2020年6月江苏省南京市普通高中2020届高三下学期第三次高考模拟考试数学试题(含附加题)答案

合集下载

24届高三下学期开学摸底考试卷(新七省)01-2023-2024学年高中下学期开学摸底考试卷含答案

24届高三下学期开学摸底考试卷(新七省)01-2023-2024学年高中下学期开学摸底考试卷含答案

2024届高三下学期开学摸底考试卷(七省新高考通用)01地理(16+3模式)(考试时间:75分钟试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.考试范围:高考全部内容。

一、选择题:本题共16小题,每小题3分,共48分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

随着中国老龄化程度加深及经济社会转型,流动老人的流动原因呈现多样化趋势,包括务工经商、家属随迁、投靠亲友、拆迁搬家和异地养老等。

其中,异地养老与家属随迁是两类典型的老年人口流动原因。

前者是一种新兴养老模式,指老年人离开原本所居住地(往往以离开县级以上的地区为标志)后流动到另一地区,明确以养老为目的的流动方式;后者是一种相对传统的养老模式,指以照顾孙辈为主要目的而流入子女家庭所在地。

这两类老年群体在迁入地的居留意愿存在一定差异(如下表)。

完成1-3题。

1.异地养老的老年群体在迁入地的居留意愿高于家属随迁老年群体,其主要取决于()A.自身经济能力B.迁入地医疗条件C.自身消费观念D.迁入地户籍政策2.异地养老群体中,流入特大及超大城市的居留意愿比流入中等城市的低,可能是因为()①特大及超大城市消费水平高①特大和超大城市人均服务资源少①中等城市亲朋好友少,人际关系简单①不少中等城市环境优美A.①①B.①①C.①①D.①①3.为提升老年人在迁入城市的居留意愿,建议()A.全面放开老年群体落户条件B.创造适合老年人的就业创业机会C.禁止用社会资金发展养老产业D.推动不同城市之间养老服务联动无花果是一种喜光、耐高温、耐旱的落叶灌木,无花果成熟后松软细嫩,营养价值很高。

土耳其是地中海沿岸无花果种植面积最大的国家,主要分布于艾登省德雷斯河北岸的无花果农户在果成熟后采摘下来,放在树下托盘上晾晒几天,晾干才装车运往市场。

江苏省苏州园区2025届高三第三次模拟考试数学试卷含解析

江苏省苏州园区2025届高三第三次模拟考试数学试卷含解析

江苏省苏州园区2025届高三第三次模拟考试数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若点位于由曲线与围成的封闭区域内(包括边界),则的取值范围是( )A .B .C .D .2.某歌手大赛进行电视直播,比赛现场有6名特约嘉宾给每位参赛选手评分,场内外的观众可以通过网络平台给每位参赛选手评分.某选手参加比赛后,现场嘉宾的评分情况如下表,场内外共有数万名观众参与了评分,组织方将观众评分按照[)70,80,[)80,90,[]90,100分组,绘成频率分布直方图如下: 嘉宾 A BC D EF评分969596 89 9798嘉宾评分的平均数为1x ,场内外的观众评分的平均数为2x ,所有嘉宾与场内外的观众评分的平均数为x ,则下列选项正确的是( ) A .122x x x +=B .122x x x +>C .122x x x +<D .12122x x x x x +>>>3.已知集合{}A m =,{}1,B m =,若A B A ⋃=,则m =( ) A .03B .0或3C .13D .1或34.已知函数()f x 是R 上的偶函数,()g x 是R 的奇函数,且()()1g x f x =-,则()2019f 的值为( ) A .2B .0C .2-D .2±5.设函数()()21ln 11f x x x=+-+,则使得()()1f x f >成立的x 的取值范围是( ). A .()1,+∞ B .()(),11,-∞-+∞ C .()1,1-D .()()1,00,1-6.已知a ,b ,c 分别是ABC 三个内角A ,B ,C 的对边,cos 3sin a C c A b c +=+,则A =( )A .6π B .4π C .3π D .23π 7.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E 、F 且EF =22,则下列结论中错误的是( )A .AC ⊥BEB .EF //平面ABCDC .三棱锥A -BEF 的体积为定值D .异面直线AE ,BF 所成的角为定值8.已知1F ,2F 是椭圆22221(0)x y C a b a b +=>>:的左、右焦点,过2F 的直线交椭圆于,P Q 两点.若2211||,||,||,||QF PF PF QF 依次构成等差数列,且1||PQ PF =,则椭圆C 的离心率为A .23B .34C .155D 1059.已知实数x ,y 满足10260x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩,则22z x y =+的最大值等于( )A .2B .22C .4D .810.如图所示的“数字塔”有以下规律:每一层最左与最右的数字均为2,除此之外每个数字均为其两肩的数字之积,则该“数字塔”前10层的所有数字之积最接近()lg 20.3≈( )A .30010B .40010C .50010D .6001011.已知半径为2的球内有一个内接圆柱,若圆柱的高为2,则球的体积与圆柱的体积的比为( ) A .43B .916C .34D .16912.已知三棱锥P ABC -的四个顶点都在球O 的球面上,PA ⊥平面ABC ,ABC ∆是边长为23的等边三角形,若球O 的表面积为20π,则直线PC 与平面PAB 所成角的正切值为( ) A .34B .73C .377D .74二、填空题:本题共4小题,每小题5分,共20分。

南京市2020届高三年级数学第三次模拟考试参考答案

南京市2020届高三年级数学第三次模拟考试参考答案

南京市2020届高三年级第三次模拟考试数学参考答案及评分标准说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.{x |1<x <4} 2.2 3.60 4.10 5.236. 37.2n +1-2 8.62 9.8310.[2,4] 11.6 12. [-2,+∞) 13.-9414.38二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)证明:(1)取PC 中点G ,连接DG 、FG .在△PBC 中,因为F ,G 分别为PB ,PC 的中点,所以GF ∥BC ,GF =12BC .因为底面ABCD 为矩形,且E 为AD 的中点,所以DE ∥BC ,DE =12BC , ······························································ 2分所以GF ∥DE ,GF =DE ,所以四边形DEFG 为平行四边形, 所以EF ∥DG . ············································································· 4分 又因为EF ⊄平面PCD ,DG ⊂平面PCD ,所以EF ∥平面PCD . ······································································ 6分 (2)因为底面ABCD 为矩形,所以CD ⊥AD .又因为平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,CD ⊂平面ABCD ,所以CD ⊥平面P AD . ··································································· 10分 因为P A ⊂平面P AD ,所以CD ⊥P A . ·················································· 12分 又因为P A ⊥PD ,PD ⊂平面PCD ,CD ⊂平面PCD ,PD ∩CD =D ,所以P A ⊥平面PCD . 因为P A ⊂平面P AB ,所以平面P AB ⊥平面PCD . ·································· 14分16.(本小题满分14分)解:(1) 因为向量m =(cos x ,sin x ),n =(cos x ,-sin x ),所以 f (x )=m ·n +12=cos 2x -sin 2x +12=cos2x +12. ··································· 2分因为f (x 2)=1,所以cos x +12=1,即cos x =12.又因为x ∈(0,π) ,所以x =π3, ························································· 4分所以tan(x +π4)=tan(π3+π4)=tan π3+ tan π41-tan π3tanπ4=-2-3. ······························· 6分(2)若f (α)=-110,则cos2α+12=-110,即cos2α=-35.因为α∈(π2,3π4),所以2α∈(π,3π2),所以sin2α=-1-cos 22α=-45. ········ 8分因为sin β=7210,β∈(0,π2),所以cos β=1-sin 2β=210, ······················· 10分所以cos(2α+β)=cos2αcos β-sin2αsin β=(-35)×210-(-45)×7210=22. ····· 12分又因为2α∈(π,3π2),β∈(0,π2),所以2α+β∈(π,2π),所以2α+β的值为7π4. ····································································· 14分17.(本小题满分14分)解:如图,以O 为原点,正东方向为x 轴,正北方向为y 轴,建立直角坐标系xOy . 因为OB =2013,tan ∠AOB =23,OA =100,所以点B (60,40),且A (100,0). ···························································· 2分(1)设快艇立即出发经过t 小时后两船相遇于点C ,则OC =105(t +2),AC =50t .因为OA =100,cos ∠AOD =55, 所以AC 2=OA 2+OC 2-2OA ·OC ·cos ∠AOD ,即(50t )2=1002+[105(t +2)]2-2×100×105(t +2)×55. 化得t 2=4,解得t 1=2,t 2=-2(舍去), ·············································· 4分 所以OC =405.因为cos ∠AOD =55,所以sin ∠AOD =255,所以C (40,80),所以直线AC 的方程为y =-43(x -100),即4x +3y -400=0. ······················· 6分因为圆心B 到直线AC 的距离d =|4×60+3×40-400|42+32=8,而圆B 的半径r =85, 所以d <r ,此时直线AC 与圆B 相交,所以快艇有触礁的危险.答:若快艇立即出发有触礁的危险. ······················································· 8分 (2)设快艇所走的直线AE 与圆B 相切,且与科考船相遇于点E . 设直线AE 的方程为y =k (x -100),即kx -y -100k =0.因为直线AE 与圆B 相切,所以圆心B 到直线AC 的距离d =|60k -40-100k |12+k 2=85,即2k 2+5k +2=0,解得k =-2或k =-12. ············································· 10分由(1)可知k =-12舍去.因为cos ∠AOD =55,所以tan ∠AOD =2,所以直线OD 的方程为y =2x . 由⎩⎨⎧y =2x , y =-2(x -100),解得⎩⎨⎧x =50,y =100,所以E (50,100),所以AE =505,OE =505, ······························································· 12分此时两船的时间差为505105-50550=5-5,所以x ≥5-5-2=3-5.答:x 的最小值为(3-5)小时. ···························································· 14分18.(本小题满分16分)解:(1)因为椭圆x 2a 2+y 2b 2=1(a >b >0)过点(-2,0)和 (1,32),所以a =2,1a 2+34b2=1,解得b 2=1,所以椭圆C 的方程为x 24+y 2=1. ·························································· 2分(2)因为B 为左顶点,所以B (-2,0).因为四边形AMBO 为平行四边形,所以AM ∥BO ,且AM =BO =2. ··········· 4分 设点M (x 0,y 0),则A (x 0+2,y 0).因为点M ,A 在椭圆C 上,所以⎩⎨⎧x 024+y 02=1, (x 0+2)24+y 02=1,解得⎩⎪⎨⎪⎧x 0=-1, y 0=±32, 所以M (-1,±32). ········································································ 6分 (3) 因为直线AB 的斜率存在,所以设直线AB 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2). 由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,消去y ,得(4k 2+1)x 2+8kmx +4m 2-4=0, 则有x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k 2. ···················································· 8分因为平行四边形AMBO ,所以OM →=OA →+OB →=(x 1+x 2,y 1+y 2).因为x 1+x 2=-8km 1+4k 2,所以y 1+y 2=k (x 1+x 2)+2m =k ·-8km 1+4k 2+2m =2m1+4k 2, 所以M (-8km 1+4k 2,2m1+4k 2). ·································································· 10分因为点M 在椭圆C 上,所以将点M 的坐标代入椭圆C 的方程,化得4m 2=4k 2+1.① ········································································ 12分 因为A ,M ,B ,O 四点共圆,所以平行四边形AMBO 是矩形,且OA ⊥OB , 所以OA →·OB →=x 1x 2+y 1y 2=0. 因为y 1y 2=(kx 1+m )(kx 1+m )=k 2x 1x 2+km (x 1+x 2)+m 2=m2-4 k 21+4k 2,所以x 1x 2+y 1y 2=4m 2-41+4k 2+m 2-4k 21+4k 2=0,化得5m 2=4k 2+4.② ················· 14分 由①②解得k 2=114,m 2=3,此时△>0,因此k =±112.所以所求直线AB 的斜率为±112. ····················································· 16分 19. (本小题满分16分)解:(1)当a =1时,f (x )=e xx 2-x +1,所以函数f (x )的定义域为R ,f'(x )=e x (x -1)(x -2)(x 2-x +1)2.令f'(x )<0,解得1<x <2,所以函数f (x )的单调减区间为(1,2). ··················································· 2分 (2)由函数f (x )的定义域为R ,得x 2-ax +a ≠0恒成立,所以a 2-4a <0,解得0<a <4. ························································· 4分 方法1由f (x )=e xx 2-ax +a ,得f'(x )=e x (x -a )(x -2)(x 2-ax +a )2.①当a =2时,f (2)=f (a ),不符题意. ②当0<a <2时,因为当a <x <2时,f ′(x )<0,所以f (x )在(a ,2)上单调递减,所以f (a )>f (2),不符题意. ··························································· 6分 ③当2<a <4时,因为当2<x <a 时,f ′(x )<0,所以f (x )在(2,a )上单调递减, 所以f (a )<f (2),满足题意.综上,a 的取值范围为(2,4). ························································ 8分方法2由f (2)>f (a ),得e 24-a >e aa .因为0<a <4,所以不等式可化为e 2>e a a(4-a ).设函数g (x )=e xx (4-x )-e 2, 0<x <4. ·················································· 6分因为g'(x )=e x·-(x -2)2x 2≤0恒成立,所以g (x )在(0,4)上单调递减.又因为g (2)=0,所以g (x )<0的解集为(2,4).所以,a 的取值范围为(2,4). ··························································· 8分 (3)证明:设切点为(x 0,f (x 0)),则f'(x 0)=e x 0(x 0-2)(x 0-a )(x 02-ax 0+a )2,所以切线方程为y -ex 0x 02-ax 0+a =e x 0(x 0-2)(x 0-a )(x 02-ax 0+a )2×(x -x 0).由0-ex 0x 02-ax 0+a =e x 0(x 0-2)(x 0-a )(x 02-ax 0+a )2×(0-x 0),化简得x 03-(a +3)x 02+3ax 0-a =0. ···················································· 10分 设h (x )=x 3-(a +3)x 2+3ax -a ,a ∈(2,4), 则只要证明函数h (x )有且仅有三个不同的零点.由(2)可知a ∈(2,4)时,函数h (x )的定义域为R ,h'(x )=3x 2-2(a +3)x +3a . 因为△=4(a +3)2-36a =4(a -32)2+27>0恒成立,所以h'(x )=0有两不相等的实数根x 1和x 2,不妨x 1<x 2. 因为所以函数h (x )最多有三个零点. ························································· 12分 因为a ∈(2,4),所以h (0)=-a <0,h (1)=a -2>0,h (2)=a -4<0,h (5)=50-11a >0, 所以h (0)h (1)<0,h (1)h (2)<0,h (2)h (5)<0.因为函数的图象不间断,所以函数h (x )在(0,1),(1,2),(2,5)上分别至少有一个零点. 综上所述,函数h (x )有且仅有三个零点. ············································· 16分20.(本小题满分16分)解:(1) 因为{a n }的“L 数列”为{12n },所以a n a n +1=12n ,n ∈N *,即a n +1a n =2n ,所以n ≥2时,a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=2n -1·2n -2·…·2·1=2(n -1)+(n -2)+…+1=2n (n -1)2.又a 1=1符合上式,所以{a n }的通项公式为a n =2n (n -1)2,n ∈N *. ·················· 2分(2)因为a n =n +k -3(k >0),且n ≥2,n ∈N *时,a n ≠0,所以k ≠1. 方法1设b n =a n a n +1,n ∈N *,所以b n =n +k -3(n +1)+k -3=1-1n +k -2.因为{b n }为递增数列,所以b n +1-b n >0对n ∈N*恒成立, 即1n +k -2-1n +k -1>0对n ∈N*恒成立. ············································ 4分因为1n +k -2-1n +k -1=1(n +k -2)(n +k -1),所以1n +k -2-1n +k -1>0等价于(n +k -2)(n +k -1)>0.当0<k <1时,因为n =1时,(n +k -2)(n +k -1)<0,不符合题意. ··········· 6分 当k >1时,n +k -1>n +k -2>0,所以(n +k -2)(n +k -1)>0,综上,k 的取值范围是(1,+∞). ························································· 8分 方法2令f (x )=1-1x +k -2,所以f (x )在区间(-∞,2-k )和区间(2-k ,+∞)上单调递增.当0<k <1时,f (1)=1-1k -1>1,f (2)=1-1k <1,所以b 2<b 1,不符合题意. ···················· 6分当k >1时,因为2-k <1,所以f (x )在[1,+∞)上单调递增,所以{b n }单调递增,符合题意.综上,k 的取值范围是(1,+∞). ························································· 8分(3)存在满足条件的等差数列{c n },证明如下:因为a k a k +1=1+p k -11+p k =1p +1-1p 1+p k,k ∈N*, ·············································· 10分所以S n =n p +(1-1p )·(11+p +11+p 2+…+11+p n -1+11+p n). 又因为p >1,所以1-1p >0,所以n p <S n <n p +(1-1p )·(1p +1p 2+…+1p n -1+1p n ),即n p <S n <n p +1p ·[1-(1p )n ]. ································································· 14分 因为1p ·[1-(1p )n ]<1p ,所以n p <S n <n +1p.设c n =np ,则c n +1-c n =n +1p -n p =1p,且c n <S n <c n +1,所以存在等差数列{c n }满足题意. ······················································· 16分南京市2020届高三年级第三次模拟考试数学附加题参考答案及评分标准说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数.21.【选做题】在A 、B 、C 三小题中只能选做2题,每小题10分,共计20分.请在答卷..纸.指定区域内.....作答.解答应写出文字说明、证明过程或演算步骤.A .选修4—2:矩阵与变换解:(1) ⎣⎢⎡⎦⎥⎤1 -1a 0 ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤0a .··································································· 2分 因为点P (1,1)在矩阵A 的变换下得到点P ′(0,-2),所以a =-2,所以A =⎣⎢⎡⎦⎥⎤1 -1-2 0. ········································································· 4分 (2)因为A =⎣⎢⎡⎦⎥⎤1 -1-2 0,所以A 2=⎣⎢⎡⎦⎥⎤1 -1-2 0 ⎣⎢⎡⎦⎥⎤1 -1-2 0=⎣⎢⎡⎦⎥⎤3 -1-2 2, ·············· 6分 所以A 2⎣⎡⎦⎤03=⎣⎢⎡⎦⎥⎤3 -1-2 2 ⎣⎡⎦⎤03=⎣⎢⎡⎦⎥⎤-36, 所以,点Q ′的坐标为(-3,6). ························································ 10分B .选修4—4:坐标系与参数方程解:由l 的参数方程⎩⎨⎧x =3t ,y =1+t(t 为参数)得直线l 方程为x -3y +3=0. ············· 2分曲线C 上的点到直线l 的距离d =|1+cos θ- 3 sin θ+3|2 ······························ 4分=|2cos(θ+π3)+1+3|2. ········································································ 6分当θ+π3=2k π,即θ=-π3+2k π(k ∈Z )时, ·················································· 8分曲线C 上的点到直线l 的距离取最大值3+32. ········································ 10分C .选修4—5:不等式选讲 证明:因为a ,b 为非负实数,所以a 3+b 3-ab (a 2+b 2)=a 2a (a -b )+b 2b (b -a )=(a -b )[(a )5-(b )5]. ·································· 4分 若a ≥b 时,a ≥b ,从而(a )5≥(b )5,得(a -b )·[(a )5-(b )5]≥0. ···························································· 6分 若a <b 时,a <b ,从而(a )5<(b )5,得(a -b )·[(a )5-(b )5]>0. ···························································· 8分 综上,a 3+b 3≥ab (a 2+b 2). ····························································· 10分 22.(本小题满分10分)解:(1)因为三棱柱ABC -A 1B 1C 1为直三棱柱,所以AA 1⊥平面ABC ,所以AA 1⊥AB ,AA 1⊥AC .又AB ⊥AC ,所以以{AB →,AC →,AA 1→}为正交基底建立如图所示的 空间直角坐标系A —xyz .设AA 1=t (t >0),又AB =3,AC =4,则A (0,0,0),C 1(0,4,t ),B 1(3,0,t ),C (0,4,0),所以AC 1→=(0,4,t ),B 1C →=(-3,4,-t ). ·············································· 2分 因为B 1C ⊥AC 1,所以B 1C →·AC 1→=0,即16-t 2=0,解得t =4,所以AA 1的长为4. ············································································· 4分 (2)由(1)知B (3,0,0),C (0,4,0),A 1(0,0,4), 所以A 1C →=(0,4,-4),BC →=(-3,4,0). 设n =(x ,y ,z )为平面A 1CB 的法向量,则n ·A 1C →=0,n ·BC →=0,即⎩⎨⎧4y -4z =0,-3x +4y =0.取y =3,解得z =3,x =4,所以n =(4,3,3)为平面A 1CB 的一个法向量. 又因为AB ⊥面AA 1C 1C ,所以AB →=(3,0,0)为平面A 1CA 的一个法向量,则cos <n ,AB →>=AB →·n |AB →|·|n |=123·42+32+32=434, ····································· 6分所以sin <n ,AB →>=317.设P (3,0,m ),其中0≤m ≤4,则CP →=(3,-4,m ). 因为AB →=(3,0,0)为平面A 1CA 的一个法向量,所以cos <CP →,AB →>=AB →·CP →|AB →|·|CP →|=93·32+(-4)2+m 2=3m 2+25, 所以直线PC 与平面AA 1C 1C 的所成角的正弦值为3m 2+25. ·························· 8分 因为直线PC 与平面AA 1C 1C 所成角和二面角B -A 1C -A 的大小相等, 所以3m 2+25=317,此时方程无解,所以侧棱BB 1上不存在点P ,使得直线PC 与平面AA 1C 1C 所成角和二面角B -A 1C -A 的大小相等 . ········································································································ 10分 23.(本小题满分10分)解:(1)根据题意,每次取出的球是白球的概率为25,取出的球是黑球的概率为35.所以P 1=25×25+C 12×(25)2×35=425+24125=44125. ········································ 2分(2)证明:累计取出白球次数是n +1的情况有:前n 次取出n 次白球,第n +1次取出的是白球,概率为C nn ×(25)n +1;前n +1次取出n 次白球,第n +2次取出的是白球,概率为C nn +1×(25)n +1×35;······································································································ 4分 ……前2n -1 次取出n 次白球,第2n 次取出的是白球,概率为C n2n -1×(25)n +1×(35)n -1;前2n 次取出n 次白球,第2n +1次取出的是白球,概率为C n2n ×(25)n +1×(35)n ;则P n =C n n ×(25)n +1+C n n +1×(25)n +1×35+…+C n 2n -1×(25)n +1×(35)n -1+C n2n ×(25)n +1×(35)n=(25)n +1×[C n n +C n n +1×35+…+C n 2n -1×(35)n -1+C n2n ×(35)n ] =(25)n +1×[C 0n +C 1n +1×35+…+C n -12n -1×(35)n -1+C n 2n ×(35)n ], ························ 6分因此P n +1-P n =(25)n +2×[C 0n +1+C 1n +2×35+…+C n 2n +1×(35)n +C n +12n +2×(35)n +1]-(25)n +1×[C 0n +C 1n +1×35+…+C n -12n -1×(35)n -1+C n 2n ×(35)n ] =(25)n +1×{25×[C 0n +1+C 1n +2×35+…+C n 2n +1×(35)n +C n +12n +2×(35)n +1]。

专题13 利用导数解决函数的极值、最值-学会解题之高三数学万能解题模板(2021版)【原卷版】

专题13 利用导数解决函数的极值、最值-学会解题之高三数学万能解题模板(2021版)【原卷版】

学习界的专题13 利用导数解决函数的极值、最值【高考地位】导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大.类型一利用导数研究函数的极值例1 已知函数f (x) =+ ln x ,求函数f (x)的极值.x【变式演练1】(极值概念)【西藏日喀则市拉孜高级中学2020 届月考】下列说法正确的是()A.当f '(x0 ) = 0 时,则f (x0 ) 为f (x) 的极大值B.当f '(x0 ) = 0 时,则f (x0 ) 为f (x) 的极小值C.当f '(x0 ) = 0 时,则f (x0 ) 为f (x) 的极值D.当f (x0 ) 为f (x) 的极值且f '(x0 ) 存在时,则有f '(x0 ) = 0【变式演练2】(图像与极值)【百师联盟2020 届高三考前预测诊断联考全国卷1】如图为定义在R 上的函数f (x)=ax3 +bx2 +cx +d (a ≠ 0)的图象,则关于它的导函数y =f '(x)的说法错误的是()A.f '(x)存在对称轴B.f '(x)的单调递减区间为⎛-∞,1 ⎫2 ⎪ ⎝⎭C.f '(x)在(1, +∞)上单调递增D.f '(x)存在极大值【变式演练3】(解析式中不含参的极值)【江苏省南通市2020 届高三下学期高考考前模拟卷】已知函数f (x)=(ax2 +x +1)e x ,其中e是自然对数的底数,a ∈R .(1)当a = 2 时,求f (x )的极值;(2)写出函数f (x )的单调增区间;(3)当a = 0 时,在y 轴上是否存在点P,过点P 恰能作函数f (x)图象的两条切线?若存在,求出所有这样的点;若不存在,请说明理由.【变式演练4】(解析式中含参数的极值)【四川省德阳市2020 届高三高考数学(理科)三诊】已知函数f (x )=ax - 2 ln x - 2 ,g (x )=axe x - 4x .(1)求函数f (x )的极值;(2)当a > 0 时,证明:g (x )- 2 (ln x -x +1)≥ 2 (ln a - ln 2 ).【变式演练5】(由极值求参数范围)【黑龙江省哈尔滨一中2020 届高三高考数学(理科)一模】已知函数学习界的007f ( x ) = x ln x -1 (m + 1) x2 - x 有两个极值点,则实数m 的取值范围为()2A . ⎛ - 1 , 0⎫B . ⎛-1, 1 -1⎫C . ⎛ -∞, 1 -1⎫ )D . (-1, +∞)e ⎪ e⎪ e⎪ ⎝ ⎭ ⎝⎭⎝⎭【变式演练 6】(由极值求其他)【四川省江油中学 2020-2021 学年高三上学期开学考试】已知函数f ( x ) = 1x 3 + ax 2 + bx (a , b ∈ R ) 在 x = -3 处取得极大值为 9.3(1) 求 a , b 的值;(2) 求函数 f (x ) 在区间[-4, 4] 上的最大值与最小值.类型二 求函数在闭区间上的最值万能模板内 容使用场景 一般函数类型解题模板第一步 求出函数 f (x ) 在开区间(a , b ) 内所有极值点;第二步 计算函数 f (x ) 在极值点和端点的函数值;第三步 比较其大小关系,其中最大的一个为最大值,最小的一个为最小值.例 2 【河南省天一大联考 2020 届高三阶段性测试】已知函数 f ( x ) = ln x - x , g ( x ) = ax 2+ 2x (a < 0) .(1) 求函数 f( x ) 在⎡1 , e ⎤上的最值; ⎢⎣ e ⎥⎦(2) 求函数 h( x ) = f (x ) + g (x ) 的极值点.【变式演练 7】(极值与最值关系)【安徽省皖江联盟 2019-2020 学年高三上学期 12 月联考】已知函数 f ( x ) 在区间(a , b ) 上可导,则“函数 f ( x ) 在区间(a , b ) 上有最小值”是“存在 x 0 ∈(a ,b ) ,满足 f '(x 0 ) = 0 ”的⎨ 1 ()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【变式演练 8】(由最值求参数范围)【湖北省武汉市 2020 届高三下学期六月模拟】若函数⎧a ln x - x 2 - 2 (x > 0 )f ( x ) = ⎪x + + a (x < 0) 的最大值为 f (-1) ,则实数a 的取值范围为( )⎩⎪ xA . ⎡⎣0, 2e 2 ⎤⎦B . ⎡⎣0, 2e 3⎤⎦C . (0, 2e 2⎤⎦D . (0, 2e 3⎤⎦【变式演练 9】(不含参数最值)【安徽省江淮十校 2020-2021 学年高三上学期第一次联考】已知函数f (x ) = cos 2 x s in 2x ,若存在实数 M ,对任意 x 1 , x 2 ∈R 都有 f ( x 1 ) - f (x 2 ) ≤ M 成立.则 M 的最小值为()A.3 38B.32C.3 3 4D.2 3 3【变式演练 10】(含参最值)【重庆市经开礼嘉中学 2020 届高三下学期期中】已知函数f (x ) = (x - a - 1)e x -1 - 1x 2 + ax , x > 02(1) 若 f (x ) 为单调增函数,求实数 a 的值;(2) 若函数 f (x ) 无最小值,求整数 a 的最小值与最大值之和.【高考再现】1.【2018 年全国普通高等学校招生统一考试数学(江苏卷)】若函数 ƒ(x ) = 䂸x 3 — t x 䂸 + 1(t C R )在(t h + œ) 内有且只有一个零点,则 ƒ(x )在[ — 1h 1]上的最大值与最小值的和为.2【. 2018 年全国普通高等学校招生统一考试理科数学(新课标 I 卷)】已知函数 ƒ x = 䂸sinx + sin 䂸x ,则 ƒ x的最小值是 .3. 【2020 年高考全国Ⅱ卷理数 21】已知函数 f (x ) = sin 2x sin 2x .3 381 2 n (1) 讨论 f ( x ) 在区间(0,π) 的单调性;(2) 证明: f (x ) ≤ ;(3) 设 n ∈ N *,证明: sin 2x sin 22x sin 24x sin 22nx ≤ 3 . 4n4. 【2020 年高考天津卷 20】已知函数 f (x ) = x3+ k ln x (k ∈ R ) , f ' (x ) 为 f ( x ) 的导函数.(Ⅰ)当 k = 6 时,(i ) 求曲线 y = f ( x ) 在点(1, f (1)) 处的切线方程;(ii )求函数 g (x ) = f (x ) - f '(x ) + 9的单调区间和极值;x(Ⅱ)当 k - 3 时,求证:对任意的 x , x ∈[1, +∞) ,且 x> x , 有 f '( x ) + f ' (x ) > f (x 1 )- f (x 2 ) . 1 2 1 2 2x - x 1 25. 【2018 年全国卷Ⅲ理数】已知函数 ƒ x = 䂸+ x + tx 䂸 ln 1 + x — 䂸x .(1) 若 t = t ,证明:当— 1 ǹ x ǹ t 时,ƒ x ǹ t ;当 x Σ t 时,ƒ x Σ t ;(2) 若 x = t 是 ƒ x 的极大值点,求 t .6. 【2018 年全国普通高等学校招生统一考试文科】设函数 ƒ(x ) = [tx 䂸 — (3t + 1)x + 3t + 䂸]e x .(Ⅰ)若曲线 y = ƒ(x )在点(䂸h ƒ(䂸))处的切线斜率为 0,求 a ;(Ⅱ)若 ƒ(x)在 x = 1 处取得极小值,求 a 的取值范围.7. 【2018 年全国普通高等学校招生统一考试文科数学(天津卷)】设函数 ƒ(x )=(x — t 1)(x — t 䂸)(x — t 3),其中t 1h t 䂸h t 3 C R ,且t 1h t 䂸h t 3是公差为 d 的等差数列.(I )若t 䂸 = t h d = 1h 求曲线 y = ƒ(x )在点(t h ƒ(t ))处的切线方程;(II ) 若 d = 3,求 ƒ(x)的极值;4 4 (III ) 若曲线 y = ƒ(x) 与直线 y =— (x — t 䂸) — 6 3有三个互异的公共点,求d 的取值范围.【反馈练习】1.【2020 届高三 6 月质量检测巩固卷数学(文科)】若函数 f ( x ) = e x (-x 2 + 2x + a )在区间(a , a +1) 上存在最大值,则实数a 的取值范围为()⎛ -1 A ., -1 + 5 ⎫ B . (-1, 2)2 2 ⎪ ⎝ ⎭⎛ -1 C . 2 ⎫ , 2⎪⎛ -1 D .2⎫, -1⎪ ⎝ ⎭⎝⎭2. 【黑龙江省大庆市第四中学 2020 届高三下学期第四次检测】若函数 f (x ) = ae x- 1在其定义域上只有 3x个极值点,则实数a 的取值范围()⎛ e 2 ⎫⎛ e 2 ⎫ A . -∞, - ⎪ (1, +∞)⎝⎭ B . -∞, - ⎪⎝⎭C . ⎛-e , -1 ⎫ (1, +∞)D . ⎛-∞, - 1 ⎫4e 2 ⎪ e ⎪ ⎝ ⎭⎝ ⎭xx2 x3. 【湖北省金字三角 2020 届高三下学期高考模拟】已知函数 f ( x ) = e + - ln x 的极值点为1 ,函数 2g ( x ) = e x + x - 2 的零点为 x ,函数 h ( x ) = ln x的最大值为x ,则( ) 2 2x 3A. x 1 > x 2 > x 3B. x 2 > x 1 > x 3C. x 3 > x 1 > x 2D. x 3 > x 2 > x 14. 【湖北省宜昌一中、龙泉中学 2020 届高三下学期 6 月联考】已知函数(ff (e ) = 1,当 x >0 时,下列说法正确的是()ex )满足 x 2 f '(x ) + 2xf (x ) = 1+ ln x ,① f (x ) 只有一个零点;② f (x ) 有两个零点;- 5 + 5 - 5③ f (x) 有一个极小值点;④ f (x) 有一个极大值点A.①③B.①④C.②③D.②④5.【山东省潍坊市2020届高三6月高考模拟】已知函数f(x)的导函数f'(x)=x4(x-1)3(x-2)2(x-3),则下列结论正确的是()A.f (x)在x = 0 处有极大值B.f (x )在x = 2 处有极小值C. f (x)在[1, 3]上单调递减D.f (x )至少有3 个零点6.【云南省曲靖市2020 届高三年级第二次教学质量监测】已知实数a, b 满足0 ≤a ≤1,0 ≤b ≤ 1 ,则函数f (x)=x3 -ax2 +b2 x +1 存在极值的概率为()A.1B.3C.16 6 3D.37.【云南省红河自治州2019-2020 学年高三第二次高中毕业生复习统一检测】下列关于三次函数f ( x) =ax3 +bx2 +cx +d (a ≠ 0) ( x ∈R) 叙述正确的是()①函数f (x) 的图象一定是中心对称图形;②函数f (x) 可能只有一个极值点;③当x ≠-b时,f (x) 在x =x 处的切线与函数y = f (x) 的图象有且仅有两个交点;0 3a 0④当x ≠-b时,则过点(x, f (x))的切线可能有一条或者三条.0 3a 0 0A.①③B.②③C.①④D.②④8.【2020 届江西省分宜中学高三上学期第一次段考】已知e 为自然对数的底数,设函数f (x)=1 x2 -ax +b ln x 存在极大值点x ,且对于a 的任意可能取值,恒有极大值f (x )< 0 ,则下列结论2 0 0bb ( ) 中正确的是()A. 存在 x 0= ,使得f (x 0 ) < - 12eB. 存在 x 0= ,使得f (x 0 ) > -e 2C.b 的最大值为e 3D.b 的最大值为 2e 2ax 2⎛ 1 , 3⎫9. 【四川省内江市 2020 届高三下学期第三次模拟考试】函数f (x )= 2+(1﹣2a )x ﹣2ln x 在区间 2 ⎪⎝ ⎭内有极小值,则 a 的取值范围是()A . ⎛ -2, -1 ⎫B . ⎛-2, -1 ⎫3 ⎪2 ⎪ ⎝ ⎭⎝ ⎭C . ⎛ -2, - 1 ⎫ ⋃⎛ - 1 , +∞⎫D . ⎛ -2, - 1 ⎫ ⋃ ⎛ - 1 , +∞ ⎫ 3 ⎪ 3 ⎪ 2 ⎪ 2 ⎪ ⎝ ⎭ ⎝ ⎭⎝ ⎭ ⎝ ⎭10.【河北省衡水中学 2019-2020 学年高三下学期期中】已知函数 f (x ) =(x2- a )2- 3 x 2 -1 - b ,当时(从①②③④中选出一个作为条件),函数有 .(从⑤⑥⑦⑧中选出相应的作为结论,只填出一.组.即可)1 3 5 9① a ≤ - ② < a < ③ a = 1 ,-2 < b < 0 ④ a = 1 ,- < b < -2 或b = 0 ⑤4 个极小值点⑥1 个极小值点2 2 2 4⑦6 个零点⑧4 个零点1. 【福建省漳州市 2020 届高三高考数学(文科)三模】已知函数 f (x ) = ( x + 3) e x- 2m , m ∈ R .(1)若 m = 3,求 f ( x ) 的最值;2(2)若当 x ≥ 0 时, f (x - 2) + 2m ≥ 1 mx 2+ 2x +1 ,求 m 的取值范围.e 212. 【安徽省合肥七中、三十二中、五中、肥西农兴中学 2020 届高三高考数学(文科)最后一卷】已知函数 f (x ) = 1 x 2- 2x + a ln x , a > 1 . 2e(1) 讨论 f( x ) 的单调性;(2)若f (x )存在两个极值点x1 、x2 ,求f (x1 )+f (x2 )的取值范围.13.【2020 届安徽省芜湖市高三下学期教育教学质量监测】已知函数f (x)=ae x + 2e -x+(a - 2 )x .(1)若y =f (x )存在极值,求实数 a 的取值范围;(2)设1 ≤a ≤ 2 ,设g (x)= f (x)-(a + 2)cos x 是定义在⎛-∞,π ⎤上的函数.2 ⎥⎝⎦(ⅰ)证明:y =g'(x )在⎛-∞,π ⎤上为单调递增函数( g'(x)是y =g (x )的导函数);2 ⎥⎝⎦ (ⅱ)讨论y =g (x )的零点个数.14.【广东省惠州市2021 届高三上学期第一次调研】已知函数f (x) =x- ln(ax) .a(1)若a > 0 ,求f (x) 的极值;(2)若e x ln x +mx 2 +(1 -e x )x +m ≤ 0 ,求正实数m 的取值范围.15.【北京五中2020 届高三(4 月份)高考数学模拟】设函数f(x)=me x﹣x2+3,其中m∈R.(1)如果f(x)同时满足下面三个条件中的两个:①f(x)是偶函数;②m=1;③f(x)在(0,1)单调递减.指出这两个条件,并求函数h(x)=xf(x)的极值;(2)若函数f(x)在区间[﹣2,4]上有三个零点,求m 的取值范围.16.【辽宁省锦州市渤大附中、育明高中2021 届高三上学期第一次联考】已知函数f (x) =ae x - cos x -x(a ∈R).(1)若 a = 1 ,证明:f (x) ≥ 0 ;(2)若f (x) 在(0,π) 上有两个极值点,求实数 a 的取值范围.17.【西南地区名师联盟2020 届高三入学调研考试】已知函数f (x)=1x3 +bx2 +cx ,b 、c 为常数,且3学习界的007- 1< b < 1, f '(1) = 0 . 2(1)证明: -3 < c < 0 ;(2)若 x 是函数 y = f (x ) - cx 的一个极值点,试比较 f ( x - 4) 与 f (-3) 的大小. 0218.【山东省威海荣成市 2020 届高三上学期期中】某水产养殖公司在一片海域上进行海洋牧场生态养殖, 如图所示,它的边界由圆O 的一段圆弧 PMQ ( M 为此圆弧的中点)和线段 PQ 构成.已知圆O 的半径为12 千米, M 到 PQ 的距离为16 千米.现规划在此海域内修建两个生态养殖区域,养殖区域 R 1 为矩形 ABCD ,养殖区域 R 2 为 A M B ,且 A , B 均在圆弧上,C ,D 均在线段 PQ 上,设∠AOM =α.(Ⅰ)用α分别表示矩形 ABCD 和 A M B 的面积,并确定cos α的范围;(Ⅱ)根据海域环境和养殖条件,养殖公司决定在 R 1 内养殖鱼类,在 R 2 内养殖贝类,且养殖鱼类与贝类单位面积的年产值比为3 : 2 .求当α为何值时,能使年总产值最大.19.【江苏省南通市 2020 届高三下学期高考考前模拟卷】已知函数 f (x ) = ( x - a ) e x + b (a , b ∈ R ) .(1) 讨论函数 f( x ) 的单调性;(2) 对给定的 a ,函数 f( x ) 有零点,求b 的取值范围;(3)当 a = 2 , b = 0 时, F (x ) = f ( x ) - x + ln x ,记 y = F ( x ) 在区间⎛ 1 ,1⎫上的最大值为 m ,且4 ⎪ ⎝ ⎭m ∈[n, n + 1), n ∈Z ,求n 的值.20.【陕西省西安中学2020-2021 学年高三上学期第一次月考】已知函数f ( x) =x -1 -a ln x .(1)当 a = 1 时,求f(x)的最小值;(2)设m 为整数,且对于任意正整数n ,(1+1)(1+1) ⋅⋅⋅ (1+1) <m ,求m 的最小值.2 22 2n。

专题03 复数-备战2022年高考数学(文)母题题源解密(全国甲卷)(解析版)

专题03 复数-备战2022年高考数学(文)母题题源解密(全国甲卷)(解析版)

专题03 复数1.已知2(1)32i z i -=+,则z = A .312i --B .312i -+C .32i -+D .32i --【试题来源】2021年全国高考甲卷(文) 【答案】B【分析】由已知得322iz i+=-,根据复数除法运算法则,即可求解. 【解析】2(1)232i z iz i -=-=+,32(32)23312222i i i i z i i i i ++⋅-+====-+--⋅.故选B .1.【2020年高考全国Ⅰ卷文数】若312i i z =++,则||=zA .0B .1C .2D .2【答案】C【解析】因为31+21+21z i i i i i =+=-=+,所以22112z =+=.故选C .【点睛】本题主要考查向量的模的计算公式的应用,属于容易题. 2.【2020年高考全国Ⅱ卷文数】(1–i )4= A .–4 B .4C .–4iD .4i【答案】A【解析】422222(1)[(1)](12)(2)4i i i i i -=-=-+=-=-. 故选A.【点睛】本题考查了复数的乘方运算性质,考查了数学运算能力,属于基础题.3.【2020年高考全国Ⅲ卷文数】若)(1i 1i z +=-,则z = A .1–iB .1+iC .–iD .i【答案】D【解析】因为21(1)21(1)(1)2i i iz i i i i ---====-++-,所以z i . 故选:D【点晴】本题主要考查复数的除法运算,涉及到共轭复数的概念,是一道基础题. 4.【2020年新高考全国Ⅰ卷】2i12i-=+ A .1 B .−1 C .iD .−i【答案】D【解析】2(2)(12)512(12)(i i i ii i 12)i i 5----===-++- 故选:D【点睛】本题考查复数除法,考查基本分析求解能力,属基础题. 5.【2019年高考全国Ⅰ卷文数】设3i12iz -=+,则||z = A .2B .3C .2D .1【答案】C【分析】先由复数的除法运算(分母实数化)求得z ,再求||z 即可. 【解析】方法1:由题可得(3i)(12i)17i (12i)(12i)55z --==-+-,所以2217()()||255z =+-=,故选C .方法2:由题可得2222|3i |10||2|12i 3(1|5)12z +-+-====+,故选C .【名师点睛】本题主要考查复数的乘法、除法运算、复数模的计算,是基础题.本题也可以运用复数模的运算性质直接求解.6.【2019年高考全国Ⅱ卷文数】设)i i (2z =+,则z =A .12i +B .12i -+C .12i -D .12i --【答案】 D【分析】根据复数的乘法运算法则先求得z ,然后根据共轭复数的概念写出z 即可. 【解析】由题可得2i(2i)2i i 12i z =+=+=-+,所以12i z =--,故选D .【名师点睛】本题主要考查复数的乘法运算及共轭复数,是容易题,注重对基础知识、基本计算能力的考查.其中,正确理解概念、准确计算是解答此类问题的关键,部分考生易出现理解性错误. 7.【2019年高考全国Ⅲ卷文数】若(1i)2i z +=,则z = A .1i -- B .1i -+ C .1i-D .1i +【答案】D【解析】由题可得()(2i 2i 1i 1i 1i 1i 1i )()z -===+++-.故选D . 【名师点睛】本题考查复数的除法的运算,渗透了数学运算素养.采取运算法则法,利用方程思想解题.复数问题每年必考,多以选择题的形式出现,而且是必拿分题,高考试题对该部分内容考查的主要角度有两种:①考查单纯的复数运算求解题;②考查复数的几何意义以及有关概念.熟练掌握复数的加、减、乘、除运算法则是关键:设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则 ①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; ②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; ③乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; ④除法:12i (i)(i)i (i)(i)z a b a b c d z c d c d c d ++-==++-22()i ac bd bc ad c d ++-+=2222i(i 0)ac bd bc adc d c d c d+-=++≠++. 注意:复数除法与作根式除法时的处理类似.在作根式除法时,分子、分母都乘以分母的“有理化因式”,从而使分母“有理化”;复数的除法是分子、分母都乘以分母的“实数化因式”(共轭复数),从而使分母“实数化”.虚数单位i 具有周期性,且最小正周期为4,有如下性质: (1)41424344ii,i 1,i i,i 1()n n n n n ++++==-=-=∈N ;(2)41424344ii i )i 0(n n n n n +++++++=∈N .1.已知复数1i z a =-,22+i z =(i 为虚数单位),若12z z 是纯虚数.则实数a = A .12-B .12 C .2-D .3【试题来源】湖南省长沙市第一中学2021-2022学年高三上学期月考(一) 【答案】A【分析】结合复数的乘法运算求出12z z ,进而结合纯虚数的概念即可求出结果.【解析】由已()()()()12i 2i 212i z z a a a =-+=++-是纯虚数,所以210a +=且20a -≠,可得12a =-,故选A .2.已知i 是虚数单位,若复数z 满足()()21i 1i z -=+,则z = A .1 B .2 C .2D .3【试题来源】湖北省黄石市有色一中2021届高三下学期5月模拟考试 【答案】B【分析】根据复数的乘除法运算求出复数z ,然后根据复数的模的公式即可得出答案. 【解析】因为()()21i 1i z -=+,所以()()()()21i 1i 1i 1ii 2i 1i 1z ++===-+--+,所以112z =+=.故选B .3.设i 为虚数单位,若复数()()i 2i x +-的实部与虚部相等,则实数x 的值为 A .3 B .13C .12D .1【试题来源】湖南省永州市第四中学2021届高三下学期高考冲刺(二) 【答案】B【分析】由复数乘法运算展开()()i 2i x +-,再由实部、虚部相等列方程求x 的值.【解析】由()()()i 2i 212i x x x +-=++-的实部与虚部相等, 所以212x x +=-,解得13x =.故选B4.若复数z 满足()1i 22i z -=-,则z = A .13 B .13 C .5D .5【试题来源】江苏省南京市第二十九中学2021-2022学年高三上学期8月第二次学情调研 【答案】D【分析】根据条件求出复数z ,进而可求得z . 【解析】由(1)i 22i z -=-得i i 22i z -=-,则2i12i iz -==--,所以()()22125z =-+-=.故选D .5.i 是虚数单位,复数z 满足:1i iz=-,则z =A .1i -B .1i +C .1i -+D .1i --【试题来源】河南省洛阳市孟津县第一高级中学2021届高三下学期4月(文)调研试题 【答案】A【分析】先求z ,再求z . 【解析】1i,1i izz =-∴=+,1z i ∴=-.故选A . 6.设复数z 满足()12i 5z +=,则z = A .5 B .5 C .3D .1【试题来源】云南省曲靖市2021届高三二模(文) 【答案】B【分析】由()12i 5z +=用复数的除法求出z ,再求z . 【解析】由()12i 5z +=,得()()()()512i 512i 12i 12i 12i 5z --===-+-,所以12z i =+,5z B .7.25i3i+-的虚部为 A .110B .1310C .1710D .1310-【试题来源】河北省唐山市第十一中学2021届高三下学期3月调研 【答案】C【分析】利用复数的除法化简25i3i+-,即可知虚部. 【解析】25i (25i)(3i)117i 3i (3i)(3i)10++++==--+,故虚部为1710.故选C 8.已知i 是虚数单位,若复数z 满足2i 1iz=+,则z =. A .2 B .2 C .22D .4【试题来源】广东省江门市蓬江区培英高中2021届高三5月份数学冲刺试题 【答案】C【分析】先求出z ,然后根据复数的模求解即可 【解析】2i 1iz=+, ()2i 1i 22i z =+=-+,则4422z =+=,故选C 9.若复数1i z =-,则2|2|z z -= A .0 B .2 C .4D .6【试题来源】山东省菏泽市2021届高三二模 【答案】B【分析】根据复数的乘方运算以及减法运算求出22z z -,然后利用模长公式即可求出结果. 【解析】由题意可得()221i 2i z =-=-,则()()2221i 21i 2i 22i 2z z -=---=--+=-,所以2222z z -=-=.故选B .10.设z C ∈,则“0z z +=”是“z 是纯虛数”的A .充分但非必覂条件B .必要但非充分条件C .充要条件D .既非充分也非必要条件【试题来源】重庆市巴蜀中学2022届高三上学期适应性月考(一) 【答案】B【分析】先证明“0z z +="是“z 是纯虛数”的非充分条件;再证明“0z z +="是“z 是纯虛数”的必要条件.即得解.【解析】设()i ,z a b a b =+∈R ,则i z a b =-, 若0z z +=,则0,a z =不一定是纯虛数, 所以“0z z +="是“z 是纯虛数”的非充分条件;若z 是纯虛数,则()i 0,i z b b z b =≠=-,一定有0z z +=成立. 所以“0z z +="是“z 是纯虛数”的必要条件;所以“0z z +="是“z 是纯虛数”的必要非充分条件.故选B11.已知i 是虛数单位,z 为复数,2+1i=z (3+i),则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限【试题来源】重庆市巴蜀中学2022届高三上学期适应性月考(一) 【答案】D【分析】先求出复数,即得解. 【解析】2i 11i 3i 22z -==-+,复平面内z 对应的点为11,22⎛⎫- ⎪⎝⎭,故选D . 12.若复数i1iz -=+,则z = A .14B .12 C .22D .2【试题来源】重庆市第八中学2021届高三下学期高考适应性考试(一) 【答案】C【分析】利用复数的除法运算求出i 12z --=,结合复数的几何意义求出复数的模即可. 【解析】因为i(1i)i 1(1i)(1i)2z ----==+-,所以2||z =C13.若()1i 2i z +=,则z = A .1i - B .1i -- C .1i +D .1i -+【试题来源】贵州省贵阳市第一中学2021届高三下学期高考适应性月考卷(六)(文) 【答案】A【分析】先求出1i z =+,再由共轭复数的概念即可求解 【解析】()()()2i 1i 2i1i 1i 1i 1i z -===+++-, 所以1i z =-,故选A . 14.若复数z 满足1i31iz z -+=+,则||z = A .116B .18C .14D .12【试题来源】重庆市第一中学2021届高三下学期第二次月考 【答案】D【分析】令i z x y =+(,)x y R ∈,由题设易得42i i x y -=-求x 、y ,进而可求||z . 【解析】若i z x y =+(,)x y R ∈,则1i342i i 1iz z x y -+=-==-+, 所以0x =,12y =,即i 2z =, 所以1||2z =.故选D 15.i 是虚数单位,复数z 满足i 13i z ⋅=+,则||z = A .10 B .10 C .8D .22【试题来源】福建省莆田市2021届高三高中毕业班3月第二次教学质量检测 【答案】B【分析】根据复数的除法运算求出复数z ,然后利用复数模的公式求||z . 【解析】因为i 13i z ⋅=+,所以()13i i13i 3i i i iz ++===-⋅, 所以()22||3110z =+-=.故选B .16.在复平面内,平行四边形ABCD 的三个顶点,A ,B ,C 对应的复数分别为12i -+,3i -,12i +(i 为虚数单位),则点D 对应的复数为 A .35i -+ B .1i - C .13i +D .3i -+【试题来源】江西省景德镇一中2022届高三7月月考(理) 【答案】A【分析】先利用复数的几何意义写出各点的坐标,再利用平行四边形构造相等向量列方程组求解. 【解析】由题知,()1,2A -,()3,1B -,()1,2C ,设(),D x y . 则()4,3AB =-,()1,2DC x y =--. 因为ABCD 为平行四边形,所以AB DC =.由14,23x y -=⎧⎨-=-⎩,解得3,5x y =-⎧⎨=⎩, 所以点()3,5D -对应的复数为35i -+.故选A . 17.复数2i2i-+的共轭复数是 A .34i 55-- B .34i 55-+ C .34i 55-D .34i 55+【试题来源】四川省绵阳中学2022届高三上学期第一次质量检测 【答案】D【分析】利用复数的除法化简复数2i2i-+,结合共轭复数的定义可得出结果. 【解析】因为()()()22i 2i 34i 2i 2i 2i 55--==-+-+,因此,复数2i2i -+的共轭复数是34i 55+.故选D .18.已知复数i1iz =+,则它的共轭复数z = A .1i2+ B .1i2- C .1i +D .1i -【试题来源】贵州省贵阳市第一中学2021届高三下学期高考适应性月考卷(五)(文) 【答案】B【分析】利用复数的除法运算化简复数z ,再由共轭复数的定义即可求解.【解析】因为i i(1i)1i =1i (1i)(1i)2z -+==++-,所以1i 2z -=,故选B . 19.已知i 为虚数单位,复数1z 、2z 满足122z z ==,1248i2iz z +-=-,则12z z = A .4- B .4i - C .4iD .4【试题来源】重庆市第八中学2021届高三下学期高考适应性考试(二) 【答案】D【分析】设12i,i z a b z c d =+=+,根据题设有22224,0,4a b c d a c b d +=+=-=-=,进而求12z z 即可. 【解析】()()()()1248i 2i 20i 4i2i 2i 5z z ++-===-+,设12i,i z a b z c d =+=+,则有22224,0,4a b c d a c b d +=+=-=-=,解得2,2,0b d a c ==-==, 所以122i,2i z z ==-,则124z z =,故选D .20.已知方程210(,)ax bx a b ++=∈R 在复数范围内有一根为1i +,则复数z a bi =+在复平面上对应的点在 A .第一象限 B .第二象限 C .第三象限D .第四象限【试题来源】重庆市南开中学2021届高三下学期第七次质量检测 【答案】D【分析】把1i +代入已知方程,结合复数的运算及复数相等条件求得a ,b ,再由复数的几何意义可得选项. 【解析】因为方程210(,)ax bx a b ++=∈R 在复数范围内有一根为1i +,所以()()21110i a b i ++++=, 整理得()2+10a b i b ++=,所以112a b ==-,,所以12z a bi i =+=-,所以复数z a bi =+在复平面上对应的点在第四象限,故选D . 21.已知复数1121i,1z z z =-⋅=,则复数2z 的虚部为 A .12 B .12-C .1D .1-【试题来源】贵州省贵阳市第一中学2021届高三下学期高考适应性月考卷(五)(理) 【答案】B【分析】根据条件可知211z z =,化简复数后求2z 的虚部.【解析】因为1121i,1z z z =+⋅=,所以211i 1i 1i (1i)(1i)2z --===++-,所以其虚部为12-.故选B . 22.已知复数()()2i 2i z m =+-为纯虚数,则m =A .1-B .1C .4-D .4【试题来源】重庆市第八中学2021届高三下学期适应性月考卷(七)【答案】C【分析】根据导数的乘法运算化简复数z ,再根据纯虚数的定义即可求解.【解析】()422i z m m =++-为纯虚数,则4m =-.故选C .23.若复数z 满足i i z z ⋅=-,则|i |z -=A .22B .2C .1D .22 【试题来源】湖南省新高考2021届高三下学期考前押题《最后一卷》【答案】A【分析】先根据复数的除法运算化简复数z ,再由模长公式计算即可求解.【解析】因为i i z z ⋅=-,所以()()()i 1i i 1i 1i 1i 1i 2z +-+===--+, 所以1i 11i i 222z ---==--, 故22112|i |222z ⎛⎫⎛⎫-=-+-= ⎪ ⎪⎝⎭⎝⎭,故选A . 24.设若1z 、2z 、3z 为复数,则下列命题中正确的是A .若23z z =,则23z z =±B .若1213z z z z =,则23z z =C .若23z z =,则1213z z z z =D .若2121z z z =,则21z z = 【试题来源】预测05 算法、复数、推理与证明-【临门一脚】2021年高考数学(理)三轮冲刺过关【答案】C【分析】取特殊值法可判断AD 错误,根据复数的运算及复数模的性质可判断BC .【解析】由复数模的概念可知,23z z =不能得到23z z =±,例如23,11i i z z =+=-,A 错误;由1213z z z z =可得123()0z z z -=,若10z =,则230z z -=不一定成立,即23z z =不一定成立,B 错误; 因为2121||||z z z z =,1313||||z z z z =,而23z z =,所以232||||||z z z ==,所以1213z z z z =,C 正确;取121,1z i z i =+=-,显然满足2121z z z =,但12z z ≠,D 错误.故选C25.已知复数z 的共轭复数是z ,若312i z z -=+,则z =A .22B .12C .52D .52 【试题来源】重庆市巴蜀中学2021届高三适应性(九)【答案】A【分析】设i,,z a b a b R =+∈,则i z a b =-,代入原式,利用复数相等求出,a b ,进而可得答案.【解析】设i,,z a b a b R =+∈,则i z a b =-,由312i z z -=+可得24i 12i a b -+=+,则12a =-,12b =, 所以2222z a b =+=,故选A . 26.复数()2i i +的虚部是A .2iB .i -C .2D .1-【试题来源】广东省七校联合体2021届高三下学期第三次联考(5月)【答案】C【分析】利用复数的乘法运算化简复数()2i i +,再根据复数虚部的定义求解即可.【解析】因为()2+i i 12i =-+,所以虚部为2.故选C .27.已知复数1z i =+,设复数22z w z =,则w 的虚部是 A .1- B .1C .iD .i -【试题来源】陕西省2021届高三下学期教学质量检测测评(六)(理)【答案】A【分析】根据复数的运算法则,求得1w i =--,结合复数的基本概念,即可求解.【解析】由题意,复数1z i =+, 根据复数的运算法则,可得2222(1)2(1)(1)1(1)2z i i i i w i z i i i i----=====--+-⋅, 所以复数w 的虚部是1-.故选A . 28.复数45i z =-(其中i 为虚数单位),则2i z +=A .7B .5C .7D .25【试题来源】内蒙古赤峰二中2021届高三三模(理)【答案】B【分析】由复数加法求得2i z +,然后由复数模的运算求解.【解析】因为45i z =-,所以i 23i 4z +=-,所以()222435i z +=+-=,故选B .29.已知i 为虚数单位,复数21i +的共轭复数为z ,则z 的虚部为 A .1-B .1C .i -D .i【试题来源】(理)-学科网2021年高三5月大联考考后强化卷(新课标Ⅰ卷)【答案】B【分析】先对21i+化简,求出复数z ,从而可求出其共轭复数z ,进而可求出z 的虚部 【解析】由题可得22(1i)1i 1i (1i)(1i)-==-++-,所以1i z =+,其虚部为1,故选B .30.设复数z 满足()1i i z m -=+()m R ∈,若z 为纯虚数,则实数m =A .1B .-1C .2D .-2【试题来源】江苏省跨地区职业学校单招2020届高三下学期一轮联考【答案】A【分析】将i 1i m z +=-利用复数的除法运算化简,再令实部等于0,虚部不等于0即可求解 【解析】由()1i i z m -=+可得()()()()()i 1i 11i i 11i 1i 1i 1i 222m m m m m m z ++-+++-+====+--+, 所以1010m m -=⎧⎨+≠⎩,可得1m =,故选A . 31.已知i 为虚数单位,若复数2i i ia z =-+ (a R ∈)为实数,则a = A .2-B .1-C .1D .2【试题来源】广东省揭阳市2021届高考数学模拟考精选题试题(一)【答案】D【分析】先对2i i ia z =-+化简,然后由虚部为零可求出a 的值 【解析】因为()222i i i 12i i 12i iz a a a -=+=--+=-+-为实数, 所以2a =;故选D32.法国数学家棣莫弗(1667-1754)发现的公式()cos isin cos isin nx x nx nx +=+推动了复数领域的研究.根据该公式,可得4ππcos isin 88⎛⎫+= ⎪⎝⎭. A .1B .iC .1-D .i -【试题来源】福建省2021届高三高考考前适应性练习卷(二)【答案】B【分析】根据已知条件将4ππcos sin 8i 8⎛⎫+ ⎪⎝⎭化成i ππcos sin 22+,根据复数的运算即可. 【解析】根据公式得4i i i ππππcos sin cos sin 8822⎛⎫+=+= ⎪⎝⎭,故选B . 33.已知复数z 满足121z i i =+-(其中i 为虚数单位),则z = A .3B .22C .2D .10【试题来源】全国Ⅰ卷2021届高三高考数学(文)押题试题(二)【答案】D【分析】把已知等式变形,再由复数代数形式的乘法运算化简求得z ,然后利用复数模的公式计算.【解析】因为()()1i 12i 3i z =-+=+, 所以22||=3110z +=.故选D . 34.若复数z 满足()23i 1i z ⋅-=-,复数z 的虚部是A .5i 13 B .513 C .113D .1i 13 【试题来源】全国Ⅰ卷2021届高三高考数学(文)押题试题(一)【答案】C【分析】利用复数代数形式的乘除运算化简可得.【解析】由()23i 1i z ⋅-=-,得()()()()1i 23i 1i 5i 51i 23i 23i 23i 131313z -+-+====+--+ 所以复数z 的虚部是113故选C 35.若复数1=-i z i ,则|z |= A .2B .1C .2D .22【试题来源】四川绵阳南山中学2021届高三高考适应性考试(理)【答案】D【分析】首先化简复数z ,再求复数的模.【解析】()()()1111111222i i i i z i i i i +-+====-+--+, 所以22112222z ⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭.故选D 36.若复数1=-i z i ,则z = A .14 B 2C .12D .2 【试题来源】四川绵阳南山中学2021届高三高考考适应性考试(文) 【答案】B 【分析】化简122i z =-+,再求||z 得解. 【解析】由题得(1)111(1)(1)222i i i i i z i i i +-+====-+--+, 所以22112()()222z =-+=.故选B 37.已知复数z 满足()()1i 2i i z -=+,则z =A .1B .2C .52D .102【试题来源】湖南省长沙市雅礼中学2021-2022学年高三上学期入学考试【答案】D【分析】()2i i 1iz +=-,利用复数的运算求出复数z ,从而求出z . 【解析】()()()()()2i i 12i 1i 3i 1i 1i 1i 2z +-++-+===--+, 所以223110222z ⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭.故选D . 38.已知复数z 满足z (1﹣i )=2+i 2021,则zi 在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限【试题来源】全国2021届高三高考数学(文)演练试卷(一)【答案】B【分析】利用复数的乘法、除法运算即可求解.【解析】由z (1﹣i )=2+i 2021,则()()()()2020212213131111222i i i i i i z i i i i i +++⋅++=====+---+, 3122zi i =-+,所以zi 在复平面内对应的点为31,22⎛⎫- ⎪⎝⎭,点位于第二象限.故选B 39.若复数z 满足23i 13z z -=,则z = A .23i -B .23i +C .32i -D .32i +【试题来源】全国100所普通高等学校招生全国统一考试2021届高三 数学(理)冲刺卷试题【答案】A【分析】由题意得1323iz =-,根据复数代数形式的除法运算和共轭复数的概念即可求出答案. 【解析】因为23i 13z z -=,所以()()()1323i 1323i 23i 23i z +==--+()1323i 23i 13+==+, 所以23i z =-,故选A .40.已知复数12i z =-,21i z b =+(其中i 是虚数单位,b ∈R ),若12z z ⋅为实数,则b = A .2-B .12 C .1 D .2 【试题来源】贵州省凯里市第一中学2021届高三三模《黄金三卷》(文)【答案】B【分析】利用复数代数形式的乘法运算法则化简12z z ⋅,再根据复数为实数的充要条件即可得出.【解析】因为12i z =-,21i z b =+()()()2122i 1i 22i i i 221i z z b b b b b ⋅=-⋅+=+--=++-,因为12z z ⋅为实数,210b ∴-=,解得12b =.故选B.。

高考数学母题解密专题06 双曲线附答案解析(江苏专版)

高考数学母题解密专题06 双曲线附答案解析(江苏专版)

(a>0,b>0)与直线 y= 3 x 无交点,则离心率 e 的取值范围是________.
7.(江苏省南通市 2020 届高三下学期 6 月模拟考试数学试题)已知离心率 e 2 的双曲
x2 线 D: a2
y2 b2
1(a
0,b 0) 的左、右焦点分别为 F1 , F2 ,虚轴的两个端点分别为
双曲线 C 的渐近线方程为 y x ,且它的一个焦点为 F ( 2,0) ,则双曲线 C 的一条准
线与两条渐近线所成的三角形的面积为______. 4.(2020 届江苏省七市(南通、泰州、扬州、徐州、淮安、连云港、宿迁)高三下学期
第三次调研考试数学试题)在平面直角坐标系 xOy 中,已知抛物线 y2=4x 的准线是双
bc c
b



b
3 c , 因 此 a2 c2 b2 c2 3 c2 1 c2 , a 1 c ,
2
44
2
e 2.
【 名 师 点 睛 】 ( 1) 已 知 双 曲 线 方 程
x2 a2
y2 b2
1(a
0, b
0) 求


线

x2 y2 0 y b x ;
a2 b2
a
(2)已知渐近线 y mx 可设双曲线方程为 m2 x2 y2 ( 0) ;
(三)求双曲线的离心率一般有两种方法:
(1)由条件寻找 a, c 满足的等式或不等式,一般利用双曲线中 a,b,c 的关系
c2
a2
b2
将双曲线的离心率公式变形,即 e
c a
1 b2 a2
1
,注意区分
1
b2 c2
双曲线中 a,b,c 的关系与椭圆中 a,b,c 的关系,在椭圆中 a2 b2 c2 ,而在双

2020届南京市高三高考第三次模拟考试--生物试卷 --带答案

2020届南京市高三高考第三次模拟考试--生物试卷 --带答案

南京市2020届高三年级第三次模拟考试第1卷(选择题共5 5分)2020.6一、单项选择题:本部分包括20题,每题2分,共计40分。

每题只有一个选项最符合题意。

1.下列关于构成生物体的元素和化合物的叙述,错误的是A.RNA和ATP中都含有腺瞟呤核苷B.胆固醇是构成动物细胞膜的重要成分之一C.蔗糖可为植物细胞中的蛋白质合成提供碳源D.碳是构成活细胞的最基本元素,也是含量最多的元素2.下图是某同学绘制的四种细胞的结构示意图。

下列叙述正确的是A.图示结构正确的是细菌细胞和蓝藻细胞B.核糖体是图示四种细胞中唯一共有的结构C.细菌细胞和蓝藻细胞的遗传信息主要储存在拟核中D.中心体在水稻叶肉细胞和小鼠肝脏细胞中的功能不同3.下列有关酶的叙述,错误的是A.叶绿体的类囊体膜上存在与光反应有关的酶B.胃蛋白酶随食物进入小肠后催化活性逐渐降低C.腐乳制作前期和后期发酵主要是胞内酶起作用D.酶通过降低化学反应的活化能来提高反应速率4.研究表明线粒体内膜两侧存在H+浓度差。

右图表示H+经ATP合成酶转移至线粒体基质同时驱动ATP合成的过程。

下列叙述正确的是A. ATP合成酶中具有H+通道,H+的运输动力是浓度差B.该过程发生在有氧呼吸的第三阶段,伴随着水的分解C.图示H+的运输方式与葡萄糖进入红细胞的运输方式不同D.线粒体内、外膜功能不同的原因是磷脂分子排布方式不同A.原红细胞有同源染色体但无联会、分离现象B.表中能合成血红蛋白的细胞有原红细胞和网织红细胞C.细胞分裂能力减弱消失与成熟红细胞执行特定功能无关D.从红系祖细胞到成熟红细胞的过程包括细胞增殖与分化6.原癌基因编码的cmyc蛋白可以结合到核DNA上,增强靶基因的转录,从而促进细胞增殖。

下列叙述正确的是A. cmyc蛋白的氨基酸序列由原癌基因一条链上的密码子决定B.cmyc蛋白和RNA聚合酶可识别并结合到DNA特定的序列上C.靶基因在转录时仅有一条链通过磷酸二酯键与转录产物相结合D.原癌基因编码cmyc蛋白时需要以脱氧核苷酸和氨基酸作为原料7.右图是基因型为AaBb的二倍体动物某个细胞的分裂示意图。

函数的概念与基本初等函数专题

函数的概念与基本初等函数专题

函数的概念与基本初等函数1.【2020年高考全国Ⅰ卷文数】设3log 42a =,则4a -= A .116B .19C .18D .162.【2020年高考天津】函数241xy x =+的图象大致为A BC D3.【2020年高考全国Ⅱ卷文数】在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者 A .10名B .18名C .24名D .32名4.【2020年高考全国Ⅲ卷文数】Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为(ln19≈3) A .60B .63C .66D .695.【2020年高考全国Ⅲ卷文数】设a =log 32,b =log 53,c =23,则 A .a <c <bB .a <b <cC .b <c <aD .c <a <b6.【2020年高考全国Ⅱ卷文数】设函数f (x )=x 3-31x ,则f (x ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增D .是偶函数,且在(0,+∞)单调递减7.【2020年高考全国Ⅱ卷文数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<08.【2020年高考天津】设0.70.80.713,(),log 0.83a b c -===,则,,a b c 的大小关系为 A .a b c <<B .b a c <<C .b c a <<D .c a b <<9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) A .1.2天 B .1.8天 C .2.5天D .3.5天10.【2020年新高考全国Ⅰ卷】若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是 A .[)1,1][3,-+∞ B .3,1][,[01]-- C .[)1,0][1,-+∞D .1,0]3][[1,-11.【2020年新高考全国Ⅰ卷】信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑,定义X 的信息熵21()log ni i i H X p p ==-∑.A .若n =1,则H (X )=0B .若n =2,则H (X )随着1p 的增大而增大C .若1(1,2,,)i p i n n==,则H (X )随着n 的增大而增大D .若n =2m ,随机变量Y 所有可能的取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +-==+=,则H (X )≤H (Y )12.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是 A .1(,)(22,)2-∞-+∞B .1(,)(0,22)2-∞-C .(,0)(0,22)-∞D .(,0)(22,)-∞+∞13.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A. (1,1)-B. (,1)(1,)-∞-+∞C. (0,1)D. (,0)(1,)-∞⋃+∞14.【2020年高考浙江】函数y =x cos x +sin x 在区间[–π,π]上的图象可能是15.【2020年高考浙江】已知a ,b ∈R 且ab ≠0,对于任意x ≥0均有(x –a )(x –b )(x –2a –b )≥0,则 A .a <0B .a >0C .b <0D .b >016.【2020年高考江苏】已知y =f (x )是奇函数,当x ≥0时,()23 f x x =,则()8f -的值是 ▲ . 17.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.1.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f = A .16B .8C .4D .22.【2020·宜宾市叙州区第二中学校高三一模(文)】已知函数()32,0log ,0x x f x x x ⎧≤=⎨>⎩,则=f f ⎛⎫ ⎪ ⎪⎝⎭⎝⎭A .2B .12C .3log 2-D .3log 23.【安徽省2020届高三名校高考冲刺模拟卷数学(文科)试题】已知10.23121log 3,(),23a b c ===,则A .a <b <cB .c <b <aC .c <a <bD .b <a <c4.【2020·重庆巴蜀中学高三月考(文)】已知定义在R 上的函数()f x 满足()12f =,对任意的实数1x ,2x 且12x x <,()()1212f x f x x x -<-,则不等式()1f x x ->的解集为A .(),2-∞-B .2,C .()(),11,-∞-⋃+∞D .()(),22,-∞-⋃+∞5.【2020届广东省惠州市高三6月模拟数学(文)试题】已知函数||()e ||x f x x =+,则满足1(21)3f x f ⎛⎫-< ⎪⎝⎭的x 取值范围是 A .12,33⎛⎫⎪⎝⎭B .12,33⎡⎫⎪⎢⎣⎭C .12,23⎛⎫⎪⎝⎭D .12,23⎡⎫⎪⎢⎣⎭6.【2020届广东省惠州市高三6月模拟数学(文)试题】函数πx x y x=的图象大致形状是A .B .C .D .7.【2020·重庆市育才中学高三开学考试(文)】若函数()23,121,1x ax a x f x ax x ⎧--≥=⎨-<⎩是R 上的增函数,则实数a 的取值范围是A .103⎡⎫-⎪⎢⎣⎭,B .103⎛⎤ ⎥⎝⎦,C .1,3⎛⎤-∞- ⎥⎝⎦D .13⎡⎫+∞⎪⎢⎣⎭,8.【贵州省黔东南州2019-2020学年高三高考模拟考试卷数学(文科)试题】已知函数()f x 的图象关于点()1,0对称,当1x >时,2()5f x x mx =-+,且()f x 在(,0)-∞上单调递增,则m 的取值范围为A .[4,)+∞B .[2,)+∞C .(,4]-∞D .(,2]-∞9.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦10.【2020·四川省成都外国语学校高三月考(文)】若函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,则实数a 的取值范围是 A .()1,+∞B .(1,8)C .(4,8)D .[4,8)R 11.【2020届山西省太原五中高三3月模拟数学(文)试题】函数ln ||cos ()sin x xf x x x⋅=+在[π,0)(0,π]-的图像大致为A .B .C .D .12.【2020·宜宾市叙州区第二中学校高三一模(文)】已知()f x 是定义在R 上的偶函数,在区间[0,)+∞上为增函数,且1()03f =,则不等式18(log )0f x >的解集为A .1(,2)2B .(2,)+∞C .1(0,)(2,)2+∞ D .1(,1)(2,)2+∞13.【2020·宜宾市叙州区第一中学校高三一模(文)】已知函数()()()1f x x ax b =-+为偶函数,且在0,上单调递减,则()30f x -<的解集为A .()2,4B .()(),24,-∞+∞C .()1,1-D .()(),11,-∞-⋃+∞14.【天津市十二区县重点学校2020届高三下学期毕业班联考(一)数学试题】已知函数(2)y f x =-的图象关于直线2x =对称,在(0,)x ∈+∞时,()f x 单调递增.若()ln34a f =,e(2)b f -=,1ln πc f ⎛⎫= ⎪⎝⎭(其中e 为自然对数的底数,π为圆周率),则,,a b c 的大小关系为 A .a c b >>B .a b c >>C .c a b >>D .c b a >>15.【2020·山东省高三期末】函数()y f x =是R 上的奇函数,当0x <时,()2xf x =,则当0x >时,()f x =A .2x -B .2x -C .2x --D .2x16.【2020·山东省高三期末】函数()y f x =与()y g x =的图象如图所示,则()()y f x g x =⋅的部分图象可能是A .B .C .D .17.【2020届广东省化州市高三第四次模拟数学(文)试题】已知函数()()2,0,ln 1,0,x x f x x x ⎧⎪=⎨+>⎪⎩若不等式()10f x kx k -++<的解集为空集,则实数k 的取值范围为 A.(2⎤-⎦B.(2⎤-⎦C.2⎡⎤-⎣⎦D .[]1,0-18.【2020·山东省青岛第五十八中学高三一模】已知函数229,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,若()f x 的最小值为(1)f ,则实数a 的值可以是A .1B .2C .3D .419.【2020·山东省高三零模】已知定义在R 上的函数()y f x =满足条件()()2f x f x +=-,且函数()1y f x =-为奇函数,则A .函数()y f x =是周期函数B .函数()y f x =的图象关于点()1,0-对称C .函数()y f x =为R 上的偶函数D .函数()y f x =为R 上的单调函数20.【2020届上海市高三高考压轴卷数学试题】已知函数()223f x x ax =-++在区间(),4-∞上是增函数,则实数a 的取值范围是______.21.【福建省厦门外国语学校2020届高三下学期高考最后一次模拟数学(文)试题】已知函数2,0()(2),0x x f x f x x ⎧>=⎨+≤⎩,则(1)f -=_____________.22.【2020·陕西省交大附中高三三模(文)】设函数23(0)()(2)(0)x x x f x f x x ⎧+≥=⎨+<⎩,则()–3f =_____23.【2020·宜宾市叙州区第二中学校高三一模(文)】奇函数()f x 满足()()11f x f x +=-,当01x <≤时,()()2log 4f x x a =+,若1522f ⎛⎫=-⎪⎝⎭,则()a f a +=___________. 24.【2020届上海市高三高考压轴卷数学试题】函数()lg 2cos 21y x =-的定义域是______. 25.【江苏省南京市金陵中学、南通市海安高级中学、南京市外国语学校2020届高三下学期第四次模拟数学试题】已知函数()02,2,2x f x f x x ≤<=-≥⎪⎩若对于正数()*n k n ∈N ,直线n y k x =与函数()y f x =的图象恰有21n 个不同的交点,则数列{}2n k 的前n 项和为________.函数的概念与基本初等函数答案1.【2020年高考全国Ⅰ卷文数】设3log 42a =,则4a -= A .116B .19C .18D .16【答案】B【解析】由3log 42a =可得3log 42a =,所以49a =, 所以有149a -=, 故选:B.【点睛】本题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则,属于基础题目.2.【2020年高考天津】函数241xy x =+的图象大致为A BC D【答案】A【解析】由函数的解析式可得:()()241xf x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误; 当1x =时,42011y ==>+,选项B 错误.故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.3.【2020年高考全国Ⅱ卷文数】在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者 A .10名 B .18名C .24名D .32名【答案】B【解析】由题意,第二天新增订单数为50016001200900+-=,设需要志愿者x 名,500.95900x≥,17.1x ≥,故需要志愿者18名. 故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.4.【2020年高考全国Ⅲ卷文数】Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为(ln19≈3) A .60B .63C .66D .69【答案】C 【解析】()()0.23531t KI t e--=+,所以()()0.23530.951t K I t K e**--==+,则()0.235319t e*-=,所以,()0.2353ln193t *-=≈,解得353660.23t *≈+≈. 故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题. 5.【2020年高考全国Ⅲ卷文数】设a =log 32,b =log 53,c =23,则 A .a <c <b B .a <b <c C .b <c <a D .c <a <b【答案】A【解析】因为333112log 2log 9333a c =<==,355112log 3log 25333b c =>==, 所以a c b <<. 故选A.【点晴】本题考查对数式大小的比较,考查学生转化与化归的思想,是一道中档题. 6.【2020年高考全国Ⅱ卷文数】设函数f (x )=x 3-31x ,则f (x ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增D .是偶函数,且在(0,+∞)单调递减【答案】A【解析】因为函数()331f x x x=-定义域为{}0x x ≠,其关于原点对称,而()()f x f x -=-, 所以函数()f x 为奇函数. 又因为函数3y x =在0,上单调递增,在,0上单调递增, 而331y x x-==在0,上单调递减,在,0上单调递减,所以函数()331f x x x =-在0,上单调递增,在,0上单调递增.故选:A .【点睛】本题主要考查利用函数的解析式研究函数的性质,属于基础题. 7.【2020年高考全国Ⅱ卷文数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<0【答案】A【解析】由2233x y x y ---<-得:2323x x y y ---<-, 令()23ttf t -=-,2x y =为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -与1的大小不确定,故CD 无法确定.故选:A.【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到,x y 的大小关系,考查了转化与化归的数学思想. 8.【2020年高考天津】设0.70.80.713,(),log 0.83a b c -===,则,,a b c 的大小关系为 A .a b c << B .b a c << C .b c a << D .c a b <<【答案】D【解析】因为0.731a =>,0.80.80.71333b a -⎛⎫==>= ⎪⎝⎭,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<. 故选:D.【点睛】本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围. 比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:x y a =,当1a >时,函数递增;当01a <<时,函数递减; (2)利用对数函数的单调性:log a y x =,当1a >时,函数递增;当01a <<时,函数递减;(3)借助于中间值,例如:0或1等.9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) A .1.2天 B .1.8天 C .2.5天 D .3.5天【答案】B【解析】因为0 3.28R =,6T =,01R rT =+,所以 3.2810.386r -==,所以()0.38rt t I t e e ==, 设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为1t 天, 则10.38()0.382t t t e e +=,所以10.382t e =,所以10.38ln 2t =, 所以1ln 20.691.80.380.38t =≈≈天. 故选:B.【点睛】本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题.10.【2020年新高考全国Ⅰ卷】若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是 A .[)1,1][3,-+∞ B .3,1][,[01]-- C .[)1,0][1,-+∞ .1,0]3][[1,-【答案】D【解析】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =, 所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =, 所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得:021012x x x <⎧⎨-≤-≤-≥⎩或或001212x x x >⎧⎨≤-≤-≤-⎩或或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃, 故选:D.【点睛】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题. 11.【2020年新高考全国Ⅰ卷】信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且1()0(1,2,,),1n i i i P X i p i n p ===>==∑,定义X 的信息熵21()log ni i i H X p p ==-∑.A .若n =1,则H (X )=0B .若n =2,则H (X )随着1p 的增大而增大C .若1(1,2,,)i p i n n==,则H (X )随着n 的增大而增大D .若n =2m ,随机变量Y 所有可能的取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +-==+=,则H (X )≤H (Y ) 【答案】AC【解析】对于A 选项,若1n =,则11,1i p ==,所以()()21log 10H X =-⨯=,所以A 选项正确. 对于B 选项,若2n =,则1,2i =,211p p =-, 所以()()()121121X log 1log 1H p p p p =-⋅+-⋅-⎡⎤⎣⎦, 当114p =时,()221133log log 4444H X ⎛⎫=-⋅+⋅ ⎪⎝⎭, 当13p 4=时,()223311log log 4444H X ⎛⎫=-⋅+⋅ ⎪⎝⎭,两者相等,所以B 选项错误. 对于C 选项,若()11,2,,i p i n n==,则()222111log log log H X n n nn n ⎛⎫=-⋅⨯=-= ⎪⎝⎭,则()H X 随着n 的增大而增大,所以C 选项正确.对于D 选项,若2n m =,随机变量Y 的所有可能的取值为1,2,,m ,且()21j m jP Y j p p +-==+(1,2,,j m =).()2222111log log mmi i i i i iH X p p p p ===-⋅=⋅∑∑ 122221222122121111log log log log m m m mp p p p p p p p --=⋅+⋅++⋅+⋅. ()H Y =()()()122221212122211111log log log m m m m m m m m p p p p p p p p p p p p -+-++⋅++⋅+++⋅+++12222122212221221121111log log log log m m m m m mp p p p p p p p p p p p ---=⋅+⋅++⋅+⋅++++.由于()01,2,,2i p i m >=,所以2111i i m ip p p +->+, 所以222111log log i i m ip p p +->+, 所以222111log log i i i i m ip p p p p +-⋅>⋅+, 所以()()H X H Y >,所以D 选项错误. 故选:AC【点睛】本小题主要考查对新定义“信息熵”的理解和运用,考查分析、思考和解决问题的能力,涉及对数运算和对数函数及不等式的基本性质的运用,属于难题.12.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是 A .1(,)(22,)2-∞-+∞B .1(,)(0,22)2-∞-C .(,0)(0,22)-∞D .(,0)(22,)-∞+∞【答案】D【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根 即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点. 因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意; 当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意;当0k >时,如图3,当2y kx =-与2yx 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =(负值舍去),所以k >. 综上,k 的取值范围为(,0)(22,)-∞+∞.故选:D.【点晴】本题主要考查函数与方程的应用,考查数形结合思想,转化与化归思想,是一道中档题. 13.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A. (1,1)-B. (,1)(1,)-∞-+∞C. (0,1)D. (,0)(1,)-∞⋃+∞【答案】D【解析】因为()21xf x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2), 不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞. 故选:D.【点睛】本题考查了图象法解不等式,属于基础题.14.【2020年高考浙江】函数y =x cos x +sin x 在区间[–π,π]上的图象可能是【答案】A【解析】因为()cos sin f x x x x =+,则()()cos sin f x x x x f x -=--=-, 即题中所给的函数为奇函数,函数图象关于坐标原点对称, 据此可知选项CD 错误;且x π=时,cos sin 0y ππππ=+=-<,据此可知选项B 错误. 故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.15.【2020年高考浙江】已知a ,b ∈R 且ab ≠0,对于任意x ≥0均有(x –a )(x –b )(x –2a –b )≥0,则 A .a <0 B .a >0C .b <0D .b >0【答案】C【解析】因为0ab ≠,所以0a ≠且0b ≠,设()()()(2)f x x a x b x a b =----,则()f x 零点为123,,2x a x b x a b ===+ 当0a >时,则23x x <,1>0x ,要使()0f x ≥,必有2a b a +=,且0b <, 即=-b a ,且0b <,所以0b <;当0a <时,则23x x >,10x <,要使()0f x ≥,必有0b <. 综上一定有0b <. 故选:C【点晴】本题主要考查三次函数在给定区间上恒成立问题,考查学生分类讨论思想,是一道中档题. 16.【2020年高考江苏】已知y =f (x )是奇函数,当x ≥0时,()23 f x x =,则()8f -的值是 ▲ . 【答案】4-【解析】23(8)84f ==,因为()f x 为奇函数,所以(8)(8)4f f -=-=- 故答案为:4-【点睛】本题考查根据奇函数性质求函数值,考查基本分析求解能力,属基础题. 17.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________. 【答案】(0,)+∞【解析】由题意得010x x >⎧⎨+≠⎩,0x ∴>故答案为:(0,)+∞【点睛】本题考查函数定义域,考查基本分析求解能力,属基础题.的1.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f = A .16 B .8C .4D .2【答案】B【解析】因为(1)2()f x f x +=,且(5)3(3)4f f =+,故()()324442f f =+,解得()48f =. 故选B.【点睛】本题主要考查了根据函数性质求解函数值的问题,属于基础题.2.【2020·宜宾市叙州区第二中学校高三一模(文)】已知函数()32,0log ,0x x f x x x ⎧≤=⎨>⎩,则=3f f ⎛⎫⎛ ⎪ ⎪⎝⎭⎝⎭A.2B .12C .3log 2-D .3log 2【答案】A【解析】依题意12331log log 32f -===-⎝⎭,12122f f f -⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故选A.【点睛】本小题主要考查根据分段函数解析式求函数值,属于基础题.3.【安徽省2020届高三名校高考冲刺模拟卷数学(文科)试题】已知10.23121log 3,(),23a b c ===,则A .a <b <cB .c <b <aC .c <a <bD .b <a <c【答案】A【解析】∵1122log 3log 10a =<=,0.20110()()133b <=<=,1131222c <=<=,∴a <b <c ,故选A .4.【2020·重庆巴蜀中学高三月考(文)】已知定义在R 上的函数()f x 满足()12f =,对任意的实数1x ,2x 且12x x <,()()1212f x f x x x -<-,则不等式()1f x x ->的解集为A .(),2-∞-B .2,C .()(),11,-∞-⋃+∞D .()(),22,-∞-⋃+∞【答案】B【解析】设()()1F x f x x =--, 则()()11F x f x x -=--,()()11110F f =--=,对任意的1x ,2x 且12x x <,()()1212f x f x x x -<-, 得()()112211f x x f x x --<--, 即()()12F x F x <, 所以()F x 在R 上是增函数,不等式()1f x x ->即为()()11F x F ->, 所以11x ->,2x >. 故选B.【点睛】本题考查函数的单调性解不等式,属于中档题.5.【2020届广东省惠州市高三6月模拟数学(文)试题】已知函数||()e ||x f x x =+,则满足1(21)3f x f ⎛⎫-< ⎪⎝⎭的x 取值范围是 A .12,33⎛⎫⎪⎝⎭B .12,33⎡⎫⎪⎢⎣⎭C .12,23⎛⎫⎪⎝⎭D .12,23⎡⎫⎪⎢⎣⎭【答案】A【解析】由||()e ||()x f x x f x --=+-=,知()f x 是偶函数,∴不等式1(21)3f x f ⎛⎫-< ⎪⎝⎭等价为1(|21|)()3f x f -<,当0x >时,()e x f x x =+,()f x 在区间[0,)+∞上单调递增,1|21|,3x ∴-<解得1233x <<.故选A.【点睛】本题考查根据函数的奇偶性和单调性求解函数不等式的问题,关键是能够利用单调性将不等式转化为自变量大小关系,从而解出不等式,属于中档题. 6.【2020届广东省惠州市高三6月模拟数学(文)试题】函数πx x y x=的图象大致形状是A .B .C .D .【答案】B【解析】当0x <时,ππx xx y x -==-;当0x >时,ππx x x y x ==,πx y =为R 上的增函数,πx x y x∴=在(),0-∞上单调递减,在()0,+∞上单调递增,可知B 正确.故选B. 【点睛】本题考查函数图象的识别,解题关键是能够通过分类讨论的方式得到函数在不同区间内的解析式,进而根据指数函数单调性判断出结果.7.【2020·重庆市育才中学高三开学考试(文)】若函数()23,121,1x ax a x f x ax x ⎧--≥=⎨-<⎩是R 上的增函数,则实数a 的取值范围是A .103⎡⎫-⎪⎢⎣⎭,B .103⎛⎤ ⎥⎝⎦,C .1,3⎛⎤-∞- ⎥⎝⎦D .13⎡⎫+∞⎪⎢⎣⎭,【答案】B【解析】由函数()23,121,1x ax a x f x ax x ⎧--≥=⎨-<⎩是R 上的增函数,则1202113a a a a a⎧≤⎪⎪>⎨⎪-≤--⎪⎩,解得103a <≤,即实数a 的取值范围是103⎛⎤ ⎥⎝⎦,. 故选B.【点睛】本题考查了分段函数的性质,重点考查了运算能力,属基础题.8.【贵州省黔东南州2019-2020学年高三高考模拟考试卷数学(文科)试题】已知函数()f x 的图象关于点()1,0对称,当1x >时,2()5f x x mx =-+,且()f x 在(,0)-∞上单调递增,则m 的取值范围为A .[4,)+∞B .[2,)+∞C .(,4]-∞D .(,2]-∞【答案】C【解析】函数()f x 的图象关于点()1,0对称且在(,0)-∞上单调递增,所以()f x 在(2,)+∞上单调递增,所以对称轴22m≤,即4m ≤. 故选C.【点睛】本题考查函数的性质,涉及到单调性、对称性等知识,考查学生数形结合的思想,是一道容易题.9.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦【答案】D【解析】若0a =,则()3f x x =-,()f x 在区间[)1,-+∞上是增函数,符合.若0a ≠,因为()f x 在区间[)1,-+∞上是增函数,故0112a a a>⎧⎪-⎨≤-⎪⎩,解得103a <≤.综上,103a ≤≤.故选D.【点睛】本题考查含参数的函数的单调性,注意根据解析式的特点合理分类,比如解析式是二次三项式,则需讨论二次项系数的正负以及对称轴的位置,本题属于基础题.10.【2020·四川省成都外国语学校高三月考(文)】若函数,1()42,12xa xf x ax x⎧>⎪=⎨⎛⎫-+≤⎪⎪⎝⎭⎩是R上的单调递增函数,则实数a的取值范围是A.()1,+∞B.(1,8)C.(4,8)D.[4,8)【答案】D【解析】因为函数,1()42,12xa xf x ax x⎧>⎪=⎨⎛⎫-+≤⎪⎪⎝⎭⎩是R上的单调递增函数,所以140482422aaaaa⎧⎪>⎪⎪->∴≤<⎨⎪⎪-+≤⎪⎩故选D.【点睛】本题考查根据分段函数单调性求参数,考查基本分析判断能力,属中档题.11.【2020届山西省太原五中高三3月模拟数学(文)试题】函数ln||cos()sinx xf xx x⋅=+在[π,0)(0,π]-的图像大致为A.B.C.D.【答案】D【解析】因为ln||cos()()sinx xf x f xx x⋅-=-=-+,所以()f x为奇函数,关于原点对称,故排除A ,又因为()10f ±=,π()02f ±=,π()03f >,()0f π<,故排除B ,C. 故选D.【点睛】本题考查函数图象的识别,根据函数的性质以及特殊值法灵活判断,属于基础题.12.【2020·宜宾市叙州区第二中学校高三一模(文)】已知()f x 是定义在R 上的偶函数,在区间[0,)+∞上为增函数,且1()03f =,则不等式18(log )0f x >的解集为A .1(,2)2B .(2,)+∞C .1(0,)(2,)2+∞ D .1(,1)(2,)2+∞【答案】C【解析】∵118811(log )0()(log )()33f x f f x f >=⇔>,又()f x 在区间[0,)+∞上为增函数,∴181log 3x >,∴118811log log 33x x 或><-,∴1022xx <或,∴不等式18(log )0f x >的解集为1(0,)(2,)2+∞,故选C. 13.【2020·宜宾市叙州区第一中学校高三一模(文)】已知函数()()()1f x x ax b =-+为偶函数,且在0,上单调递减,则()30f x -<的解集为A .()2,4 B .()(),24,-∞+∞C .()1,1-D .()(),11,-∞-⋃+∞【答案】B【解析】因为()()2f x ax b a x b =+--为偶函数,所以0b a -=,即b a =, ∴()2f x ax a =-,因为()f x 在()0,∞+上单调递减, 所以0a <,∴()()2330f x a x a -=--<,可化为()2310x -->, 即2680x x -+>,解得2x <或4x >.故选B .【点睛】本题主要考查奇偶性与单调性的应用以及一元二次不等式的解法,还考查了运算求解的能力,属于中档题.14.【天津市十二区县重点学校2020届高三下学期毕业班联考(一)数学试题】已知函数(2)y f x =-的图象关于直线2x =对称,在(0,)x ∈+∞时,()f x 单调递增.若()ln34a f =,e (2)b f -=,1lnπc f ⎛⎫= ⎪⎝⎭(其中e 为自然对数的底数,π为圆周率),则,,a b c 的大小关系为 A .a c b >> B .a b c >> C .c a b >> D .c b a >>【答案】A【解析】因为函数(2)y f x =-的图象关于直线2x =对称,所以()f x 的图象关于y 轴对称, 因为(0,)x ∈+∞时,()f x 单调递增,所以(,0)x ∈-∞时,()f x 单调递减; 因为ln3ln e e 01444,0221,lnln ln e 1->=<<==π>=π,所以a c b >>. 故选A.【点睛】本题主要考查函数的性质,根据条件判断出函数的单调性和奇偶性是求解的关键,侧重考查数学抽象的核心素养.15.【2020·山东省高三期末】函数()y f x =是R 上的奇函数,当0x <时,()2xf x =,则当0x >时,()f x =A .2x -B .2x -C .2x --D .2x【答案】C 【解析】0x <时,()2xf x =.当0x >时,0x -<,()2xf x --=,由于函数()y f x =是奇函数,()()2xf x f x -∴=--=-,因此,当0x >时,()2xf x -=-,故选C.【点睛】本题考查奇偶函数解析式的求解,一般利用对称转移法求解,即先求出()f x -的表达式,再利用奇偶性得出()f x 的表达式,考查分析问题和运算求解能力,属于中等题.16.【2020·山东省高三期末】函数()y f x =与()y g x =的图象如图所示,则()()y f x g x =⋅的部分图象可能是A .B .C .D .【答案】A【解析】由图象可知()y f x =的图象关于y 轴对称,是偶函数,()y g x =的图象关于原点对称,是奇函数,并且定义域{}0x x ≠,()()y f x g x ∴=⋅的定义域是{}0x x ≠,并且是奇函数,排除B ,又π0,2x ⎛⎫∈ ⎪⎝⎭时,()0f x >,()0g x <,()()0f x g x ∴⋅<,排除C,D. 满足条件的只有A. 故选A.【点睛】本题考查函数图象的识别,意在考查函数的基本性质,属于基础题型.17.【2020届广东省化州市高三第四次模拟数学(文)试题】已知函数()()2,0,ln 1,0,x x f x x x ⎧⎪=⎨+>⎪⎩若不等式()10f x kx k -++<的解集为空集,则实数k 的取值范围为 A.(2⎤-⎦B.(2⎤-⎦C.2⎡⎤-⎣⎦D .[]1,0-【答案】C【解析】因为不等式()10f x kx k -++<的解集为空集, 所以不等式()10f x kx k -++恒成立.()10f x kx k -++可变形为()(1)1f x k x --.在同一坐标系中作出函数(),(1)1y f x y k x ==--的图象,如图:直线(1)1y k x =--过定点(1,1)A -,当直线(1)1y k x =--与2(0)y x x =相切时,方程()10f x kx k -++=有一个实数解, 可得2(1)1x k x =--,即210x kx k -++=,由24(1)0k k ∆=-+=,可得2k =-2k =+(舍去), 故由函数图象可知使不等式恒成立的实数k的取值范围为2⎡⎤-⎣⎦.故选C.【点睛】本题考查了函数图象、根据函数的图象求参数的取值范围,考查了数形结合思想,属于中档题.18.【2020·山东省青岛第五十八中学高三一模】已知函数229,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,若()f x 的最小值为(1)f ,则实数a 的值可以是A .1B .2C .3D .4【答案】BCD【解析】当1x >,4()4f x x a a x=++≥+, 当且仅当2x =时,等号成立;当1x ≤时,2()29f x x ax =-+为二次函数,要想在1x =处取最小, 则对称轴要满足1x a =≥,且(1)4f a ≤+, 即1294a a -+≤+,解得2a ≥, 故选BCD.【点睛】本题考查分段函数的最值问题,处理时应对每段函数进行分类讨论,找到每段的最小值. 19.【2020·山东省高三零模】已知定义在R 上的函数()y f x =满足条件()()2f x f x +=-,且函数()1y f x =-为奇函数,则A .函数()y f x =是周期函数B .函数()y f x =的图象关于点()1,0-对称C .函数()y f x =为R 上的偶函数D .函数()y f x =为R 上的单调函数【答案】ABC【解析】因为()()2f x f x +=-,所以()()()42f x f x f x +=-+=,即4T=,故A 正确;因为函数()1y f x =-为奇函数,所以函数()1y f x =-的图像关于原点成中心对称,所以B 正确; 又函数()1y f x =-为奇函数,所以()()11f x f x --=--,根据()()2f x f x +=-,令1x -代x 有()()11f x f x +=--,所以()()11f x f x +=--,令1x -代x 有()()f x f x -=,即函数()f x 为R上的偶函数,C 正确;因为函数()1y f x =-为奇函数,所以()10f -=,又函数()f x 为R 上的偶函数,()10f =,所以函数不单调,D 不正确. 故选ABC.【点睛】本题考查了函数的周期性和奇偶性以及对称性,属于基础题.20.【2020届上海市高三高考压轴卷数学试题】已知函数()223f x x ax =-++在区间(),4-∞上是增函数,则实数a 的取值范围是______.【答案】[)4,+∞【解析】()223f x x ax =-++对称轴方程为x a =,()f x 在区间(),4-∞上是增函数,所以4a ≥.故答案为[)4,+∞.【点睛】本题考查函数的单调性求参数,熟练掌握初等简单函数的性质是解题的关键,属于基础题. 21.【福建省厦门外国语学校2020届高三下学期高考最后一次模拟数学(文)试题】已知函数2,0()(2),0x x f x f x x ⎧>=⎨+≤⎩,则(1)f -=_____________【答案】2【解析】函数2,0()(2),0x x f x f x x ⎧>=⎨+≤⎩,则()1(1)122f f -===.故答案为:2【点睛】本题考查了分段函数求值,考查了基本运算求解能力,属于基础题.22.【2020·陕西省交大附中高三三模(文)】设函数23(0)()(2)(0)x x x f x f x x ⎧+≥=⎨+<⎩,则()–3f =_____【答案】4【解析】函数23(0)()(2)(0)x x x f x f x x ⎧+≥=⎨+<⎩,2(3)(1)(1)1314f f f -=-==+⨯=.【点睛】本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.23.【2020·宜宾市叙州区第二中学校高三一模(文)】奇函数()f x 满足()()11f x f x +=-,当01x <≤时,()()2log 4f x x a =+,若1522f ⎛⎫=- ⎪⎝⎭,则()a f a +=___________. 【答案】2【解析】由于函数()y f x =为奇函数,且()()()111f x f x f x +=-=--,即()()2f x f x +=-,()()()42f x f x f x ∴+=-+=,所以,函数()y f x =是以4为周期的奇函数,()21511log 22222f f fa ⎛⎫⎛⎫⎛⎫∴=-=-=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 解得2a =.()()()222f f f =-=-,()20f ∴=.因此,()()222a f a f +=+=. 故答案为2.【点睛】本题考查函数值的计算,推导出函数的周期性是解答的关键,考查推理能力与计算能力,属于中等题.24.【2020届上海市高三高考压轴卷数学试题】函数()lg 2cos 21y x =-的定义域是______.【答案】5πππ5π3,,,36666⎡⎫⎛⎫⎛⎤---⎪ ⎪ ⎢⎥⎣⎭⎝⎭⎝⎦【解析】因为()lg 2cos 21y x =-,所以2902cos 210x x ⎧-≥⎨->⎩,所以331cos 22x x -≤≤⎧⎪⎨>⎪⎩,所以33ππππ,66x k x k k -≤≤⎧⎪⎨-<<+∈⎪⎩Z , 解得5π36x -≤<-或ππ66x -<<或5π36x <≤. 故答案为5πππ5π3,,,36666⎡⎫⎛⎫⎛⎤---⎪ ⎪⎢⎥⎣⎭⎝⎭⎝⎦. 【点睛】本题主要考查函数定义域的求法以及一元二次不等式,三角不等式的解法,还考查了运算求解的能力,属于中档题.25.【江苏省南京市金陵中学、南通市海安高级中学、南京市外国语学校2020届高三下学期第四次模拟数学试题】已知函数()02,2,2x f x f x x ≤<=-≥⎪⎩若对于正数()*n k n ∈N ,直线n y k x =与函数()y f x =的图象恰有21n 个不同的交点,则数列{}2n k 的前n 项和为________.【答案】()41nn +【解析】当02x ≤<时,()y f x ==,即()2211x y -+=,0y ≥; 当2x ≥时()()2f x f x =-,函数周期为2, 画出函数图象,如图所示:n y k x =与函数恰有21n 个不同的交点, 根据图象知,直线n y k x =与第1n +个半圆相切, 故n k ==,故2211114441n k n n n n ⎛⎫==- ⎪++⎝⎭,数列{}2n k 的前n 项和为()11111114223141nn n n ⎛⎫-+-+⋅⋅⋅+-= ⎪++⎝⎭. 故答案为:()41nn +.【点睛】本题考查了数列求和,直线和圆的位置关系,意在考查学生的计算能力和转化能力,综合应用能力,画出图象是解题的关键.。

江苏省南京市、盐城市2020届高三年级第一次模拟考试 数学(word版含答案)

江苏省南京市、盐城市2020届高三年级第一次模拟考试 数学(word版含答案)

盐城市、南京市 2020 届高三年级第一次模拟考试数学2020.01注意事项:1. 本试卷共 4 页,包括填空题(第 1 题~第 14 题)、解答题(第 15 题~第 20 题)两部分.本试卷满分为 160 分,考试时间为 120 分钟.2. 答题前,请务必将自己的姓名、学校、班级、学号写在答题卡的密封线内.试题的答案写在答.题.卡.上对应题目的答案空格内.考试结束后,交回答题卡. 参考公式:柱体体积公式:V =Sh ,锥体体积公式:V =1Sh ,其中 S 为底面积,h 为高.3n n样本数据 x 1,x 2,···,x n 的方差 s 2=1 ∑ (x i -)2,其中=1 ∑ x i .n i =1 n i =1一、 填空题:本大题共 14 小题,每小题 5 分,计 70 分.不需写出解答过程,请把答案写在答题卡的指定位置上.1.已知集合 A =(0,+∞),全集 U =R ,则∁ A = ▲. U2. 设复数 z =2+i ,其中 i 为虚数单位,则 z ·—z =▲.3. 学校准备从甲、乙、丙三位学生中随机选两位学生参加问卷调查, 则甲被选中的概率为 ▲ . 4. 命题“ θ∈R ,cos θ+sin θ>1”的否定是 ▲ 命题.(填“真”或“假”) 5. 运行如图所示的伪代码,则输出的 I 的值为 ▲ . 6. 已知样本 7,8,9,x ,y 的平均数是 9,且 xy =110,则此样本的方差是 ▲ .(第 5 题图)7. 在平面直角坐标系 xOy 中,若抛物线 y 2=4x 上的点 P 到其焦点的距离为 3,则点 P 到点 O的距离为 ▲ .8. 若数列{a n }是公差不为0 的等差数列,ln a 1、ln a 2、ln a 5 成等差数列,则a 2的值为 ▲ . a 19. 在三棱柱 ABC -A 1B 1C 1 中,点 P 是棱 CC 1 上一点,记三棱柱 ABC -A 1B 1C 1 与四棱锥 P -ABB 1A 1 的体积分别为 V 1 与 V 2,则V 2= ▲ .V 110. 设函数 f (x )=sin(ωx +φ)(ω>0,0<φ<π)的图象与 y y 轴右侧第一个22最低点的横坐标为π,则ω的值为 ▲.6S ←0I ←0 While S ≤10 S ←S +I I ←I +1End WhilePrint I→11.已知H 是△ABC 的垂心(三角形三条高所在直线的交点),AH =的值为▲.→AB +4→AC ,则cos∠BAC212.若无穷数列{cos(ωn)}(ω∈R)是等差数列,则其前10 项的和为▲.13.已知集合P={(x,y)|x|x|+y|y|=16},集合Q={(x,y)|kx+b1≤y≤kx+b2},若P Q,则|b1-b2|k2+1 的最小值为▲.14.若对任意实数x∈(-∞,1],都有| e xx2-2ax+1|≤1 成立,则实数a 的值为▲.二、解答题:本大题共 6 小题,计90 分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题卡的指定区域内.15.(本小题满分14 分)已知△ABC 满足sin(B+π)=2cos B.6(1)若cos C AC=3,求AB;3(2)若A∈(0,π),且cos(B-A)=4,求sin A.3 516.(本小题满分14 分)如图,长方体ABCD-A1B1C1D1 中,已知底面ABCD 是正方形,点P 是侧棱CC1 上的一点.(1)若AC1//平面PBD,求PC1的值;PC(2)求证:BD⊥A1P.1A(第16 题图)11QA DOB CPyPA F1 O F2 xB如图,是一块半径为4 米的圆形铁皮,现打算利用这块铁皮做一个圆柱形油桶.具体做法是从⊙O 中裁剪出两块全等的圆形铁皮⊙P 与⊙Q 做圆柱的底面,裁剪出一个矩形ABCD 做圆柱的侧面(接缝忽略不计),AB 为圆柱的一条母线,点A、B 在⊙O 上,点P、Q 在⊙O 的一条直径上,AB∥PQ,⊙P、⊙Q 分别与直线BC、AD 相切,都与⊙O 内切.(1)求圆形铁皮⊙P 半径的取值范围;(2)请确定圆形铁皮⊙P 与⊙Q 半径的值,使得油桶的体积最大.(不取近似值)(第17 题图)18.(本小题满分16 分)设椭圆C:x2+y2=1(a>b>0)的左右焦点分别为F1,F2,离心率是e,动点P(x0,y0)在椭圆C 上a2 b2运动.当PF2⊥x 轴时,x0=1,y0=e.(1)求椭圆C 的方程;→→→→(2)延长PF ,PF 分别交椭圆C 于点A,B(A,B 不重合).设=,=,1 2AF1λF1P BF2 μF2P 求λ+μ的最小值.(第18 题图)定义:若无穷数列{a n}满足{a n+1-a n}是公比为q的等比数列,则称数列{a n}为“M(q)数列”.设数列{b n}中b1=1,b3=7.(1)若b2=4,且数列{b n}是“M(q)数列”,求数列{b n}的通项公式;(2)设数列{b n}的前n项和为S n,且b n+1=2S n-1n+λ,请判断数列{b n}是否为“M(q)数列”,2并说明理由;(3)若数列{b n}是“M(2)数列”,是否存在正整数m,n 使得4039<b m<4040?若存在,请求2019b n2019出所有满足条件的正整数m,n;若不存在,请说明理由.20.(本小题满分16 分)若函数f(x)=e x-a e-x-mx(m∈R)为奇函数,且x=x0时f(x)有极小值f(x0).(1)求实数a 的值;(2)求实数m 的取值范围;(3)若f(x0)≥-2恒成立,求实数m 的取值范围.e盐城市、南京市 2020 届高三年级第一次模拟考试数学附加题2020.01注意事项:1.附加题供选修物理的考生使用.2.本试卷共40 分,考试时间30 分钟.3.答题前,考生务必将自己的姓名、学校、班级、学号写在答题卡的密封线内.试题的答案写在答.题.卡.上对应题目的答案空格内.考试结束后,交回答题纸卡.21.【选做题】在A、B、C 三小题中只能选做2 题,每小题10 分,共计20 分.请在答.卷.卡.指.定.区.域.内.作答.解答应写出文字说明、证明过程或演算步骤.A.选修4—2:矩阵与变换a 3已知圆C 经矩阵M=3 -2 变换后得到圆C′:x2+y2=13,求实数a 的值.B.选修4—4:坐标系与参数方程在极坐标系中,直线ρcosθ+2ρsinθ=m 被曲线ρ=4sinθ截得的弦为AB,当AB 是最长弦时,求实数m 的值.C.选修4—5:不等式选讲已知正实数a,b,c 满足1+2+3=1,求a+2b+3c 的最小值.a b c【必做题】第22 题、第23 题,每题10 分,共计20 分.请在答.卷.卡.指.定.区.域.内.作答.解答应写出文字说明、证明过程或演算步骤.22.(本小题满分10 分)如图,AA1、BB1 是圆柱的两条母线,A1B1、AB 分别经过上下底面圆的圆心O1、O,CD 是下底面与AB 垂直的直径,CD=2.(1)若AA1=3,求异面直线A1C 与B1D 所成角的余弦值;(2)若二面角A1-CD-B1 的大小为π,求母线AA1 的长.3(第22 题图)23.(本小题满分10 分)2n设∑ (1-2x)i=a0+a1x+a2x2+…+a2n x2n(n∈N*),记S n=a0+a2+a4+…+a2n.i=1(1)求S n;(2)记T n=-S1C1+S2C2-S3C3+…+(-1)n S n C n,求证:|T n|≥6n3恒成立.n n n n盐城市、南京市2020 届高三年级第一次模拟考试数学参考答案及评分标准2020.01说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,填空题不给中间分数.一、填空题(本大题共14 小题,每小题 5 分,计70 分. 不需写出解答过程,请把答案写在答题纸的指定位置上)4.真5.6 6.2 7.2 31.(-∞,0] 2.5 3.238.3 9.210.7 1112.10 13.414.-1332二、解答题:本大题共 6 小题,计90 分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.(本小题满分14 分)解:(1)由sin(B+π)=2cos B,可知B+1cos B=2cos B,即sin B=3cos B.6 2 2因为cos B≠0,所以tan B=3.又B∈(0,π),故B=π......................................... 2 分3由cos C C∈(0,π),3可知sin C=1-cos2C................................... 4 分3AC =AB ,在△ABC 中,由正弦定理b = c ,可得sin Csin B sin C sinπ3所以AB=2................................................. 7 分(2)由(1)知B=π,所以A∈(0,π)时,π-A∈(0,π),3 3 3 3由 cos(B -A )=4,即 cos(π-A )=4,所以 sin(π-A )= 1-cos 2(π-A )=3, ................. 10 分3 3 5 所以 sin A =sin[π-(π-A )]=sin πcos(π-A )-cos πsin(π-A )3 3 3 3 3 3= 3×4-1×3=4 3-3. ............................. 14 分2 5 2 5 1016.(本小题满分 14 分)证明:(1)连结 AC 交 BD 于点 O ,连结 OP .因为 AC 1//平面 PBD ,AC 1 平面 ACC 1, 平面 ACC 1∩平面 BDP =OP ,所以 AC 1//OP . ............................. 3 分因为四边形 ABCD 是正方形,对角线 AC 交 BD 于点 O , 所以点 O 是 AC 的中点,所以 AO =OC ,所以在△ACC 1 中,PC 1=AO=1. ................ 6 分D 1C 1A 1B 1PD C(2)连结 A 1C 1.PC OC O因为 ABCD -A 1B 1C 1D 1 为长方体,所以侧棱 C 1C ⊥平面 ABCD . (第 16 题图)又 BD 平面 ABCD ,所以 CC 1⊥BD . ...................... 8 分因为底面 ABCD 是正方形,所以 AC ⊥BD . ................. 10 分又 AC ∩CC 1=C ,AC 面 ACC 1A 1, CC 1面 ACC 1A 1,所以 BD ⊥面 ACC 1A 1. .......................................... 12 分又因为 A 1P 面 ACC 1A 1,所以 BD ⊥A 1P . .......................... 14 分17.(本小题满分 14 分)解:(1)设⊙P 半径为 r ,则 AB =4(2-r ),所以⊙P 的周长 2πr =BC ≤2 16-4(2-r )2, ............................ 4 分 解 得 r ≤ 16 ,π2+4故⊙P 半径的取值范围为(0, 16 ]. ................................. 6 分π2+4 (2)在(1)的条件下,油桶的体积 V =πr 2·AB =4πr 2(2-r ). ..................... 8 分设函数 f (x )=x 2(2-x ),x ∈(0, 16 ],π2+4所以 f '(x)=4x-3x2,由于16 <4,π2+4 3所以 f '(x)>0 在定义域上恒成立,故f(x)在定义域上单调递增,即当r=16 时,体积取到最大值.................................. 13 分π2+4答:⊙P 半径的取值范围为(0,16 ].当r=16 米时,体积取到最大值. ....... 14 分18.(本小题满分16 分)π2+4 π2+4解:(1)由当PF2⊥x轴时,x0=1,可知c=1. ................................................... 2分将x0=1,y0=e 代入椭圆方程得1 +e2=1.a2 b2由e=c=1,b2=a2-c2=a2-1,所以1 + 1 =1,a a a2 a2(a2-1)解得a2=2,故b2=1,所以椭圆C 的方程为x2+y2=1...................................... 4分2→→1-x1=λ(x0+1),(2)方法一:设A(x1,y1),由AF1=λF1P y1=λy0,1=-λx0-λ-1,y1=-λy0,代入椭圆方程,得(-λx0-λ-1)2+(-λy)2=1....................... 8 分2x2(λx)2 2 2(λ+1)(2λx0+λ+1) 2又由0+y0=1,得20 +(λy0) =λ ,两式相减得2 2=1-λ .因为λ+1≠0,所以2λx0+λ+1=2(1-λ),故λ= 1 ................................................... 12 分3+2x0同理可得μ= 1 ,............................................ 14 分3-2x0故λ+μ= 1 + 1 = 6 ≥2,3+2x0 3-2x0 9-4x23当且仅当x0=0 时取等号,故λ+μ的最小值为2. ....................... 16 分3方法二:由点A,B 不重合可知直线PA 与x 轴不重合,故可设直线PA 的方程为x=my-1,x2 22+y =1,消去x,得(m2+2)y2-2my-1=0.x=my-1,设A(x1,y1),则y0y1=-1m2+2,所以y1=-1 ................. 8 分(m2+2)y0将点P(x ,y ) x2 y 2=1,0 0代入椭圆的方程得0+020 0 0 0代入直线 PA 的方程得 x 0=my 0-1,所以 m =x 0+1.y 0→ → y 1 1 1 由AF 1=λF 1P ,得-y 1=λy 0,故λ=- = =y 0 (m 2+2)y 2 (x 0+1)2+2y 2= 1= 1 . .................................... 12 分 (x 0+1)2+2(1-1x 2) 3+2x 02同理可得μ= 1 . ............................................. 14 分3-2x 0故λ+μ= 1 + 1 = 6 ≥2,3+2x 0 3-2x 0 9-4x 23 当且仅当 x 0=0 时取等号,故λ+μ的最小值为2. ...................... 16 分3注:(1)也可设 P ( 2cos θ,sin θ)得λ= 1 ,其余同理. 3+2 2cos θ(2)也可由1+1=6,运用基本不等式求解λ+μ的最小值.λ μ 19.(本小题满分 16 分)解:(1)因为 b 2=4,且数列{b n }是“M (q )数列”,所以 q =b 3-b 2=7-4=1,所以b n +1-b n =1,n ≥2,b 2-b 1 4-1b n -b n -1 即 b n +1-b n =b n -b n -1 ,n ≥2, .................................................................. 2 分 所以数列{b n }是等差数列,其公差为 b 2-b 1=3,所以数列{b n }通项公式为 b n =1+(n -1)×3,即 b n =3n -2. ............... 4 分 (2)由 b n +1=2S n -1n +λ,得 b 2=3+λ,b 3=4+3λ=7,故λ=1.2 2方法一:由 b n +1=2S n -1n +1,得 b n +2=2S n +1-1(n +1)+1,2 2 两式作差得 b n +2-b n +1=2b n +1-1,即 b n +2=3b n +1-1,n ∈N *.2 2又 b 2=5,所以 b 2=3b 1-1,22所以 b n +1=3b n -1对 n ∈N *恒成立, ............................................ 6 分2b n +1-1则 b n +1-1=3(b n -1).因为 b 1-1=3≠0,所以 b n -1≠0,所以4=3, 4 4 4 4 4 b n -14 即{b n -1}是等比数列, ....................................... 8 分4+ 所以 b n -1=(1-1)×3n -1=1×3n ,即 b n =1×3n +1,4 4 4 4 4(1×3n +2+1)-(1×3n +1+1)所以b n +2-b n +1= 44 4 4 =3, b n +1-b n(1×3n +1+1)-(1×3n +1)4444所以{b n +1-b n }是公比为 3 的等比数列,故数列{b n }是“M (q )数列”.………10 分 方法二:同方法一得 b n +1=3b n -1对 n ∈N *恒成立, ....................................... 6 分2 则 b n +2=3b n +1-1,两式作差得 b n +2-b n +1=3(b n +1-b n ). .............................. 8 分2因为 b 2-b 1=3≠0,所以 b n +1-b n ≠0,所以b n +2-b n +1=3,2b n +1-b n所以{b n +1-b n }是公比为 3 的等比数列,故数列{b n }是“M (q )数列”.………10 分(3)由数列{b n }是“M (2)数列”,得 b n 1-b n =(b 2-b 1)×2n -1. 又b 3-b 2=2,即7-b 2=2,所以 b 2=3,所以 b 2-b 1=2,所以 b n +1-b n =2n ,b 2-b 1 b 2-1 所以当 n ≥2 时,b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1=2n -1+2n -2+…+2+1=2n -1.当 n =1 时上式也成立,所以 b n =2n -1. ...........................12 分 假设存在正整数 m ,n ,使得4039<b m <4040,则4039<2m-1<4040.2019 b n 2019 2019 2n -1 2019由2m-1>4039>1,可知 2m -1>2n -1,所以 m >n .2n -1 2019又 m ,n 为正整数,所以 m -n ≥1.又2m -1=2m -n (2n -1)+2m -n -1=2m -n +2m -n-1<4040, 2n -1 2n -1 2n -1 2019所以 2m -n <4040<3,所以 m -n =1, .............................................................. 14 分2019 所以2m-1=2+ 1 ,即4039<2+ 1 <4040,所以2021<2n <2020,2n -12n -1 2019 2n -1 2019 2 所以 n =10,m =11,故存在满足条件的正整数 m ,n ,其中 m =11,n =10. ................... 16 分20.(本小题满分 16 分)解:(1)由函数 f (x )为奇函数,得 f (x )+f (-x )=0 在定义域上恒成立,所以 e x -a e -x -mx +e -x -a e x +mx =0,化简可得 (1-a )·(e x +e -x )=0,所以 a =1. .................................................. 3 分(2)方法一:由(1)可得f(x)=e x-e-x-mx,所以f'(x)=e x+e-x-m=e2x-m e x+1.e x①当m≤2 时,由于e2x-m e x+1≥0 恒成立,即f '(x)≥0 恒成立,故不存在极小值............................ 5 分②当m>2 时,令e x=t,则方程t2-mt+1=0 有两个不等的正根t1,t2 (t1<t2),故可知函数f(x)=e x-e-x-mx在(-∞,ln t1),(ln t2,+∞)上单调递增,在(ln t1,ln t2)上单调递减,即在ln t2 处取到极小值,所以,m 的取值范围是(2,+∞).................................. 9分方法二:由(1)可得f(x)=e x-e-x-mx,令g(x)=f'(x)=e x+e-x-m,则g′(x)=e x-e-x=e2x-1.e x故当x≥0 时,g′(x)≥0;当x<0 时,g′(x)<0,........................... 5 分故g(x)在(-∞,0)上递减,在(0,+∞)上递增,所以g(x)min=g(0)=2-m.①若2-m≥0,则g(x)≥0 恒成立,所以f(x)单调递增,此时f(x)无极值点.……6 分②若2-m<0,即m>2 时,g(0)=2-m<0.取t=ln m,则g(t)=1 >0.m又函数g(x)的图象在区间[0,t]上不间断,所以存在x0∈(0,t),使得g(x0)=0.又g(x)在(0,+∞)上递增,所以x∈(0,x0)时,g(x)<0,即f '(x)<0;x∈(x0,+∞)时,g(x)>0,即f '(x)>0,所以f(x0)为f(x)极小值,符合题意.所以,m 的取值范围是(2,+∞).................................. 9 分(3)由x0满足e x0+e-x0=m,代入f(x)=e x-e-x-mx,消去m,可得f(x0)=(1-x0)e x0-(1+x0)e-x0. ................................................ 11分构造函数h(x)=(1-x)e x-(1+x)e-x,所以h′(x)=x(e-x-e x).当x≥0时,e-x-e x=1-e2x0,所以当x≥0 时,h′(x)≤0 恒成立,e x故h(x)在[0,+∞)上为单调减函数,其中h(1)=-2, ............................... 13 分e则f(x0)≥-2可转化为h(x0)≥h(1),故x0≤1..................... 15 分e由e x0+e-x0=m,设y=e x+e-x,可得当x≥0时,y’=e x-e-x≥0,所以y=e x+e-x在(0,1]上递增,故m≤e+1.e 综上,m 的取值范围是(2,e+1]. .............................. 16 分e≤盐城市、南京市 2020 届高三年级第一次模拟考试数学附加题参考答案及评分标准2020.01说明:1. 本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照 评分标准制订相应的评分细则.2. 对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的 解答有较严重的错误,就不再给分.3. 解答右端所注分数,表示考生正确做到这一步应得的累加分数.4. 只给整数分数,填空题不给中间分数.21.【选做题】在 A 、B 、C 三小题中只能选做 2 题,每小题 10 分,共计 20 分.请在答.卷.纸.指.定.区.域.内.作答.解答应写出文字说明、证明过程或演算步骤. A. 选修 4—2:矩阵与变换解:设圆 C 上任一点(x ,y ),经矩阵 M 变换后得到圆 C’上一点(x’,y’),a 3所以 3 -2x =x′y y′ ax +3y =x′,3x -2y =y′. ......................... 5 分又因为(x′)2+(y′)2=13,所以圆 C 的方程为(ax +3y )2+(3x -2y )2=13, 化简得(a 2+9)x 2+(6a -12)xy +13y 2=13, a 2+9=13,6a -12=0 解得 a =2.所以,实数 a 的值为 2. ........................................... 10 分B. 选修 4—4:坐标系与参数方程解:以极点为原点,极轴为 x 轴的正半轴(单位长度相同)建立平面直角坐标系,由直线ρcos θ+2ρsin θ=m ,可得直角坐标方程为 x +2y -m =0.又曲线ρ=4sin θ,所以ρ2=4ρsin θ,其直角坐标方程为 x 2+(y -2)2=4, ........... 5 分所以曲线ρ=4sin θ是以(0,2)为圆心,2 为半径的圆.为使直线被曲线(圆)截得的弦 AB 最长,所以直线过圆心(0,2), 于是 0+2×2-m =0,解得 m =4.所以,实数 m 的值为 4. ............................................ 10 分C. 选修 4—5:不等式选讲解:因为1+2+3=1,所以1+ 4 + 9 =1. a b c a 2b 3c,由柯西不等式得a+2b+3c=(a+2b+3c)(1+4 +9 )≥(1+2+3)2,a 2b 3c即a+2b+3c≥36,....................................................... 5分1 4 9当且仅当a=2b=3c,即a=b=c 时取等号,解得a=b=c=6,a 2b 3c所以当且仅当a=b=c=6 时,a+2b+3c 取最小值36.......................... 10 分22.(本小题满分10分)解:(1)以CD,AB,OO1所在直线建立如图所示空间直角坐标系O-xyz.由CD=2,AA1=3,所以A(0,-1,0),B(0,1,0),C(-1,0,0),D(1,0,0),A1(0,-1,3),B1(0,1,3),→→从而A1C=(-1,1,-3),B1D=(1,-1,-3),→→-1×1+1×(-1)+(-3)×(-3) 7所以cos<A1C,B1D>==,(-1)2+12+(-3)2×12+(-1)2+(-3)2 11所以异面直线A1C 与B1D 所成角的余弦值为7 . ........... 4 分11(2)设AA1=m>0,则A1(0,-1,m),B1(0,1,m),→→→所以A1C=(-1,1,-m),B1D=(1,-1,-m),CD=(2,0,0),→n1·CD=2x1=0,设平面A1CD 的一个法向量n1=(x1,y1,z1),则所以x1=0,令z1=1,则y1=m,所以平面A1CD 的一个法向量n1=(0,m,1).→n1·A1C=-x1+y1-mz1=0,同理可得平面B1CD 的一个法向量n2=(0,-m,1).因为二面角A1-CD-B1 的大小为π,3所以|cos<n1,n2>|=|m×(-m)+1×1 |=1,m2+12×(-m)2+12 2解得m=3或m=3,3由图形可知当二面角A1-CD-B1 的大小为π时,m=3................ 10 分3注:用传统方法也可,请参照评分.23.(本小题满分10分)解:(1)令x=1,得a0+a1+a2+…+a2n=0.令x=-1,得a0-a1+a2-a3+…-a2n-1+a2n=31+32+…+32n=3(9n-1).2两式相加得2(a0+a2+a4+…+a2n)=3(9n-1),2所以S n=3(9n-1).......................... 3 分4(2)T n=-S1C1+S2C2-S3C3+…+(-1)n S n C nn n n n=3{[-91C1+92C2-93C3+…+(-1)n9n C n]-[-C1+C2-C3+…+(-1)n C n]}n n n4n n n n n=3{[90C0-91C1+92C2-93C3+…+(-1)n9n C n]-[C0-C1+C2-C3+…+(-1)n C n]} n n n n4n n n n n n =3[90C0-91C1+92C2-93C3+…+(-1)n9n C n]n n n n n4=3[C0(-9)0+C1(-9)1+C2(-9)2+…+C n(-9)n]n n n n4=3[1+(-9)]n=3×(-8)n....................................... 7 分4 4要证|T n|≥6n3,即证3×8n≥6n3,只需证明8n-1≥n3,即证2n-1≥n.4当n=1,2时,2n-1≥n显然成立.当n≥3时,2n-1=C0+C1+…+C n-1≥C0+C1=1+(n-1)=n,即2n-1≥n,n-1 n-1 n-1 n-1 n-1所以2n-1≥n对n∈N*恒成立.综上,|T n|≥6n3恒成立.......................................... 10 分注:用数学归纳法或数列的单调性也可证明2n -1≥n 恒成立,请参照评分.。

2020届江苏南京市、盐城市高三上学期第一次模拟考试数学(理)试题(解析版)

2020届江苏南京市、盐城市高三上学期第一次模拟考试数学(理)试题(解析版)

盐城市、南京市2020届高三年级第一次模拟考试数 学 理 试 题2020.01(总分160分,考试时间120分钟)一、填空题(本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请将答案填写在答题卡...相应的位置上.......) 1.已知集合A =(0,+∞),全集U =R ,则U A ð= . 答案:(-∞,0] 考点:集合及其补集解析:∵集合A =(0,+∞),全集U =R ,则U A ð=(-∞,0]. 2.设复数2z i =+,其中i 为虚数单位,则z z ⋅= . 答案:5 考点:复数解析:∵2z i =+,∴2(2)(2)45z z i i i ⋅=+-=-=.3.学校准备从甲、乙、丙三位学生中随机选两位学生参加问卷调查,则甲被选中的概率为 . 答案:23考点:等可能事件的概率解析:所有基本事件数为3,包含甲的基本事件数为2,所以概率为23. 4.命题“θ∀∈R ,cos θ+sin θ>1 ”的否定是 命题(填“真”或“假”). 答案:真 考点:命题的否定解析:当θπ=-时,cos θ+sin θ=﹣1<1,所以原命题为假命题,故其否定为真命题. 5.运行如图所示的伪代码,则输出的I 的值为 .答案:6考点:算法(伪代码)解析:第一遍循环 S =0,I =1,第二轮循环S =1,I =2 ,第三轮循环S =3,I =3,第四轮循环S =6,I=4,第五轮循环S =10,I =5,第六轮循环S =15,I =6,所以输出的 I =6. 6.已知样本7,8,9,x ,y 的平均数是9,且xy =110,则此样本的方差是 . 答案:2考点:平均数,方差解析:依题可得x +y =21,不妨设x <y ,解得x =10,y =11,所以方差为22222210(1)(2)5+++-+-=2.7.在平面直角坐标系xOy 中,抛物线y 2=4x 上的点P 到其焦点的距离为3,则点P 到点O 的距离为 .答案:考点:抛物线及其性质解析:抛物线的准线为x =−1,所以P 横坐标为2,带入抛物线方程可得P(2,±),所以OP=8.若数列{}n a 是公差不为0的等差数列,ln 1a 、ln 2a 、ln 5a 成等差数列,则21a a 的值为 . 答案:3考点:等差中项,等差数列的通项公式 解析:∵ln 1a 、ln 2a 、ln 5a 成等差数列,∴2152a a a =,故2111(4)()a a d a d +=+,又公差不为0,解得12d a =,∴21111133a a d a a a a +===. 9.在三棱柱ABC —A 1B 1C 1中,点P 是棱CC 1上一点,记三棱柱ABC —A 1B 1C 1与四棱锥P —ABB 1A 1的体积分别为V 1与V 2,则21V V = . 答案:23考点:棱柱棱锥的体积解析:1111121123C ABB A C A B C V V V V V ==-=——,所以2123V V =.10.设函数()sin()f x x ωϕ=+ (ω>0,0<ϕ<2π)的图象与y轴交点的纵坐标为2, y 轴右侧第一个最低点的横坐标为6π,则ω的值为 . 答案:7考点:三角函数的图像与性质解析:∵()f x 的图象与y轴交点的纵坐标为2,∴sin ϕ=,又0<ϕ<2π,∴3πϕ=, ∵y 轴右侧第一个最低点的横坐标为6π, ∴3632ππωπ+=,解得ω=7. 11.已知H 是△ABC 的垂心(三角形三条高所在直线的交点),11AH AB AC 42=+u u u r u u u r u u u r,则 cos ∠BAC 的值为 .考点:平面向量解析:∵H 是△ABC 的垂心, ∴AH ⊥BC ,BH ⊥AC ,∵11AH AB AC 42=+u u u r u u u r u u u r,∴1131BH AH AB AB AC AB AB AC 4242=-=+-=-+u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r则11AH BC (AB AC)(AC AB)042⋅=+⋅-=u u u r u u u r u u ur u u u r u u u r u u u r ,31BH AC (AB AC)AC 042⋅=-+⋅=u u u r u u u r u u ur u u u r u u u r ,即22111AC AB AC AB 0244--⋅=u u u r u u u r u u u r u u u r ,231AC AB AC 042-⋅+=u u ur u u u r u u u r ,化简得:22111cos BAC 0244b c bc --∠=,231cos BAC+042bc b -∠=则2222 cos BAC3b c bbc c-∠==,得3b c=,从而3cos BAC∠=.12.若无穷数列{}cos()nω(ω∈R)是等差数列,则其前10项的和为.答案:10考点:等差数列解析:若等差数列公差为d,则cos()cos(1)n d nωω=+-,若d>0,则当1cos1ndω->+时,cos()1nω>,若d<0,则当1cos1ndω-->+时,cos()1nω<-,∴d=0,可得cos2cosωω=,解得cos1ω=或1cos2ω=-(舍去),∴其前10项的和为10.13.已知集合P={}()16x y x x y y+=,,集合Q={}12()x y kx b y kx b+≤≤+,,若P⊆Q,则1221b bk-+的最小值为.答案:4考点:解析几何之直线与圆、双曲线的问题解析:画出集合P的图象如图所示,第一象限为四分之一圆,第二象限,第四象限均为双曲线的一部分,且渐近线均为y x=-,所以k=−1,所求式为两直线之间的距离的最小值,所以1b=,2y kx b=+与圆相切时最小,此时两直线间距离为圆半径4,所以最小值为4.14.若对任意实数x∈(-∞,1],都有2121xex ax≤-+成立,则实数a的值为.答案:12-考点:函数与不等式,绝对值函数解析:题目可以转化为:对任意实数x ∈(-∞,1],都有2211xx ax e -+≥成立,令221()x x ax f x e -+=,则(1)[(21)]()xx x a f x e --+'=,当211a +≥时,()0f x '≤,故()f x 在(-∞,1]单调递减,若(1)0f ≤,则()f x 最小值为0,与()1f x ≥恒成立矛盾;若(1)0f >,要使()1f x ≥恒成立,则(1)f =121a e -≥,解得12ea ≤-与211a +≥矛盾.当211a +<时,此时()f x 在(-∞,21a +)单调递减,在(21a +,1)单调递增,此时min ()(21)f x f a =+,若(21)0f a +≤,则()f x 最小值为0,与()1f x ≥恒成立矛盾;若(21)0f a +>,要使()1f x ≥恒成立,则min 2122()(21)a a f x f a e ++=+=1≥. 接下来令211a t +=<,不等式21221a a e++≥可转化为10te t --≤, 设()1tg t e t =--,则()1tg t e '=-,则()g t 在(-∞,0)单调递减,在(0,1)单调递增,当t =0时,()g t 有最小值为0,即()0g t ≥,又我们要解的不等式是()0g t ≤,故()0g t =,此时210a +=,∴12a =-. 二、解答题(本大题共6小题,共计90分.请在答题纸指定区域.......内作答,解答应写出文字说明,证明过程或演算步骤.) 15.(本题满分14分)已知△ABC 满足sin(B )2cos B 6π+=.(1)若cosC AC =3,求AB ; (2)若A ∈(0,3π),且cos(B ﹣A)=45,求sinA .解:16.(本题满分14分)如图,长方体ABCD —A 1B 1C 1D 1中,已知底面ABCD 是正方形,点P 是侧棱CC 1上的一点. (1)若A 1C//平面PBD ,求1PC PC的值; (2)求证:BD ⊥A 1P .证明:17.(本题满分14分)如图,是一块半径为4米的圆形铁皮,现打算利用这块铁皮做一个圆柱形油桶.具体做法是从⊙O 中剪裁出两块全等的圆形铁皮⊙P 与⊙Q 做圆柱的底面,剪裁出一个矩形ABCD 做圆柱的侧面(接缝忽略不计),AB 为圆柱的一条母线,点A ,B 在⊙O 上,点P ,Q 在⊙O 的一条直径上,AB ∥PQ ,⊙P ,⊙Q 分别与直线BC 、AD 相切,都与⊙O 内切.(1)求圆形铁皮⊙P 半径的取值范围;(2)请确定圆形铁皮⊙P 与⊙Q 半径的值,使得油桶的体积最大.(不取近似值)解:18.(本题满分16分)设椭圆C :22221x y a b+=(a >b >0)的左右焦点分别为F 1,F 2,离心率是e ,动点P(0x ,0y ) 在椭圆C上运动.当PF 2⊥x 轴时,0x =1,0y =e .(1)求椭圆C 的方程;(2)延长PF 1,PF 2分别交椭圆于点A ,B (A ,B 不重合).设11AF FP λ=u u u r u u u r ,22BF F P μ=u u u r u u u r,求λμ+的最小值.解:19.(本题满分16分)定义:若无穷数列{}n a 满足{}1n n a a +-是公比为q 的等比数列,则称数列{}n a 为“M(q )数列”.设数列{}n b 中11b =,37b =.(1)若2b =4,且数列{}n b 是“M(q )数列”,求数列{}n b 的通项公式; (2)设数列{}n b 的前n 项和为n S ,且1122n n b S n λ+=-+,请判断数列{}n b 是否为“M(q )数列”,并说明理由;(3)若数列{}n b 是“M(2)数列”,是否存在正整数m ,n ,使得4039404020192019mn b b <<?若存在,请求出所有满足条件的正整数m ,n ;若不存在,请说明理由. 解:20.(本题满分16分)若函数()x xf x e aemx -=--(m ∈R)为奇函数,且0x x =时()f x 有极小值0()f x .(1)求实数a 的值; (2)求实数m 的取值范围; (3)若02()f x e≥-恒成立,求实数m 的取值范围. 解:附加题,共40分21.【选做题】本题包括A ,B ,C 三小题,请选定其中两题作答,每小题10分共计20分,解答时应写出文字说明,证明过程或演算步骤.A .选修4—2:矩阵与变换已知圆C 经矩阵M = 33 2a ⎡⎤⎢⎥-⎣⎦变换后得到圆C ′:2213x y +=,求实数a 的值. 解:B .选修4—4:坐标系与参数方程在极坐标系中,直线cos 2sin m ρθρθ+=被曲线4sin ρθ=截得的弦为AB ,当AB 是最长弦时,求实数m 的值.解:C .选修4—5:不等式选讲已知正实数 a ,b ,c 满足1231a b c++=,求23a b c ++的最小值. 解:【必做题】第22题、第23题,每题10分,共计20分,解答时应写出文字说明,证明过程或演算步骤.22.(本小题满分10分)如图,AA 1,BB 1是圆柱的两条母线,A 1B 1,AB 分别经过上下底面的圆心O 1,O ,CD 是下底面与AB 垂直的直径,CD =2.(1)若AA 1=3,求异面直线A 1C 与B 1D 所成角的余弦值;(2)若二面角A 1—CD —B 1的大小为3,求母线AA 1的长.解:23.(本小题满分10分)设22201221(12)n i n n i x a a x a x a x =-=++++∑L (n N *∈),记0242n n S a a a a =++++L .(1)求n S ;(2)记123123(1)n nn n n n n n T S C S C S C S C =-+-++-L ,求证:36n T n ≥恒成立. 解:。

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。

梅河口市第五中学2020届高三数学下学期模拟考试试题文含解析

梅河口市第五中学2020届高三数学下学期模拟考试试题文含解析
(2)若圆 的半径为2,点 , 满足 ,求直线 被圆 截得弦长的最大值。
【答案】(1)
(2)
【解析】
【分析】
(1)根据题意先计算出 点坐标,然后得到直线 的方程,根据直线与圆相切,得到半径的大小,从而得到所求圆的方程;(2)先计算 斜率不存在时,被圆 截得弦长, 斜率存在时设为 ,与椭圆联立,得到 和 ,代入到 得到 的关系,表示出直线 被圆 截得的弦长,代入 的关系,从而得到弦长的最大值.
7.在 中,角 的对边分别为 ,若 , ,则 ( )
A。 1B。 2C。 D.
【答案】A
【解析】
【分析】
将已知条件 利用正弦定理化简即可得到答案。
【详解】因为 ,由正弦定理,得 ,所以 ,
故选:A
【点睛】本题考查正弦定理的应用,属于基础题。
8.在区间 上随机取一个数x,则 的值介于0到 之间的概率为
∴ ,∴ 或 ,解得 ,∴实数 的取值范围是 ,故选B。
11.已知过球面上三点 , , 的截面到球心距离等于球半径的一半,且 , ,则球面面积为( )
A. B. C。 D。
【答案】C
【解析】
【分析】
设出球的半径,小圆半径,通过已知条件求出两个半径,再求球的表面积.
【详解】如图,设球的半径为R,O′是△ABC的外心,外接圆半径为r,
【解析】
【分析】
全称命题的否定为 ,对结论进行否定,即可得到结果.
【详解】由全称命题的否定是特称命题,
可得命题 的否定是“ ”,
故选:C
【点睛】本题考查全称命题的否定,属于基础题.
4。已知向量 且 ,则
A。 1B. C。 D。
【答案】B
【解析】
【分析】
根据题意,求得 ,根据 ,列出关于 的方程,即可求解.

江苏省扬州高邮市2024届高三下学期第三次强化考试数学试题

江苏省扬州高邮市2024届高三下学期第三次强化考试数学试题

江苏省扬州高邮市2024届高三下学期第三次强化考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.执行如图所示的程序框图,若输入的3t =,则输出的i =( )A .9B .31C .15D .63 2.已知函数1()cos 22f x x x π⎛⎫=++ ⎪⎝⎭,,22x ππ⎡⎤∈-⎢⎥⎣⎦,则()f x 的极大值点为( ) A .3π- B .6π- C .6π D .3π 3.直线1y kx =+与抛物线C :24x y =交于A ,B 两点,直线//l AB ,且l 与C 相切,切点为P ,记PAB 的面积为S ,则S AB -的最小值为( )A .94-B .274-C .3227-D .6427- 4.用数学归纳法证明,则当时,左端应在的基础上加上( ) A .B .C .D . 5.已知实数x 、y 满足约束条件103300x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则2z x y =+的最大值为( )A .1-B .2C .7D .86.如图,在底面边长为1,高为2的正四棱柱1111ABCD A B C D -中,点P 是平面1111D C B A 内一点,则三棱锥P BCD -的正视图与侧视图的面积之和为( )A .2B . 3C .4D .5 7.定义在上的函数满足,且为奇函数,则的图象可能是( )A .B .C .D .8.设函数1,2()21,2,1a x f x log x x a =⎧=⎨-+≠>⎩,若函数2()()()g x f x bf x c =++有三个零点123,,x x x ,则122313x x x x x x ++=( )A .12B .11C .6D .39.已知a >b >0,c >1,则下列各式成立的是( )A .sin a >sin bB .c a >c bC .a c <b cD .11c c b a--< 10.5G 网络是一种先进的高频传输技术,我国的5G 技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款5G 手机,现调查得到该款5G 手机上市时间x 和市场占有率y (单位:%)的几组相关对应数据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出y 关于x 的线性回归方程为0.042y x a =+.若用此方程分析并预测该款手机市场占有率的变化趋势,则最早何时该款5G 手机市场占有率能超过0.5%(精确到月)( )A .2020年6月B .2020年7月C .2020年8月D .2020年9月11.已知直线1:240l ax y ++=,2:(1)20l x a y +-+=,则“1a =-”是“12l l ”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 12.函数的定义域为( ) A .[,3)∪(3,+∞) B .(-∞,3)∪(3,+∞)C .[,+∞)D .(3,+∞)二、填空题:本题共4小题,每小题5分,共20分。

高考数学母题解密专题01 集合及其运算附解析(江苏专版)

高考数学母题解密专题01 集合及其运算附解析(江苏专版)

专题01 集合及其运算【母题来源一】【2020年高考江苏】已知集合{1,0,1,2},{0,2,3}A B =-=,则AB =__▲___.【答案】{}0,2【解析】根据集合的交集即可计算.∵{}1,0,1,2A =-,{}0,2,3B =∴{}0,2A B =,故答案为:{}0,2.【名师点睛】本题考查了交集及其运算,是基础题型.【母题来源二】【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则 A B = ▲ .【答案】{1,6}【解析】由题意利用交集的定义求解交集即可.由题意知,{1,6}A B =.【名师点睛】本题主要考查交集的运算,属于基础题.【母题来源三】【2018年高考江苏】已知集合{}0,1,2,8A =,{}1,1,6,8B =-,那么A B = ▲ .【答案】{1,8}【解析】由题设和交集的定义可知:{}1,8A B =.【名师点睛】本题考查交集及其运算,考查基础知识,难度较小.(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,A B A B =∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.【命题意图】(1)了解集合的含义.(2)理解两个集合的交集的含义,会求两个简单集合的交集.(3)能够正确处理含有字母的讨论问题,掌握集合的交集运算和性质.【命题规律】 这类试题在考查题型上主要以填空题的形式出现,主要考查集合的基本运算,其中集合以描述法呈现.试题难度不大,多为低档题,从近几年江苏的高考试题来看,主要的命题角度有:(1)离散型或连续型数集间的交集运算;(2)已知集合的交集运算结果求参数.【答题模板】解答此类题目,一般考虑如下三步:第一步:看元素构成,集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键,即辨清是数集、点集还是图形集等;第二步:对集合化简,有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了、易于解决;第三步:应用数形结合进行交、并、补等运算,常用的数形结合形式有数轴、坐标系和韦恩图(Venn).【方法总结】(一)集合的基本运算及其表示:(1)交集:由属于集合A 且属于集合B 的所有元素组成的集合,即{|}A B x x A x B =∈∈且.(2)并集:由所有属于集合A 或属于集合B 的元素组成的集合,即|}{A B x x A x B =∈∈或.(3)补集:由全集U 中不属于集合A 的所有元素组成的集合,即{|}U A x x U x A =∈∉且.(二)与集合元素有关问题的解题方略:(1)确定集合的代表元素;(2)看代表元素满足的条件;(3)根据条件列式求参数的值或确定集合元素的个数.但要注意检验集合中的元素是否满足互异性.(三)集合间的基本关系问题的解题方略:(1)判断集合间基本关系的方法有三种:①列举观察;②集合中元素特征法,首先确定集合中的元素是什么,弄清楚集合中元素的特征,再判断集合间的关系;③数形结合法,利用数轴或韦恩图求解.(2)求集合的子集:若集合A 中含有n 个元素,则其子集个数为2n 个,真子集个数为21n -个,非空真子集个数为22n -个.(3)根据两集合关系求参数:已知两集合的关系求参数时,关键是将两集合的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn 图帮助分析,而且经常要对参数进行讨论.注意区间端点的取舍.注意:空集是任何集合的子集,是任何非空集合的真子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(四)求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.(1)离散型数集或抽象集合间的运算,常借助Venn 图或交、并、补的定义求解;(2)点集的运算常利用数形结合的思想或联立方程组进行求解;(3)连续型数集的运算,常借助数轴求解;(4)已知集合的运算结果求集合,常借助数轴或Venn 图求解;(5)根据集合运算结果求参数,先把符号语言转化成文字语言,然后适时应用数形结合求解.1.(2020届江苏省苏州市吴江区高三下学期五月统考数学试题)已知集合{}1,2,3,4A =,集合{}4,5B =,则AB =______.【答案】{}4【解析】因为集合{}1,2,3,4A =,集合{}4,5B =,所以{}4A B ⋂=.故答案为:{}4.【点睛】本题主要考查集合的交集运算,熟记概念即可,属于基础题型.2.(江苏省无锡市、常州市2019-2020学年高三下学期5月联考数学试题)已知集合{}012M =,,,集合{}0,2,4N =,则M N ⋃=__________.【答案】{}0,1,2,4 【解析】集合{}012M =,,,集合{}0,2,4N =, ∴{}0,1,2,4M N ⋃=.故答案为:{}0,1,2,4.【点睛】本题考查并集及其运算,属于基础题.3.(江苏省盐城中学2020届高三下学期第一次模拟数学试题)已知集合{}13A x =-<<,{}|2=≤B x x ,则A B =_________ .【答案】(-1,2]【解析】由题意{|12}A B x x =-<≤故答案为:(1,2]-.【点睛】本题考查集合的交集运算,掌握交集概念是解题关键.4.(2020届江苏省七市(南通、泰州、扬州、徐州、淮安、连云港、宿迁)高三下学期第二次调研考试数学试题)已知集合{}1,4A =,{}5,7B a =-.若{}4A B ⋂=,则实数a 的值是______.【答案】9 【解析】集合{}1,4A =,{}5,7B a =-,{}4A B ⋂=,∴54a -=,则a 的值是9.故答案为:9【点睛】本题考查集合的交集,是基础题.5.(江苏省南京市金陵中学、南通市海安高级中学、南京市外国语学校2020届高三下学期第四次模拟数学试题)已知集合{}{}02,1,0,1,2M x x N =≤<=-,则MN =__________.【答案】{}0,1 【解析】因为{}{}02,1,0,1,2M x x N =≤<=-,所以{}0,1M N ⋂=. 6.(2020届江苏省高三高考全真模拟(六)数学试题)已知集合{1,0,2}A =-,{}0,1,2,3B =,则A B =______.【答案】{1,0,1,2,3}-【解析】由题意1,0,1{,2,}3A B =-.故答案为:{1,0,1,2,3}-.【点睛】本题考查集合的并集运算,属于简单题.7.(江苏省泰州市姜堰区、南通市如东县2020届高三下学期适应性考试数学试题)已知集合{1,3,}A a =,{4,5}B =.若{4}A B ⋂=,则实数a 的值为______.【答案】4【解析】{}4A B ⋂=4A ∴∈且4B ∈4a ∴=【点睛】本题考查了交集的定义,意在考查学生对交集定义的理解,属于基础题.8.(江苏省扬州中学2020届高三下学期6月模拟考试数学试题)集合{}0,3x A =,{}2,0,1B =-,若A B B ⋃=,则x =_________________.【答案】0【解析】∵A B B ⋃=,∴A B ⊆,又{}0,3x A =,{}2,0,1B =-,∴31x =,∴0x =,故答案为:0.【点睛】本题主要考查集合的并集运算的应用,属于基础题.9.(江苏省泰州中学2019-2020学年高三下学期4月质量检测数学试题)已知集合{|02}A x x =<<,{|1}B x x =>,则A B =______【答案】{|12}x x <<【解析】因为集合{|02}A x x =<<,{|1}B x x =>,所以{|12}A B x x =<<.故答案为:{|12}x x <<【点睛】本题主要考查集合的交集运算,属基础题.10.(江苏省扬州市2020届高三下学期6月最后一卷数学试题)已知集合2{1,0,}A a =-,{1,1}B =-,则A B B =,则实数a 的值是_______.【答案】±1【解析】因为AB B =,所以B A ⊆,又2{1,0,}A a =-,{1,1}B =-,所以21a =,解得1a =±.故答案为:±1【点睛】本题主要考查集合间的基本关系,属于基础题.11.(2020届江苏省苏州市三校高三下学期5月联考数学试题)设集合{2,0,1,2}=-A ,{}|10B x x =-<,则A B =___________.【答案】{}2,0-【解析】由已知,{}|1B x x =<,所以AB ={}2,0-. 故答案为:{}2,0-【点睛】本题考查集合的交集运算,考查学生的基本计算能力,是一道基础题.12.(江苏省盐城市2020届高三下学期第四次模拟数学试题)若集合{}A x x m =≤,{}1B x x =≥-,且{}A B m =,则实数m 的值为_______.【答案】1- 【解析】∵{}A x x m =≤,{}1B x x =≥-,且{}AB m =,∴1m =-,故答案为:1-.【点睛】本题主要考查集合的交集运算,属于基础题.13.(江苏省苏州市2019-2020学年高三上学期期中数学试题)已知集合{2,1,0,1,2}A =--,{|0}B x x =>,则A B =__________.【答案】{1,2} 【解析】集合{2,1,0,1,2}A =--,{|0}B x x =>,{1,2}A B ∴=,故答案为:{1,2}.【点睛】本题考查集合交集的运算,是基础题.14.(江苏省淮安市清浦中学2019-2020学年高三下学期5月阶段性检测数学试题)已知集合{}1,2A =,{}2,3B a a =+,若A B={1}⋂则实数a 的值为________ 【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.【点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,A B A B ⋂=∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.15.(江苏省盐城市第一中学2020届高三下学期第一次调研考试数学试题)设全集{}0,1,2U =,集合{}0,1A =,则U C A =________.【答案】{}2【解析】{}{}0,1,2,0,1U A =={}2U C A ∴=故答案为:{}2【点睛】本题考查了补集的运算,属于基础题.16.(2020届江苏省苏州市常熟市高三阶段性抽测三数学试题)已知集合{}2A x x =≤,(){}40B x x x =-≤,则()A B =R ________.【答案】(]2,4 【解析】集合(){}{}4004B x x x x x =-≤=≤≤ 因为集合{}2A x x =≤ 所以{}2R A x x => 所以(){}(]242,4R A B x x ⋂=<≤=.故答案为:(]2,4.【点睛】本题考查解一元二次不等式,集合的补集、交集运算,属于简单题.17.(2020届江苏省南通市高三下学期5月模拟考试数学试题)已知集合{}1,2,3,4A =,{}2|log (1)2B x x =-<,则A B =____.【答案】{}2,3,4【解析】由题意可得:{}{}|014|15B x x x x =<-<=<< ,则{}2,3,4A B⋂=.如何学好数学做选择题时注意各种方法的运用,比较简单的自己会的题正常做就可以了,遇到比较复杂的题时,看看能否用做选择题的技巧进行求解(主要有排除法、特殊值代入法、特例求解法、选项一一带入验证法、数形结合法、逻辑推理验证法等等),一般可以综合运用各种方法,达到快速做出选择的效果。

江苏省南京市2020届高三第三次模拟考试(6月) 化学 Word版含答案

江苏省南京市2020届高三第三次模拟考试(6月) 化学 Word版含答案

2020届高三模拟考试试卷化学2020.6本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分120分,考试时间100分钟。

可能用到的相对原子质量:H—1C—12N—14O—16K—39Ti—48I—127Ba—137第Ⅰ卷(选择题共40分)单项选择题:本题包括10小题,每小题2分,共20分。

每小题只有一个选项符合题意。

1. “84消毒液”可消杀新冠病毒,可用Cl2与NaOH溶液反应制备。

下列关于“84消毒液”的说法不正确的是()A. 属于胶体B. 有效成分为NaClOC. 室温下溶液pH大于7D. 有强氧化性2. 用化学用语表示2Na2O2+2H2O===4NaOH+O2↑中相关微粒,其中正确的是()A. 中子数为0的氢原子:01HB. Na+的结构示意图:C. H2O的结构式:D. O2-2的电子式:3. 下列有关物质性质与用途具有对应关系的是()A. 硅酸钠溶液呈碱性,可用作木材防火剂B. 硫酸铜溶液呈蓝色,可用作游泳池中水的消毒剂C. 浓硫酸具有强氧化性,可用作酯化反应的催化剂D. 铅具有还原性和导电性,可用作铅蓄电池的负极材料4. 室温下,下列各组离子在指定溶液中能大量共存的是()A. pH=2的溶液:Na+、Fe2+、I-、NO-3B. c(AlO-2)=0.1 mol·L-1的溶液:K+、Na+、OH-、SO2-4C.K wc(OH-)=0.1 mol·L-1的溶液:Na+、NH+4、SiO2-3、ClO-D. c(Fe3+)=0.1 mol·L-1的溶液:Mg2+、NH+4、Cl-、SCN-5. 实验室可用反应2CuSO4+2KI+SO2+2H2O===2CuI↓+2H2SO4+K2SO4来制备CuI(CuI受热易被氧化)。

下列实验装置和操作不能达到实验目的的是()A. 用装置甲制备SO 2B. 用装置乙制备CuIC. 用装置丙分离出CuID. 用装置丁干燥CuI 固体6. 下列关于物质性质的叙述正确的是( )A. SiO 2与浓盐酸在高温下能反应生成SiCl 4B. 木炭与浓硫酸共热可生成CO 2C. 明矾溶液中加入过量NaOH 溶液可制备Al(OH)3胶体D. 向饱和食盐水中通入足量CO 2可制得NaHCO 37. 下列指定反应的离子方程式正确的是( )A. Fe 与稀盐酸反应:2Fe +6H +===2Fe 3++3H 2↑B. 向K 2CO 3溶液中通入过量SO 2:CO 2-3+2SO 2+H 2O===CO 2+2HSO -3C. 在强碱溶液中NaClO 与FeCl 3反应生成Na 2FeO 4:3ClO -+2Fe 3++5H 2O===2FeO 2-4+3Cl -+10H +D. 用新制的Cu(OH)2检验乙醛中的醛基:CH 3CHO +Cu(OH)2+OH -――→△CH 3COO -+Cu +2H 2O8. 短周期主族元素X 、Y 、Z 、W 的原子序数依次增大,其中Y 是金属元素。

2020届江苏省南通市如皋中学高三(创新班)下学期6月高考模拟数学试题(解析版)

2020届江苏省南通市如皋中学高三(创新班)下学期6月高考模拟数学试题(解析版)

2020届江苏省南通市如皋中学高三(创新班)下学期6月高考模拟数学试题一、填空题1.某单位周一、周二、周三开车上班的职工人数分别是14,10,8.若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数至多是________. 【答案】6【解析】将原问题转化为Venn 图的问题,然后结合题意确定这三天都开车上班的职工人数至多几人即可. 【详解】如图所示,(a +b +c +x )表示周一开车上班的人数,(b +d +e +x )表示周二开车上班人数,(c +e +f +x )表示周三开车上班人数,x 表示三天都开车上班的人数,则有:1410820a b c x b d e x c e f x a b c d e f x +++=⎧⎪+++=⎪⎨+++=⎪⎪++++++=⎩, 即22233220a b c d e f x a b c d e f x ++++++=⎧⎨++++++=⎩,即212b c e x +++=,当0b c e ===时,x 的最大值为6, 即三天都开车上班的职工人数至多是6. 故答案为:6 【点睛】本题主要考查Venn 图的应用,数形结合的数学思想等知识,意在考查学生的转化能力和计算求解能力.2.已知F 1,F 2分别是双曲线3x 2-y 2=3a 2(a >0)的左、右焦点,P 是抛物线y 2=8ax 与双曲线的一个交点,若|PF 1|+|PF 2|=12,则抛物线的准线方程为________. 【答案】2x =-【解析】将双曲线方程化为标准方程得222213x y a a-=,抛物线的准线为2x a =-,联立22222138x y a ay ax⎧-=⎪⎨⎪=⎩,解得3x a =,即点P 的横坐标为3a ,而由1212122PF PF PF PF a ⎧+=⎪⎨-=⎪⎩,解得26PF a =-,∴2326PF a a a =+=-,解得1a =,∴抛物线的准线方程为2x =-,故答案为2x =-.3.已知实数a ,b 满足22182a b+=θθ+取最大值时,tan θ=________.【答案】1【解析】根据辅助角公式可得:()θθθϕ=+≤=2,进而可求得答案 【详解】由22182a b +=得2284a b +=,利用辅助角公式可得:()θθθϕ=+≤=2,其中tan ϕ=0,2πϕ⎛⎫∈ ⎪⎝⎭.所以最大值为2,当且仅当22a b ==,()sin 1θϕ+=时成立, 此时tan 1ϕ=,故4πϕ=,所以sin 14πθ⎛⎫+= ⎪⎝⎭,则24k πθπ=+,k Z ∈,则tan 1θ=,故答案为:1. 【点睛】本题考查三角函数的恒等变形,关键是利用辅助角公式化简,利用基本不等式求最值,属于中档题目.4.已知等差数列{}n a 满足:22158a a +=,则12a a +的最大值为________.【答案】5【解析】设等差数列{}n a 的公差为d ,根据22158a a +=,利用平方关系,设15,a a θθ==,则()12cos 5sin 22a a θθθϕ=+=++,再利用三角函数的性质求解. 【详解】设等差数列{}n a 的公差为d , 因为22158a a +=,由22cos sin 1αα+=,设15,a a θθ==,则()211511cos 422a a d a a a θθ=+=+-=+,所以()12cos 5sin ,tan 722a a θθθϕϕ=+=+=+, 当2,2k k Z πθϕπ+=+∈时,12a a +的最大值为5.故答案为:5. 【点睛】本题主要考查数列的通项公式,三角换元法的应用以及三角恒等变换,三角函数的性质,还考查了运算求解的能力,属于中档题. 5.已知函数()()212xxa f x x e e ax =--+只有一个极值点,则实数a 的取值范围为________.【答案】0a ≤或12a ≥【解析】首先对函数求导,观察得到'(0)0f =,并且将函数只有一个极值点转化为导数等于零只有一个根,结合图象得到结果.【详解】2()x x f x x e ae a '-=⋅+,函数()()212xxa f x x e e ax =--+只有一个极值点, 即2()0x xf x x e ae a ='-⋅+=只有1个实根,且在根的两侧异号,可以求得'(0)0f =,令'()0f x =,得2(0)1xx x e a x e ⋅=≠-,则设2()(0)1xx x e a g x x e ⋅==≠-,求导2222222(1)(1)2[(1)(1)]()(1)(1)x x x x x x x x x e e e xe e x e x g x e e +--⋅--+==-'-,设2()(1)(1)xh x x ex =--+,222'()2(1)1(12)1x x x h x e x e x e =-+--=--,设()()u x h x =',222()2(24)4xx x u x e x e xe '=-+-=-,可知当0x <时,'()0u x >,0x >时,'()0u x <,所以)'(h x 在(,0)-∞上单调增,在(0,)+∞上单调减,且'(0)0h =, 所以'()0h x ≤恒成立,所以()h x 为减函数,且(0)0h =, 所以当0x <时,'()0g x >,当0x >时,)'(0g x <, 所以()g x 在(,0)-∞上单调增,在(0,)+∞上单调减, 当0x >时,21,()0xeg x >>,当0x <时,21,()0x e g x <>画出()y g x =图象如图所示:可以确定22000(1)1lim ()lim lim 122x x x x x x x xe x e g x e e →→→+===-, 因为函数()()212xxa f x x e e ax =--+只有一个极值点,且'(0)0f =,所以要求2(0)1xx x e a x e ⋅=≠-无解,所以0a ≤或12a ≥, 故答案为:0a ≤或12a ≥. 【点睛】该题考查的是有关利用导数研究函数的性质,涉及到的知识点有利用导数研究参数的取值范围,解题时要认真审题,注意导数性质的合理运用.其中将函数有一个极值点转化为方程只有一个根,结合图象得到结果,属于较难题目. 6.已知直线,若对任意,直线与一定圆相切,则该定圆方程为 . 【答案】【解析】试题分析:取特殊值,三条直线分别为,这三条直线只与圆都相切,经验证,对任意,直线都与这个圆相切.【考点】圆的切线.7.已知双曲线()222210,0x y a b a b-=>>左焦点为F ,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的左支交于不同两点AB ,若2AF FB =u u u r u u u r,则该双曲线的离心率为________. 10【解析】由渐近线斜率设出直线l 方程,与双曲线方程联立消去x 得关于y 的二次方程,设1122(,),(,)A x y B x y ,由2AF FB =u u u r u u u r 得122y y =-,由韦达定理得12y y +,12y y ,由此可得,,a b c 的齐次等式,从而求得离心率. 【详解】不妨设直线l 与渐近线b y x a=-垂直,即直线l 方程为()ay x c b =+,由2222()1a y x cb x y a b ⎧=+⎪⎪⎨⎪-=⎪⎩,得2222222222()b y bcy b c a y a b a a -+-=, 即2222324()20c b a y ab cy a b --+=,设1122(,),(,)A x y B x y ,则3122222()ab c y y c b a +=-①,2412222()a b y y c b a =-②, 又2AF FB =u u u r u u u r,(,0)F c -,所以122y y =-③,③代入①得32222()ab y c a b =-,所以31224()ab y c a b =--,12,y y 代入②得 262422222228()()a b a b c a b c b a -=--,整理得22910c a =,所以c e a ==.. 【点睛】本题考查求双曲线的离心率,解题关键是设出直线l 方程,与双曲线方程联立消元后得一元二次方程,注意这里消去x 得y 的二次方程对解题有帮助,原因是由2AF FB =u u u r u u u r易得122y y =-,结合韦达定理可得关于,,a b c 的齐次式,从而求得离心率.8.用I M 表示函数sin y x =在区间I 上的最大值,若正数a 满足[][]0,,22a a a M M ≥,则a 的取值范围为________.【答案】513,612ππ⎡⎤⎢⎥⎣⎦【解析】根据正弦定理在[0,)+∞上的单调性求解. 【详解】因为sin y x =在[0,]2π上单调递增,所以[0,]2a π∈,若2a π<,则存在0δ>,使得[,2]a a a δ+∈,且[0,]sin()a a M δ+>,不合题意,所以[0,]1a M =,所以由[][]0,,22a a a M M ≥得[,2]12a a M ≤,所以561326a a ππ⎧≥⎪⎪⎨⎪≤⎪⎩,解得513612a ππ≤≤. 故答案为:513,612ππ⎡⎤⎢⎥⎣⎦, 【点睛】本题考查新定义,考查正弦函数的单调性与最值,掌握正弦函数性质是解题基础,正确理解新定义是关键.9.四棱锥P ABCD -中,2PA BC CD ===,PB PC PD AB AD =====,则四棱锥P ABCD -的体积为________. 【答案】3【解析】连接,AC BD 交于点E ,通过证明平面PCD ⊥平面ABCD ,过P 作PO ⊥平面ABCD ,则O 在AC 上,连接,BO DO ,利用180AOD COD ∠+∠=︒,应用余弦定理求得各线段长,由P ABCD D PAC B PAC V V V ---=+可得体积. 【详解】连接,AC BD 交于点E ,由,AB AD CB CD ==知AC BD ⊥,E 是BD 中点,又PB PD =,所以PE BD ⊥,又PE AC E =I ,所以BD ⊥平面PAC ,BD ⊂平面ABCD ,所以平面PCD ⊥平面ABCD , 过P 作PO ⊥平面ABCD ,则O 在AC 上,连接,BO DO ,则BO DO CO ===AO =设CO a =,则AO =222242cos 12a a COD a a+-∠==-, 222cos AOD ∠==因为cos cos AOD COD ∠=-∠2221a =-,由0a >,解得2a =,所以1AO =,2BO CO DO ===,PO =,11322PAC S AC PO =⨯=⨯=V ,DE BE = 1133P ABCD D PAC B PAC PAC PACV V V DE S BE S ---=+=⨯⨯+⨯⨯V V11333==. 故答案为:3.【点睛】本题考查求四棱锥的体积,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.10.已知向量a r ,b r满足1a =r ,3b =r ,若存在不同的实数1λ,()2120λλλ≠,使得3i i i c a b λλ=+u r r r且()()()01,2i i c a c b i -⋅-==u r r u r r ,则12c c -u r u u r 的取值范围是________.【答案】(2,2222,23⎡⋃⎣【解析】设a b k ⋅=r r,()()0iic a c b -⋅-=u r r u r r 变形(数量积的运算)得12,λλ是方程26(3)4(3)0k x k x k +-++=的两根,利用韦达定理求得12λλ-,则12123c c a b λλ-=-+u r u u r r r可表示为k 的函数,由k 的范围可得结论,在题中注意k 的范围的确定. 【详解】111(1)3c a a b λλ-=-+u r r r r ,111(31)c b a b λλ-=+-u r r r r ,设a b k ⋅=r r(33k -≤≤),由()()110c a c b -⋅-=u r r u r r得211()0c a b c a b -+⋅+⋅=u r r r u r r r ,整理得2116(3)4(3)0k k k λλ+-++=,同理2226(3)4(3)0k k k λλ+-++=,所以12,λλ是方程26(3)4(3)0k x k x k +-++=的两根,由120λλ≠得0k ≠,3k =-方程无解,故0k ≠且3k ≠-,8(3)(6)0k k ∆=+->,1223λλ+=,126(3)kk λλ=+,所以12λλ-===,3a b +===r r所以1212123c c a b λλλ-=-+=-=u r u u r r r33k -<≤且0k ≠得12c c -u r u u r的范围是[2,U .故答案为:[2,U . 【点睛】本题考查平面向量的数量积,解题关键是设a b k ⋅=r r后通过数量积的运算把12,λλ是方程26(3)4(3)0k x k x k +-++=的两根,这样可用韦达定理求得12λλ-,从而求得目标12c c -u r u u r关于k 的函数.11.已知P 是椭圆2214x y +=上一动点,()2,1A -,()2,1B ,则cos APB ∠的最大值为________.【答案】4【解析】画出椭圆图形,设()00,P x y ,过P 作PH AB ⊥交AB 于H ,由正切和角公式用00,x y 表示出tan APB ∠,结合椭圆的方程化为0y 的表达式,利用换元法令01t y =-,将tan APB ∠转化为关于t 的函数式,讨论0t =与(]0,2t ∈两种情况,结合基本不等式即可求得tan APB ∠的最小值,再根据同角三角函数关系式即可求得cos APB ∠的最大值.【详解】根据题意,画出椭圆的图形如下图所示:设()00,P x y ,过P 作PH AB ⊥交AB 于H , 则002tan 1x AH APH PH y +∠==-,02tan 1x BH BPH PH y -∠==-, 由正切和角公式可知()tan tan APB APH BPH ∠=∠+∠tan tan 1tan tan APH BPHAPH BPH∠+∠=-∠⨯∠()()()00000220000002241112214111x x y y y x x y x y y +-+---==+-----⨯--而()00,P x y 在2214x y +=上,所以220014x y +=,则220044x y =-, 代入上式可得()()()()()00222200004141tan 1414y y APB y x y y --∠==-----由椭圆性质可知,[]01,1y ∈-, 令[]01,0,2t y t =-∈, 则()22244tan 38441t t APB t t t t ∠==-+---,[]0,2t ∈,当0t =时,tan 0APB ∠=,此时,cos 1APB APB π∠=∠=-,当(]0,2t ∈时,由基本不等式可知4tan 23443838APB t t ∠=≥=⎛⎫-+-++ ⎪⎝⎭, 当且仅当43t t =,即233t =时取等号,此时cos APB ∠的值最大,因而22sin 23cos sin cos 1APBAPB APB APB ∠⎧=+⎪∠⎨⎪∠+∠=⎩,化简可得223cos 4APB -∠=,所以62cos APB -∠=, 综上所述,可知cos APB ∠的最大值为624-, 故答案为:624-. 【点睛】本题考查了椭圆标准方程和几何性质的综合应用,由正切和角公式及同角三角函数关系式的应用,由基本不等式确定最值,综合性强,属于难题.12.已知21a e b e -=-=r r r r ,1e =r ,则向量a b ⋅r r的最小值为________.【答案】14-【解析】1e =r ,不失一般性,设(1,0)e =r ,由21a e b e -=-=r r r r 知a b r r,的终点在两个圆上运动,设(2cos ,sin )(1+cos ,sin )a b a a b b =+=r r ,,化简(2cos )(1+cos )sin sin a b r r αβαβ++⋅=放缩后得到21114(cos )2444β--≥-得解.【详解】1e r Q =,不妨设(1,0)e =r(.)(.)a m n b c d ==r r ,,21a e r rQ -=,22(2)1m n \-+= 所以(,)A m n 在圆22(2)1x y -+=上运动 1b e r rQ -=,22(1)1c d \-+=所以(,)B c d 在圆22(1)1x y -+=上运动再令(2cos ,sin )A a a +,(1+cos ,sin )B b b(2cos ,sin )(1+cos ,sin )a b a a b b \=+=r r,, (2cos )(1+cos )sin sin a b r rαβαβ∴⋅+=+2cos +2cos +cos cos sin sin αβαβαβ+=+2cos +2cos +cos()αβαβ+=-2+2cos +2cos()cos 22βββα+-=224cos 2cos()cos4cos cos22222βββββα=+-≥-21114(cos)2444β=--≥- 故答案为:14- 【点睛】本题考查平面向量数量积最值问题.平面向量与几何综合问题的求解坐标法:把问题转化为几何图形的研究,再把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决.13.三角形ABC 面积为S ,若2221054c a b +=,则2220156Sa b +的最大值是________.【答案】16【解析】由2221054c a b +=求出226cos 8a c B ac +=-,将22220156S a b ⎛⎫ ⎪+⎝⎭用a 和c 表示,并化简,再令22c t a =,得到关于t 的式子,构造函数,并利用导数求出22220156S a b ⎛⎫ ⎪+⎝⎭的最大值,进而得解. 【详解】由2221054c a b +=,得()22211054b c a =+, 2222222221(105)64cos 228a c c a a c b a c B ac ac ac+-++-+===-,()2222222240020156311sin 251052ac B S a b a c a ⎛⎫⨯⎪⎛⎫⎝⎭= ⎪+⎝⎭⎡⎤++⎢⎥⎣⎦()2222221001cos 45152a c a c B -=⎛⎫+ ⎪⎝⎭()222222226464932a c a c a c ⎡⎤+⎢⎥-⎢⎥⎣⎦=⎛⎫+ ⎪⎝⎭ 2222222261464932a c a c a c ⎡⎤⎛⎫+⎢⎥⎪⎢⎥⎝⎭-⎢⎥⎢⎥⎢⎥⎣⎦=⎛⎫+ ⎪⎝⎭, 令22c t a =,则0t >,2222222(16)464203652181156916927342t t S t t a b t t t ⎡⎤+-⎢⎥-+-⎛⎫⎣⎦== ⎪+⎛⎫⎝⎭⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭, 令()223652181169274t t f t t t -+-=⎛⎫++ ⎪⎝⎭,则222314404()16927814t t f t t t ⎛⎫-+- ⎪⎝⎭=⎛⎫++ ⎪⎝⎭',令()0f 't =,解得32t =-(舍)或12t =,所以,当102t <≤时,'()0f t >,()f t 在10,2⎛⎤⎥⎝⎦上单调递增; 当12t >时,()0f t <',()f t 在1,2⎛⎫+∞ ⎪⎝⎭上单调递减, 所以,当12t =时,()f t 取得最大值,11365211142118123616927424f -⨯+⨯-⎛⎫== ⎪⎛⎫⎝⎭⨯⨯+⨯+ ⎪⎝⎭,即22220156S a b ⎛⎫ ⎪+⎝⎭的最大值为136,所以,2220156Sa b +的最大值是16. 故答案为:16.【点睛】本题考查余弦定理的应用、三角形的面积公式及利用导数研究函数的最值,考查函数与方程思想、转化与化归思想以及运算求解能力和逻辑推理能力,构造函数并掌握求极值的方法是求解本题的关键,难度较大.构造函数是求解导数问题的常用方法.14.已知数列{}n b 为首项为2正项等比数列,数列{}n c 为公差为3等差数列,数列{}n a 满足2n n n b a a +=-,12n n n c a a +=+,若11a =,则数列{}n a 前50项的和为________. 【答案】1275【解析】先根据等差与等比性质列方程组解得{}n b 与{}n c 通项公式,进而可求数列{}n a 通项公式,最后根据等差数列求和公式得结果.【详解】11a =Q 21,,2n n n b a a b +=-=, 13133,213b a a a a ∴=-=-∴=112112,3223n n n n n n n n n c a a c c a a a a +++++=+-=∴+--=Q 2123n n n a a a ++∴--= 3212232a a a a ∴--=∴= 4324234a a a a ∴--=∴=因此2422,b a a =-=数列{}n b 公比为211,2n b b b == 1212553(1)32n c a a c n n =+=∴=+-=+Q因此1232n n a a n ++=+212123542610n n n n a a n a a n ++++∴+=+∴+=+从而2438,n n a a n +-=+22n n n a a b +-==Q10050(150),12752n a n S +∴=== 故答案为:1275 【点睛】本题考查等差数列与等比数列通项公式以及等比数列求和公式,考查基本分析求解能力,属中档题.二、解答题15.如图,在△ABC 中,a b c ,,为A B C ,,所对的边,CD ⊥AB 于D ,且12BD AD c -=.(1)求证:sin 2sin()C A B =-; (2)若3cos 5A =,求tan C 的值.【答案】(1)见解析(2)4811-【解析】(1)由题意可得1cos cos 2a Bb Ac -=,由正弦定理,得1sin cos sin cos sin 2A B B A C -=,即可作出证明;(2)由(1)得3cos sin sin cos A B A B =,得到4sin 5A =,所以4tan 3A =,4tan 9B =,即可求解tan C 的值.【详解】(1)证明:因为12BD AD c -=, 所以1cos cos 2a Bb Ac -=,由正弦定理,得1sin cos sin cos sin 2A B B A C -=,所以()sin 2sin C A B =-.(2)解:由(1)得,()()sin 2sin A B A B +=-, 所以()sin cos cos sin 2sin cos cos sin A B A B A B A B +=-, 化简,得3cos sin sin cos A B A B =.又3cos 5A =,所以4sin 5A=,所以4tan 3A =,4tan 9B =, 所以()44tan tan 4839tan tan 441tan tan 11139A B C A B A B ++=-+=-=-=---⋅. 【点睛】本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.16.如图,在正三棱柱111ABC A B C -中,12A A AC =,D ,E ,F 分别为线段AC ,1A A ,1C B 的中点.(1)证明://EF 平面ABC ; (2)证明:1C E ⊥平面BDE .【答案】(1)证明见解析;(2)证明见解析; 【解析】(1)取BC 的中点G ,连结AG ,FG ,可证四边形AEFG 是平行四边形,得EF ∥AG ,即可证明结论;(2)根据已知可得22211EB C E C B +=,得出1C E BE ⊥,再由已知得BD AC ⊥,结合正三棱柱的垂直关系,可证BD ⊥平面11A ACC ,进而有1BD C E ⊥,即可证明结论.【详解】(1)如图,取BC 的中点G ,连结AG ,FG . 因为F 为1C B 的中点,所以FG ∥111,2C C FG C C =. 在三棱柱111ABC A B C -中,1A A ∥111,C C A A C C =, 且E 为1A A 的中点,所以FG ∥,EA FG EA =. 所以四边形AEFG 是平行四边形.所以EF ∥AG . 因为EF ⊄平面ABC ,AG ⊂平面ABC , 所以EF ∥平面ABC .(2)因为在正三棱柱111ABC A B C -中,1A A ⊥平面ABC ,BD ⊂平面ABC ,所以1A A BD ⊥.因为D 为AC 的中点,BA BC =,所以BD AC ⊥.因为1A A AC A =I ,1A A ⊂平面11A ACC ,AC ⊂平面11A ACC , 所以BD ⊥平面11A ACC .因为1C E ⊂平面11A ACC ,所以1BD C E ⊥. 根据题意,可得16EB C E AB ==,13C B AB =, 所以22211EB C E C B +=.从而190C EB ∠=︒,即1C E EB ⊥.因为BD EB B =I ,BD ⊂平面BDE ,EB ⊂平面BDE , 所以1C E ⊥平面BDE .【点睛】本题考查空间线、面位置关系,证明直线与平面平行以及直线与平面垂直,注意空间垂直关系的相互转化,属于中档题.17.动圆P 过定点(2,0)A ,且在y 轴上截得的弦GH 的长为4. (1)若动圆圆心P 的轨迹为曲线C ,求曲线C 的方程;(2)在曲线C 的对称轴上是否存在点Q ,使过点Q 的直线l '与曲线C 的交点S T 、满足2211||||QS QT +为定值?若存在,求出点Q 的坐标及定值;若不存在,请说明理由. 【答案】(1)24y x =.(2)存在点(2,0)Q ,定值为14. 【解析】(1)设(,)P x y ,由题意知:PA PG =,利用距离公式及弦长公式可得方程,化简可得P 的轨迹方程;(2)假设存在(,0)Q a ,设()11,S x y 、()22,T x y ,由题意知直线l '的斜率必不为0,设直线l '的方程,与抛物线联立,利用根与系数关系可求得()212222121121t a QS QT a t ++=+,当2a =时,上式221114QS QT +=,与1t 无关,为定值. 【详解】(1)设(,)P x y ,由题意知:PA PG =.当P 点不在y 轴上时,过P 做PB GH ⊥,交GH 于点B ,则B 为GH 的中点,122GB GH ∴==,PG ∴=又PA =Q ,=24(0)y x x =≠;当P 点在y 轴上时,易知P 点与O 点重合.(0,0)P 也满足24y x =,∴曲线C 的方程为24y x =.(2)假设存在(,0)Q a ,满足题意.设()11,S x y 、()22,T x y .由题意知直线l '的斜率必不为0, 设直线l '的方程为()110x t y a t =+≠. 由124x t y a y x=+⎧⎨=⎩得21440y t y a --=.1214y y t ∴+=,124y y a ⋅=-. ()2121121242x x t y y a t a ∴+=++=+,2221212116x x y y a ⋅=⋅=.()()2222221111114(42)QS x a y x a x x a x a =-+=-+=+-+Q ,()()2222222222224(42)QT x a y x a x x a x a =-+=-+=+-+,()222221212(42)2QS QT x x a x x a ∴+=++-++()()22121212(42)22x x a x x x x a =++-+-+()()21212124222x x x x a x x a =+++--+ ()()22114244t a t =++, ()222221161QS QT a t ⋅=+.()()()()2222211122222222211424411221161t a t QS QT t a QS QT QS QT a t a t ++++∴+===⋅++, 当2a =时,上式221114QS QT +=,与1t 无关,为定值. ∴存在点(2,0)Q ,使过点Q 的直线l '与曲线C 的交点S T 、满足2211QS QT +为定值14. 【点睛】本题考查轨迹方程、定值问题的求解,求轨迹方程,一般是求谁设谁的坐标然后根据题目等式直接求解即可,存在性与定值问题一般设存在,代入,结合韦达定理等知识消去参数求解,属于较难题型.18.某景区平面图如图1所示,A B C E D 、、、、为边界上的点.已知边界CED 是一段抛物线,其余边界均为线段,且,,3,8AD AB BC AB AD BC AB ⊥⊥===,抛物线顶点E 到AB 的距离7OE =.以AB 所在直线为x 轴,OE 所在直线为y 轴,建立平面直角坐标系.(1)求边界CED 所在抛物线的解析式;(2)如图2,该景区管理处欲在区域ABCED 内围成一个矩形MNPQ 场地,使得点M N 、在边界AB 上,点P Q 、在边界CED 上,试确定点P 的位置,使得矩形MNPQ 的周长最大,并求出最大周长. 【答案】(1)217(44)4y x x =-+-≤≤;(2)点P 与点C 重合.最大值为22, 【解析】(1)根据题意,设二次函数解析式为2(44)y ax c x =+-≤≤,代入点C 、E 坐标,即可求解参数;(2)根据题意结合(1)中抛物线解析式,设P 点坐标为21,74m m ⎛⎫-+ ⎪⎝⎭,利用坐标表达矩形的周长,根据二次函数性质,可求最值问题. 【详解】(1)根据对称性可知,1184,3,722OA OB AB BC OE ===⨯===, (4,3),(0,7)C E ∴,设边界CED 所在抛物线的解析式为2(44)y ax c x =+-≤≤,Q 抛物线的图象经过C ,E 两点,1637a c c +=⎧⎨=⎩,解得147a c ⎧=-⎪⎨⎪=⎩,∴边界CED 所在抛物线的解析式为217(44)4y x x =-+-≤≤; (2)设P 点坐标为21,74m m ⎛⎫-+ ⎪⎝⎭, Q 四边形MNPQ 是矩形,2ON OM m ∴==,2174PN QM m ==-+, 24MN QP ON m ∴===,∴矩形MNPQ 的周长为: 222112()227414421(4)222MN PN m m m m m ⎛⎫+=-+=-++ ⎪⎝⎭=--+ 102-<Q ,开口向下, ∴当4m =时,矩形MNPQ 的周长有最大值,最大值为22,此时P 点坐标为(4,3),即点P 与点C 重合.【点睛】本题考查待定系数法确定函数关系式,考查计算能力,考查运用二次函数模型解决实际问题,属于中等题型.19.设数列{}n a 的前n 项和为n S ,11(1)(,,0,1)1n n a q S a q R a q q-=∈≠≠- (1)求证:数列{}n a 是等比数列;(2)若*q N ∈,是否存在q 的某些取值,使数列{}n a 中某一项能表示为另外三项之和?若能求出q 的全部取值集合,若不能说明理由.(3)若q ∈R ,是否存在[3,)q ∈+∞,使数列{}n a 中,某一项可以表示为另外三项之和?若存在指出q 的一个取值,若不存在,说明理由.【答案】解:(1)见详解;(2)不存在;(3)不存在【解析】(1)由前n 项和公式,结合1n n n a S S -=-求出n a ,进而可得出结论成立;(2)根据4321n n n n a a a a =++得3421n n n n q q q q =++,不妨设4321n n n n >>>,两边同除以1nq ,再结合条件,即可得出结论;(3)同(2),先设4321n n n n >>>,当3q ≥,结合条件验证不成立即可.【详解】(1)n=1时,11a S a ==, 2n ≥时,()1111n n n n n n a a S S q q aq q ---=-=-=-(n=1也符合) ()1n n a aq n N -+∴=∈,1n na q a +∴=,即数列{}n a 是等比数列. (2)若4321n n n n a a a a =++则()3421,2n n n n q q q q q N q =++∈≥可设4321n n n n >>>,两边同除以1n q 得:3141211n n n n n n q q q -----=因为左边能被q 整除,右边不能被q 整除,因此满足条件的q 不存在.(3)若4321n n n n a a a a =++则()3421,2n n n n q q q q q N q =++∈≥可设4321n n n n >>>,3q ≥Q ,334442111·33n n n n n n n q q q q q q q q --=≥≥>++,∴ 4321n n n n a a a a =++不成立.【点睛】本题主要考查等比数列,熟记等比数数列的性质和公式即可,属于常考题型.20.已知函数()()ln 0f x a x a =≠与212y x e =的图象在它们的交点(),P s t 处具有相同的切线.(1)求()f x 的解析式;(2)若函数()()()21g x x mf x =-+有两个极值点1x ,2x ,且12x x <,求()21g x x 的取值范围.【答案】(1)()ln f x x =;(2)1,0e ⎡⎫-⎪⎢⎪⎣⎭【解析】(1)求得两个函数的导数,由公切线的斜率相同可得,a s 的方程;将切点代入两个函数,可得,a s 的方程;联立两个方程即可求得a 的值,进而得()f x 的解析式; (2)将()f x 的解析式代入并求得()g x ',由极值点定义可知1x ,2x 是方程2220x x m -+=的两个不等实根,由韦达定理表示出1212,x x x x +,结合12x x <可得121012x x <<<<.代入()21g x x 中化简,分离参数并构造函数()12ln h t t t t =-+,求得()h t '并令()0h t '=求得极值点,由极值点两侧符号判断单调性,并求得最小值,代入端点值求得最大值,即可求得()21g x x 的取值范围. 【详解】(1)根据题意,函数()()ln 0f x a x a =≠与212y x e =可知()a f x x '=,1y x e'=, 两图象在点(),P s t 处有相同的切线, 所以两个函数切线的斜率相等,即1a s e s⨯=,化简得s = 将(),P s t 代入两个函数可得2ln 2es a s =, 综合上述两式可解得1a =,所以()ln f x x =.(2)函数()()()()2211ln g x x mf x x m x =-+=-+,定义域为()0,∞+, ()()22221m x x m x x g x x-+=-='+, 因为1x ,2x 为函数()g x 的两个极值点,所以1x ,2x 是方程2220x x m -+=的两个不等实根,由根与系数的关系知121x x =+,122m x x =,()* 又已知12x x <,所以121012x x <<<<, ()()2222111ln g x x m x x x -+=, 将()*式代入得()()2221221112ln g x x x x x x x -+=()()222222222121ln 12ln 1x x x x x x x x =-+-=-+-, 令()12ln h t t t t =-+,1,12t ⎛⎫∈⎪⎝⎭, ()2ln 1h t t '=+,令()0h t '=,解得t =当12t ⎛∈ ⎝时,()0h t '<,()h t在12⎛ ⎝单调递减;当t ⎫∈⎪⎭时,()0h t '>,()h t在⎫⎪⎭单调递增; 所以()min 11h t h ===, ()()1max ,12h t h h ⎧⎫⎛⎫<⎨⎬ ⎪⎝⎭⎩⎭, ()11ln 20122h h ⎛⎫=-<= ⎪⎝⎭, 即()21g x x的取值范围是1,0e ⎡⎫-⎪⎢⎪⎣⎭. 【点睛】本题考查了导数的计算及几何意义,根据公切线求参数值,由导数研究函数的极值点、单调性与最值,构造函数法的综合应用,属于难题.。

江苏省盐城市2020届高三第三次模拟考试(6月) 数学 Word版含答案

江苏省盐城市2020届高三第三次模拟考试(6月) 数学 Word版含答案

2020届高三模拟考试试卷数 学(满分160分,考试时间120分钟)2020.6 参考公式:锥体体积公式:V =13Sh ,其中S 为锥体的底面积,h 为高.一、 填空题:本大题共14小题,每小题5分,共70分.1. 若集合A ={x|x ≤m},B ={x|x ≥-1},且A ∩B ={m},则实数m 的值为________.2. 已知i 为虚数单位,复数z 满足z(3+i)=10,则|z|的值为________.3. 从数字0,1,2中任取两个不同的数字构成一个两位数,则所得的两位数大于10的概率为________.4. 如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,图中小矩形从左向右所对应的区间依次为[0,50),[50,100),[100,150),[150,200),[200,250].若一个月以30天计算,估计这家面包店一个月内这种面包的日销售量少于100个的天数为________天.5. 执行如图所示的流程图,输出k 的值为________.6. 若双曲线x 2a 2-y 2b 2=1(a>0,b>0)的渐近线为y =±2x ,则其离心率的值为________.7. 若三棱柱ABCA 1B 1C 1的体积为12,点P 为棱AA 1上一点,则四棱锥PBCC 1B 1的体积为________.8. “ω=2”是“函数f(x)=sin (ωx +π6)的图象关于点(5π12,0)对称”的__________条件.(选填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)9. 在△ABC 中,C =B +π4,AB =324AC ,则tan B 的值为________.10. 若数列{a n }的前n 项和为S n ,a n =2n -1+(-1)n (2n -1),则2a 100-S 100的值为________. 11. 若集合P ={(x ,y)|x 2+y 2-4x =0},Q ={(x ,y)||x +2|y≥15},则P ∩Q 表示的曲线的长度为________.12. 若函数f(x)=⎩⎪⎨⎪⎧m +e x ,x>0,e 2x -1,x ≤0的图象上存在关于原点对称的相异两点,则实数m 的最大值是________.13. 在△ABC 中,AB =10,AC =15,∠A 的平分线与边BC 的交点为D ,点E 为边BC 的中点.若AB →·AD →=90,则 AB →·AE →的值是________.14. 若实数x ,y 满足4x 2+4xy +7y 2=1,则7x 2-4xy +4y 2的最小值是________. 二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)若函数f(x)=Msin (ωx +φ)(M>0,ω>0,0<φ<π)的最小值是-2,最小正周期是2π,且图象经过点N(π3,1).(1) 求f(x)的解析式;(2) 在△ABC中,若f(A)=85,f(B)=1013,求cos C的值.16. (本小题满分14分)如图,在四棱锥PABCD中,底面ABCD是菱形,PC⊥BC,点E是PC的中点,且平面PBC⊥平面ABCD.求证:(1) PA∥平面BDE;(2) 平面PAC⊥平面BDE.17. (本小题满分14分)如图,在一旅游区内原有两条互相垂直且相交于点O的道路l1,l2,一自然景观的边界近似为圆形,其半径约为1千米,景观的中心C到l1,l2的距离相等,点C到点O的距离约为10千米.现拟新建四条游览道路方便游客参观,具体方案:在线段OC上取一点P,新建一条道路OP,并过点P新建两条与圆C相切的道路PM,PN(M,N为切点),同时过点P新建一条与OP垂直的道路AB(A,B分别在l1,l2上).为促进沿途旅游经济,新建道路长度之和越大越好,求新建道路长度之和的最大值.(所有道路宽度忽略不计)如图,在平面直角坐标系中,椭圆C :x 2a 2+y 2b 2=1(a>b>0)的短轴长为2,F 1,F 2分别是椭圆C 的左、右焦点,过点F 2的动直线与椭圆交于点P ,Q ,过点F 2与PQ 垂直的直线与椭圆C 交于A ,B 两点.当直线AB 过原点时,PF 1=3PF 2.(1) 求椭圆C 的标准方程;(2) 若点H(3,0),记直线PH ,QH ,AH ,BH 的斜率依次为k 1,k 2,k 3,k 4.① 若k 1+k 2=215,求直线PQ 的斜率;② 求(k 1+k 2)(k 3+k 4)的最小值.如果存在常数k使得无穷数列{a n}满足a mn=ka m a n恒成立,则称{a n}为P(k)数列.(1) 若数列{a n}是P(1)数列,a6=1,a12=3,求a3;(2) 若等差数列{b n}是P(2)数列,求{b n}的通项公式;(3) 是否存在P(k)数列{c n},使得c2 020,c2 021,C2 022,…是等比数列?若存在,请求出所有满足条件的数列{c n};若不存在,请说明理由.设函数f(x)=-3ln x+x3+ax2-2ax.(1) 当a=0时,求函数f(x)的单调递增区间;(2) 若函数f(x)在x=1时取极大值,求实数a的取值范围;(3) 设函数f(x)的零点个数为m,试求m的最大值.2020届高三模拟考试试卷数学附加题(满分40分,考试时间30分钟)21. 【选做题】 在A ,B ,C 三小题中只能选做两题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修42:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤a 2b 1.若矩阵A 属于特征值3的一个特征向量为α=⎣⎢⎡⎦⎥⎤11,求该矩阵属于另一个特征值的特征向量.B. (选修44:坐标系与参数方程)在极坐标系中,已知直线l :ρcos θ+2ρsin θ=m(m 为实数),曲线C :ρ=2cos θ+4sin θ,当直线l 被曲线C 截得的弦长取最大值时,求实数m 的值.C. (选修45:不等式选讲)已知实数x ,y ,z 满足x +y +2z =1,求x 2+y 2+z 2的最小值.【必做题】 第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,抛物线C :y 2=2px(p>0)的焦点为F ,过点P(2,0)作直线l 与抛物线交于A ,B 两点,当直线l 与x 轴垂直时AB 的长为4 2.(1) 求抛物线的方程;(2) 若△APF 与△BPO 的面积相等,求直线l 的方程.23. 若有穷数列{a n }共有k 项(k ≥2),且a 1=1,a r +1a r =2(r -k )r +1,当1≤r ≤k -1时恒成立.设T k =a 1+a 2+…+a k .(1) 求T 2,T 3; (2) 求T k .2020届高三模拟考试试卷(盐城) 数学参考答案及评分标准1. -12. 103. 34 4. 12 5. 4 6.5 7. 8 8. 充分不必要 9. 2 10. 299 11.2π312. 1+e 2 13.1752 14. 3815. 解:(1) 因为f(x)的最小值是-2,所以M =2.(2分)因为f(x)的最小正周期是2π,所以ω=1.(4分)又由f(x)的图象经过点N(π3,1),可得f(π3)=1,sin(π3+φ)=12,所以φ+π3=2k π+π6或φ+π3=2k π+5π6,k ∈Z .又0<φ<π,所以φ=π2,故f(x)=2sin(x +π2),即f(x)=2cos x .(6分)(2) 由(1)知f(x)=2cos x. 又f(A)=85,f(B)=1013,故2cos A =85,2cos B =1013,即cos A =45,cos B =513.因为在△ABC 中,A ,B ∈(0,π), 所以sin A =1-cos 2A =1-(45)2=35,sin B =1-cos 2B =1-(513)2=1213,(10分)所以cos C =cos[π-(A +B)]=-cos(A +B)=-(cos Acos B -sin Asin B)=-(45×513-35×1213)=1665.(14分)16. 证明:(1) 设AC ∩BD =O ,连结OE , 因为底面ABCD 是菱形,故O 为BD 中点. 因为点E 是PC 的中点,所以AP ∥OE. (2分)因为OE ⊂平面BDE ,AP ⊄平面BDE ,所以AP ∥平面BDE.(6分)(2) 因为平面PBC ⊥平面ABCD ,PC ⊥BC ,平面PBC ∩平面ABCD =BC ,PC ⊂平面PBC ,所以PC ⊥平面ABCD.(9分)又BD ⊂平面ABCD ,所以PC ⊥BD.因为四边形ABCD 是菱形,所以AC ⊥BD.又PC ⊥BD ,AC ∩PC =C ,AC ⊂平面PAC ,PC ⊂平面PAC , 所以BD ⊥平面PAC. (12分)又BD ⊂平面BDE ,所以平面PAC ⊥平面BDE.(14分)17. 解:连结CM ,设∠PCM =θ,则PC =1cos θ,PM =PN =tan θ,OP =OC -PC =10-1cos θ,AB =2OP =20-2cos θ.设新建的道路长度之和为f(θ),则f(θ)=PM +PN +AB +OP =2tan θ-3cos θ+30.(6分)由1<PC ≤10得110≤cos θ<1.设cos θ0=110,θ0∈(0,π2),则θ∈(0,θ0],sin θ0=31110,f ′(θ)=2-3sin θcos 2θ.令f′(θ)=0得sin θ=23.(10分)设sin θ1=23,θ1∈(0,θ0],则θ,f ′(θ),f (θ)的情况如下表:由表可知当θ=θ1时f(θ)有最大值,此时sin θ=23,cos θ=53,tan θ=25,f (θ)=30- 5.(13分)答:新建道路长度之和的最大值为30-5千米.(14分) 注:定义域扩展为(0,π2),求出最值后验证也可.18. 解:(1) 因为椭圆C :x 2a 2+y 2b 2=1(a>b>0)的短轴长为2,所以b =1.当直线AB 过原点时,PQ ⊥x 轴,所以△PF 1F 2为直角三角形. 由定义知PF 1+PF 2=2a ,而PF 1=3PF 2,故PF 1=32a ,PF 2=12a.由PF 21=PF 22+F 1F 22得94a 2=14a 2+4c 2=14a 2+4(a 2-1),化简得a 2=2, 故椭圆的方程为x 22+y 2=1. (4分)(2) ① 设直线PQ :y =k(x -1),代入到椭圆方程得(1+2k 2)x 2-4k 2x +(2k 2-2)=0. 设P(x 1,y 1),Q(x 2,y 2),则x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-21+2k 2, (6分)所以k 1+k 2=y 1x 1-3+y 2x 2-3=k[(x 1-1)(x 2-3)+(x 2-1)(x 1-3)](x 1-3)(x 2-3),化简可得k 1+k 2=2k 8k 2+7=215,(10分) 解得k =1或k =78,即为直线PQ 的斜率.(12分)② 当这两条直线中有一条与坐标轴垂直时,(k 1+k 2)(k 3+k 4)=0. 当两条直线与坐标轴都不垂直时,由①知k 1+k 2=2k8k 2+7,同理可得k 3+k 4=-2k 8+7k 2,(14分)故(k 1+k 2)(k 3+k 4)=-4k 256k 4+56+113k 2=-456(k 2+1k2)+113≥-456×2k 2×1k2+113=-4225, 当且仅当k 2=1k 2,即k =±1时取等号.综上,(k 1+k 2)(k 3+k 4)的最小值为-4225.(16分)19. 解:(1) 由数列{a n }是P(1)数列得a 6=a 2a 3=1,a 12=a 2a 6=3,可得a 3=13.(2分)(2) 由{b n }是P(2)数列知b mn =2b m b n 恒成立,取m =1得b n =2b 1b n 恒成立. 当b 1=0,b n =0时满足题意,此时b n =0.当b 1≠0时,由b 1=2b 21,可得b 1=12,取m =n =2得b 4=2b 22. 设公差为d ,则12+3d =2(12+d)2,解得d =0或d =12.综上,b n =0或b n =12或b n =n2,经检验均合题意.(8分)(3) (解法1)假设存在满足条件的P(k)数列{c n },不妨设该等比数列c 2 020,c 2 021,c 2 022,…的公比为q ,则有c 2 020×2 020=kc 2 020·c 2 020⇒c 2 020·q 2 020×2 020-2 020=kc 2 020·c 2 020,可得q 2 020×2 020-2 020=kc 2 020 ①,c 2 020×2 021=kc 2 020·c 2 021⇒c 2 020·q 2 020×2 021-2 020=kc 2 020·c 2 020·q ,可得q 2 020×2 021-2 021=kc 2 020 ②.综合①②可得q =1,(10分)故c 2 020×2 020=c 2 020,代入c 2 020×2 020=kc 2 020·c 2 020得c 2 020=1k ,则当n ≥2 020时c n =1k .(12分)又c 2 020=kc 1·c 2 020⇒c 1=1k.当1<n<2 020时,不妨设n i ≥2 020,i ∈N *且i 为奇数,由c ni =c n ×ni -1=kc n ×c ni -1=kc n ×c n ×ni -2=k 2(c n )2×c ni -2=…=k i -1(c n )i . 而c ni =1k ,所以1k =k i -1(c n )i ,(c n )i =(1k )i ,c n =1k.综上,满足条件的P(k)数列{c n }有无穷多个,其通项公式为c n =1k .(16分)(解法2)同解法1得,当n ≥2 020时c n =1k.当1<n<2 020时,c n ×2 020=kc n c 2 020,而c n ×2 020=1k ,c 2 020=1k ,故c n =1k ,以下同解法1.(解法3)假设存在满足条件的P(k)数列{c n },显然{c n }的所有项及k 均不为零,c 1=1k ,不妨设该等比数列c 2 020,c 2 021,c 2 022,…的公比为q ,当1≤n ≤2 018时,c n ×2 020=kc n c 2 020,c (n +1)×2 020=kc n +1c 2 020, 两式相除可得c n +1c n =c (n +1)×2 020c n ×2 020=q 2 020,故当1≤n ≤2 019时,{c n }也为等比数列,(10分) 故c n =c 1×q 2 020(n-1)=1k ×q 2 020(n -1),则c 2=1k ×q 2 020,c 4=1k×q 6 060. 由c 4=k(c 2)2得q 2 020=1,且当1≤n ≤2 019时c n =1k,(12分)则c 2 020=kc 2c 1 010=k ×1k ×1k =1k ,c 2 025=kc 5c 405=k ×1k ×1k =1k ,所以c 2 025c 2 020=1=q 5,所以q=1,故当n ≥2 020时c n =1k.综上,满足条件的P(k)数列{c n }有无穷多个,其通项公式为c n =1k.(16分)20. 解:(1) 当a =0时,f(x)=-3ln x +x 3,所以f′(x)=-3x +3x 2=3(x 3-1x),(1分)由f′(x)=0得x =1,当x ∈(0,1)时,f ′(x)<0;当x ∈(1,+∞)时,f ′(x)>0,所以函数f(x)的单调增区间为(1,+∞).(3分) (2) 由题意得f′(x)=-3x +3x 2+2ax -2a =3(x -1)x [x 2+(2a 3+1)x +1]. 令g(x)=x 2+(2a3+1)x +1(x>0),则f′(x)=3(x -1)xg(x).当2a 3+1≥0,即a ≥-32时,g(x)>0恒成立,得f(x)在(0,1)上递减,在(1,+∞)上递增,所以x =1是函数f(x)的极小值点;当Δ=(2a 3+1)2-4<0,即-92<a<32时,此时g(x)>0恒成立,f(x)在(0,1)上递减,在(1,+∞)上递增,所以x =1是函数f(x)的极小值点;当Δ=(2a 3+1)2-4=0,即a =-92或a =32时,易得f(x)在(0,1)上递减,在(1,+∞)上递增,所以x =1是函数f(x)的极小值点;(6分)当Δ=(2a 3+1)2-4>0时,解得a<-92或a>32(舍去),当a<-92时,设g(x)的两个零点为x 1,x 2,所以x 1x 2=1,不妨设0<x 1<x 2.又g(1)=2a 3+3<0,所以0<x 1<1<x 2,故f′(x)=3x(x -x 1)(x -1)(x -x 2).当x ∈(0,x 1)时,f ′(x)<0;当x ∈(x 1,1)时,f ′(x)>0;当x ∈(1,x 2)时,f ′(x)<0;当x ∈(x 2,+∞)时,f ′(x)>0;所以f(x)在(0,x 1)上递减,在(x 1,1)上递增,在(1,x 2)上递减,在(x 2,+∞)上递增; 所以x =1是函数f(x)极大值点. 综上所述a<-92.(10分)(3) ① 由(2)知当a ≥-92时,函数f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,故函数f(x)至多有两个零点,欲使f(x)有两个零点,需f(1)=1-a<0,得a>1,此时f(x)=-3ln x +x 3+ax 2-2ax>-3ln x -2ax ,f(1a )>3ln a -2,当a>e 时,f(1a )>0,此时函数f(x)在(0,1)上恰有1个零点;(12分)又当x>2时,f(x)=-3ln x +x 3+ax(x -2)>-3ln x +x 3. 由(1)知φ(x)=-3ln x +x 3在(1,+∞)上单调递增,所以f(e)>-3+e 3>0,故此时函数f(x)在(1,+∞)上恰有1个零点; 由此可知当a>e 时,函数f(x)有两个零点.(14分)② 当a<-92时,由(2)知f(x)在(0,x 1)上递减,在(x 1,1)上递增,在(1,x 2)上递减,在(x 2,+∞)上递增;而0<x1<1,所以f(x1)=-3ln x1+x31+ax1(x1-2)>0,此时函数f(x)也至多有两个零点.综上①②所述,函数f(x)的零点个数m的最大值为2.(16分)2020届高三模拟考试试卷(盐城) 数学附加题参考答案及评分标准21. A. 解:由题意知Aα=⎣⎢⎡⎦⎥⎤a 2b 1⎣⎢⎡⎦⎥⎤11=3⎣⎢⎡⎦⎥⎤11,所以⎩⎪⎨⎪⎧a +2=3,b +1=3,即⎩⎪⎨⎪⎧a =1,b =2,(4分) 所以矩阵A 的特征多项式f(λ)=⎪⎪⎪⎪⎪⎪λ-1-2 -2λ-1=(λ-1)2-4.由f(λ)=0,解得λ=3或λ=-1.(8分)当λ=-1时,⎩⎪⎨⎪⎧-2x -2y =0,-2x -2y =0,令x =1,则y =-1,所以矩阵A 的另一个特征值为-1,对应的一个特征向量为⎣⎢⎡⎦⎥⎤1-1.(10分)B. 解:由题意知直线l 的直角坐标方程为x +2y -m =0.(2分)又曲线C 的极坐标方程为ρ=2cos θ+4sin θ,即ρ2=2ρcos θ+4ρsin θ, 所以曲线C 的直角坐标方程为x 2+y 2-2x -4y =0, 所以曲线C 是圆心为(1,2)的圆,(8分)当直线l 被曲线C 截得的弦长最大时,得1+2×2-m =0,解得m =5.(10分) C. 解:由柯西不等式有(12+12+22)(x 2+y 2+z 2)≥(x +y +2z)2=1,(6分) 所以x 2+y 2+z 2≥16(当且仅当x 1=y 1=z 2,即x =y =16,z =13时取等号),(8分)所以x 2+y 2+z 2的最小值是16.(10分)22. 解:(1) 当直线l 与x 轴垂直时AB 的长为42,又P(2,0),取A(2,22),(1分) 所以(22)2=2p·2,解得p =2,所以抛物线的方程为y 2=4x.(2分) (2) 由题意知S △APF =12·FP ·|y A |=12|y A |,S △BPO =12·OP ·|y B |=|y B |.因为S △APF =S △BPO ,所以|y A |=2|y B |.(4分)当k AB =0时,直线AB 与抛物线不存在两个交点,所以k AB ≠0,故设直线AB 的方程为x =my +2,代入抛物线方程得y 2-4my -8=0, 所以y A +y B =4m ,y A y B =-8.(6分) 当y A >0,y B <0时,y A =-2y B ,-2y 2B =-8,所以y B =-2,x B =y 2B4=1,所以k PB =2,直线AB 的方程为2x -y -4=0.(8分)当y A <0,y B >0时,同理可得直线AB 的方程为2x +y -4=0. 综上所述,直线AB 的方程为2x±y -4=0.(10分)23. 解:(1) 当k =2时,r =1,由a 2a 1=2(1-2)1+1=-1,得a 2=-1,T 2=0.(1分)当k =3时,r =1或2,由a 2a 1=2(1-3)1+1=-2,得a 2=-2.由a 3a 2=2(2-3)2+1=-23,得a 3=43,T 3=13.(3分) (2) 因为a r +1a r =2(r -k )r +1,由累乘法得a 2a 1·a 3a 2·…·a r +1a r =2(1-k )2·2(2-k )3·…·2(r -k )r +1, 所以a r +1=(-2)r (k -1)2·(k -2)3·…·(k -r )r +1=(-2)r k !k (r +1)!(k -r -1)!,(5分)所以a r +1=1-2kC r +1k (-2)r +1.(6分) 当r =0时,a 1=1也适合a r +1=1-2kC r +1k (-2)r +1, 所以T k =1-2k [C 1k (-2)1+C 2k (-2)2+…+C k k (-2)k ],(8分) 即T k =1-2k [C 0k (-2)0+C 1k (-2)1+C 2k (-2)2+…+C k k (-2)k-1], 所以T k =1-2k [(1-2)k -1]=12k [1-(-1)k ].(10分)。

江苏省南通市基地学校2020届高三下学期第三次大联考数学试题 Word版含解析

江苏省南通市基地学校2020届高三下学期第三次大联考数学试题 Word版含解析

江苏省南通市基地学校2020届高三第三次大联考数学试题第I 卷(必做题,共160分)一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.)1.己知集合A ={0,2},B ={﹣1,0},则集合A B =_______.【答案】{﹣1,0,2} 【解析】 【分析】直接根据并集运算的定义求解即可. 【详解】解:∵A ={0,2},B ={﹣1,0}, ∴AB ={﹣1,0,2},故答案为:{﹣1,0,2}.【点睛】本题主要考查集合的并集运算,属于基础题.2.若复数z =i ·(a +2i )的模为4,其中i 是虚数单位,则正实数a 的值为_______.【答案】【解析】 【分析】先化简复数z ,再根据复数的几何意义列出方程,解方程即可求出答案. 【详解】解:∵(2)2z i a i ai =⋅+=-+,4=,得a =a =-,故答案为:【点睛】本题主要考查复数的模的计算,考查复数代数形式的四则运算,属于基础题. 3.如图是一个算法流程图,则输出的n 的值为_______. 【答案】5 【解析】 【分析】模拟程序运行即可求出答案.【详解】解:输入2n =,赋值213n =+=,32817=<,进入循环, 重新赋值314n =+=,421617=<,进入循环, 重新赋值415n =+=,523217=≥,终止循环, 输出5n =, 故答案为:5.【点睛】本题主要考查循环结构的程序框图,属于基础题.4.某工厂有A ,B ,C 三个车间,共270名工人,各车间男、女工人人数如下表:现用分层抽样的方法在全厂抽取54名工人,则应在车间C 抽取的工人人数为_______. 【答案】24 【解析】 【分析】先求出车间C 的工人数,再根据抽样比求出答案.【详解】解:由题意得车间C 的工人数为270﹣60﹣90=120, ∴5412024270⨯=, 故答案为:24.【点睛】本题主要考查分层抽样,解题的关键是求出抽样比,属于基础题.5.袋中有形状、大小都相同的4只球,其中2只白球,2只红球,从中一次随机摸出2只球,则这2只球颜色不同的概率是_____________. 【答案】23【解析】 分析】根据古典概型的概率计算公式求解即可.【详解】解:由题意,根据古典概型的概率计算公式得所求概率为11222423C C P C ==,故答案为:23. 【点睛】本题主要考查古典概型的概率计算公式,属于基础题.6.设x ∈R ,则“24x >”是“24x >”的_______条件.(选填“充分不必要”、“必要不充分”、“充要”和“既不充分也不必要”之一) 【答案】必要不充分 【解析】 【分析】先解出两个不等式,再根据集合间的基本关系判断即可. 【详解】解:由24x >得2x >,或2x <-, 由24x >得2x >, ∴2424x x >>,2424x x >⇐>,∴“24x >”是“24x >”的必要不充分条件, 故答案为:必要不充分.【点睛】本题主要考查充分条件与必要条件的判断,属于基础题.7.在平面直角坐标系中,若双曲线2214y x -=的渐近线与圆x 2+y 2=5相交于A ,B ,C ,D 四点,则四边形ABCD 的面积为_______. 【答案】8 【解析】 【分析】由题意可知双曲线的渐近线为2y x =±,四边形ABCD 是矩形,联立渐近线方程与圆的方程即可求出各点坐标,由此可求出矩形的长和宽,由此可求得面积.【详解】解:∵双曲线2214y x -=的渐近线为2y x =±,由题意可知四边形ABCD 是矩形,不妨设各点位置如图,联立方程2225y xx y =⎧⎨+=⎩可得()()1,2,1,2A C --, 同理可得()()1,2,1,2B D --,∴2AB =,4AD =,∴矩形ABCD 的面积248S AB AD =⋅=⨯=, 故答案为:8.【点睛】本题主要考查双曲线的简单几何性质,属于基础题.8.已知直线y =ex -1是曲线y =e x +a 的一条切线,则实数a 的值为_______. 【答案】﹣1 【解析】 【分析】求导后结合条件可求出切点的横坐标,分别代入曲线和切线方程求出切点纵坐标,从而可求出答案.【详解】解:∵xy e a =+,∴e xy '=,∴x e e =,得1x =,代入切线方程得切点坐标为()1,1e -,代入曲线方程得切点坐标为()1,e a +, ∴1e e a -=+,得1a =-, 故答案为:1-.【点睛】本题主要考查利用导数研究函数的切线,属于基础题.9.如图,在直三棱柱ABC —A 1B 1C 1中,∠ACB =90︒,D 为AA 1的中点.设四面体C 1—B 1CD 的体积为V 1,直三棱柱ABC —A 1B 1C 1的体积为V 2,则12V V 的值为_______.【答案】13【解析】 【分析】等体积法可得11111111111C B CD D B CC A B CC C A B C V V V V V ----====,再根据棱锥和棱柱的体积公式即可求出答案. 【详解】解:11111111111C B CD D B CC A B CC C A B C V V V V V ----====11111112111333A B C ABC A B C S CC V V -=⨯⨯==△,∴1213V V =,故答案为:13. 【点睛】本题主要考查棱锥和棱柱的体积的求法,属于基础题.10.在平面直角坐标系xOy 中,己知A ,B ,F 分别为椭圆C :22221x y a b+=(a >b >0)左顶点、上顶点和左焦点(如图),过点F 作x 轴的垂线与椭圆交于M ,N 两点,直线BN 与x 轴交于点D.若OA =2OD ,则椭圆C 的离心率为_______.【答案】45【解析】 【分析】由题意求出点,M N 的坐标,再根据NDFBDO ∆∆可得DF NFOD OB=,由此可求出答案. 【详解】解:由题意可得(),0A a -,()0,B b ,(),0F c -,其中()2220c a bc =->,将x c =-代入到22221x ya b +=得2,b M c a ⎛⎫- ⎪⎝⎭,2,b N c a ⎛⎫-- ⎪⎝⎭,又由题意可得NDF BDO ∆∆,∴DF NF OD OB =,即222b a c a a b -=,则222(2)c a a c -=-,得45c a =, 即离心率45e =,故答案为:45.【点睛】本题主要考查椭圆的简单几何形式,考查齐次式方程求离心率问题,属于基础题.11.已知等差数列{}n a 的前n 项和为n S ,若22n S n =,则1125()nn a a +的最小值为_______. 【答案】9 【解析】 【分析】由等差数列的前n 项和公式可求得12a =,42n a n =-,则112525()242n n n n a a n +=+-125(21)26421n n ⎡⎤=-++⎢⎥-⎣⎦,再用基本不等式求解即可. 【详解】解:∵22n S n =,∴112a S ==, ∴()2222n n n a S n +==, ∴42n a n =-,∴112525()242n n n n a a n +=+-222542n n n n -+=-21221n n n +=-()24121421n n n +=⋅-()()2212621251421n n n -+-+=⋅-125(21)26421n n ⎡⎤=-++⎢⎥-⎣⎦9≥=, 当且仅当252121n n -=-即3n =时等号成立, 故答案为:9.【点睛】本题主要考查等差数列的前n 项和公式的应用,考查基本不等式的应用,考查计算能力,属于中档题.12.已知函数222()1122x x x f x x x ⎧-≤⎪=⎨->⎪⎩,,,则关于x 的不等式()(1)f x f x -<-的解集为_____.【答案】1,2⎛⎫-∞- ⎪⎝⎭【解析】 【分析】由题意画出函数()f x 的图象,结合图象分类讨论,当11x x -<<-时,代入解析式直接解不等式;当1x -≥时,根据单调性解不等式;从而求出解集.【详解】解:根据题意可得函数()f x 在(),1-∞上单调递减,在[)1,+∞上单调递增,图象如图,当11x x -<<-即10x -<<时,()()22(2)2x x x f x x ---=+-=,()()221(11)21x x f x x ---==--,由10()(1)x f x f x -<<⎧⎨-<-⎩得221021x x x x -<<⎧⎨+<-⎩,解得112x -<<-; 当1x -≥即1x ≤-时, ∵1x x -<-,函数()f x [)1,+∞上单调递增,∴()(1)f x f x -<-恒成立; 综上:21x <-, 故答案为:1,2⎛⎫-∞-⎪⎝⎭. 【点睛】本题主要考查分段函数解不等式,本题的关键在于画出图象得到函数的单调性,考查数形结合思想,属于中档题.13.如图,在四边形ABCD 中,0AB BC AD DC ⋅=⋅=,4AC BD ⋅=,2AB BD ⋅=-,则对角线BD 的长为_______.【答案】【解析】 【分析】由题意得四边形ABCD 的外接圆是以AC 为直径的圆,设,AC BD 的中点分别为,O E ,则OE BD ⊥,则2AC BD AO BD ⋅=⋅212()2AB BD BD =⋅+,代入数据即可得出答案.【详解】解:由0AB BC AD DC ⋅=⋅=,得2ABC ADC π∠∠==,∴四边形ABCD 的外接圆是以AC 为直径的圆, 设,AC BD 的中点分别为,O E ,则OE BD ⊥,∴2122()2()2AC BD AO BD AB BE EO BD AB BD BD ⋅=⋅=++⋅=⋅+, 结合4AC BD ⋅=,2AB BD ⋅=-,得2142(2)2BD =-+,∴28BD =,∴22BD =,故答案为:【点睛】本题主要考查平面向量的数量积,考查平面向量的线性运算,考查数形结合思想,属于中档题.14.已知函数24()ln(1)x f x e-=+,()2g x x a =+-.若存在[](),1a n n n Z ∈+∈,使得关于x 的方程()()f x g x =有四个不相等的实数解,则n 的最大值为_______. 【答案】2 【解析】 【分析】由题意得242()()10x x a f x g x ee-+-=⇔+-=,令242()1x x a h x ee-+-=+-,x ∈R ,显然()h x 为偶函数,则方程()()f x g x =有四个实根⇔函数242()1x x a h x e e -+-=+-,x >0有两个零点,令2x t e -=,x >0,则关于t 的方程210a t e t -+=,即1ae t t=+在()2e -+∞,内有两个不相等的实根,结合函数1y t t =+的图象可得4ln(e 1)2ln 21n n ⎧<+-⎨<+⎩,由此可求出答案.【详解】解:方程()()f x g x =⇔24ln(1)2x e x a -+=+-24210x x a e e -+-⇔+-=,令242()1x x a h x ee-+-=+-,x ∈R ,则显然()h x 为偶函数,∴方程()()f x g x =有四个实根⇔函数242()1x x a h x ee -+-=+-,x >0有两个零点, 令2x t e -=,x >0,则关于t 的方程210a t e t -+=,即1ae t t=+在()2e -+∞,内有两个不相等的实根, 结合函数1y t t=+,2t e ->图象,得222a e e e -<<+,即4ln 2ln(1)2a e <<+-,∵存在[],1a n n ∈+,使得4ln 2ln(1)2a e <<+-,∴4ln(e 1)2ln 21n n ⎧<+-⎨<+⎩,结合n Z ∈,得max 2n =, 故答案为:2.【点睛】本题主要考查函数与方程,考查方程的实数解个数问题,考查转化与化归思想,属于中档题.二、解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.如图,EA⊥平面ABC,DC∥EA,EA=2DC,F是EB的中点.(1)求证:DC⊥平面ABC;(2)求证:DF∥平面ABC.【答案】(1)证明见解析;(2)证明见解析;【解析】【分析】(1)根据线面垂直的性质与判定定理即可证明;(2)取AB中点M,连结CM,FM,证明四边形DCMF为平行四边形,由此根据线面平行的判定定理即可证明.【详解】证明:(1)∵EA⊥平面ABC,AB,AC⊂平面ABC,∴EA⊥AB,EA⊥AC,又DC∥EA,∴DC⊥AB,DC⊥AC,∵AB AC=A,AB、AC⊂平面ABC,∴DC⊥平面ABC;(2)取AB中点M,连结CM,FM,在△ABE中,F,M分别为EB,AB中点,FM∥EA,且EA=2FM.又DC∥EA且EA=2DC,于是DC∥FM,且DC=FM,∴四边形DCMF为平行四边形,则DF∥CM,CM⊂平面ABC,DF⊄平面ABC,∴DF∥平面ABC.【点睛】本题主要考查线面平行和线面垂直的证明方法,属于基础题.16.已知锐角三角形ABC中,3sin5C=,1sin()5A B-=.(1)求证:tan 2tan A B =;(2)若AB 边上的高为2,求边AB 的长.【答案】(1)证明见解析;(2)6 【解析】 【分析】(1)由题意可得3sin cos cos sin 5A B A B +=,1sin cos cos sin 5A B A B -=,解方程组求得2sin cos 5A B =,1cos sin 5A B =,两式相除即可证明结论; (2)由题意,22tan tan AB A B +=,得3tan AB B=,又根据同角的三角函数关系及tan tan tan tan()1tan tan A B C A B A B +=-+=--可得tan 1B =+,由此可求出答案.【详解】(1)证:在△ABC 中,A +B +C =π, ∴3sin sin()5C A B =+=,即3sin cos cos sin 5A B A B +=,①又1sin()5A B -=,即1sin cos cos sin 5A B A B -=,② 由①②得,2sin cos 5A B =,1cos sin 5A B =, ∵A ,B ≠2π, ∴两式相除得,tan 2tan A B =; (2)解:由题意,22tan tan AB A B +=,得3tan AB B=,在△ABC 中,4cos 5C ==, ∴sin 3tan cos 4C C C ==,又tan tan tan tan[()]tan()1tan tan A B C A B A B A B π+=-+=-+=--23tan 312tan 4B B =-=-,即22tan 4tan 10B B --=,解得tan 12B =+,∴6AB =.【点睛】本题主要考查简单的三角恒等变换,考查同角的三角函数关系,考查计算能力,属于基础题.17.如图,某地有一块半径为R 的扇形AOB 公园,其中O 为扇形所在圆的圆心,∠AOB =23π,OA ,OB ,AB 为公园原有道路.为满足市民观赏和健身的需要,市政部门拟在AB 上选取一点M ,新建道路OM 及与OA 平行的道路MN (点N 在线段OB 上),设∠AOM =θ.(1)如何设计,才能使市民从点O 出发沿道路OM ,MN 行走至点N 所经过的路径最长?请说明理由;(2)如何设计,才能使市民从点A 出发沿道路AM ,MN 行走至点N 所经过的路径最长?请说明理由. 【答案】(1)当6πθ=时,市民从点O 出发沿道路OM ,MN 行走所经过的路径最长,详见解析(2)当3πθ=时,市民从点A 出发沿道路AM ,MN 行走所经过的路径最长,详见解析【解析】 【分析】(1)由题意知OM =OA =R ,且03πθ<≤,由正弦定理得2sin()sin 33MN OMππθ=-,则2sin()3MN πθ=-,根据正弦函数的单调性即可求出答案;(2)由题意得市民从点A 出发沿道路AM ,MN 行走所经过路径长()g AM MN θ=+2sin()3R πθθ=-1(sin )22R θθθ=++,求导得函数的单调性,由此可求出答案.【详解】解:(1)由题意知OM =OA =R ,且03πθ<≤,在△OMN 中,由正弦定理得2sin()sin33MN OMππθ=-,于是2sin()3MN πθ=-,从而市民从点O 出发沿道路OM ,MN 行走所经过的路径长2()sin()3f OM MN R πθθ=+=-,∴当232ππθ-=即6πθ=时,()f θ取最大值,即当6πθ=时,市民从点O 出发沿道路OM ,MN 行走所经过的路径最长;(2)市民从点A 出发沿道路AM ,MN 行走所经过的路径长()g AM MN θ=+2sin()3R πθθ=-1(sin )22R θθθ=++,1()cos )22g R θθθ'=-+)6R πθ=-, 当03πθ<≤,时,11sin()262πθ-<-≤,从而'()0g θ>恒成立, ∴()g θ0,3π⎛⎤⎥⎝⎦上单调递增, ∴当3πθ=时,()g θ取最大值,即当3πθ=时,市民从点A 出发沿道路AM ,MN 行走所经过的路径最长.【点睛】本题主要考查正弦定理的应用,考查扇形的弧长公式,考查利用导数研究函数的单调性,考查三角函数的性质,属于中档题.18.在平面直角坐标系xOy 中,己知圆C 经过点(),,),且与直线0x y +-相切.(1)求圆C 的方程;(2)设P 是直线l :x =4上的任意一点,过点P 作圆C 的切线,切点为M ,N . ①求证:直线MN 过定点(记为Q );②设直线PQ 与圆C 交于点A ,B ,与y 轴交于点D.若DA QA λ=,DB QB μ=,求λ+µ的值.【答案】(1)224x y +=(2)①证明见解析;②83【解析】 【分析】(1)设圆C 的方程为222()()x a y b r -+-=,由此得()))()222222a b r a b r r ⎧⎪+=⎪⎪⎪+=⎨=,解出即可;(2)①设P (4,0y ),由题意P ,M ,N ,C 在以PC 为直径的圆22040x y x y y +--=上,两圆方程作差可得直线MN 的方程为0440x y y +-=,由直线系方程即可求出定点;②由①得Q (1,0),设直线PQ 的方程为(1)y k x =-,则D (0,﹣k ),设A (3x ,3y ),B (4x ,4y ),联立直线与圆的方程消元,由韦达定理可得234223422141k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩,根据题意可得到334411x x x x λμ⎧=⎪-⎪⎨⎪=⎪-⎩,代入后化简求值即可. 【详解】解:(1)设圆C 的方程为222()()x a y b r -+-=,由题意可得,()))()222222a b r a br r ⎧⎪+=⎪⎪⎪+=⎨=,解得0a =,0b =,2r,∴圆C 的方程为224x y +=;(2)①设P (4,0y ), ∵PM ,PN 是圆C 的两条切线, ∴PM ⊥MC ,PN ⊥NC ,∴P ,M ,N ,C 在以PC 为直径的圆上, ∴该圆上任意一点(),E x y 满足0PE CE ⋅=, ∵()04,PE x y y =--,(),CE x y =,∴()()040x x y y y -+-=,即22040x y x y y +--=,∴该圆方程为22040x y x y y +--=,由222204040x y x y x y y ⎧+-=⎨+--=⎩作差可得公共弦所在直线MN 的方程为0440x y y +-=, ∴直线MN 过定点(1,0);②由①可得Q (1,0),设直线PQ 的方程为(1)y k x =-,则D (0,﹣k ), 设A (3x ,3y ),B (4x ,4y ), 由22(1)4y k x x y =-⎧⎨+=⎩得2222(1)240k x k x k +-+-=, ∴234223422141k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩, 由DA QA λ=,DB QB μ=,得3344(1)(1)x x x x λμ=-⎧⎨=-⎩,即334411x x x x λμ⎧=⎪-⎪⎨⎪=⎪-⎩,∴33443434342211()1x x x x x x x x x x λμ+-+=+=+---++22222222281224233111k k k k k k -+=+=+=--+++. 【点睛】本题主要考查待定系数法求圆的方程,考查直线与圆的位置关系,考查两圆的公共弦所在直线的方程的求法,考查计算能力,属于中档题.19.设函数1()ln f x ax b x x=+-(a ,b ∈R ). (1)当b =﹣1时,函数()f x 有两个极值,求a 的取值范围; (2)当a +b =1时,函数()f x 的最小值为2,求a 的值;(3)对任意给定的正实数a ,b ,证明:存在实数0x ,当0x x >时,()0f x >. 【答案】(1)(14-,0)(2)1a =或a e =(3)证明见解析; 【解析】 【分析】(1)当1b =-时,1()ln f x ax x x =++,求导222111()ax x f x a x x x +-'=-+=,则102140a a a <⎧⎪⎪->⎨⎪+>⎪⎩,解出即可; (2)当1a b +=时,1()(1)ln f x ax a x x=+--,求导后,分类讨论得函数的单调性与最值,由此可求出答案;(3)对任意给定的正实数a ,b ,有1()ln ln f x ax b x ax b x x=+->-,设()ln ln )g x ax b x ax b x =-=-,设ln y x =,x >0,求导后易求得ln 0y x =>,又由0ax -≥,得2()b x a≥,由此可得出答案.【详解】解:(1)当1b =-时,1()ln f x ax x x=++, ∴222111()ax x f x a x x x+-'=-+=, 若函数()f x 有两个极值,则0102140a aa <⎧⎪⎪->⎨⎪+>⎪⎩,解得104a -<<,故a 的取值范围是(14-,0); (2)当1a b +=时,1()(1)ln f x ax a x x=+--, ∴2211(1)(1)()a x ax f x a x x x -+-'=-+=, 当a ≤0时,()0f x '<,∴()f x 是(0,+∞)上的减函数, ∴函数()f x 无最小值,舍去; 当a >0时,由()0f x '>得,1x a>, ∴()f x 在(0,1a )上单调递减,在(1a,+∞)上单调递增, ∴函数()f x 的最小值为1()1(1)ln f a a a a=++-, 由1(1)ln 2a a a ++-=,得(1)(1ln )0a a --=, 解得1a =或e a =;(3)对任意给定的正实数a ,b ,有1()ln ln f x ax b x ax b x x=+->-,设()ln ln )g x ax b x ax b x =-=-,设ln y x =,x >0,则122y x x'=-=,z易知当x =4时,min 22ln 20y =->,故ln 0y x =>,又由0ax -≥,得2()b x a≥,对于任意给定的正实数a ,b ,取0x 为2()b a与4中的较大者, 则当0x x >时,恒有()0>g x ,即当0x x >时,()0f x >.【点睛】本题主要考查利用导数研究函数的单调性、极值与最值,考查分类讨论思想,考查计算能力,属于难题.20.己知{}n a 是各项都为正数的数列,其前n 项和为n S ,且12n n nS a a =+. (1)求证:{}2n S 为等差数列;(2)设(1)nn nb a -=,求{}n b 的前n 项和n T ;(3)求集合221(,),,N 22p m m p T T m p m p *-⎧⎫⎪⎪=∈⎨⎬⎪⎪⎩⎭.【答案】(1)证明见解析;(2)(1)n T =-3){}(4,1),(4,2) 【解析】 【分析】 (1)由11,1,2n nn S n a S S n -=⎧=⎨-≥⎩消掉n a ,再根据等差数列的定义即可证明;(2)由(1)得211n S n n =+-=,则=n S,由此可求得n a N n *∈),则(1)nn n b ==-,分奇偶数即可求出n T ;(3)由22122p mm p T T -=得222m p m p ⨯=,设2n n n c =,则11111222n n n n n n n n c c ++++--=-=,则12345c c c c c =>>>>,由此可得当+1m p >时,12m p m p--=,记1m p t --=,则N t *∈,12t p t p ++=,得121t t p +=-,记121n n n d +=-,邻项法可得数列{}n d 单调递减,可得n ≥3时,1n d <恒成立,进而可求出答案.【详解】解:(1)∵12n n nS a a =+,∴221n n n S a a =+, 当n ≥2,N n *∈时,2112()()1n n n n n S S S S S ---=-+, 即2211n n S S --=(n ≥2,N n *∈), 又n =1时,11112S a a =+,得11a =(舍负),∴{}2n S 是以1为首项,1为公差的等差数列; (2)由(1)知,211n S n n =+-=,又{}n a 是各项都为正数,0n S >,∴n S ,当n ≥2,N n *∈时,1-=-=n n n a S S又11a =,∴=n a N n *∈),于是(1)nn n b ==-,当n 为奇数时,123n n T b b b b =++++=当n 为偶数时,123n n T b b b b =++++=∴(1)n T =-(3)由22122p mm p T T -=得122m p m p -=,即222m p m p ⨯=,设2n n nc =,则11111222n nn n n n n n c c ++++--=-=, ∴12345c c c c c =>>>>,由222m p m p ⨯=,2p m m c c c =>, ∴m p >,则+1m p ≥, 当+1m p =时,222m p m p⨯=显然不成立; 当+1m p >时,222m pm p ⨯=,则12m p m p --=, 记1m p t --=,则N t *∈,12t p t p ++=,得121t t p +=-,记121n n n d +=-,则111212102121(21)(21)n n n n n n n n n n d d +++++-⨯--=-=<----恒成立, 故数列{}n d 单调递减, 又12d =,21d =,3417d =<,则n ≥3时,1n d <恒成立, 从而方程121t t p +=-的解为t =1,p =2或t =2,p =1, ∴满足条件的m ,p 存在,m =4,p =1或m =4,p =2,∴{}221(,),,N (4,1),(4,2)22p m m p T T m p m p *-⎧⎫⎪⎪=∈=⎨⎬⎪⎪⎩⎭.【点睛】本题主要考查数列中已知n S 和n a 的关系的递推公式的应用,考查分组求和法,考查分类讨论思想,考查计算能力与推理能力,考查数列单调性的应用,属于难题.第II 卷(附加题,共40分)【选做题】本题包括A ,B ,C 三小题,请选定其中两题作答,每小题10分共计20分,解答时应写出文字说明,证明过程或演算步骤. 21.已知矩阵A 的逆矩阵15231A -⎡⎤=⎢⎥⎣⎦,求点P (1,2)在矩阵A 对应的变换作用下得到点Q 的坐标.【答案】(3,﹣7) 【解析】 【分析】设A = a b c d ⎡⎤⎢⎥⎣⎦,则5312053021a b a b c d c d +=⎧⎪+=⎪⎨+=⎪⎪+=⎩,从而求得 1 23 5A -⎡⎤=⎢⎥-⎣⎦,由此可求出答案.【详解】解:设A = a b c d ⎡⎤⎢⎥⎣⎦,则15 2 1 0 3 10 1a b AA c d -⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,∴5312053021a b a b c d c d +=⎧⎪+=⎪⎨+=⎪⎪+=⎩,解得1235a b c d =-⎧⎪=⎪⎨=⎪⎪=-⎩,∴ 1 23 5A -⎡⎤=⎢⎥-⎣⎦ ∵ 1 2133 527-⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,∴点P (1,2)在矩阵A 对应的变换作用下得到点Q 的坐标为(3,﹣7).【点睛】本题主要考查矩阵与逆矩阵的关系,考查逆矩阵的求法,考查转化与化归思想,属于基础题.22.在极坐标系中,已知两条曲线的极坐标方程分别为sin()13πρθ+=与2ρ=,它们相交于A ,B 两点,求线段AB 的中点M 的极坐标.【答案】(1,6π) 【解析】 【分析】先将曲线方程化为直角坐标方程,再解方程组求得两交点坐标,再根据中点坐标公式求出答案.【详解】解:将sin()13πρθ+=20y +-=,将2ρ=化为直角坐标方程为224x y +=,联立22204y x y +-=+=⎪⎩,解得02x y =⎧⎨=⎩,或1x y ⎧=⎪⎨=-⎪⎩不妨设)1A-,()0,2B ,∴AB 的中点M 的直角坐标为(2,12), ∴点M 的极坐标为(1,6π). 【点睛】本题主要考查极坐标方程与直角坐标方程的互化,属于基础题. 23.已知a ,b ,c ∈R ,且a +b +c =3,a 2+b 2+2c 2=6,求a 的取值范围. 【答案】1205a ≤≤ 【解析】【分析】由题意可得222222162(2)(1)32a b c b c -=+=++,结合柯西不等式即可得到2226(3)3a a -≥-,解一元二次不等式即可. 【详解】解:∵222222162(2)(1)32a b c b c -=+=++2222()(3)33b c a +=-≥, 即25120a a -≤, ∴1205a ≤≤. 【点睛】本题主要考查柯西不等式的应用,属于中档题.【必做题】第22题、第23题,每题10分,共计20分,解答时应写出文字说明,证明过程或演算步骤.24.如图,已知三棱锥P -ABC 中,PA ⊥平面ABC ,AB ⊥AC ,且PA =l ,AB =AC =2,点D 满足AD AC λ=,01λ<<.(1)当12λ=,求二面角P -BD -C 的余弦值; (2)若直线PC 与平面PBD,求λ的值. 【答案】(1)23-(2)12λ= 【解析】【分析】 (1)由题意,以{},,AB AC AP 为正交基底,建立空间直角坐标系A —xyz ,求出各点的坐标,进而求出平面的法向量,然后利用空间向量求解二面角的大小;(215=,解出即可. 【详解】解:(1)∵PA ⊥平面ABC ,∴AP ⊥AB ,AP ⊥AC ,又AB ⊥AC ,∴以{},,AB AC AP 为正交基底,建立如图所示空间直角坐标系A —xyz ,∵PA =1,AB =AC =2,∴A (0,0,0),B (2,0,0),C (0,2,0),P (0,0,1)∴(0,2,0)AD AC λλ==,即D (0,2,0)λ,∴(2,0,1)PB =-,(0,2,1)PD λ=-,设平面PBD 的法向量为1111(,,)n x y z =,则1111112020n PB x z n PD y z λ⎧⋅=-=⎪⎨⋅=-=⎪⎩,取1(,1,2)n λλ=, 当12λ=时,11(,1,1)2n =,又可取2(0,0,1)n =为平面BDC 的一个法向量, ∴12121212cos ,39n n n n n n ⋅<>===⋅,由图可知二面角P —BD —C 的余弦值为23-; (2)(0,2,1)PC =-,平面PBD 的一个法向量为1(,1,2)n λλ=,设直线PC 与平面PBD 所成角为θ,则111sin cos ,5PC n PC n PC nθ⋅=<>==⋅, =,即22940λλ-+=, 解得12λ=或4λ=-, ∵01λ<<,∴12λ=. 【点睛】本题主要考查空间中线面角、二面角的向量求法,准确求出平面的法向量是解决问题的关键,考查计算能力,属于中档题.25.某高速公路全程设有2n (n ≥4,N n *∈)个服务区.为加强驾驶人员的安全意识,现规划在每个服务区的入口处设置醒目的宣传标语A 或宣传标语B.(1)若每个服务区入口处设置宣传标语A 的概率为23,入口处设置宣传标语B 的服务区有X个,求X 的数学期望;(2)试探究全程两种宣传标语的设置比例,使得长途司机在走该高速全程中,随机选取3个服务区休息,看到相同宣传标语的概率最小,并求出其最小值.【答案】(1)23n (2)两种宣传标语1:1设置时,符合题设的概率最小,其最小值为242n n -- 【解析】【分析】(1)由题意得每个服务区入口处设置宣传标语B 的概率为13,则X ~B (2n ,13),由此可求出答案;(2)由古典概型的概率计算公式可得,记这3个服务区看到相同的宣传标语的事件数为M ,看到相同宣传标语的概率P =32nM C , 设该高速公路全程2n 个服务区中,入口处设置醒目的宣传标语A 的有m (m N ∈,m ≤2n )个,分类讨论,利用数列中邻项作差法(即根据相邻两项之差的符号判断其单调性)结合组合数的性质可求得M 的最小值,从而求出答案.【详解】解:(1)∵每个服务区入口处设置宣传标语A 的概率为23, ∴每个服务区入口处设置宣传标语B 的概率为13, ∴X ~B (2n ,13),∴12()233E X n n =⨯=; (2)长途司机在走该高速全程中,随机的选取3个服务区,共有32n C 种选取方法,长途司机在走该高速全程中,随机的选取3个服务区,记这3个服务区看到相同的宣传标语的事件数为M ,则其概率P =32nM C , 设该高速公路全程2n 个服务区中,入口处设置醒目的宣传标语A 的有m (m N ∈,m ≤2n )个, ①当323m n ≤≤-时,332m n m M C C -=+,令332()m n m f m C C -=+,323m n ≤≤-,则当324m n ≤≤-时,33331212(1)()m n m m n m f m f m C C C C +---+-=+--33331221()()m m n m n m C C C C +---=---2221212(1)()2m n m n C C n m ---=-=--, ∴当1m n ≤-时,(1)()f m f m +<;当m n ≥时,(1)()f m f m +>,∴当m n =时,3min [()]()2n f m f n C ==,即3min ()2n M f n C ==;②当3m <,N m ∈时,32n m M C -=,显然33322122n n n C C C -->>,∴33222n m n M C C --=≥,∵4n ≥,∴23n n ->, ∴322(22)(23)(24)4(1)(2)(23)66n n n n n n n C -------==4(1)(2)6n n n -->3342n n C C =>,即32n M C >,当232n m n -<≤,N m ∈时,3m M C =,∵232n m n -<≤,N m ∈时,22m n =-,或21m n =-,或2m n =,∴同②,32n M C >;综上,当m n =时,3min ()2n M f n C ==,3min min 33222242n n n C M n P C C n -===-, 即两种宣传标语1:1设置时,符合题设的概率最小,其最小值为242n n --. 【点睛】本题主要考查二项分布的应用,考查古典概型的概率计算公式,考查组合数公式的应用,考查数列的单调性,考查分类讨论思想,考查计算能力与推理能力,属于难题.。

2020年6月江苏省苏北七市2020届高三毕业班下学期第三次调研联考数学试题(解析版)

2020年6月江苏省苏北七市2020届高三毕业班下学期第三次调研联考数学试题(解析版)

绝密★启用前江苏省苏北七市普通高中(南通泰州扬州徐州淮安连云港宿迁)2020届高三毕业班下学期第三次联合调研考试数学试题(解析版)2020年6月一、填空题(本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请将答案填写在答题卡相应的位置上..........)1. 已知集合A={﹣1,0,1},B={0,2},则A B=_______.【答案】{﹣1,0,1,2}【解析】【分析】直接利用集合的并集运算求解.【详解】解:∵集合A={﹣1,0,1},B={0,2},∴A B={﹣1,0,1,2}.故答案为:{﹣1,0,1,2}【点睛】本题主要考查集合的并集运算,意在考查学生对该知识的理解掌握水平,属于基础题.2. 设复数z满足(3﹣i)z,其中i为虚数单位,则z的模是_______.【答案】1【解析】【分析】先利用复数的除法求出复数z,再求复数的模得解.【详解】解:∵(3﹣i)z=10,∴1010(3)3101031010i i i z ++====+, ∴2231010()()11010z =+=. 故答案为:1【点睛】本题主要考查复数的除法运算和复数模的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.3. 如图是一个算法流程图,则输出的k 的值是____.【答案】5【解析】【分析】由已知中的框图可知进入循环的条件为不满足条件2k 4k 0,->模拟程序的运行结果,即可得到输出的k 值【详解】模拟执行程序,可得k=1不满足条件2k 4k 0,->执行循环体,k=2不满足条件2k 4k 0,->执行循环体,k=3不满足条件2k 4k 0,->执行循环体,k=4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 绝密★启用前
江苏省南京市普通高中
2020届高三毕业班下学期第三次高考模拟考试
数学试题参考答案
2020年6月
说明:
1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.
2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.
3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.
4.只给整数分数,填空题不给中间分数.
一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)
1.{x |1<x <4} 2.2 3.60 4.10 5.23
6. 3 7.2n +1-2 8.62 9.83
10.[2,4] 11.6 12. [-2,+∞) 13.-94
14.38
二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内)
15.(本小题满分14分)
证明:(1)取PC 中点G ,连接DG 、FG .
在△PBC 中,因为F ,G 分别为PB ,PC 的中点,所以GF ∥BC ,GF =12
BC . 因为底面ABCD 为矩形,且E 为AD 的中点,。

相关文档
最新文档