中 l——悬点A、B至导线任意点的水平距离 • (2)中点弧垂计算 • 将l/2代入上式,即得悬点不等高时的中点斜弧垂,
《输电线路基础》第2章-导线应力弧垂分析-第三节-悬点等高时(精)
(1)档中线长的微小变化,将引起弧垂的较大变化。如线长从 200.21m减少0.16m,弧垂即从4.0m减少到2.0m。这也就是在施工紧 线时,当观测弧垂人员报告导线已经浮空时,紧线人员就应放慢收 线速度的原因。 (2)档中线长的微小变化,将引起导线应力的较大变化。如本例中, 线长从200.21m减少0.16m,应力从50MPa增加到100MPa,如再收紧 O.03m,应力进一步增加到150MPa。这一点对孤立档紧线尤其需要 引起注意。因紧线时,在弧垂观测符合设计要求后,需再适当收紧 导线(称过牵引),以便安装耐张线夹并将其挂上耐张绝缘子串。过 牵引将引起导线应力显著增加,但施工中一般要求过牵引后导线应 力不得超过其破坏应力的50%。如本例中,当设计应力为50MPa, 弧垂为4.Om,则过牵引O.19m时,应力增加到150MPa.此时对铝钢 截面比大于5的标准导线,均已接近或超过破坏应力的50%,因此, 在孤立档,特别是小档距孤立档紧线时,必须严格按设计图纸所给 定的允许过牵引长度进行施工。
(2-3-9)
一档导线长度L和档距 l 相比,其增量ΔL为
g 2l 3 L L l 2 24 O
(2-3-10)
分析: 由式(2-3-10)可见,线长增量ΔL与导线应力σo的平方成反比。 l 从而可知,在一定档距 时,线长发生变化,而应力将随线长增量 成平方倍变化,同时由弧垂计算式(2-3-4)可知,弧垂也将成平方 倍变化。因此,在施工紧线过程中,当导线浮空,弧垂将达到设计 值时,应放慢牵引速度。
l l gl fx l a lb 2 o 2 o 2 2 8 o g g
架线弧垂计算表(应力弧垂插值计算)
1
23456
17-18201
200
220
代表档距(无高差)208米1档两塔
设计代表档距201米cosB 2档两塔1观测档档距201米挂线点高差-30.99988863523档两塔
2观测档档距200米挂线点高差01.00000000003观测档档距
220
米
挂线点高差
01.0000000000220米200
米
1
23456
18+1~19
231
代表档距(无高差)231米1档两塔
设计代表档距227米cosB
2档两塔1观测档档距231
米挂线点高差-36.50.98774661583档两塔
2观测档档距米
挂线点高差
0#DIV/0!3观测档档距
米
挂线点高差0#DIV/0!240米220
米
耐张段各档的档距
耐张段各档的档距35kV 牙城线#18+1~#19《导 线 架 线 弧 垂 表/应力弧
35kV 牙城线#17~#18《导 线 架 线 弧 垂 表/应力弧
温度下每米的代表档距的弧
数
1观测档弧垂(m )2观测档弧垂(m )3观测档弧垂(m )(直线塔呼高减去绝缘子串长度)
温度(℃代表档距上值
上值系数(m )代表档距下值
下值系数(m )温度下每米的代表档距的弧
数
1观测档弧垂(m )2观测档弧垂(m )3观测档弧垂(m )(直线塔呼高减去绝缘子串长度)
温度(℃代表档距上值上值系数(m )代表档距下值
下值系数(m )
架 线 架 线 弧。
(2021年整理)导线的应力及弧垂计算
导线的应力及弧垂计算编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(导线的应力及弧垂计算)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为导线的应力及弧垂计算的全部内容。
第二章导线的应力及弧垂计算一、比载计算本线路采用的导线为LGJ-120,本地区最大风速v=30m/s,覆冰风速v=10m/s,覆冰厚度b=10mm表2-1 LGJ—120规格计算外径mm计算截面mm2单位质量kg/km15.20138.334951、=9.8=9。
82)2、冰重比载=q/S=27.73×10—3=27.732)3、自重和冰重总比载(垂直比载)=+=(35。
068+50.517)=85。
5852)4、无冰风压比载=0.6125×10—3=0。
6125=61.7842)5、覆冰风压比载=0。
6125×10-3=0。
6125—3=18.7032)6、无冰综合比载==10-3=71.0422)7、覆冰综合比载==10—3=87.6052)一、临界档距的计算及判别查表4-2-2可知:表2—2 LGJ-120的机械特性参数综合瞬时破坏应力(N/mm2)弹性模数(N/mm2)线膨胀系数(1/℃)284.2784001910-6[]===113。
68(N/mm2)全线采用防振锤防振,所以平均运行应力的上限为0。
25σp=0.25(N/mm2)L lab==139.7mL lac===152.07mL lad===117。
01mL lbc===163.7mL lbd===105。
9mL lcd===0二、导线应力弧垂计算㈠最低气温时(T=—20℃)当L=50m时,应力由最低气温控制σ=113。
《输电线路基础》第2章-导线应力弧垂分析-第四节-小高差档距(精)
➢对于一级弱电线路交叉角不应小于45°;二级弱电线路交叉角不应 小于30°,但输电线路跨越弱电线路不包括光缆和埋地电缆。
➢输电线路与铁路、道路、河流、管道、索道及各种架空线路交叉 或接近,应符合表2-4-2的要求(p92~93)。
➢为此,设计部门应在排定杆位时进行交叉跨越校验,而施工、运
➢500kV 及以上输电线路跨越非长期住人的建筑物或邻近民房时, 房屋所在位置离地面1.5m 处的未畸变电场不得超过4kV/m。
➢输电线路经过经济作物和集中林区时,宜采用加高杆塔跨越不砍 通道的方案。当跨越时,导线与树木(考虑自然生长高度)之间的垂 直距离。
➢当砍伐通道时,通道净宽度不应小于线路宽度加通道附近主要树 种自然生长高度的2 倍。通道附近超过主要树种自然生长高度的非 主要树种树木应砍伐。
gl 2
fo 8 o
(2-4-2)
➢将式(2-4-1)、(2-4-2)与式(2-3-3)、(2-3-4)相比较可见,其公式 的形式及符号意义完全相同,因此我们可以得出如下在应用上非常 有益的结论:
(1)当悬点不等高时,两悬点的连线是倾斜的,如图2-4-2(b)所示。 为了和悬点等高时相区别,有时将悬点不等高时相应各点弧垂称斜 弧垂,而将悬点等高时相应各点弧垂称水平弧垂,如图2-4-2所示。 但当采用平抛物线近似式计算弧垂时,弧垂大小与高差无关。
h yB yA
∵
yA
g
2 o
x
2 A
yB
g
2 o
x
2 B
∴
h g
2 o
x
2 B
x
2 A
第二章导线应力弧垂分析
第二章导线应力弧垂分析第四节悬挂点不等高时导线的应力与弧垂字体大小小中大一、导线的斜抛物线方程导线悬垂曲线的悬链线方程是假定荷载沿导线曲线孤长的均匀分布导出的,是精确的计算方法。
工程计算中,在满足计算精度要求的情况下,可以采用较简单的近似计算方法。
前述的平抛抛物方程是简化计算形式之一,但它用于悬挂点不等高且高差较大的情况进行计算可能会造成较大误差。
为此,又引出了悬垂曲线的斜抛物线方程式,用于悬挂点不等高时的近似计算公式。
斜抛物线方程的假设条件为:作用在导线上的荷载沿悬挂点连线AB均匀分布,即用斜线代替弧长,如图2-8所示。
这一假设与荷载沿弧长均匀分布有些差别,但实际上一档内导线弧长与线段AB的长度相差很小,因此这样的假设可以符合精度要求。
图2-8 悬挂点不等高示意图,图中诸多符号的含义后边另作说明。
在上述假设下,导线OD段的受力情况如图2-9所示。
此时垂直荷重的弧长L换成了x/cos,这相当于把水平距离x折算到斜线上。
x图2-9 OD段的受力图根据静力学平衡条件,y轴向受力代数和为又对上式进行积分,并根据所选的坐标系确定积分常数为零,可得到导线悬垂曲线的斜抛物线方程为:(2-33)式中—高差角;其他符号意义同前。
实际上,式(2-33)与式(2-17)相比差个关系,但相对于式(2-13)在应用于计算中仍然简明得多。
据弧长微分式,将的关系代入可得斜抛物线方程下的弧长方程为(取前两项)二、导线最低点到悬挂点的距离此时是在讨论悬挂点不等高情况下的导线力学及几何关系。
为此我们通过分析导线最低点到悬挂点之间的两种距离,即水平距离和垂直距离的几何关系,来导出使用斜抛物线方程下的导线应力、孤垂及线长的计算公式。
如图2-8所示,将坐标原点选在导线最低点,显然,随着坐标原点的不同,方程的表达式也有所不同。
1.水平距离用斜抛物线方程计算时,由式(2-33)可知导线最低点到悬挂点之间的水平距离和垂直距离的关系为(2-34)(2-35)式中—最低点到悬挂点的垂直距离,m; 、—最低点到悬挂点的水平距离,m; 其他符号意义同前。
导线应力弧垂分析
导线应力弧垂分析
第二章导线应力弧垂分析
第五节水平档距和垂直档距字体大小小中大一、水平档距和水平荷载在线路设计中,对导线进行力学计算的目的主要有两个:一是确定导线应力大小,以保证导线受力不超过允许值;二是确定杆塔受到导线及避雷线的作用力,以验算其强度是否满足要求。
杆塔的荷载主要包括导线和避雷线的作用结果,以及还有风速、覆冰和绝缘子串的作用。
就作用方向讲,这些荷载又分为垂直荷载、横向水平荷载和纵向水平荷载三种。
为了搞清每基杆塔会承受多长导线及避雷线上的荷载,则引出了水平档距和垂直档距的概念。
悬挂于杆塔上的一档导线,由于风压作用而引起的水平荷载将由两侧杆塔承担。
风压水平荷载是沿线长均布的荷载,在平抛物线近似计算中,我们假定一档导线长等于档距,若设每米长导线上的风压荷载为P,则AB档导线上风压荷载 ,如图2-10所示:则为承担。
,由AB两杆塔平均承担;AC档导线上的风压荷载为
,由AC两杆塔平均
图2-10 水平档距和垂直档距
如上图所示:此时对A杆塔来说,所要承担的总风压荷载为
(2-47)
令。
《输电线路基础》第2章-导线应力弧垂分析-第六节-导线的状态讲解
2 3 gm l Lm l 2 24 m 2 3 gn l Ln l 2 24 n
将该式代人式(2-6-1),则 2 3 2 3 2 3 gn l gm l gm l 1 l l t n t m n m l 2 2 2 E 24 n 24 m 24 m 因上式中
A 428
gm=gn=g1=30.268×l0-3(N/m· mm2)
附录D中的表2查得 热膨胀系数 α=20.9×10-6(l/℃) 弹性系数 E=63000MPa 其次,计算耐张段的代表档距
l0
l l
3 i i
5003 3503 4003 4803 444.92(m) 500 350 400 480
24 m
代入(2-6-2)得:
B n
A
2 n
或 n n B A
2
该三次方程的系数A恒为正,B可正可负,根据苗卡儿关于方程系 数符号法规则和导线力学的物理概念可知,方程只有一个正实数根, 就是σn的有效解。 求σn有效解的方法可用计算机求解,也可用计算尺试探求解。但 目前计算尺已被计算器取代,在此介绍一种借助于计算器能运算余 弦函数和双曲函数的功能,求解方程准确解的方法。 导线状态方程: 判别式:
再利用式(2-6-3)求解最高气温时导线应力,此时最低气温为已知 条件,最高气温为待求条件
2 2 Egn l 63000 30.248 103 444.922 A 475429 .9025 24 24
2 2 Egm l B m E t n t m 2 24 m
13.5 A 13.5 475429.902 5 C 1 271.4418717 1 3 3 |B| 28.73748624
应力、弧垂分析方法
总结前述应力、弧垂分析方法,导线的应力、弧垂计算步骤以下面例题作进一步说明:[例2-5]某35KV输电线路,导线为LGJ-95/20型,全国第Ⅱ气象区,安全系数K=2.5,采用防振锤防振,其中年平均运行应力为σpcal=0.25σcal,在线路中有一耐张段布置如图2-19所示,试求以下内容:(1)第二档中交叉跨越通信线的垂直距离能否满足要求?(2)#4杆塔的最大、最小垂直档距以及最大上拔力是多少?图2-19某耐张段布置图解:该题中并未告知计算气象条件及应力。
通过计算分析可明确本章各节内容的相互联系及应用方法,计算时可按如下步骤:1.计算临界档距并判别控制区;2.计算代表档距,确定本耐张段的控制条件;3.确定计算气象条件并计算各计算气象条件时的应力;4.进行各具体项目的计算。
(1)计算临界档距并判别控制条件导线物理特性参数如下:弹性系数E=7600MPa;截面积S=113.9mm2;热膨胀系数α=18.5×10-61/℃;外径d=13.87mm;计算拉断力T cal=37200N。
则瞬时破坏应力最大使用应力年平均运行应力将有关计算数据列于下表2-6中。
将有关数据代入临界档距计算式,可计算得各临界档距值如表2-7所示。
=虚数CBC=500.30 CCD=298.87CAB=126.11 CBD=362.35CAC=203.63CAD有效临界档距判别结果见图2-20所示,图2-20有效临界档距判别结果即有:当,控制条件为年平均气温,年平均运行应力;当,控制条件为最大风速,最大使用应力。
(2)计算代表档距=245.06(m)结合有效临界档距判别结果可知,该耐张段应力计算控制气象条件为年平均气温,控制应力。
(3)交叉跨越校验和垂直档距计算1)交叉跨越校验交叉跨越校验应按最大垂直弧垂气象条件进行。
首先应用状态方程式求出高温时或最大垂直比载时的应力。
然后进行最大垂直弧垂判别,最后计算弧垂。
具体参见书56页计算过程。
第二章导线张力(应力)弧垂分析(1)
第二章 导线张力(应力)弧垂计算第一节 导线和地线的机械物理特性与单位荷载一、导线的机械物理特性导线的机械物理特性,一般指破坏张力、弹性系数、热膨胀系数。
(一) 导线的破坏张力对导线作拉伸试验,将测得瞬时拉断力。
利用多次测量结果,可以建立一组经验公式来计算导线的瞬时拉断力。
考虑到施工和运行中导线接头、修补等因素,设计用导线破坏张力取其实测或计算瞬时拉断力T p 的95%,即 T ps =0.95T p (2-1-1) 式中 T p —导线的瞬时拉断力,N ;T ps —导线的破坏张力,N 。
(二)导线的弹性系数物体的弹性系数也称为弹性模量。
导线的弹性系数是指在弹性限度内,导线受拉力作用时,其应力与相对变形的比例系数,通过试验得出的应力-应变曲线确定,可表示为Tl T E A l A σεε===∆ (2-1-2)式中 T —导线拉力,N ;l 、Δl —导线的原长和伸长,m ;σ—导线的应力,即单位截面的张力,σ=T/A ,N/mm ²; ε—导线的相对变形,ε=Δl/l ; A —导线的截面积,mm ²; E —导线的弹性系数,N/mm ²。
钢芯铝绞线的弹性系数按下式近似计算1s Al E mE E m+=+ (2-1-3)式中 E Al 、E s 、E —分别为铝、钢和综合弹性系数,N/mm ²,E s =190000 N/mm ², E Al =55000 N/mm ²;m =A Al /A s —铝对钢的截面比m =A Al /A s 。
(三)导线的热膨胀系数导线温度升高1℃所引起的相对变形,称为导线的热膨胀系数,可表示为 /t αε=∆ (2-1-4) 式中 ε—温度变化引起的导线相对变形,ε=Δl/l ;Δt —温度变化量,℃;α—导线的热膨胀系数,1/℃。
钢芯铝绞线的热膨胀系数的计算式为s s Al Al s Al E m E E mE ααα+=+ (2-1-5)式中 αAl 、αs 、α—分别为铝、钢和综合热膨胀系数,1/℃。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章导线应力弧垂分析·导线的比载·导线应力的概念·悬点等高时导线弧垂、线长和应力关系·悬挂点不等高时导线的应力与弧垂·水平档距和垂直档距·导线的状态方程·临界档距·最大弧垂的计算及判断·导线应力、弧垂计算步骤·导线的机械特性曲线[内容提要及要求]本章是全书的重点,主要是系统地介绍导线力学计算原理。
通过学习要求掌握导线力学、几何基本关系和悬链线方程的建立;掌握临界档距的概念和控制气象条件判别方法;掌握导线状态方程的用途和任意气象条件下导线最低点应力的计算步骤;掌握代表档距的概念和连续档导线力学计算方法;了解导线机械物理特性曲线的制作过程并明确它在线路设计中的应用。
第一节导线的比载作用在导线上的机械荷载有自重、冰重和风压,这些荷载可能是不均匀的,但为了便于计算,一般按沿导线均匀分布考虑。
在导线计算中,常把导线受到的机械荷载用比载表示。
由于导线具有不同的截面,因此仅用单位长度的重量不宜分析它的受力情况。
此外比载同样是矢量,其方向与外力作用方向相同。
所以比载是指导线单位长度、单位截面积上的荷载,常用的比载共有七种,计算公式如下:1.自重比载导线本身重量所造成的比载称为自重比载,按下式计算(2-1)式中:g1—导线的自重比载,N/m.mm2;m0一每公里导线的质量,kg/km;S—导线截面积,mm2。
2.冰重比载导线覆冰时,由于冰重产生的比载称为冰重比载,假设冰层沿导线均匀分布并成为一个空心圆柱体,如图2-1所示,冰重比载可按下式计算:(2-2)式中:g2—导线的冰重比载,N/m.mm2;b—覆冰厚度,mm;d—导线直径,mm;S—导线截面积,mm2。
图2-1覆冰的圆柱体设覆冰圆筒体积为:取覆冰密度,则冰重比载为:3.导线自重和冰重总比载导线自重和冰重总比载等于二者之和,即g3=g1+g2(2-3)式中:g3—导线自重和冰重比载总比载,N/m.mm2。
4.无冰时风压比载无冰时作用在导线上每平方毫米的风压荷载称为无冰时风压比载,可按下式计算:(2-3)式中:g4—无冰时风压比载,N/m.mm2;C—风载体系数,当导线直径d< 17mm时,C=1.2;当导线直径d≥17mm 时,C=1.1;v—设计风速,m/s;d—导线直径,mm;S—导线截面积,mm2;a—风速不均匀系数,采用表2-1所列数值。
表2-1各种风速下的风速不均匀系数a设计风速(m/s)20以下20-30 30-35 35以上a 1.0 0.85 0.75 0.70作用在导线上的风压(风荷载)是由空气运动所引起的,表现为气流的动能所决定,这个动能的大小除与风速大小有关外还与空气的容重和重力加速度有关。
由物理学中证明,每立方米的空气动能(又称速度头)表示关系为:,其中q —速度头(N/m2),v—风速(m/s),m—空气质量(kg/m3),当考虑一般情况下,假定在标准大气压、平均气温、干燥空气等环境条件下,则每立方米的空气动能为实际上速度头还只是个理论风压,而作用在导线或避雷线上的横方向的风压力要用下式计算:式中:P h—迎风面承受的横向风荷载(N)。
式中引出几个系数是考虑线路受到风压的实际可能情况,如已说明的风速不均匀系数α和风载体型系数C等。
另外,K表示风压高度变化系数,若考虑杆塔平均高度为15m时则取1;θ表示风向与线路方向的夹角,若假定风向与导线轴向垂直时,则θ=90°;F表示受风的平面面积(m2),设导线直径为d(mm),导线长度为L(m),则F=dL×10-3。
由此分析则导线的风压计算式为:相应无冰时风压比载为:5.覆冰时的风压比载覆冰导线每平方毫米的风压荷载称为覆冰风压比载,此时受风面增大,有效直径为(d+2b),可按下式计算:(2-5)式中:g5—覆冰风压比载,N/m.mm2;C—风载体型系数,取C=1.2;6.无冰有风时的综合比载无冰有风时,导线上作用着垂直方向的比载为g1和水平方向的比载为g4,按向量合成可得综合比载为g6,如图2-2所示:图2-2无冰有风综合比载则g6称为无冰有风时的综合比载,可按下式计算:(2-6)式中,g6—无冰有风时的综合比载,N/m.mm2。
7.有冰有风时的综合比载导线覆冰有风时,综合比载g7为垂直比载g3和覆冰风压比载g5向量和,如图2-3所示,图2-3覆冰有风综合比载可按下式计算:(2-6)式中g7一有冰有风时的综合比载,N/m.mm2。
以上讲了7种比载,它们各代表了不同的含义,而这个不同是针对不同气象条件而言的,在以后导线力学计算时则必须明确这些比载的下标数字的意义。
[例2-1] 有一条架空线路通过Ⅳ类气象区,所用导线为LGJ一120/20型,试计算导线的各种比载。
解:首先由书中附录查出导线LGJ一120/20型的规格参数为:计算直径d=15.07mm,铝、钢两部分组成的总截面积S=134.49mm2,单位长度导线质量m0=466.8kg/km。
由表1-8查出Ⅳ类气象区的气象条件为:覆冰厚度为b=5mm,覆冰时风速V=10m/s,最大风速V=25m/s,雷电过电压风速V=10m/s,内过电压时风速V=15m/s。
下面分别计算各种比载。
(1)自重比载g1:g1=9.80665 ×m0/S ×10-3=9.80665×466.8/134.49×10-3=34.04×10-3[N/m.mm2](2)覆冰比载g2:g2(5)=27.728×b(d+b) /S ×10-3=27.728×5(15.07+5)/134.49 ×10-3=20.69×10-3[N/m.mm2](3)垂直比载g3:g3(5)=g1+g2(5)=54.73×10-3[N/m.mm2](4)无冰时风压比载g4:由表2-1查出当风速为20~30m/s时,α=0.85,当风速为20m/s以下时,α=1.0,风载体形系数C=1.2,由公式计算g4(10)=0.6128×1.0×1.2×102/134.49×15.07×10-3 =8.24×10-3[N/m.mm2]g4(15)=0.6128×1.0×1.2×152/134.49×15.07×10-3=18.54×10-3[N/m.mm2]g4(25)=0.6128×1.0×1.2×252/134.49×15.07×10-3=43.77×10-3[N/m.mm2](5)覆冰时风压比载g5:由表1-2查出α=1.0,已知C=1.2,则g5(5,10)=0.6128×1.0×1.2(15.07+2×5)×102/S×10-3=13.71×10-3[N/m.mm2](6)无冰时综合比载g6:几种风速下的比载由公式计算,分别为(7)覆冰时综合比载g7:当重力加速度采用9.8值计算时,其结果只是微小差别。
第二节导线应力的概念悬挂于两基杆塔之间的一档导线,在导线自重、冰重和风压等荷载作用下,任一横截面上均有一内力存在。
根据材料力学中应力的定义可知,导线应力是指导线单位横截面积上的内力。
因导线上作用的荷载是沿导线长度均匀分布的,所以一档导线中各点的应力是不相等的,且导线上某点应力的方向与导线悬挂曲线该点的切线方向相同,从而可知,一档导线中其导线最低点应力的方向是水平的。
所以,在导线应力、弧垂分析中,除特别指明外,导线应力都是指档内导线最低点的水平应力,常用σ0表示。
关于悬挂于两基杆塔之间的一档导线,其弧垂与应力的关系,我们知道:弧垂越大,则导线的应力越小;反之,弧垂越小,应力越大。
因此,从导线强度安全角度考虑,应加大导线弧垂,从而减小应力,以提高安全系数。
但是,若片面地强调增大弧垂,则为保证带电线的对地安全距离,在档距相同的条件下,则必须增加杆高,或在相同杆高条件下缩小档距,结果使线路基建投资成倍增加。
同时,在线间距离不变的条件下,增大弧垂也就增加了运行中发生混线事故的机会。
实际上安全和经济是一对矛盾的关系,为此我们的处理方法是:在导线机械强度允许的范围内,尽量减小弧垂,从而既可以最大限度地利用导线的机械强度,又降低了杆塔高度。
导线的机械强度允许的最大应力称为最大允许应力,用σmax表示。
架空送电线路设计技术规程规定,导线和避雷线的设计安全系数不应小于2.5。
所以,导线的最大允许应力为:(2-8)式中[σmax]—导线最低点的最大允许应力,MPa;T cal—导线的计算拉断力,N;S—导线的计算面积,,σcal—导线的计算破坏应力,MPa;2.5—导线最小允许安全系数。
在一条线路的设计、施工过程中,一般说我们应考虑导线在各种气象条件中,当出现最大应力时的应力恰好等于导线的最大允许应力,即可以满足技术要求。
但是由于地形或孤立档等条件限制,有时必须把最大应力控制在比最大允许应力小的某一水平上以确保线路运行的安全性,即安全系数K>2.5。
因此,我们把设计时所取定的最大应力气象条件时导线应力的最大使用值称最大使用应力,用σmax表示,则:(2-9)式中σmax—导线最低点的最大使用应力,MPa;K—导线强度安全系数。
由此可知,当K=2.5时,有σmax=[σmax],这时,我们称导线按正常应力架设;当K>2.5时,则,这时σmax<[σmax],我们称导线按松弛应力架设。
导线的最大使用应力是导线的控制应力之一,后边还要进行讨论。
工程中,一般导线安全系数均取2.5,但变电所进出线档的导线最大使用应力常是受变电所进出线构架的最大允许应力控制的;对档距较小的其他孤立档,导线最大使用应力则往往是受紧线施工时的允许过牵引长度控制;对个别地形高差很大的耐张段,导线最大使用应力又受导线悬挂点应力控制。
这些情况下,导线安全系数均大于2.5的,为松弛应力架设。
导线的应力是随气象条件变化的,导线最低点在最大应力气象条件时的应力为最大使用应力,则其他气象条件时应力必小于最大使用应力。
第三节悬点等高时导线弧垂、线长和应力关系二、平抛物线方程平抛物线方程是悬链线方程的简化形式之一。
它是假设作用在导线弧长上的荷载沿导线在x轴上的投影均匀分布而推出的,在这一假设下,图2-6中导线所受垂直荷载变成即用直线代替弧长,从而使积分简化,由此导出平面抛物方程为(2-17)相应导线的弧长方程式为:(2-18)实际上式(2-17)是式(2-14)取前一项的结果,式(2-18)是式(2-16)取前两项的结果,这恰说明它是悬链线方程的近似表达式。