七年级数学下册 1.27平方差公式综合拓展练习
(完整版)七年级数学下---平方差、完全平方公式专项练习题
七年级数学下---平方差、完全平方公式专项练习题平方差:一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a) B.(-a+b)(a-b C.(13a+b)(b-13a) D.(a2-b)(b2+a)3.下列计算中,错误的有() A.1个 B.2个 C.3个 D.4个①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题: 5、(a+b-1)(a-b+1)=(_____)2-(_____)2.6.(-2x+y)(-2x-y)=______.7.(-3x2+2y2)(______)=9x4-4y4.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113. 10.计算:(a+2)(a2+4)(a4+16)(a-2).B卷:提高题1.计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.式计算:2009×2007-20082. 3.解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).(1)计算:22007200720082006-⨯.(2)计算:22007200820061⨯+.4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?5.下列运算正确的是() A.a3+a3=3a6 B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3 D.(-13a-4b)(13a-4b)=16b2-19a26.计算:(a+1)(a-1)=______.C卷:课标新型题1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=_____ _.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a -b )(a+b )=_______ . ②(a -b )(a 2+ab+b 2)=_____ _. ③(a -b )(a 3+a 2b+ab 2+b 3)=____ __.2.(结论开放题)请写出一个平方差公式,使其中含有字母m ,n 和数字4.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+;ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(; bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。
七年级数学下册《平方差公式》综合训练(含答案)
1.5 平方差公式【课内四基达标】1.填空题(1)(-x-y)(x-y)=( )2-( )2(2)(x 3-3)(3+x 3)(9+x 6)( )=x 24-6561(3)[(a+2b)m+1+32(2a-b)n ][(a+2b)m+1-32(2a-b)n ]= (4)(21x+32y)(-32y+21x)= (5)(2-m+n)(2+m-n)-(1-m+n)(1+m-n)=2.判断(正确的在括号内打“√”,错误的在括号内打“×”)(1)(2b+3a)(2b-3a)=4b 2-3a( )(2)(2x 2-y)(-2x 2-y)=4x 2-y 2( ) (3)(31p-21q)(21p+31q)=91p 2-41q 2( ) (4)(71x 2+5y 2)(71x 2-5y 2)=49x 2-25y 2( ) 3.选择题(1)在下列多项式的乘法中,可以用平方差公式计算的是( )A.(x+1)(1+x)B.(21a+b)(b-21a) C.(-a+b)(a-b) D.(x 2-y)(x+y 2)(2)计算(0.7x+0.2a)(-0.2a+0.7x),结果等于( )A.0.7x 2-0.2a 2B.0.49x 2-0.4a 2C.0.49x 2-0.14ax-0.04a 2D.0.49x 2-0.04a 2(3)用平方差公式计算(x-1)(x+1)(x 2+1)的结果正确的是( )A.x 4-1B.x 4+1C.(x-1)4D.(x+1)4(4)在下列各式中,运算结果是x 2-36y 2的是( )A.(-6y+x)(-6y-x)B.(-6y+x)(6y-x)C.(x+4y)(x-9y)D.(-6y-x)(6y-x)4.用简便方法计算(1)132×128 (2)743×8415.计算(1)(a+2)(a 4+16)(a 2+4)(a-2) (2)(-65x-0.7y)( 65x-0.7y) (3)(3x m +2y n +4)(3x m +2y n -4)(4)(a+b-c)(a-b+c)-(a-b-c)(a+b+c)(5)(x 3+x 2+x+1)(x 3-x 2+x-1)-(x 3+x 2+x+2)(x 3-x 2+x-2)【能力素质提高】1.若S =12-22+32-42+……+992-1002+1012,则S 被103除得到的余数是2.若A =(2+1)(22+1)(24+1)(28+1)……(264+1),则A -1996的末位数字是( )A.0B.1C.7D.93.计算:(3m 2+5)(-3m 2+5)-m 2(7m+8)(7m-8)-(8m)24.解方程(2x+1)(2x-1)+3(x+2)(x-2)=(7x+1)·(x-1).5.(a 2+ab+b 2)(a 2-ab+b 2)(a-b)(a+b),其中a=2,b=-1.【渗透拓展创新】已知:(-4x+3y)(-3y-4x)与多项式M 的差是16x 2+27y 2-5xy ,求M.【中考真题演练】 (513x 3-617y 2)(-513x 3 -617y 2)参考答案【课内四基达标】1.(1)y,x (2)81+x 12 (3)(a+2b)2m+2-94(2a -b)2n (4)21x 2-94y 2 (5)3 2.(1)× (2)× (3)× (4)×3.(1)B (2)D (3)A (4)D4.(1)16896 (2)63615 5.(1)a 8-256 (2)0.49y 2-3625x 2 (3)9x 2m +12x m y n +4y 2-16 (4)4bc (5)2x 2+3【能力素质提高】1.提示S =1+(32-22)+(52-42)+…+(992-982)+(1012-1002)=1+(2+3)+(4+5)+…+(98+99)+(100+101)=2102101 =5151=103×50+1 2.D 3.-58m 4+25 4.x =2 5.63;提示:原式=a 6-b 6【渗透拓展创新】5xy-36y 2【中考真题演练】36289y 4-25169x 6。
平方差公式练习题
平方差公式平方差公式---------------【题型一】利用平方差公式计算1. 位置变化:(1)()()x x 2525+-+(2)()()ab x x ab -+2. 符号变化:(3)()()11--+-x x(4)⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-m n n m 321.01.0323.系数变化:(5)()()n m n m 3232-+(6)⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛--b a b a 2132134.指数变化:(7)()()222233x y y x ++-(8)()()22225252b a b a --+-5.增项变化(9)()()z y x z y x ++-+- (10)()()z y x z y x -+++-(11)()()1212+--+y x y x (12)()()939322+++-x x x x6.增因式变化(13)()()()1112+-+x x x (14)⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-2141212x x x【题型二】运用平方差公式进行一些数的简便运算例7.用平方差公式计算.(15)397403⨯ (16)41304329⨯ (17)1000110199⨯⨯(18)2008200620072⨯-(19) 2481511111(1)(1)(1)(1)22222+++++【题型三】平方差公式的综合运用1.计算:(1)))(()2)(2(222x y y x y x y x x +-++-- (2)()()()()111142+-++-x x x x【题型四】利用平方差公式进行化简求值与解方程1.化简求值:())32)(32()23(32a b a b b a a b +---+,其中2,1=-=b a .2.解方程:()()2313154322365=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛---+-++x x x x x【题型五】逆用平方差公式1已知02,622=-+=-y x y x ,求5--y x 的值.【六创新题】1.观察下列算式:,,483279,382457,281635,188132222222 ⨯==-⨯==-⨯==-⨯==- 根据上式的特点,你能发现什么规律?请你用代数式将其表达出来,并说明该规律的正确性。
七年级平方差公式和完全平方公式计算题
七年级平方差公式和完全平方公式计算题在七年级的数学学习中,平方差公式和完全平方公式那可真是两道“拦路虎”,让不少同学感到头疼。
不过别担心,咱们一起来好好捋一捋这两个公式的计算题,保准能把它们拿下!先来说说平方差公式,(a+b)(a - b)= a² - b²。
这公式看起来简单,可真要用起来,还得费点心思。
比如说这道题:(3x + 2)(3x - 2),咱们就可以直接套平方差公式,把 3x 看作 a ,2 看作 b ,那答案不就出来啦,是 9x² - 4 。
再看这道:(2m + 5n)(2m - 5n),同样的道理,2m 当成 a ,5n 当成 b ,结果就是 4m² - 25n²。
有一次,我在课堂上给同学们出了一道平方差公式的计算题,大部分同学都能很快地做出来,可有个小同学却眉头紧锁,怎么都算不出来。
我走过去一看,发现他把公式记错了,把(a + b)(a - b)算成了a² + b²。
我就耐心地给他重新讲解了一遍公式,还举了好几个例子,直到他恍然大悟,脸上露出了开心的笑容。
完全平方公式也有它的门道,(a + b)² = a² + 2ab + b²,(a - b)²= a² - 2ab + b²。
像计算(x + 3)²,那就是 x² + 6x + 9 。
要是(2y - 5)²,那就是4y² - 20y + 25 。
还记得有一回,我布置了一道完全平方公式的作业题,让同学们回家完成。
第二天收上来批改的时候,发现有个同学的步骤写得乱七八糟,我都快被他绕晕了。
我把他叫到办公室,一点点给他指出问题所在,告诉他要按照公式一步一步来,不能自己瞎琢磨。
经过我的指导,他终于掌握了方法,后来的作业做得可好了。
咱们来做几道综合一点的题目。
比如(3x + 2y)² - (3x - 2y)²,这就得先分别用完全平方公式展开,再用平方差公式进行化简。
平方差公式专题练习50题有答案
平方差公式专项练习50题(有答案)知识点:(a+b)(a-b)=a2-b2两数和与这两数差的积,等于它们的平方差特点:具有完全相同的两项具有互为相反数的两项使用注意的问题:1、是否符合平方差公式使用的特点2、判断公式中的“a”和“b”是一个数还是一个代数式3、对“式”平方时要把全部平方,切忌出现漏乘系数的错误,如(a+2b)(a-2b)不要计算成a2-2b24、最好先把能用平方差的式子变形为(a+b)(a-b)的形式,再利用公式进行计算。
专项练习:1.9.8×10.22.(x-y+z)(x+y+z)3.(12x+3)2-(12x-3)24.(2a-3b)(2a+3b)5.(-p2+q)(-p2-q)6.(-1+3x)(-1-3x)7.(x+3) (x2+9) (x-3)8.(x+2y-1)(x+1-2y)9.(x-4)(4+x )10.(a+b+1)(a+b-1)11.(8m+6n )(8m-6n )12. (4a -3b )(-4a -3b )13. (a+b)(a-b )(a ²+b ²)14..15..16..17..,则18. 1.01×0.9919.20.21.22.23.23.24.25.26.27.28.29.30.(2a-b)(2a+b)(4a2+b2)=(4a2-b2)(4a2+b2)31.(x+y-z)(x-y+z)-(x+y+z)(x-y-z).32. 2023×191333.(a+2)(a2+4)(a4+16)(a-2).34.(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);35.(3+1)(32+1)(34+1)…(32008+1)-4016 3236. 2009×2007-20082.37.22007200720082006-⨯.38.22007 200820061⨯+.39.解不等式(3x-4)2>(-4+3x)(3x+4).40.x(x+2)+(2x+1)(2x-1)=5(x2+3),41.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?42.先化简,再求值,其中43.解方程:.44.计算:45.求值:46.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.47(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.48.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,•将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1所示,然后拼成一个平行四边形,如图2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.49.你能求出的值吗?50.观察下列各式:根据前面的规律,你能求出的值吗?平方差公式50题专项练习答案: 1.9.8×10.2=(10-0.2)(10+0.2)=10-0.2=100-0.04=99.96.2.(x-y+z )(x+y+z )=x 2+z 2-y 2+2xz3.(12x+3)2-(12x -3)2=(12x+3+12x -3)[12x+3-(12x -3)]=x ·6=6x .4.(2a-3b )(2a+3b )= 4a 2-9b 2;5.(-p 2+q )(-p 2-q )=(-p 2)2-q 2=p 4-q 26.(-1+3x )(-1-3x )=1-9x ²7.(x+3) (x 2+9) (x-3) =x 4-818.(x+2y-1)(x+1-2y)= x ²-4y ²+4y-19.(x-4)(4+x )=x ²-1610.(a+b+1)(a+b-1)=(a+b )²-1=a ²+2ab+b ²-111.(8m+6n )(8m-6n )=64m ²-36n ²12. (4a -3b )(-4a -3b )=13. (a+b)(a-b )(a ²+b ²)=.14.. 15.. 答: 16.. 答: 17..,则18.1.01×0.99=0.9999 19.= 20.= 21.=22.= 23. =8096 23. =24. =125. =26. =27. =28. =29. =.30.(2a-b)(2a+b)(4a2+b2)=(4a2-b2)(4a2+b2)=(4a2)2-(b2)2=16a4-b4.31.(x+y-z)(x-y+z)-(x+y+z)(x-y-z).=[x+(y-z)][x-(y-z)]-[x+(y+z)][x-(y+z)]=x2-(y-z)2-[x2-(y+z)2]=x2-(y-z)2-x2+(y+z)2=(y+z)2-(y-z)2=(y+z+y-z)[y+z-(y-z)]=2y·2z=4yz.32. 2023×1913=(20+23)×(20-23)=202-(23)2=400-49=39959.33.(a+2)(a2+4)(a4+16)(a-2)=(a-2)(a+2)(a2+4)·(a4+16)=(a2-4)(a2+4)(a4+16)=(a4-16)(a4+16)=a8-162=a8-256.34. 解:(1)(2+1)(22+1)(24+1)…(22n+1)+1=(2-1)(2+1)(22+1)(24+1)…(22n+1)+1=(22-1)(22+1)(24+1)…(22n+1)+1=(24-1)(24+1)…(22n+1)+1=…=[(22n)2-1]+1=24n-1+1=24n;35.(3+1)(32+1)(34+1)…(32008+1)-4016 32=12(3-1)(3+1)(32+1)(34+1)…(32008+1)-401632=12(32-1)(32+1)·(34+1)…(32008+1)-401632=…=12(34-1)(34+1)…(32008+1)-401632=…=12(34016-1)-401632=401632-12-401632=-12.36. 2009×2007-20082=(2008+1)×(2008-1)-20082=20082-1-20082=-1.37.22007200720082006-⨯=220072007(20071)(20071)-+⨯-=2220072007(20071)--=2007.38.22007200820061⨯+=22007(20071)(20071)1+⨯-+=222007200711-+=2220072007=1.39.解不等式(3x-4)2>(-4+3x)(3x+4).(3x-4)2>(-4+3x)(3x+4),(3x)2+2×3x·(-4)+(-4)2>(3x)2-42,9x2-24x+16>9x2-16,-24x>-32.x<43.40.x(x+2)+(2x+1)(2x-1)=5(x2+3),x2+2x+4x2-1=5x2+15,x2+4x2-5x2+2x=15+1,2x=16,x=8.41.解:(2a+3)(2a-3)=(2a)2-32=4a2-9(平方米).42. 原式=43.解方程:.百度文库- 让每个人平等地提升自我44.计算: =5050.45.求值: =46.(1)1-x n+1(2)①-63;②2n+1-2;③x100-1(3)①a2-b2②a3-b3③a4-b4点拨:(1),(3)题根据观察到的规律正确填写即可;(2)题①中利用观察到的规律可知,原式=1-26=1-64=-63;②中原式=2(1+2+22+…+2n-1)=-2(1-2)(1+2+22+…+2n-1)=-2(1-2n)=-2+2·2n=2n+1-2;③中原式=-(1-x)(1+x+x2+…+x97+x98+x99)=-(1-x100)=x100-1.47.解:(m+2n)(m-2n)=m2-4n2.点拨:本题答案不唯一,只要符合要求即可.48.解:题图1中的阴影部分(四个等腰梯形)的面积为a2-b2,题图2•中的阴影部分(平行四边形)的底为(a+b),这个底上的高为(a-b),故它的面积为(a+b)(a-b),•由此可验证:(a+b)(a-b)=a2-b 2.图1 图249.解; 提示:可以乘以再除以.50.解:=11。
湘教版数学七年级下册_《平方差公式》拓展训练
《平方差公式》拓展训练一、选择题1.如图,边长为a的大正方形剪去一个边长为b的小正方形后,将剩余部分通过割补拼成新的图形.根据图形能验证的等式为()A.a2﹣b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+2ab+b22.下列各式:①(﹣a﹣2b)(a+2b);②(a﹣2b)(﹣a+2b);③(a﹣2b)(2b+a);④(a﹣2b)(﹣a﹣2b),其中能用平方差公式计算的是()A.①②B.①③C.②③D.③④3.若a2﹣b2=,a+b=,则a﹣b的值为()A.﹣B.C.1D.24.下列各式计算正确的是()A.(x+2)(x﹣5)=x2﹣2x﹣3B.(x+3)(x﹣)=x2+x﹣1C.(x﹣)(x+)=x2﹣x﹣D.(x﹣2)(﹣x﹣2)=x2﹣45.如图1,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是()A.(a+b)(a﹣b)=a2﹣b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a(a﹣b)=a2﹣ab6.计算(1﹣)(1﹣)(1﹣)…(1﹣)=()A.B.C.D.7.化简(a﹣1)(a+1)(a2+1)﹣(a4﹣1)的结果为()A.0B.2C.﹣2D.2a48.若a2﹣4b2=12,a﹣2b=2,则a b的值为()A.4B.﹣4C.﹣D.9.下列计算正确是()A.(x+2)(2﹣x)=x2﹣4B.(2x+y2)(2x﹣y2)=4x2﹣y4C.(3x2+1)(3x2﹣1)=9x2﹣1D.(x+2)(x﹣3)=x2﹣610.如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”如(8=32﹣12,16=52﹣32,即8,16均为“和谐数”),在不超过2017的正整数中,所有的“和谐数”之和为()A.255054B.255064C.250554D.255024二、填空题11.计算:2008×2010﹣20092=.12.化简(2b+3a)(3a﹣2b)﹣(2b﹣3a)(2b+3a),当a=﹣1,b=2时,原式的值是.13.已知a为实数,若有整数b,m,满足(a+b)(a﹣b)=m2,则称a是b,m 的弦数.若a<15且a为整数,请写出一组a,b,m,使得a是b,m的弦数:.14.阅读材料后解决问题:计算:(2+1)(22+1)(24+1)(28+1).经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:(2+1)(22+1)(24+1)(28+1)=(2﹣1)(2+1)(22+1)(24+1)(28+1)=(22﹣1)(22+1)(24+1)(28+1)=(24﹣1)(24+1)(28+1)=(28﹣1)(28+1)=216﹣1请你根据以上解决问题的方法,试着解决:(3+1)(32+1)(34+1)(38+1)…(364+1)=15.先阅读后计算:为了计算4×(5+1)×(52+1)的值,小黄把4改写成5﹣1后,连续运用平方差公式得:4×(5+1)×(52+1)=(5﹣1)×(5+1)×(52+1)=(52﹣1)×(52+1)=252﹣1=624.请借鉴小黄的方法计算:(1+)××××××,结果是.三、解答题16.阅读下文件,寻找规律:已知x≠1,计算:(1﹣x)(1+x)=1﹣x2(1﹣x)(1+x+x2)=1﹣x3(1﹣x)(1+x+x2+x3)=1﹣x4(1﹣x)(1+x+x2+x3+x4)=1﹣x5…(1)观察上式猜想:(1﹣x)(1+x+x2+x3+…+x n)=.(2)根据你的猜想计算:①1+2+22+23+24+...+22018②214+215+ (2100)17.如图1所示,边长为a的正方形中有一个边长为b的小正方形,如图2中阴影部分剪裁后拼成的一个长方形.(1)设如图1中阴影部分面积为S1,如图2中阴影部分面积为S2,请直接用含a,b的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+118.(1)计算并观察下列各式:第1个:(a﹣b)(a+b)=;第2个:(a﹣b)(a2+ab+b2)=;第3个:(a﹣b)(a3+a2b+ab2+b3)=;……这些等式反映出多项式乘法的某种运算规律.(2)猜想:若n为大于1的正整数,则(a﹣b)(a n﹣1+a n﹣2b+a n﹣3b2+……+a2b n﹣3+ab n ﹣2+b n﹣1)=;(3)利用(2)的猜想计算:2n﹣1+2n﹣2+2n﹣3+……+23+22+1=.(4)拓广与应用:3n﹣1+3n﹣2+3n﹣3+……+33+32+1=.19.乘法公式的探究与应用:(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是(写成两数平方差的形式)(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是,宽是,面积是(写成多项式乘法的形式).(3)比较甲乙两图阴影部分的面积,可以得到公式(两个)公式1:公式2:(4)运用你所得到的公式计算:10.3×9.7.20.请先观察下列算式,再填空:32﹣12=8×1,52﹣32=8×2.①72﹣52=8×;②92﹣()2=8×4;③()2﹣92=8×5;④132﹣()2=8×;…(1)通过观察归纳,你知道上述规律的一般形式吗?请把你的猜想写出来.(2)你能运用本章所学的平方差公式来说明你的猜想的正确性吗?《平方差公式》拓展训练参考答案与试题解析一、选择题1.如图,边长为a的大正方形剪去一个边长为b的小正方形后,将剩余部分通过割补拼成新的图形.根据图形能验证的等式为()A.a2﹣b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+2ab+b2【分析】边长为a的大正方形剪去一个边长为b的小正方形后的面积=a2﹣b2,新的图形面积等于(a+b)(a﹣b),由于两图中阴影部分面积相等,即可得到结论.【解答】解:图中阴影部分的面积等于两个正方形的面积之差,即为a2﹣b2;剩余部分通过割补拼成的平行四边形的面积为(a+b)(a﹣b),∵前后两个图形中阴影部分的面积相等,∴a2﹣b2=(a+b)(a﹣b).故选:B.【点评】本题考查了利用几何方法验证平方差公式,解决问题的关键是根据拼接前后不同的几何图形的面积不变得到等量关系.2.下列各式:①(﹣a﹣2b)(a+2b);②(a﹣2b)(﹣a+2b);③(a﹣2b)(2b+a);④(a﹣2b)(﹣a﹣2b),其中能用平方差公式计算的是()A.①②B.①③C.②③D.③④【分析】利用平方差公式的结构特征判断即可.【解答】解:①(﹣a﹣2b)(a+2b)=﹣(a+2b)2=﹣a2﹣4ab﹣4b2;②(a﹣2b)(﹣a+2b)=﹣(a﹣2b)2=﹣a2+4ab﹣4b2;③(a﹣2b)(2b+a)=a2﹣4b2;④(a﹣2b)(﹣a﹣2b)=4b2﹣a2,故选:D.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.3.若a2﹣b2=,a+b=,则a﹣b的值为()A.﹣B.C.1D.2【分析】根据a2﹣b2=(a+b)(a﹣b)=,a+b=即可求得a﹣b的值.【解答】解:∵a2﹣b2=(a+b)(a﹣b)=,a+b=,∴a﹣b=÷=,故选:B.【点评】本题主要考查平方差公式,解题的关键是掌握平方差公式的结构特点.4.下列各式计算正确的是()A.(x+2)(x﹣5)=x2﹣2x﹣3B.(x+3)(x﹣)=x2+x﹣1C.(x﹣)(x+)=x2﹣x﹣D.(x﹣2)(﹣x﹣2)=x2﹣4【分析】利用多项式乘多项式法则,以及平方差公式判断即可.【解答】解:A、原式=x2﹣3x﹣10,不符合题意;B、原式=x2+x﹣1,不符合题意;C、原式=x2﹣x﹣,符合题意;D、原式=4﹣x2,不符合题意,故选:C.【点评】此题考查了平方差公式,以及多项式乘多项式,熟练掌握运算法则及公式是解本题的关键.5.如图1,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是()A.(a+b)(a﹣b)=a2﹣b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a(a﹣b)=a2﹣ab【分析】分别计算出两个图形中阴影部分的面积即可.【解答】解:图1阴影部分面积:a2﹣b2,图2阴影部分面积:(a+b)(a﹣b),由此验证了等式(a+b)(a﹣b)=a2﹣b2,故选:A.【点评】此题主要考查了平方差公式的几何背景,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.6.计算(1﹣)(1﹣)(1﹣)…(1﹣)=()A.B.C.D.【分析】直接利用平方差公式将原式变形进而计算得出答案.【解答】解:原式(1+)(1﹣)(1+)(1﹣)(1+)(1﹣)…(1+)(1﹣)=××××××…××=.故选:C.【点评】此题主要考查了平方差公式,正确应用公式是解题关键.7.化简(a﹣1)(a+1)(a2+1)﹣(a4﹣1)的结果为()A.0B.2C.﹣2D.2a4【分析】先把前面两项利用平方差公式计算得原式=(a2﹣1)(a2+1)﹣a4+1,然后再利用平方差公式展开,最后合并即可.【解答】解:原式=(a2﹣1)(a2+1)﹣a4+1=a4﹣1﹣a4+1=0.【点评】本题考查了平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差,即(a+b)(a﹣b)=a2﹣b2.8.若a2﹣4b2=12,a﹣2b=2,则a b的值为()A.4B.﹣4C.﹣D.【分析】已知第一个等式左边利用平方差公式化简,将第二个等式代入计算即可求出所求的值.【解答】解:∵a2﹣4b2=(a+2b)(a﹣2b)=12,a﹣2b=2①,∴a+2b=6②,联立①②,解得:a=4,b=1,则原式=4,故选:A.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.9.下列计算正确是()A.(x+2)(2﹣x)=x2﹣4B.(2x+y2)(2x﹣y2)=4x2﹣y4C.(3x2+1)(3x2﹣1)=9x2﹣1D.(x+2)(x﹣3)=x2﹣6【分析】根据平方差公式和多项式乘以多项式法则求出每个式子的值,再判断即可.【解答】解:A、结果是4﹣x2,故本选项不符合题意;B、结果是4x2﹣y4,故本选项符合题意;C、结果是9x4﹣1,故本选项不符合题意;D、结果是x2﹣x﹣6,故本选项不符合题意;故选:B.【点评】本题考查了平方差公式和多项式乘以多项式法则,能正确求出每个式子的值是解此题的关键.10.如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”如(8=32﹣12,16=52﹣32,即8,16均为“和谐数”),在不超过2017的正整数中,所有的“和谐数”之和为()A.255054B.255064C.250554D.255024【分析】由(2n+1)2﹣(2n﹣1)2=8n≤2017,解得n≤252,可得在不超过2017的正整数中,“和谐数”共有252个,依此列式计算即可求解.【解答】解:由(2n+1)2﹣(2n﹣1)2=8n≤2017,解得n≤252,则在不超过2017的正整数中,所有的“和谐数”之和为32﹣12+52﹣32+ (5052)5032=5052﹣12=255024.故选:D.【点评】此题考查了平方差公式,弄清题中“和谐数”的定义是解本题的关键.二、填空题11.计算:2008×2010﹣20092=﹣1.【分析】先变形,再根据平方差公式进行计算,最后求出即可.【解答】解:原式=(2009﹣1)×(2009+1)﹣20092=20092﹣1﹣20092=﹣1,故答案为:﹣1.【点评】本题考查了平方差公式,能灵活运用平方差公式进行计算是解此题的关键.12.化简(2b+3a)(3a﹣2b)﹣(2b﹣3a)(2b+3a),当a=﹣1,b=2时,原式的值是﹣14.【分析】先利用平方差公式化简计算,合并同类项后再代入数据计算即可.【解答】解:(2b+3a)(3a﹣2b)﹣(2b﹣3a)(2b+3a),=(3a)2﹣(2b)2﹣(2b)2+(3a)2,=2×9a2﹣2×4b2,=18a2﹣8b2.当a=﹣1,b=2时,原式=18×(﹣1)2﹣8×22=﹣14.【点评】本题考查了平方差公式,熟练掌握公式并灵活运用是解题的关键,计算时,要注意符号的处理.13.已知a为实数,若有整数b,m,满足(a+b)(a﹣b)=m2,则称a是b,m 的弦数.若a<15且a为整数,请写出一组a,b,m,使得a是b,m的弦数:5,4,3.【分析】根据题中弦数的定义判断即可.【解答】解:∵(5+4)×(5﹣4)=9×1=32,∴5是4,3的弦数,故答案为:5,4,3【点评】此题考查了平方差公式,弄清题中的新定义是解本题的关键.14.阅读材料后解决问题:计算:(2+1)(22+1)(24+1)(28+1).经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:(2+1)(22+1)(24+1)(28+1)=(2﹣1)(2+1)(22+1)(24+1)(28+1)=(22﹣1)(22+1)(24+1)(28+1)=(24﹣1)(24+1)(28+1)=(28﹣1)(28+1)=216﹣1请你根据以上解决问题的方法,试着解决:(3+1)(32+1)(34+1)(38+1)…(364+1)=【分析】直接利用平方差公式将原式变形进而得出答案.【解答】解:(3+1)(32+1)(34+1)(38+1)…(364+1)=(3﹣1)(3+1)(32+1)(34+1)(38+1)…(364+1)=(32﹣1)(32+1)(34+1)(38+1)…(364+1)=.故答案为:.【点评】此题主要考查了平方差公式,正确将原式变形是解题关键.15.先阅读后计算:为了计算4×(5+1)×(52+1)的值,小黄把4改写成5﹣1后,连续运用平方差公式得:4×(5+1)×(52+1)=(5﹣1)×(5+1)×(52+1)=(52﹣1)×(52+1)=252﹣1=624.请借鉴小黄的方法计算:(1+)××××××,结果是2﹣.【分析】在前面乘一个2×(1﹣),然后再连续利用平方差公式进行计算即可.【解答】解:原式=2×(1﹣)×(1+)××××××=2×(1﹣)××××××=2×(1﹣)×××××…=2×(1﹣)×(1+)=2×(1﹣)=2﹣故答案为:2﹣.【点评】此题主要考查了平方差公式的运用,正确应用公式是解题关键.对形如两数和与这两数差相乘的算式,都可以运用这个公式计算,且会比用多项式乘以多项式法则简便.三、解答题16.阅读下文件,寻找规律:已知x≠1,计算:(1﹣x)(1+x)=1﹣x2(1﹣x)(1+x+x2)=1﹣x3(1﹣x)(1+x+x2+x3)=1﹣x4(1﹣x)(1+x+x2+x3+x4)=1﹣x5…(1)观察上式猜想:(1﹣x)(1+x+x2+x3+…+x n)=.1﹣x n+1(2)根据你的猜想计算:①1+2+22+23+24+...+22018②214+215+ (2100)【分析】(1)依据变化规律,即可得到(1﹣x)(1+x+x2+x3+…+x n)=1﹣x n+1.(2)①依据(1)中的规律,即可得到1+2+22+23+24+…+22018的值;②将214+215+…+2100写成(1+2+22+23+24+…+2100)﹣(1+2+22+23+24+…+213),即可运用①中的方法得到结果.【解答】解:(1)由题可得,(1﹣x)(1+x+x2+x3+…+x n)=1﹣x n+1.故答案为:1﹣x n+1;(2)①1+2+22+23+24+ (22018)=﹣(1﹣2)(1+2+22+23+24+ (22018)=﹣(1﹣22019)=22019﹣1;②214+215+…+2100=(1+2+22+23+24+...+2100)﹣(1+2+22+23+24+ (213)=﹣(1﹣2)(1+2+22+23+24+...+2100)+(1﹣2)(1+2+22+23+24+ (213)=﹣(1﹣2101)+(1﹣214)=2101﹣214.【点评】此题考查了平方差公式,认真观察、仔细思考,善用联想,弄清题中的规律是解决这类问题的方法.17.如图1所示,边长为a的正方形中有一个边长为b的小正方形,如图2中阴影部分剪裁后拼成的一个长方形.(1)设如图1中阴影部分面积为S1,如图2中阴影部分面积为S2,请直接用含a,b的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1【分析】(1)根据两个图形的面积相等,即可写出公式;(2)根据面积相等可得(a+b)(a﹣b)=a2﹣b2;(3)从左到右依次利用平方差公式即可求解.【解答】解:(1)∵图1中阴影部分面积为S1,图2中阴影部分面积为S2,∴S1=a2﹣b2,S2=(a+b)(a﹣b);(2)依据阴影部分的面积相等,可得(a+b)(a﹣b)=a2﹣b2;(3)原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1=(22﹣1)(22+1)(24+1)(28+1)+1=(24﹣1)(24+1)(28+1)+1=(28﹣1)(28+1)+1=(216﹣1)+1=216.【点评】本题考查了平方差的几何背景以及平方差公式的应用,正确理解平方差公式的结构是关键.18.(1)计算并观察下列各式:第1个:(a﹣b)(a+b)=a2﹣b2;第2个:(a﹣b)(a2+ab+b2)=a3﹣b3;第3个:(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4;……这些等式反映出多项式乘法的某种运算规律.(2)猜想:若n为大于1的正整数,则(a﹣b)(a n﹣1+a n﹣2b+a n﹣3b2+……+a2b n﹣3+ab n﹣2+b n﹣1)=a n﹣b n;(3)利用(2)的猜想计算:2n﹣1+2n﹣2+2n﹣3+……+23+22+1=2n﹣1.(4)拓广与应用:3n﹣1+3n﹣2+3n﹣3+……+33+32+1=.【分析】(1)根据多项式乘多项式的乘法计算可得;(2)利用(1)中已知等式得出该等式的结果为a、b两数n次幂的差;(3)将原式变形为2n﹣1+2n﹣2+2n﹣3+……+23+22+1═(2﹣1)(2n﹣1+2n﹣2+2n﹣3+……+23+22+1),再利用所得规律计算可得;(4)将原式变形为3n﹣1+3n﹣2+3n﹣3+……+33+32+1=×(3﹣1)(3n﹣1+3n﹣2+3n﹣3+……+33+32+1),再利用所得规律计算可得.【解答】解:(1)第1个:(a﹣b)(a+b)=a2﹣b2;第2个:(a﹣b)(a2+ab+b2)=a3﹣b3;第3个:(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4;故答案为:a2﹣b2、a3﹣b3、a4﹣b4;(2)若n为大于1的正整数,则(a﹣b)(a n﹣1+a n﹣2b+a n﹣3b2+……+a2b n﹣3+ab n﹣2+b n ﹣1)=a n﹣b n,故答案为:a n﹣b n;(3)2n﹣1+2n﹣2+2n﹣3+……+23+22+1==(2﹣1)(2n﹣1+2n﹣2+2n﹣3+……+23+22+1)=2n﹣1n=2n﹣1,故答案为:2n﹣1.(4)3n﹣1+3n﹣2+3n﹣3+……+33+32+1=×(3﹣1)(3n﹣1+3n﹣2+3n﹣3+……+33+32+1)=×(3n﹣1n)=,故答案为:.【点评】本题考查了多项式乘以多项式,观察等式发现规律是解题关键.19.乘法公式的探究与应用:(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是a2﹣b2(写成两数平方差的形式)(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是a+b,宽是a﹣b,面积是(a+b)(a﹣b)(写成多项式乘法的形式).(3)比较甲乙两图阴影部分的面积,可以得到公式(两个)公式1:(a+b)(a﹣b)=a2﹣b2公式2:a2﹣b2=(a+b)(a﹣b)(4)运用你所得到的公式计算:10.3×9.7.【分析】(1)中的面积=大正方形的面积﹣小正方形的面积=a2﹣b2;(2)中的长方形,宽为a﹣b,长为a+b,面积=长×宽=(a+b)(a﹣b);(3)中的答案可以由(1)、(2)得到(a+b)(a﹣b)=a2﹣b2;反过来也成立;(4)把10.3×9.7写成(10+0.3)(10﹣0.3),利用公式求解即可.【解答】解:(1)阴影部分的面积=大正方形的面积﹣小正方形的面积=a2﹣b2;(2)长方形的宽为a﹣b,长为a+b,面积=长×宽=(a+b)(a﹣b);故答案为:a+b,a﹣b,(a+b)(a﹣b);(3)由(1)、(2)得到,公式1:(a+b)(a﹣b)=a2﹣b2;公式2:a2﹣b2=(a+b)(a﹣b)故答案为:(a+b)(a﹣b),a2﹣b2=(a+b)(a﹣b);(4)10.3×9.7=(10+0.3)(10﹣0.3)=102﹣0.32=100﹣0.09=99.91.【点评】本题考查了平方差公式的几何表示,利用不同的方法表示图形的面积是解题的关键.20.请先观察下列算式,再填空:32﹣12=8×1,52﹣32=8×2.①72﹣52=8×3;②92﹣(7)2=8×4;③(11)2﹣92=8×5;④132﹣(11)2=8×6;…(1)通过观察归纳,你知道上述规律的一般形式吗?请把你的猜想写出来.(2)你能运用本章所学的平方差公式来说明你的猜想的正确性吗?【分析】(1)从上式中可以发现等式左边:两数的平方差,前一个数比后一个数大2;等式右边:前一个因数是8,后一个是等式左边两数的和除4,所以可写成:(2n+1)2﹣(2n﹣1)2=8n;(2)运用平方差公式计算此式,证明它成立.【解答】解:①3;②7;③11;④11,6.(1)(2n+1)2﹣(2n﹣1)2=8n;(2)原式可变为(2n+1+2n﹣1)(2n+1﹣2n+1)=8n.【点评】(1)题的关键是找出各数之间的关系.(2)题的关键是利用平方差公式计算此式,证明它成立.。
北师大版七年级下册第一章平方差公式和完全平方公式复习和拓展练习课件
(A) 3
(B)-6
(C) 6
(D)6或-6
(3)下列计算正确的是( C )
A.(x-2y)(2y-x) =4y2-x2 B.(-x-1)(x+1)=x2-1
C.(m-n)(-m-n) =-m2+n2
D.(x2+2y)(x-2y)=x3-4y2
5、化简求值:
(a+2b)2-(a+2b)(a-2b),其中a=-2,b=
(4)(2-y)2
(6) (2x 3)2
ห้องสมุดไป่ตู้
(7) (2x + y)2 (9)1032
(8) (a -2b)2
2.利用公式进行计算:
(1)(x 2 y)(x 2 y) (2)(a 2b)(2b a) (3)(2a 3b)2 (4)(2x y)2
3.在横线上添上适当的代数式,使等 式成立
1 2
知识拓展
能力提高
5. x
1 x
m, 则x2
1 x2
____;
x
1 x
m, 则x2
1 x2
__;
6.
x
2
y
2
x
2
y
2
_____;
7.已知a2
3a
1
0,
求:a
1 a
,
a2
1 a2
,
(a
1 a
)2
.
拓展与迁移 1、若不论x取何值,多项式 x3-2x2- 4x-1
与 (x+1)(x2+mx+n)都相等, 求m、n的值。
(2) (x-6)2=x2+_(-_1_2_x_) +36
(3)x2-4x+__4__=(x-__2__)2
初一平方差计算题50道
初一平方差计算题50道一、基础型(20道)1. 计算:(a + 3)(a - 3)- 解析:根据平方差公式(x + y)(x - y)=x^2-y^2,这里x = a,y = 3,所以(a + 3)(a - 3)=a^2-3^2=a^2-9。
2. 计算:(2 + b)(2 - b)- 解析:根据平方差公式,x = 2,y=b,则(2 + b)(2 - b)=2^2-b^2=4 - b^2。
3. 计算:(5x+1)(5x - 1)- 解析:令x = 5x,y = 1,根据平方差公式可得(5x+1)(5x - 1)=(5x)^2-1^2=25x^2-1。
4. 计算:(3m - 2n)(3m + 2n)- 解析:这里x = 3m,y = 2n,根据平方差公式(3m - 2n)(3m + 2n)=(3m)^2-(2n)^2=9m^2-4n^2。
5. 计算:(x+2y)(x - 2y)- 解析:设x=x,y = 2y,由平方差公式得(x + 2y)(x - 2y)=x^2-(2y)^2=x^2-4y^2。
6. 计算:(4a+3b)(4a - 3b)- 解析:令x = 4a,y = 3b,根据平方差公式(4a+3b)(4a - 3b)=(4a)^2-(3b)^2=16a^2-9b^2。
7. 计算:(-x + 5)(-x - 5)- 解析:这里x=-x,y = 5,根据平方差公式(-x + 5)(-x - 5)=(-x)^2-5^2=x^2-25。
8. 计算:(-2m+3n)(-2m - 3n)- 解析:设x=-2m,y = 3n,由平方差公式得(-2m + 3n)(-2m - 3n)=(-2m)^2-(3n)^2=4m^2-9n^2。
9. 计算:((1)/(2)x+(1)/(3)y)((1)/(2)x-(1)/(3)y)- 解析:令x=(1)/(2)x,y=(1)/(3)y,根据平方差公式((1)/(2)x+(1)/(3)y)((1)/(2)x-(1)/(3)y)=((1)/(2)x)^2-((1)/(3)y)^2=(1)/(4)x^2-(1)/(9)y^2。
平方差公式、完全平方公式综合练习题
平方差公式、完全平方公式综合练习题在代数学的学习中,平方差公式和完全平方公式是我们经常会用到的重要公式。
它们可以帮助我们简化复杂的计算,提高效率。
本文将为大家提供一些综合练习题,以帮助大家熟练掌握平方差公式和完全平方公式的应用。
练习题1:计算以下表达式的值:(1) $(3x + 4)(3x - 4)$;(2) $(5a + 2b)(5a - 2b)$;(3) $(2x + 7y)(2x - 7y)$。
解答:(1) 首先,我们可以利用平方差公式进行计算:$(3x + 4)(3x - 4) = (3x)^2 - 4^2 = 9x^2 - 16$。
(2) 同样地,利用平方差公式进行计算:$(5a + 2b)(5a - 2b) = (5a)^2 - (2b)^2 = 25a^2 - 4b^2$。
(3) 再次利用平方差公式进行计算:$(2x + 7y)(2x - 7y) = (2x)^2 - (7y)^2 = 4x^2 - 49y^2$。
练习题2:计算以下表达式的值:(1) $9x^2 - 16$;(2) $25a^2 - 4b^2$;(3) $4x^2 - 49y^2$。
解答:(1) 这个表达式可以看作是平方差公式的逆运算。
通过观察可得:$9x^2 - 16 = (3x)^2 - 4^2 = (3x + 4)(3x - 4)$。
(2) 类似地,我们可以将其写成平方差公式的形式:$25a^2 - 4b^2 = (5a)^2 - (2b)^2 = (5a + 2b)(5a - 2b)$。
(3) 同样地,利用平方差公式的逆运算,我们可以得到:$4x^2 - 49y^2 = (2x)^2 - (7y)^2 = (2x + 7y)(2x - 7y)$。
练习题3:计算以下表达式的值:(1) $(x + 2)^2$;(2) $(y - 3)^2$;(3) $(3a - b)^2$。
解答:(1) 这些表达式可以应用完全平方公式进行计算。
平方差公式练习题
平方差公式练习题公式名称:平方差公式公式描述:平方差公式是指两个数的平方之差等于这两个数的和乘以差。
数学表达式如下:(a + b)(a - b) = a^2 - b^2公式应用:平方差公式在代数中常用于解决方程、因式分解等问题。
通过利用平方差公式,可以简化计算,并找到问题的解决方法。
练习题1:1. 计算以下平方差公式的结果:a) (5 + 3)(5 - 3)b) (10 + 4)(10 - 4)c) (2 + 7)(2 - 7)解答:a) (5 + 3)(5 - 3) = 5^2 - 3^2 = 25 - 9 = 16b) (10 + 4)(10 - 4) = 10^2 - 4^2 = 100 - 16 = 84c) (2 + 7)(2 - 7) = 2^2 - 7^2 = 4 - 49 = -45练习题2:2. 利用平方差公式将以下方程进行分解:a) x^2 - 9b) 9y^2 - 4解答:a) x^2 - 9 = (x + 3)(x - 3)b) 9y^2 - 4 = (3y + 2)(3y - 2)练习题3:3. 根据给定的平方差公式,计算以下问题的结果:a) (6 + 2)(6 - 2)b) (11 + 5)(11 - 5)c) (4 + 9)(4 - 9)解答:a) (6 + 2)(6 - 2) = 6^2 - 2^2 = 36 - 4 = 32b) (11 + 5)(11 - 5) = 11^2 - 5^2 = 121 - 25 = 96c) (4 + 9)(4 - 9) = 4^2 - 9^2 = 16 - 81 = -65练习题4:4. 根据平方差公式,计算以下方程的结果:a) a^2 - 16b) 25 - b^2解答:a) a^2 - 16 = (a + 4)(a - 4)b) 25 - b^2 = (5 + b)(5 - b)练习题5:5. 利用平方差公式将以下问题进行因式分解:a) x^2 - 49b) 36 - m^2解答:a) x^2 - 49 = (x + 7)(x - 7)b) 36 - m^2 = (6 + m)(6 - m)通过以上练习题,我相信你对平方差公式的应用已经更加熟悉了。
数学:1.7.2《平方差公式》同步训练(北师大七年级下)
§1.7.2 平方差公式(二)【自主操练】1.选择题:⑴ 下列各式的计算结果,正确的是( )A .(x +4)(x -4)=x 2-8B .(3xy -1)(3xy +1)=3x 2y 2-1 C .(﹣3x +y )(3x +y )=9x 2-y 2 D .﹣(x -4)(x +4)=16-x 2⑵ 下列多项式的乘法,可以利用平方差公式计算的是( )A 、(a-nb )(nb-a )B 、(-1-a )(a+1)C 、(-m+n )(-m-n )D 、(ax+b )(a-bx )⑶(m 2-n 2)-(m-n)(m+n)等于 ( )A 、-2n 2B 、0C 、2m 2D 、2m 2-2n 2 ⑷如图2,在边长为a 的正方形中,剪去一个边长为b 的小正方形(a >b ),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a 、b 的恒等式为( )A.()2222a b a ab b -=-+B.()2222a b a ab b +=++ C.22()()a b a b a b +-=- D.2()a ab a a b +=+2.填空:⑴ ____________)9)(3)(3(2=++-x x x ;⑵___________1)12)(12(=+-+x x ;⑶4))(________2(2-=+x x ;⑷_____________)3)(3()2)(1(=+---+x x x x ;3.计算:①(3x +y )(3x -y )+2y 2 ②(2ab +5)(2ab -5)-2a 2(b 2-3) 图2③(x+2y )(x-2y )+(x+1)(x-1) ④x (x-1)-(x-31)(x+31)⑤302×298⑥1.01×0.994.化简求值:2(2)()()x y x y x y +-+-,其中1,22x y ==-.5.若x -y =4,x +y =7,则x 2-y 2= .6..若x 2-y 2=12,x +y =6,求x —y 的值.【每课一测】1.下列各式中,计算正确的是( )A.(x -2)(2+x )=x 2-2 B.(x +2)(3x -2)=3x 2-4 C.(ab -c )(ab +c )=a 2b 2-c 2 D.(-x -y )(x +y )=x 2-y 22.20022-2001×2003的计算结果是( )A .1B .-1C .2D .-23.填空:⑴(21x +31y )(31y -21x )= . ⑵(2x -3y )( )=9y 2-4x 2.⑶(-a +51)(-a -51)= 。
平方差公式和完全平方公式强化训练 变式 精品
平方差公式的变化:①位置变化,(x+y)(-y+x)=x2-y2②符号变化,(-x+y)(-x-y)=(-x)2-y2= x2-y2③指数变化,(x2+y2)(x2-y2)=x4-y4④系数变化,(2a+b)(2a-b)=4a2-b2⑤换式变化,[xy+(z+m)][xy-(z+m)]=(xy)2-(z+m)2=x2y2-(z2+2zm+m2)=x2y2-z2-2zm-m2⑥增项变化,(x-y+z)(x-y-z)=(x-y)2-z2=(x-y)(x-y)-z2=x2-2xy+y2-z2=x2-2xy+y2-z2⑦连用公式变化,(x+y)(x-y)(x2+y2)=(x2-y2)(x2+y2)=x4-y4⑧逆用公式变化,(x-y+z)2-(x+y-z)2=[(x-y+z)+(x+y-z)][(x-y+z)-(x+y-z)]=2x(-2y+2z)=-4xy+4xz填空:1、(2x-1)( )=4x2-12、(-4x+ )( -4x)=16x2-49y2第一种情况:直接运用公式练习:1.(a+3)(a-3)2..( 2a+3b)(2a-3b)4.(-x+2)(-x-2)5. (2x+12)(2x-12) 6. (a+2b)(a-2b)7. (2a+5b)(2a-5b) 8. (-2a-3b)(-2a+3b)第二种情况:运用公式使计算简便例2:计算19992-2000×19981、1998×2002 3、1.01×0.99 4、(100-13)×(99-23)1第三种情况:多次运用平方差公式例3:(2+1)(22+1)(24+1)……(22048+1)1、(a+b)(a-b)(a2+b2)2、(a+2)(a-2)(a2+4)3、(x-12)(x2+14)(x+12)4、(a+1)(a-1)(2a+1)(4a+1)(8a+1)第四种情况:需要先变形再用平方差公式1、(-2x-y)(2x-y)2、(y-x)(-x-y) 3.(-2x+y)(2x+y) 4.(4a-1)(-4a-1) 5.(b+2a)(2a-b) 6.(a+b)(-b+a)第五种情况:每个多项式含三项例4:(3x+y-2)(3x-y+2)1.(a+2b+c)(a+2b-c) 2.(a+b-3)(a-b+3) 3.x-y+z)(x+y-z)4.(m-n+p)(m-n-p) 5、(a+4b-3c)(a-4b-3c)第六种情况:平方差逆用例2222211111(1)(1)(1)(1)(1)23499100-----1、22222110099989721-+-++-完全平方公式公式变形1、a2+b2=(a+b)2 =(a-b)22、(a-b)2=(a+b)2 ; (a+b)2=(a-b)2234、(a+b)2 +(a-b )2= 4、(a+b)2 ——(a-b )2=5、(a+b+c )2= 一、计算下列各题:1、2)(y x +2、2)23(y x --3、2)313(c ab -- 5、2)2332(y x +二、利用完全平方公式计算:(1)1022 (2)1972 (3)982 (4)2032三、计算:(1)22)3(x x -+ (2)22)(y x y +- (3)()()2()x y x y x y --+-五、计算:(1))3)(3(-+++b a b a (2))2)(2(-++-y x y x(3))3)(3(+---b a b a (4)()()2323x y z x y z +-++六、拓展延伸 巩固提高例1.已知2=+b a ,1=ab ,求22b a +的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学下册 1.27平方差公式综合拓展练习
1.填空题: (1)161(____)21214
-=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-
x x x ; (2)=-⎪⎭
⎫
⎝
⎛
+
)14(212m m ________; (3)=⎪⎭⎫
⎝⎛+⎪⎭⎫ ⎝⎛-
n n d abc d abc 32513251________; (4)=⎪⎭
⎫
⎝⎛+-⎪⎭⎫ ⎝
⎛-
-m n m m n
m z y x z y x 213213________; (5)=⎪⎭
⎫
⎝⎛--⎪⎭⎫
⎝⎛+-n m n m 2121________; (6)=-+))((m
n
n
m
m
n
n
m
b a b a b a b a ________; (7)=-++)8)(8(12
2
a a ________;
(8)[
][
]
=-+3
2232
332)()()()(y x y x ________;
(9)=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+2
2321321xy xy 2
(____);
(10)=⎪⎭⎫ ⎝
⎛
+⎪⎭⎫ ⎝⎛2
2121-x x ________;
(11)=⎪⎭
⎫
⎝
⎛+-+212)12)(24(2
x x x ________; (12)4
14)(____)14(2
-=+x x ; (13)=++⎪⎭
⎫ ⎝⎛-
)14)(12(212
x x x ________; (14)1(____)1031012
-=⨯. 2.选择题: (1)若16121214-=⎪⎭
⎫
⎝⎛+-⎪⎭⎫
⎝⎛+x x x A ,则代数式A =( ).
A .⎪⎭⎫ ⎝
⎛-412
x B .4
12
+-x C .412
-
-x D .4
12
+x (2)若81))(
3)(9(42
-=++m m m ,则括号里应填入的代数式是( ).
A .3-m
B .m -3
C .m +3
D .9-m (3)计算)())()((4
4
2
2
y x y x y x y x +-++-等于( ). A .4
2x B .4
2y C .m +3 D .9-m (4)=⎪⎭
⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+⎪⎭⎫
⎝⎛-x y y x x y y x 4131314121313121
( ). A .
2292163y x - B .2163x C .223241y x -D .2
4
1x
(5)下列各式计算中,结果错误的是( ). A .03131
9)13)(13(=⎪⎭
⎫ ⎝⎛+⎪⎭⎫ ⎝⎛---+m m m m B .2
2
)2)(2()14(b x x b b x x x +=-+++ C .0)9)(9(313331313=-+-⎪⎭
⎫
⎝⎛-⎪⎭⎫ ⎝⎛+
⋅b a a b ab ab a b b a D .2
2
3)2)(2(6)35)(35(y x y y x y x y x x =+-+-+- (6)442211)(1a a a a a a -=⎪⎭
⎫
⎝⎛+⎪⎭⎫ ⎝⎛--,括号中应填( ). A .a a 1-
B .a a 1+-
C .a a 1--
D .a
a 1
+ (7)下列等式中不能成立的是( ). A .n n n n
n
n
n
n
y x y x y x y x 4422))()((-=+-+
B .⎪⎭⎫ ⎝
⎛
-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+
229192616313y x y x y x C .2)(9
1
3
1
3
1b a b a b a --=
⎪⎭
⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-+
D .9
88993229
3130=⨯. (8)在①2
2
2
9)3(a a =,②2911311131a a a -=⎪⎭
⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+-
,③5
32)1()1()1(-=--x x x ,
④3
22
842++=⨯⨯b a b
a
中,运算正确的是( ).
A .①②
B .②③
C .②④
D .③④
3.计算:
(1))2)(2(4-+-a a ; (2))()
())((22
2
2
x x y x y x ----+⋅;
(3))12)(12()14)(1(-+--+a a a a ;
(4)))((326.0326.0322
222υυυυ-+⎪⎭
⎫
⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--u u u u u ;
(5))4)(2)(16)(2(2
4
+++-a a a a ;
(6)2
2
2
2
16)47)(47()53)(53(m m m m m m --+-+-+; (7)))((2
2
2
2
b ab a b ab a +++-;
(8)2
2
2)1)(1(9899x x x --+-;
(9)⎪⎭
⎫ ⎝⎛--⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-
+21212121y x y x y x y x ; (10)))(())((2
2
2
y x y x y x y x ----+. 4.先将下列各式化简再求值:
(1)求2
22222)()())((y x y x y x y x -+--+,其中4=x 、4
1
=
y ; (2)[][]2
5
7
)(2))(())((xy y x y x y x y x -----÷-+,其中2-=x ,1-=y ;
(3)⎪⎭
⎫
⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-22821221212a b a b b a ,其中1-=a ,2-=b .
拓展练习
1.计算:
(1)利用平方差公式计算:
1999
200120002000
2⨯-;
(2)利用平方差公式计算:1
2001199920002
+⨯;
(3)利用平方差公式计算:20022001200020013
⨯⨯-; (4)
⎪⎭
⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+161141121121; (5))12()12)(12)(12(128
4
2
++++ ;
(6)⎪⎭
⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+
1616884422212212212212212. 2.解方程:
(1)任意三个连续的奇数中,中间一个数的平方总比另外两个数的积大4. (2)任意整数与比它大2的整数的积再加上1,一定是一个整数的平方.
4.已知两个正方形的边长之和等于20cm ,它们的面积之差等于402
cm ,求两个正方形的边长各是多少?
5.正言形的边长是a 厘米,若将一边增加3cm ,另一边减少3cm ,那么改变后的面积与原正方形面积哪个大?大多少?
参考答案 综合 1.(1)412
+
x (2)2182
-m (3)n d c b a 222294251- (4)m n m z y x 224
19- (5)
224
1
n m m -+- (6)m n n m b a b a 2222- (7)465a - (8)1212y x - (9)
4422812161y x y x a +- (10)81412123--+x x x (11)1164-x (12)4
1-x (13)2
1
84
-
x (14)102 2.(1)D (2)A (3)D (4)B (5)A (6)B (7)B (8)C
3.(1)28a - (2)2
y - (3)a 3- (4)2
229
436.0υυu -
(5)2568-a
(6)45825m - (7)2
2443b a b a -+ (8)197- (9)y 2 (10)0
4.(1)128
255,
222
24y x y +- (2)17,44---y x (3)30,813244
b a -
拓展
1.(1)2000 (2)1 (3)2001 (4)
256255 (5)12256- (6)21
332
31
231⋅⋅- 2.(1)3=x (2)8
3-=x 3.略 4.11cm ,9cm 5.原面积大2
cm 9。