静息电位动作电位的产生机制及影响其大小的主要因素
静息电位和动作电位产生的机制
静息电位和动作电位产生的机制一、静息电位机制静息电位是指细胞在安静状态时,存在于细胞膜两侧的电位差。
这种电位差是由于细胞膜内外的离子分布不均衡所导致的。
细胞膜内外的离子分布不均衡,导致细胞膜两侧存在一定的电位差。
这种电位差对于细胞的正常生理功能至关重要,因为它可以维持细胞膜的稳定性和控制离子通道的开放。
具体来说,静息电位是由细胞膜内外的钾离子分布不均衡所导致的。
细胞膜内钾离子浓度约为细胞膜外钾离子浓度的20倍左右。
这种浓度差导致细胞膜内的钾离子相对于细胞膜外显得过低,因此存在一个由内向外的钾离子净外流(即钾离子通道开放),这样就形成了细胞膜两侧的电位差。
这种电位差对于维持细胞膜的稳定性和控制离子通道的开放具有重要作用。
二、动作电位机制动作电位是指细胞在接受刺激时,发生在细胞膜上的瞬时电位变化。
动作电位是由细胞膜上电压门控通道介导的,主要涉及钠离子和钾离子的跨膜流动。
当细胞受到刺激时,刺激通过刺激感受器传递至细胞膜,导致电压门控通道开放。
钠离子通道的开放导致钠离子内流,而钾离子通道的关闭则导致钾离子无法外流。
这两种效应使得细胞膜两侧的电位差发生变化,形成了动作电位。
动作电位具有“全或无”的特点,即只有当刺激强度达到一定阈值时,动作电位才会发生,而刺激强度超过一定阈值时,动作电位的幅度将不再增加。
这种特点保证了细胞的反应具有高度的敏感性和精确性。
三、总结静息电位和动作电位是细胞生理活动中的重要现象,它们的产生机制涉及到细胞膜内外离子的分布和流动。
静息电位的产生主要源于细胞膜内外的钾离子分布不均衡,而动作电位的产生则与电压门控通道的开放和关闭有关。
这两种电位的产生对于细胞的正常生理功能具有重要作用,它们不仅维持了细胞膜的稳定性,还控制了离子通道的开放,保证了细胞的正常生理反应。
同时,它们的“全或无”特点也使得细胞的反应具有高度的敏感性和精确性。
静息电位和动作电位的概念及形成机制
静息电位和动作电位的概念及形成机制静息电位和动作电位的概念及形成机制一、静息电位的概念及形成机制1. 静息电位的概念静息电位是指神经细胞在未被刺激时的电位状态。
在静息状态下,细胞内外存在电化学梯度,使神经元内外细胞膜的电位差保持在负数水平,为-70mV左右。
2. 静息电位的形成机制静息电位的形成主要与离子的通透性和Na+/K+泵有关。
在静息状态下,细胞膜上的Na+和K+离子通道处于闭合状态,但是Na+/K+泵仍在起作用,将细胞内的Na+排出,K+输进,维持细胞内外的离子平衡,保持负电位。
3. 静息电位的重要性静息电位是神经细胞正常功能的基础,它保证了细胞对外部刺激的敏感性,使神经元能够正常传递和处理信息。
二、动作电位的概念及形成机制1. 动作电位的概念动作电位是神经元在受到刺激时产生的短暂的电位变化。
它是神经元传递信息的基本单位,具有快速传导和全或无的特点。
2. 动作电位的形成机制动作电位的形成包括兴奋、去极化和复极化三个阶段。
当神经元受到足够的刺激时,细胞膜上的Na+通道打开,Na+大量流入细胞内,使细胞内外电位逆转,形成去极化;随后Na+通道关闭,K+通道打开,K+大量流出,使细胞内外电位恢复,形成复极化。
3. 动作电位的重要性动作电位是神经元传递信息的方式,它能够在神经元内外迅速传递信息,使神经元之间能够进行有效的通讯,实现信息的处理和传递。
总结与回顾:静息电位和动作电位是神经元活动的重要基础。
静息电位维持着神经元的正常状态,使其对外部刺激保持敏感;而动作电位则实现了神经元信息的传递,是神经元活动中最基本的过程之一。
在细胞水平上,静息电位的形成主要与离子的通透性和Na+/K+泵有关,通过保持细胞内外的离子平衡来维持静息状态;而动作电位的形成则依赖于离子通道的开闭和离子内外的流动,通过电压门控离子通道的开合来实现电位的变化。
个人观点和理解:静息电位和动作电位是神经元活动的核心过程,对于理解神经元的功能和信息传递具有重要意义。
浅谈静息电位和动作电位的产生机制
浅谈静息电位和动作电位的产生机制静息电位和动作电位是神经细胞的两个重要电生理现象。
静息电位是神经细胞在静息状态下的稳定电位,而动作电位是神经细胞在受到刺激时产生的快速和短暂的电位变化。
首先,我们来讨论静息电位的产生机制。
静息电位是由神经细胞膜上的离子通道的开放和关闭所调控的。
在静息状态下,细胞膜上存在不对称分布的离子,包括钠离子(Na+)、钾离子(K+)、氯离子(Cl-)等。
此外,细胞内还存在一定数量的带负电的大分子离子,如有机阴离子等。
静息电位的维持主要依靠细胞膜上的离子泵和离子通道。
细胞膜上的钠钾泵能将3个Na+离子排出细胞,同时将2个K+离子进入细胞,从而保持钠离子在细胞外的浓度较高,而钾离子在细胞内的浓度较高。
此外,细胞膜上还存在钾离子泄漏通道,这些通道对钾离子通透性较高,使得少量的钾离子持续从细胞内泄漏到细胞外。
细胞内带负电的大分子离子也能够贡献一定的负电荷。
综合上述过程,细胞膜内外的离子浓度差和带负电的大分子离子导致了细胞膜的静息电位维持在约-70mV的水平。
这种细胞膜的稳定电位对细胞的正常功能发挥起到了重要的作用。
接下来,我们来讨论动作电位的产生机制。
动作电位是神经细胞受到足够强度的刺激后产生的电位变化。
它主要由细胞膜上的离子通道的开放和关闭所驱动。
当神经细胞受到足够强度的刺激时,首先会通过刺激导致钠离子通道的迅速开放。
这种钠离子通道被称为“电压门控钠通道”。
它的开放导致细胞内钠离子大量流入细胞,使膜电位迅速从静息电位-70mV变为正值,即达到一个峰值,也被称为“上升期”。
随后,由于细胞内钠离子浓度持续增加,反向静电力开始逐渐抵消电压门控钠通道的开放,同时与之相对应的是钾离子通道的开放。
这些钾离子通道被称为“延迟整流钾通道”。
它的开放使得钾离子从细胞内流出,从而逐渐还原膜电位。
当膜电位达到一定的临界值,延迟整流钾通道开始关闭,而细胞膜上的“重新整流钾通道”会迅速开放。
这种重新整流钾通道的开放导致大量的钾离子从细胞内流出,使膜电位快速超过正常值,然后又快速还原。
静息电位和动作电位产生的具体原因
静息电位和动作电位产生的具体原因伴随生命活动的电现象,称为生物电。
关于生物电在生命活动中所起的作用,目前还不十分清楚。
本节着重以神经纤维为例讨论细胞水生平物电的表现形式,即静息电位和动作电位。
一、静息电位及其产生机制(一)静息电位静息电位是指细胞在安静状态下,存在于细胞膜的电位差。
这个差值在不同的细胞是不一样的,就神经纤维而言为膜外电位比膜内电位高70~90mv。
如规定膜外电位为0,则膜内电位当为负值(-70~-90mv)。
细胞在安静状态时,保持比较稳定的外正内负的状态,称为极化。
极化状态是细胞处于生理静息状态的标志。
以静息电位为准,膜内负电位增大,称为超极化。
膜内负电位减小,称为去或除极化。
细胞兴奋后,膜电位又恢复到极化状态,称为复极化。
(二)静息电位产生的机制“离子学说”认为,细胞水平生物电产生的前提有二:①细胞内外离子散布和浓度不同。
就正离子来讲,膜内K 浓度较高,约为膜外的30倍。
膜外Na 浓度较高约为膜内的10倍。
从负离子来看,膜外以Cl-为主,膜内则以大分子有机负离子(A-)为主。
②细胞膜在不同的情况下,对不同离子的通透性并非一样,如在静息状态下,膜对K 的通透性大,对Na 的通透性则很小。
对膜内大分子A-则无通透性。
由于膜内外存在着K 浓度梯度,而且在静息状态下,膜对K 又有较大的通透性(K 通道开放),所以一部分K 便会顺着浓度梯度向膜外扩散,即K 外流。
膜内带负电荷的大分子A-,由于电荷异性相吸的作用,也应随K 外流,但因不能透过细胞膜而被阻止在膜的内表面,致使膜外正电荷增多,电位变正,膜内负电荷增多,电位变负。
这样膜内外之间便形成了电位差,它在膜外排斥K 外流,在膜内又牵制K 的外流,于是K 外流逐渐减少。
当促使K 流的浓度梯度和阻止K 外流的电梯度这两种抵抗力量相等时,K 的净外流停止,使膜内外的电位差保持在一个稳定状态。
因此,可以说静息电位主要是K 外流所形成的电一化学平衡电位。
静息电位和动作电位的定义和形成机制
静息电位和动作电位的定义和形成机制在我们日常生活中,神经系统起着至关重要的作用。
而在神经系统中,有两种非常重要的电位:静息电位和动作电位。
这两种电位在神经元之间的传递过程中起着关键作用,使我们能够感知到外界的各种刺激,并做出相应的反应。
那么,这两种电位究竟是如何产生的呢?本文将从理论和实践的角度,对静息电位和动作电位的定义和形成机制进行详细的阐述。
我们来了解一下静息电位。
静息电位是指神经元在未受到任何刺激时,细胞内外的电势差。
简单来说,就是当神经元处于安静状态时,它的内部电压是稳定的。
这种稳定的电压是由细胞膜上的离子泵负责维持的。
离子泵通过主动运输的方式,将钾离子从细胞内向外运输,同时将钠离子从细胞外向内运输,从而使得细胞内外的电势差保持在一个相对稳定的状态。
这个稳定的电压差就是静息电位。
接下来,我们再来探讨一下动作电位。
动作电位是指神经元在受到某种刺激(如光、声、化学物质等)后,细胞内外的电势差发生快速变化的现象。
这种快速变化的电势差是由细胞膜上的离子通道负责调控的。
当刺激传达到神经元时,离子通道会迅速打开或关闭,使得离子在细胞内大量流动,从而产生一个快速上升或下降的电势差。
这个快速上升或下降的电势差就是动作电位。
那么,静息电位和动作电位是如何形成的呢?这要从神经元的结构说起。
神经元由胞体、树突、轴突和突触四部分组成。
其中,胞体是神经元的代谢中心,负责合成和分解蛋白质;树突是神经元接受信息的部位;轴突是神经元传递信息的部位;突触是连接两个神经元的结构。
在正常情况下,静息状态下的神经元,其细胞膜上的离子泵会维持一定的离子浓度梯度,使得细胞内外的电势差保持在一个稳定的状态。
当神经元受到刺激时,刺激信号会传递到胞体,引起一系列生化反应。
这些反应会导致胞体释放出一种叫做乙酰胆碱的神经递质。
乙酰胆碱会与轴突上的乙酰胆碱受体结合,从而引发一系列的生理过程。
在这个过程中,离子通道会发生开关性的变化。
具体来说,当刺激信号传达到胞体时,离子通道会迅速打开,使得钠离子大量流入轴突;钾离子大量流出胞体。
静息电位知识点总结
静息电位知识点总结一、细胞膜的离子泵和离子通道1. 离子泵:细胞膜上存在着多种离子泵,如钠钾泵、钙泵等,它们能够通过主动转运机制将特定离子跨膜,维持细胞内外的离子分布不均,是静息电位形成的重要因素之一。
2. 离子通道:细胞膜上还存在着多种离子通道,如钠通道、钾通道等,它们能够通过通道蛋白媒介的被动扩散机制,让特定离子通过膜而发生电位变化,也是静息电位形成的关键因素之一。
二、静息电位的形成过程在正常情况下,细胞内外的离子分布不均存在着以下特点:1. 细胞内:主要含有大量的负离子,如蛋白质阴离子,细胞器、核酸、脂质等;而钾离子的浓度也相对较高。
2. 细胞外:主要含有大量的阳离子,如钠离子、氯离子、钙离子等。
当细胞内外的离子分布不均时,就会形成静息电位。
其过程可概括为以下步骤:(1)静息电位的建立:在细胞静息状态下,由于钠钾泵的作用,细胞内外的钠离子和钾离子分布不均。
细胞内的钾离子浓度较高,而细胞外的钠离子浓度较高,这样就产生了细胞膜上的负内正外的电位差,即静息电位,也称为静息膜电位。
(2)离子通道的平衡:在细胞静息状态下,细胞膜上的离子通道大多处于关闭状态,只有极少量的离子通过,维持着静息电位的稳定。
(3)细胞内外离子分布的稳定:由于细胞膜上的离子泵和离子通道的作用,细胞内外的离子浓度分布保持相对稳定,从而维持着静息电位的稳定。
三、静息电位的生理意义静息电位作为神经细胞和肌肉细胞的重要生理特性,具有以下生理意义:1. 细胞兴奋传导:静息电位是神经细胞产生兴奋传导的前提,只有通过静息电位的建立,细胞才有可能产生兴奋传导和动作电位。
2. 细胞内稳态维持:静息电位的形成,能够维持细胞内外的离子分布平衡,从而维持细胞内环境的稳态,保障细胞正常的生理功能。
3. 膜电位的调节:静息电位是细胞膜电位的基础,它能够调节细胞的电生理活动,如膜通透性的改变、离子内外浓度分布的调节等。
四、静息电位的调节机制静息电位的稳定与调节是由离子泵和离子通道的作用所致,它们能够通过主动和被动机制调节细胞膜上的离子通透性,从而保持静息电位的稳定。
生理学课件之细胞3静息电位产生的机制
2、阈电位(threshold potential):
能触发AP的膜电位临界值 一般比静息电位小1020mv
25
(四) 动作电位的传播
细胞外
局部电流 未兴奋段膜去极化 并达阈电位
细胞内 相邻膜仍处于静
11
动作电位的特点
(1)“全或无”:刺激未达到强度,AP不会产 生(无),刺激达到强度就引发AP,AP一经 出现,其幅度就达到最大值,不因刺激的增强 而随之增大
(2)不衰减传播:其幅度和波形始终保持不变 (3)脉冲式发放:多个AP互不融合
12
(二)AP的的产生机制
AP产生的基本条件: ①离子的电-化学驱动力 ②膜在受到阈刺激而兴奋时,对离子的通透性改变:电 压门控性Na+、K+通道依次激活而开放
欧姆定律:Ix =V/R=(Em- Ex)Gx
跨膜电流,易测
膜电导,要测
膜两侧电位差,此电位随离子跨膜移动而 变,用带负反馈放大器的特殊装置使膜两 侧电位固定在某一设定值,测得I,再算出 G的方法称电压钳实验
膜通透性可用膜电导Gx(膜电阻的倒数)表示
voltage clamp: 1963, Nobel Prize in Physiology or Medicine 16
• 它其实是由细胞膜上大量离子通道的单通道电 流叠加形成的,这说明膜电导变化的实质是众 多离子通道开、闭的总和效应
19
m:激活门 h:失活门
静息: m:关闭 h:开放
n:激活门
静息: n:关闭
20
AP的的产生机制
钠通道开放、 激活,Na+迅 速内流
阈电位
Na+通道失活, Na+通透性消失, K+通透性
浅谈静息电位和动作电位的产生机制
静息电位与动作电位一、静息电位(RP)的产生机制:在静息状态下,细胞膜对K+具有较高的通透性是形成静息电位的最主要因素。
细胞膜内K+浓度约相当于细胞外液的30倍,K+将顺浓度梯度跨膜扩散,但扩散的同时也在细胞膜的两侧形成逐渐增大的电位差,且该电位差造成的驱动力与浓度差的驱动力的方向相反,阻止K+进一步跨膜扩散。
当逐渐增大的电位差驱动力与逐渐减小的浓度差驱动力相等时,便达到了稳态。
此时的膜电位处于K+的平衡电位(EK+=-90~-100mv),电位差的差值即平衡电位,平衡电位决定着离子的流量。
当细胞外液中K+浓度增加(高钾)时,膜内外K+的浓度差减小,K+因浓度差外移的驱动力降低,K+外流减少。
故达到稳态时,K+平衡电位的绝对值减小;反之亦然。
而细胞膜对Na+亦有一定的通透性,扩散内流的Na+可以部分抵消由K+扩散外流所形成的膜内负电位。
所以,EK+=-90~-100mv,而RP=-70~-90mv。
可见,细胞外液Na+浓度对RP的影响不大。
除了以上两个方面,还有钠泵的生电作用。
钠泵使细胞内高钾、细胞外高钠。
若钠泵受抑制,膜内外K+的浓度差减小,K+外流减少,K+平衡电位的绝对值减小,静息电位的绝对值也减小。
综上所述,影响静息电位水平的因素:(1)细胞膜对K+和Na+的相对通透性;(2)细胞外液K+的浓度;(3)钠泵的活动。
二、动作电位(AP)的产生机制:在静息状态下,细胞膜外Na+浓度约为细胞内液的10倍余,Na+有向膜内扩散的趋势;并且静息时膜内存在着相当数量的负电位,吸引着Na+向膜内移动。
但由于静息时细胞膜对Na+相对不通透,因此,Na+不能大量内流。
当刺激引起去极化达到阈电位,细胞膜上的电压门控Na+通道大量被激活,细胞膜对Na+的通透性突然增大,Na+大量内流,造成细胞膜的进一步去极化;而膜的进一步去极化,又将导致更多的Na+通道开放,有更多的Na+内流,引起细胞膜迅速、自动地去极化。
动作电位、静息电位等的产生机制及特征
动作电位、静息电位等的产生机制及特征:静息电位产生的原理是这样的:神经元在静息情况下,细胞膜对K +具有较高的通透性,而对Na +等的通透性很低,并且胞内K +的浓度要远远高于胞外,因此在浓度差的驱动下,K +从胞内流向胞外,而由于K +带有1个正电荷的电量,因此随着K +的流动,膜两侧会形成一个逐渐增大的电位差,这个电位差则会阻止K +进一步进行跨膜扩散。
当促进K +向外流动的浓度差与阻止K +向外流动的电位差相等时,离子的净移动就会停止,这是跨膜的电位差称为K +离子的平衡电位(equilibrium potential ),可以根据能斯特(Nernst )方程计算出K +的平衡电位,[K]ln [K]o K iRT E ZF 以上的能斯特方程中,E K 为K +的平衡电位,R 为气体常数,T 为绝对温度,Z 为离子价数,F 为法拉第常数,[K]o 和 [K]i 分别为钾离子在胞外和胞内的浓度,我们将上述参数的值代入后可以计算出K +的平衡电位为-75mV ,而同样的也可以计算出Na +的平衡电位为+55mV 。
根据这一能斯特理论,1902年这一静息电位产生机制的“膜假说”被提出了,尽管多数人们接受这一理论,但一直未能得到证实。
直到1939年,生物学家Hodgkin 和Huxley 从枪乌贼的巨大神经轴突中第一次精确记录到了静息电位,结果为-60 mV ,与计算推测的K +的平衡电位接近,证实了“膜假说”的可靠性。
但实际的静息电位E m 并不完全等于E K ,而是介于E K 和E Na 之间。
这说明静息电位的形成主要是K +跨膜流动形成的,但Na +的流动也参与其中。
我们在理解了静息电位产生的机制之后,进一步来探讨动作电位的机制。
我们知道电位的变化,归根到底就是膜两侧的离子快速跨膜流动的结果。
经过近20年的时间,随着实验技术特别是电压钳、膜片钳(patch clamp technique)等技术的发展,生物学家通过不断的实验研究,才逐渐明确了动作电位的产生机制。
静息电位和动作电位形成原因及相关练习
功能完好的神经表面,如右图,给该神经一个
适宜的刺激使其产生兴奋,可在R上记录到电
位的变化。能正确反映从刺激开始到兴奋完成
这段过程中电位变化的曲线是
(D )
• 例9:下图甲表示人体脊髓反射弧模式图,乙表示人体神经元结构模式图。 据图回答:
• (1)甲图中,刺激结构④时,会产生具体效应的结构是[⑤]效应器,该结构 在组成上包括 传出神经末梢及其所支配。的肌肉或腺体等 (2)乙图中的C是下一个神经元的 树突__膜__或_胞__体__膜_____
若抑制该细胞的呼吸作用发现神经纤维在一次兴奋后其细胞膜不能再恢复到静息状态所以带电离子通过细胞膜的方式是4甲图中提供电刺激设备电位测量仪等必要的实验用具验证兴奋在神经元之间进行单向传导的步效应器传出神经末梢及其所支配的肌肉或腺体等递质只能从突触前膜释放作用于突触后膜主动运输先电刺激或上一点测量上有无电位变化
ቤተ መጻሕፍቲ ባይዱ
• 对于一个神经纤维上电位的测定,如电流表指针发生了偏转,则说明 A B两点存在电势差。一般的做法是在该神经纤维上C点给一个足够 强度的刺激,从而观察电流表发生几次偏转,方向是否一致?
• 当刺激点C到达A、B两点距离相等时,神经冲动同时到达A、B两点, 两点虽然均产生了动作电位,但是仍然不存在电势差,因此电流表不 会发生偏转。只要刺激点C与A、B点在同一神经元上,且CA与CB不 相等,电流表就会发生两次方向相反的偏转。
• (4)甲图中,提供电刺激设备、电位测量仪等必要的实验用具,验证兴奋
在神经元之间进行单向传导的步
骤
先电刺_激_②__(__或_②__上_一__点__)_测_ 量④上有无电位变化;再电刺激④
(或④上一点),测量②上有无电位变化
• 5)若按(4)步骤进行,改为探究神经元之间的方向,其结论为 若两次都测到电位变化,则为双向传导;若④上有电位变化而②上没有, 则为单向传导且只能从②→④;若②上有电位变化而④上没有,则为单向 传导且只能从④→②
如何理解静息电位和动作电位的形成机制
如何理解静息电位和动作电位的形成机制作者:陈学大来源:《中学课程辅导·教师教育》 2018年第10期高三教学复习中,“兴奋在神经纤维上的传导”是一个必讲内容,其中“静息电位和动作电位的形成机制”在书上(人教版必修三第18页)以小字呈现,且描述极为简略,学生看后还是不甚清楚,而高考命题又涉及此内容,如:如2009山东卷第8题和2010湖南卷第5题等,如何让学生彻底弄懂,在考试中遇到类似问题心里有底?首先它就要求老师必须清楚。
我参阅了《普通生物学》及《人体及动物生理学》等书籍,综述如下,供同行们参考。
一、静息电位(Resting Potential)指细胞未受刺激时,存在于细胞膜内外两侧的外正内负的电位差。
也称跨膜静息电位。
(1)形成机制正常时胞内的K+浓度和有机负离子(A-)浓度比胞外高,而胞外的Na+浓度和CL-浓度比胞内高。
这种情况下,K+和A-有向膜外扩散的趋势,而Na+和CL-有向膜内扩散的趋势。
但细胞膜在安静时,对K+的通透性较大,对Na+和CL-的通透性很小,而对A-几乎不通透。
因此,K+顺浓度梯度由膜内扩散到膜外使膜外具有较多的正电荷,有机负离子A-由于不能透过膜而使膜内具有较多的负电荷。
造成了膜外变正、膜内变负的极化状态。
由K+扩散到膜外造成的外正内负的电位差,将成为阻止K+外移的力量,而随K+外移的增加,阻止K+外移的电位差也增大。
当促使K+外移的浓度差和阻止K+外移的电位差这两种力量达到平衡时,经膜的K+净通量为零。
此时,膜两侧的电位差就稳定于某一数值不变,此电位差称为K+的平衡电位,神经细胞膜的静息电位在数值上接近于K+的平衡电位。
(2)静息电位值的大小及影响因素静息电位是一个相对静止的膜电位固定值,不同细胞的数值不同。
如:哺乳动物神经细胞的静息电位为-70mV,骨骼肌细胞为-90mV。
静息电位主要是由K+向膜外扩散而造成的。
如果人工改变细胞膜外K+的浓度,当K+浓度增高时测得的静息电位值减小,反之则增大。
静息电位和动作电位的概念及形成机制
静息电位和动作电位的概念及形成机制一、静息电位的概念静息电位是指在神经元或肌细胞处于静息状态时,细胞内外的电位差。
在细胞膜内外侧产生的电压差异,形成静息电位。
一般情况下,静息电位为-70mV左右。
静息电位的存在,是生物神经元和肌肉细胞能够进行正常信号传导和兴奋性行为的重要基础。
静息电位是由细胞质内、外离子浓度梯度和细胞膜通透性共同作用的结果。
在静息状态下,细胞质内部存在高浓度的钾离子,而细胞外则存在高浓度的钠离子和氯离子。
细胞膜对钠、钾和氯离子的通透性不同,导致了这种电位差的形成。
静息电位的维持对于细胞的正常功能和生理活动至关重要。
它不仅能够维持细胞内外离子平衡,还能够保证细胞的正常兴奋和传导。
二、动作电位的概念动作电位是指在细胞兴奋状态下,细胞膜内外突然出现的短暂电压变化。
动作电位是神经元和肌肉细胞进行信号传导的基本单位,是产生神经冲动和肌肉收缩的物理基础。
动作电位的形成需要经历一系列的复杂过程。
当细胞受到刺激而兴奋时,细胞膜上的离子通道会发生开放和关闭的变化,导致钠离子快速内流和钾离子慢速外流。
这一过程导致了细胞膜内外的电位迅速变化,从而产生了动作电位。
动作电位具有快速传导、一次触发和不衰减的特点,能够保证神经信号和肌肉收缩的快速、准确和有效传导。
三、静息电位和动作电位的形成机制1. 静息电位的形成机制静息电位的形成受到静息时细胞膜的通透性和离子浓度梯度的影响。
细胞膜上的钠-钾泵能够使细胞内钠离子浓度降低,细胞内外存在电学和化学的离子浓度梯度。
细胞膜上的钠和钾通道保持半开状态,使得细胞膜内外的离子保持动态平衡,从而维持了静息电位的稳定状态。
2. 动作电位的形成机制动作电位的形成涉及到离子通道的快速开放和关闭。
当细胞受到刺激而兴奋时,细胞膜上的钠通道会迅速开放,使得钠离子快速内流,细胞膜内外的电位快速升高;随后钠通道关闭,钾通道开放,钾离子慢速外流,使得细胞膜内外的电位迅速下降和恢复。
这一过程形成了动作电位。
温州医科大学在职研究生课程考试-生理学
3.简述电压门控钠通道和钾通道的性状及其特点。高钾血症对电压门控钠通道的性状有何影响?
电压门控钠通道的功能状态:
通道性状
激活门(m门)
失活门(n门)
通道特性
静息
关
开
关闭,有正常的开放能力
激活
开
开
开放,允许Na+内流
失活
开
关
关闭,无开放能力
电压门控钾通道的功能状态(有激活门,无失活门)
通道性状
激活门(n门)
通道特性
激活
开
开放,允许K+外流
静息
关
关闭,有正常的开放能力
高血钾引起静息电位(RP)水平上移,无激活,钠通道由静息直接到失活状态。
4.试述平滑肌细胞胞质内Ca2+浓度升高的途径及其引起收缩的机制。
答:平滑肌细胞胞质内Ca2+浓度升高的途径有:
↓
新纹状体MSN(中型多棘神经元)
↓↓
D1受体(+)D2受体(+)
↓↓
D1 MSN(+)D2 MSN(—)
↓↓
直接通路(+)间接通路(—)
↓↓
↓
运动皮层(+)
帕金森病的病变部位在中脑黑质,DA神经元变性受损→直接通路活动减弱、间接通路活动增强→运动皮层抑制→出现帕金森病的症状。
治疗:①左旋多巴:增加脑内多巴胺合成;②DA受体激动剂:如嗅隐亭;③M受体拮抗剂:东莨菪碱、苯海索等。
当平滑肌细胞胞质内Ca2+浓度升高,4个Ca2+与胞质内的1个钙调蛋白(CaM)形成钙-钙调蛋白复合物(Ca2+-CaM),进一步结合并激活胞质内的肌球蛋白轻链激酶(MLCK),活化的MLCK使肌球蛋白横桥中的调节轻链发生磷酸化,引起横桥构象改变、ATP酶活性增强;激活后的横桥与肌动蛋白发生结合、扭动、解离、复位、再结合,进入横桥周期,引起肌肉收缩。
静息电位和动作电位的定义和形成机制
静息电位和动作电位的定义和形成机制嘿,伙计们!今天我们要聊聊一个非常有趣的话题——静息电位和动作电位。
你们知道它们是什么吗?别急,我会用最简单的语言来解释给你们听。
让我们来了解一下静息电位。
静息电位就像是我们的身体在休息时的电量。
想象一下,你早上起床,洗漱完毕,然后坐下来吃早餐。
这个时候,你的身体处于放松状态,没有做什么剧烈运动。
这时候,你的身体会产生一种叫做静息电位的电信号。
这个信号告诉你的身体,现在是休息的时候,不要做太多事情。
就像我们晚上睡觉时,手机会自动关机一样,这是为了节省电量。
那么,动作电位又是什么呢?动作电位就像是我们的身体在做运动时的电量。
比如说,你下午去跑步,或者和朋友们打篮球。
这个时候,你的身体需要消耗能量,所以会产生一种叫做动作电位的电信号。
这个信号告诉你的身体,现在是活跃的时候,要多做一些运动。
就像我们晚上看电视或者玩手机时,手机会充电一样,这是为了给我们的身体提供能量。
现在你们应该明白了吧?静息电位和动作电位就像是我们身体的两种状态,一种是休息状态,一种是活动状态。
这两种状态都是非常重要的,因为它们保证了我们身体的正常运作。
接下来,我要告诉你们一个关于静息电位和动作电位的小秘密。
你知道为什么我们的身体会有这两种状态吗?其实,这是因为我们的神经系统在起作用。
神经系统就像是我们身体的管家,它负责调节我们身体的各种功能。
当我们的身体处于休息状态时,神经系统会让我们的心脏跳得慢一些,这样就能节省能量。
而当我们的身体处于活动状态时,神经系统会让我们的心脏跳得快一些,这样就能提供更多的能量。
静息电位和动作电位是我们身体非常重要的两种状态。
它们分别代表了我们身体的休息和活动状态。
希望通过今天的分享,你们对这两个概念有了更深入的了解。
记住哦,保持良好的作息习惯对我们的身体是非常有益的。
所以,无论是在休息还是在活动的时候,都要注意休息和运动的平衡哦!好了,今天的分享就到这里啦!希望大家喜欢这次的内容。
高中生物校本课程-动作电位和静息电位的形成
一、细胞膜上的转运蛋白
• 在离子通道打开时,其通透途径是对膜两侧同时开放的; • 通过离子通道运输的底物只能通过电化学浓度梯度运输; • 离子通道的转运速度既可以是快,也可以慢。
离子通道的特征
• (1)离子选择性 • 决定因素:通道内的孔径、电荷 • 阴离子与阳离子: • Na+通道、K+通道、Cl-通道、Ca2+通道 • 特异性与非特异性 • Na+通道:Na +/NH4+/ 少量K+
• 神经细胞约-70 mV Nhomakorabea• 骨骼肌和心肌细胞约- 90 mV • 平滑肌细胞约- 55 mV • 红细胞约-10 mV
神经细胞: - 70 mV -70mV-→-90mV RP增大 -70 mV→- -50 mV RP减小
静息电位的产生机制
2、动作电位
③动作电位发生机制
欢迎大家批评指正!
• (2)门控特性 • 门控:开放状态,关闭状态 • 电压门控、配体门控、光控、温度敏感门控 • 非门控通道(漏通道)
电压门控的K+通道
如:突触后膜上钠离子 通道 允许不同离子进入,但 主要是钠离子。 是不是大量神经递质才 能让大量的离子通道打 开呢?
• 与底物结合,交替开放,不会同时开放。 • 载体蛋白可以介导特异性底物顺浓度梯度转运和逆浓度梯度转运。 • 特异性底物逆浓度梯度转运消耗的能量来自于化学反应(ATP)、光
或电化学势能(协同转运)
载体蛋白的活 动是细胞膜内 外产生离子浓 度差的基础。
二、静息电位和动作电位
• 1、静息电位(RP):
• ①概念:是指细胞在安静状态下(未受刺激时) ,存在于细胞膜两 侧的外正内负的电位差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静息电位,动作电位的产生机制及影响其大小的主要因素
一、静息电位(resting potential, RP)
1、概念:静息电位:细胞在静息(未受刺激)状态下膜两侧的电位差称静息电位(膜电位)
2、静息时细胞的特点
静息时细胞内外离子的特点:①细胞内[K+]一般比细胞外液高30倍;②细胞内带负电荷的生物大分子(主要是蛋白质)比细胞外液高10倍;③细胞外液中[Na+]和[CL-]都比细胞内高20倍。
所以,细胞内正离子主要为K+,负离子主要为带负电荷的蛋白质分子。
细胞外正离子主要为Na+,负离子主要为CL- 。
静息时细胞膜的选择通透性:①带负电荷的蛋白质分子完全不可通过;②Na+和CL-通透性极小;③K+有较大的通透性。
3、静息电位形成的机理:细胞内的K+在细胞膜内外浓度差(内高外低)作用下携带正离子外流,当膜内外K+浓度差(K+外流动力)和K+外流所形成的电位差(K+外流阻力)达到动态平衡时,K+的净通量为零,此时所形成的电位差稳定于某一数值而不再增加,即形成静息电位;所以说静息电位实质为K+外流所形成的跨膜电位。
细胞内外的K+不均衡分布和静息状态下细胞膜对K+的通透性是细胞在静息状态下保持极化状态的基础。
二、动作电位
1. 动作电位的概念动作电位(action potential):可兴奋组织接受刺激而发生兴奋时,细胞膜原有的极化状态立即消失,并在膜的内外两侧发生一系列的电位变化,这种变化的电位称为动作电位。
2. 动作电位形成的机理
证明:①人工地改变细胞外液Na+浓度,动作电位上升支及其幅度也随之改变,*海水实验;
②用河豚毒阻断Na+通道后,动作电位幅度↓或消失;③膜片钳实验。
3.动作电位组成动作电位的扫描波形包括升支和降支两部分。
如采用慢扫描并高度放大,则升支和降支的开始部分显示为尖锐的剑锋状,故动作电位又称为锋电位。
动作电位的升支代表细胞受到刺激后膜的去极化和反极化过程,即膜内电位由静息时的-70毫伏逐渐减小到-55毫伏(由于这一膜电位可以激发动作电位产生,故把-55毫伏的膜电位称为阈电位);然后,膜电位再减小到0毫伏(去极化结束);最后膜电位由0毫伏迅速上升到+35毫伏(反极化)。
通常把膜电位超出0的正值部分称为超射。
动作电位的降支代表细胞的复极化过程。
在此过程中,膜电位还要发生变化,先出现微弱的去极化,接着出现超极化;前者称为负后电位,后者称为正后电位。
负后电位使膜电位减小,临近阈电位而容易被激发动作电位,故也称之为超常期后电位或去极化电位;正后电位使膜电位增大,远离阈电位而不易发生动作电位,故也称之为低常期后电位或超极化后电位。
动作电位出现时间与细胞兴奋性变化时间是相吻合的。
动作电位的升支所占时间相当于绝对不应期,降支前半段所占时间相当于相对不应期,负后电位所占时间相当于超常期,正后电位所占时间相当于低常期。
通常所说的神经冲动,就是指一个沿着神经纤维传导的动作电位或锋电位
1 / 1。