(物理)物理牛顿运动定律的应用练习题及解析

合集下载

(物理)物理牛顿运动定律的应用练习题含解析

(物理)物理牛顿运动定律的应用练习题含解析

(物理)物理牛顿运动定律的应用练习题含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。

(3)木板的最小长度L 是0.7m 。

【解析】 【详解】(1)对AB 整体分析,由牛顿第二定律得:F 1=(M +m )a 1 对B ,由牛顿第二定律得:f =ma 1联立解得f =1N ,方向水平向右;(2)对AB 整体,由牛顿第二定律得:F m =(M +m )a 2对B ,有:μmg =ma 2联立解得:F m =10N(3)因为F 2>F m ,所以AB 间发生了相对滑动,木块B 加速度为:a 2=μg =2m/s 2。

木板A 加速度为a 3,则:F 2-μmg =Ma 3解得:a 3=3m/s 2。

1s 末A 的速度为:v A =a 3t =3m/s B 的速度为:v B =a 2t =2m/s 1s 末A 、B 相对位移为:△l 1=2A Bv v t -=0.5m 撤去F 2后,t ′s 后A 、B 共速 对A :-μmg =Ma 4可得:a 4=-0.5m/s 2。

共速时有:v A +a 4t ′=v B +a 2t ′可得:t ′=0.4s 撤去F 2后A 、B 相对位移为:△l 2='2A Bv v t -=0.2m 为使物块不从木板上滑下,木板的最小长度为:L =△l 1+△l 2=0.7m 。

(物理)物理牛顿运动定律的应用练习题及答案及解析

(物理)物理牛顿运动定律的应用练习题及答案及解析

(物理)物理牛顿运动定律的应用练习题及答案及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,有一质量为M=2kg的平板车静止在光滑的水平地面上,现有质量均为m=1kg的小物块A和B(均可视为质点),由车上P处开始,A以初速度=2m/s向左运动,同时B 以=4m/s向右运动,最终A、B两物块恰好停在小车两端没有脱离小车,两物块与小车间的动摩擦因数都为μ=0.1,取,求:(1)开始时B离小车右端的距离;(2)从A、B开始运动计时,经t=6s小车离原位置的距离。

【答案】(1)B离右端距离(2)小车在6s内向右走的总距离:【解析】(1)设最后达到共同速度v,整个系统动量守恒,能量守恒解得:,A离左端距离,运动到左端历时,在A运动至左端前,木板静止,,解得B离右端距离(2)从开始到达共速历时,,,解得小车在前静止,在至之间以a向右加速:小车向右走位移接下来三个物体组成的系统以v共同匀速运动了小车在6s内向右走的总距离:【点睛】本题主要考查了运动学基本公式、动量守恒定律、牛顿第二定律、功能关系的直接应用,关键是正确分析物体的受力情况,从而判断物体的运动情况,过程较为复杂.2.如图所示,长木板质量M=3 kg,放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1 kg的物块A,右端放着一个质量也为m=1 kg的物块B,两物块与木板间的动摩擦因数均为μ=0.4,AB之间的距离L=6 m,开始时物块与木板都处于静止状态,现对物块A施加方向水平向右的恒定推力F 作用,取g=10 m/s 2.(1).为使物块A 与木板发生相对滑动,F 至少为多少?(2).若F=8 N ,求物块A 经过多长时间与B 相撞,假如碰撞过程时间极短且没有机械能损失,则碰后瞬间A 、B 的速度分别是多少? 【答案】(1)5 N (2)v A’=2m/s v B’=8m/s 【解析】 【分析】 【详解】(1)据分析物块A 与木板恰好发生相对滑动时物块B 和木板之间的摩擦力没有达到最大静摩擦力.设物块A 与木板恰好发生相对滑动时,拉力为F 0,整体的加速度大小为a ,则: 对整体: F 0=(2m +M )a 对木板和B :μmg =(m +M )a 解之得: F 0=5N即为使物块与木板发生相对滑动,恒定拉力至少为5 N ; (2)物块的加速度大小为:24A F mga m s mμ-==∕ 木板和B 的加速度大小为:B mga M m=+μ=1m/s 2设物块滑到木板右端所需时间为t ,则:x A -x B =L即221122A B a t a t L -= 解之得:t =2 s v A =a A t=8m/s v B =a B t=2m/sAB 发生弹性碰撞则动量守恒:mv a +mv B =mv a '+mv B '机械能守恒:12mv a 2+12mv B 2=12mv a '2+12mv B '2 解得:v A '=2m/s v B '=8m/s3.如图所示,有1、2、3三个质量均为m =1kg 的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H =5.75m , 物体1与长板2之间的动摩擦因数μ=O .2.长板2在光滑的桌面上从静止开始释放,同时物体1(视为质点)在长板2的左端以v =4m/s 的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g =10m/s²)求: (1)长板2开始运动时的加速度大小;(2)长板2的长度0L ;(3)当物体3落地时,物体1在长板2的位置.【答案】(1)26m /s (2)1m (3)1m 【解析】 【分析】 【详解】 设向右为正方向(1)物体1: -μmg = ma 1 a 1=–μg = -2m/s 2 物体2:T +μmg = ma 2 物体3:mg –T = ma 3 且a 2= a 3由以上两式可得:22g ga μ+==6m/s 2 (2)设经过时间t 1二者速度相等v 1=v +a 1t=a 2t 代入数据解t 1=0.5s v 1=3m/s112v v x t +==1.75m 122v tx ==0.75m 所以木板2的长度L 0=x 1-x 2=1m(3)此后,假设物体123相对静止一起加速 T =2m a mg —T =ma 即mg =3m a 得3g a =对1分析:f 静=ma =3.3N >F f =μmg =2N ,故假设不成立,物体1和物体2相对滑动 物体1: a 3=μg =2m/s 2 物体2:T —μmg = ma 4 物体3:mg –T = ma 5 且a 4= a 5 得:42g ga μ-==4m/s 2 整体下落高度h =H —x 2=5m 根据2124212h v t a t =+解得t 2=1s物体1的位移23123212x v t a t =+=4m h -x 3=1m 物体1在长木板2的最左端 【点睛】本题是牛顿第二定律和运动学公式结合,解题时要边计算边分析物理过程,抓住临界状态:速度相等是一个关键点.4.如图所示,从A 点以v 0=4m/s 的水平速度抛出一质量m =1kg 的小物块(可视为质点),当物块运动至B 点时,恰好沿切线方向进入固定在地面上的光滑圆弧轨道BC ,其中轨道C 端切线水平。

大学物理牛顿运动定律及其应用习题及答案

大学物理牛顿运动定律及其应用习题及答案

第2章 牛顿运动定律及其应用 习题解答1.质量为10kg 的质点在xOy 平面内运动,其运动规律为:543x con t =+(m),5sin 45y t =-(m).求t 时刻质点所受的力.解:此题属于第一类问题54320sin 480cos 4x x x x con t dx v t dtdv a t dt=+==-==- 5sin 4520cos 480sin 4y y y t v t a t=-==-12800cos 4()800sin 4()()800()x x y y x y F ma t N F ma t N F F F N ==-==-=+=2.质量为m 的质点沿x 轴正向运动,设质点通过坐标x 位置时其速率为kx 〔k 为比例系数〕,求: 〔1〕此时作用于质点的力;〔2〕质点由1x x =处出发,运动到2x x =处所需要的时间。

解:(1) 2()dv dx F m mk mk x N dt dt=== (2) 22112111ln ln xx x x x dx dx v kx t x dt kx k k x ==⇒===⎰ 3.质量为m 的质点在合力0F F kt(N )=-〔0F ,k 均为常量〕的作用下作直线运动,求: 〔1〕质点的加速度;〔2〕质点的速度和位置〔设质点开始静止于坐标原点处〕.解:由牛顿第二运动定律 200201000232000012111262v t x t F kt dv mF kt a (ms )dt mF t kt F kt dv dt v (ms )m m F t kt F t kt dx dt x (m )m m ---=-⇒=--=⇒=⎰⎰--=⇒=⎰⎰4.质量为m 的质点最初静止在0x 处,在力2F k /x =-(N)〔k 是常量〕的作用下沿X 轴运动,求质点在x 处的速度。

解: 由牛顿第二运动定律02120v x x dv dv dx dv F k /x mm mv dt dx dt dx k vdv dx v ms )mx -=-====-⇒=⎰⎰5.一质量为m 的质点在x 轴上运动,质点只受到指向原点的引力的作用,引力大小与质点离原点的距离x 的平方成反比,即2/x k f -=(N),k 是比例常数.设质点在 x =A 时的速度为零,求质点在x =A /4处的速度的大小. 解: 由牛顿第二运动定律02120v x x dv dv dx dv F k /x mm mv dt dx dt dx k vdv dx v ms )mx -=-====-⇒===⎰⎰6.质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t m k e v )(0-;(2) 由0到t 的时间内经过的距离为x =(km v 0)[1-t m k e )(-]; (3)停止运动前经过的距离为)(0km v ; (4)当k m t =时速度减至0v 的e 1,式中m 为质点的质量. 证明: (1) t 时刻的速度为v =t m k e v )(0- 0000ln v t k t m v dv F kv mdt dv k v k dt t v v e v m v m -=-==-⇒=-⇒=⎰⎰(2) 由0到t 的时间内经过的距离为x =(k m v 0)[1-t m ke )(-] 00000(1)k t m x tk k t t m m dx v v e dt mv dx v edt x e k ---===⇒=-⎰⎰(3)停止运动前经过的距离为)(0km v 在x 的表达式中令t=0得到: 停止运动前经过的距离为)(0k m v (4)当k m t =时速度减至0v 的e1,式中m 为质点的质量. 在v 的表达式中令k m t =得到:01v v e= 7.质量为m 的子弹以速度v 0水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K,忽略子弹的重力,求:(1) 子弹射入沙土后,速度随时间变化的函数式;(2) 子弹进入沙土的最大深度.解: 由牛顿第二运动定律 (1) dv dv k m kv dt dt v m=-⇒=- 考虑初始条件,对上式两边积分: 000vt k t m v dv k dt v v e v m -=-⇒=⎰⎰ (2) max00max 00x k t m mv dx v e dt x dt k ∞-=-⇒=⎰⎰ 8.质量为m 的雨滴下降时,因受空气阻力,在落地前已是匀速运动,其速率为v = 5.0 m/s .设空气阻力大小与雨滴速率的平方成正比,问:当雨滴下降速率为v = 4.0 m/s 时,其加速度a 多大?(取29.8/g m s =)解: 由牛顿第二运动定律雨滴下降未到达极限速度前运动方程为2mg kv ma -= 〔1〕雨滴下降到达极限速度后运动方程为20mg kv -= 〔2〕将v = 4.0 m/s 代入〔2〕式得2maxmg k v = 〔3〕 由〔1〕、〔3〕式 22424max 16(1)10(1) 3.6/25v v v a g m s v ===-=⨯-= 9.一人在平地上拉一个质量为M 的木箱匀速前进,如图. 木箱与地面间的摩擦系数μ=0.6.设此人前进时,肩上绳的支撑点距地面高度为h =1.5 m ,不计箱高,问绳长l 为多长时最省力? 解: 由牛顿第二运动定律有sin 0cos 0T N mg T N θθμ+-=-=联立以上2式得 ()cos sin mgT μθθμθ=+上式T 取得最小值的条件为tg θμ==由此得到2.92l m =≈。

最新高考物理牛顿运动定律的应用题20套(带答案)

最新高考物理牛顿运动定律的应用题20套(带答案)

最新高考物理牛顿运动定律的应用题20套(带答案)一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,水平面与倾角θ=37°的斜面在B 处平滑相连,水平面上A 、B 两点间距离s 0=8 m .质量m =1 kg 的物体(可视为质点)在F =6.5 N 的水平拉力作用下由A 点从静止开始运动,到达B 点时立即撤去F ,物体将沿粗糙斜面继续上滑(物体经过B 处时速率保持不变).已知物体与水平面及斜面间的动摩擦因数μ均为0.25.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)物体在水平面上运动的加速度大小a 1; (2)物体运动到B 处的速度大小v B ; (3)物体在斜面上运动的时间t .【答案】(1)4m/s 2 (2)8m/s (3)2.4s 【解析】 【分析】(1)在水平面上,根据牛顿第二定律求出加速度;(2)根据速度位移公式求出B 点的速度;(3)物体在斜面上先向上减速,再反向加速度,求出这两段的时间,即为物体在斜面上的总时间. 【详解】(1)在水平面上,根据牛顿第二定律得:1F mg ma μ-=代及数据解得:214/a m s =(2)根据运动学公式:2102B v a s =代入数据解得:8/B v m s =(3)物体在斜面上向上做匀减速直线运动过程中,根据牛顿第二定律得:23737mgsin mgcos ma μ︒+︒=①物体沿斜面向上运动的时间:22Bv t a =② 物体沿斜面向上运动的最大位移为:222212s a t = ③因3737mgsin mgcos μ︒>︒,物体运动到斜面最高点后将沿斜面向下做初速度为0的匀加速直线运动根据牛顿第二定律得:33737mgsin mgcos ma μ︒-︒=④ 物体沿斜面下滑的时间为:223312s a t =⑤ 物体在斜面上运动的时间:23t t t =+⑥联立方程①-⑥代入数据解得:(2312 2.4t t t s s =+=+≈【点睛】本题主要考查了牛顿第二定律及运动学基本公式的直接应用,注意第二问求的是在斜面上的总时间,不是上滑时间.2.如图所示,长木板质量M=3 kg ,放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1 kg 的物块A ,右端放着一个质量也为m=1 kg 的物块B ,两物块与木板间的动摩擦因数均为μ=0.4,AB 之间的距离L=6 m ,开始时物块与木板都处于静止状态,现对物块A 施加方向水平向右的恒定推力F 作用,取g=10 m/s 2.(1).为使物块A 与木板发生相对滑动,F 至少为多少?(2).若F=8 N ,求物块A 经过多长时间与B 相撞,假如碰撞过程时间极短且没有机械能损失,则碰后瞬间A 、B 的速度分别是多少? 【答案】(1)5 N (2)v A’=2m/s v B’=8m/s 【解析】 【分析】 【详解】(1)据分析物块A 与木板恰好发生相对滑动时物块B 和木板之间的摩擦力没有达到最大静摩擦力.设物块A 与木板恰好发生相对滑动时,拉力为F 0,整体的加速度大小为a ,则: 对整体: F 0=(2m +M )a 对木板和B :μmg =(m +M )a 解之得: F 0=5N即为使物块与木板发生相对滑动,恒定拉力至少为5 N ; (2)物块的加速度大小为:24A F mga m s mμ-==∕ 木板和B 的加速度大小为:B mga M m=+μ=1m/s 2设物块滑到木板右端所需时间为t ,则:x A -x B =L即221122A B a t a t L -= 解之得:t =2 s v A =a A t=8m/s v B =a B t=2m/sAB 发生弹性碰撞则动量守恒:mv a +mv B =mv a '+mv B '机械能守恒:12mv a 2+12mv B 2=12mv a '2+12mv B '2 解得:v A '=2m/s v B '=8m/s3.如图所示,长木板B 质量为m 2=1.0 kg ,静止在粗糙的水平地面上,长木板左侧区域光滑.质量为m 3=1.0 kg 、可视为质点的物块C 放在长木板的最右端.质量m 1=0.5 kg 的物块A ,以速度v 0=9 m /s 与长木板发生正碰(时间极短),之后B 、C 发生相对运动.已知物块C 与长木板间的动摩擦因数μ1=0.1,长木板与地面间的动摩擦因数为μ2=0.2,最大静摩擦力等于滑动摩擦力,整个过程物块C 始终在长木板上,g 取10 m /s 2.(1)若A 、B 相撞后粘在一起,求碰撞过程损失的机械能. (2)若A 、B 发生弹性碰撞,求整个过程物块C 相对长木板的位移.【答案】(1)13.5J (2)2.67m 【解析】(1)若A 、B 相撞后粘在一起,由动量守恒定律得1012()m v m m v =+由能量守恒定律得 22101211()22E m v m m v ∆=-+ 解得损失的机械能 21201213.52()m m v E J m m ∆==+ (2)A 、B 发生完全弹性碰撞,由动量守恒定律得101122m v m v m v =+由机械能守恒定律得222101122111222m v m v m v =+ 联立解得 1210123/m m v v m s m m -==-+, 1201226/m v v m s m m ==+之后B 减速运动,C 加速运动,B 、C 达到共同速度之前,由牛顿运动定律, 对长木板: 2231321-()m m g m g m a μμ+-= 对物块C : 1332m g m a μ=设达到共同速度过程经历的时间为t ,212v a t a t += 这一过程的相对位移为22121211322x v t a t a t m ∆=+-= B 、C 达到共同速度之后,因12μμ<,二者各自减速至停下,由牛顿运动定律, 对长木板: 2231323-()m m g m g m a μμ++= 对物块C :1334-m g m a μ=这一过程的相对位移为 2222243()()1223a t a t x m a a ∆=-=-- 整个过程物块与木板的相对位移为 1282.673x x x m m ∆=∆-∆==点睛:此题是多研究对象、多过程问题,过程复杂,分析清楚物体的运动过程,应用牛顿第二定律、运动学公式、动量守恒定律、机械能守恒定律即可正确解题.4.如图甲所示,m 1 =5 kg 的滑块自光滑圆弧形槽的顶端A 点无初速度地滑下,槽的底端与水平传送带相切于左端导轮顶端的B 点,传送带沿顺时针方向匀速运转.m 1下滑前将m 2 = 3 kg 的滑块停放在槽的底端.m 1下滑后与m 2发生碰撞,碰撞时间极短,碰后两滑块均向右运动,传感器分别描绘出了两滑块碰后在传送带上从B 点运动到C 点的v -t 图象,如图乙、丙所示.两滑块均视为质点,重力加速度g = 10 m/s 2.(1)求A 、B 的高度差h ;(2)求滑块m 1与传送带间的动摩擦因数μ和传送带的长度L BC ; (3)滑块m 2到达C 点时速度恰好减到3 m/s ,求滑块m 2的传送时间; (4)求系统因摩擦产生的热量.【答案】(1)0.8m (2)26m (3)6.5s (4)16J 【解析】(1)由图乙可知,碰撞后瞬间,m 1 的速度v 1=1 m/s ,m 2的速度v 2 =5 m/s ,设碰撞前瞬间m 1的速度为v 0,取向右的方向为正方向,根据动量守恒:m 1v 0= m 1v 1+ m 2v 2 解得:v 0 = 4 m/sm 1下滑的过程机械能守恒:211012m gh m v = 解得:h =0.8 m(2)由图乙可知,滑块m 1在传送带上加速运动时的加速度大小0.5va t∆==∆m/s 2 滑块的加速度就是由滑动摩擦力提供,故μ1m 1g = m 1a 可求出滑块m 1与传送带间的动摩擦因数μ1 = 0.05由图乙可知,滑块m 1在传送带上先加速4 s ,后匀速运动6 s 到达C 点 图线与坐标轴围成的图形的面积在数值上等于传送带的长度L BC ,即L BC = 26 m (3)滑块m 2一直做匀减速直线运动,达C 点时速度恰好减到3 m/s ,全程的平均速度为24/2v vv m s +== 设滑块m 2的传送时间为t ,则有 6.5BCL t s v== (4)由图乙可知,滑块m 1在传送带上加速阶段的位移21011182x v t at m =+=滑块m1在传送带上加速阶段产生的热量Q1=μ1m1g(vt1-x1)=10 J滑块m2在传送带上减速的加速大小413vat'∆'=='∆m/s2滑块m2受到的滑动摩擦力大小f = m2a′滑块m2在传送带上减速阶段产生的热量Q2 = f(L BC-vt) = 6 J系统因摩擦产生的热量Q = Q1 + Q2 =16 J.5.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m,如图(a)所示。

高考物理牛顿运动定律的应用解题技巧及经典题型及练习题(含答案)及解析

高考物理牛顿运动定律的应用解题技巧及经典题型及练习题(含答案)及解析

高考物理牛顿运动定律的应用解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,质量m 1=0.3 kg 的小车静止在光滑的水平面上,车长L =1.5 m ,现有质量m 2=0.2 kg 可视为质点的物块,以水平向右的速度v 0=2 m/s 从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数μ=0.5,取g =10 m/s 2,求:(1)物块与小车共同速度; (2)物块在车面上滑行的时间t ; (3)小车运动的位移x ;(4)要使物块不从小车右端滑出,物块滑上小车左端的速度v ′0不超过多少? 【答案】(1)0.8 m/s (2)0.24 s (3)0.096 m (4)5 m/s 【解析】 【详解】(1、2)根据牛顿第二定律得,物块的加速度大小为:a 2=μg =0.5×10m/s 2=5m/s 2, 小车的加速度大小为:222110.5210m/s m/s 0.33m ga m μ⨯=== 根据v =v 0-a 2t =a 1t得则速度相等需经历的时间为:0120.24v t s a a =+=; v =0.8m/s (3)小车运动的位移22111100.24m 0.096m 223x a t ==⨯⨯= (4)物块不从小车右端滑出的临界条件为物块滑到小车右端时恰好两者达到共同速度,设此速度为v ,由水平方向动量守恒得:m 2 v 0′=(m 1+m 2)v根据能量守恒得:μm 2gL =12m 2v 0′2−12(m 1+m 2)v 2 代入数据,联立解得v 0′=5m/s 。

2.如图所示,倾角θ=30°的足够长光滑斜面底端A 固定有挡板P ,斜面上B 点与A 点的高度差为h .将质量为m 的长木板置于斜面底端,质量也为m 的小物块静止在木板上某处,整个系统处于静止状态.已知木板与物块间的动摩擦因数32μ=,且最大静摩擦力等于滑动摩擦力,重力加速度为g .(1)若对木板施加一沿斜面向上的拉力F 0,物块相对木板刚好静止,求拉力F 0的大小; (2)若对木板施加沿斜面向上的拉力F =2mg ,作用一段时间后撤去拉力,木板下端恰好能到达B 点,物块始终未脱离木板,求拉力F 做的功W . 【答案】(1) 32mg (2) 94mgh 【解析】(1)木板与物块整体:F 0−2mg sinθ=2ma 0 对物块,有:μmg cosθ−mg sinθ═ma 0 解得:F 0=32mg (2)设经拉力F 的最短时间为t 1,再经时间t 2物块与木板达到共速,再经时间t 3木板下端到达B 点,速度恰好减为零. 对木板,有:F −mg sinθ−μmg cosθ=m a 1 mg sinθ+μmg cosθ=ma 3对物块,有:μmg cosθ−mg sinθ=ma 2 对木板与物块整体,有2mg sinθ=2m a 4另有:1132212 ()a t a t a t t -=+ 21243 ()a t t a t +=222111123243111222sin h a t a t t a t a t θ+⋅-+= 21112W F a t =⋅解得W =94mgh 点睛:本题考查牛顿第二定律及机械能守恒定律及运动学公式,要注意正确分析物理过程,对所选研究对象做好受力分析,明确物理规律的正确应用即可正确求解;注意关联物理过程中的位移关系及速度关系等.3.如图所示,一质量M =40kg 、长L =2.5m 的平板车静止在光滑的水平地面上. 一质量m =10kg 可视为质点的滑块,以v 0=5m/s 的初速度从左端滑上平板车,滑块与平板车间的动摩擦因数μ=0.4,取g =10m/s 2.(1)分别求出滑块在平板车上滑行时,滑块与平板车的加速度大小;(2)计算说明滑块能否从平板车的右端滑出.【答案】(1),(2)恰好不会从平板车的右端滑出.【解析】根据牛顿第二定律得对滑块,有,解得对平板车,有,解得.设经过t时间滑块从平板车上滑出滑块的位移为:.平板车的位移为:.而且有解得:此时,所以,滑块到达小车的右端时与小车速度相等,恰好不会从平板车的右端滑出.答:滑块与平板车的加速度大小分别为和.滑块到达小车的右端时与小车速度相等,恰好不会从平板车的右端滑出.点睛:对滑块受力分析,由牛顿第二定律可求得滑块的加速度,同理可求得平板车的加速度;由位移关系可得出两物体位移间相差L时的表达式,则可解出经过的时间,由速度公式可求得两车的速度,则可判断能否滑出.4.滑雪运动中当滑雪板压在雪地时会把雪内的空气逼出来,在滑雪板和雪地之间形成暂时的“气垫”从而减小雪地对滑雪板的摩擦,然后当滑雪板的速度较小时,与雪地接触时间超过某一时间就会陷下去,使得它们间的摩擦阻力增大.假设滑雪者的速度超过4m/s时,滑雪板与雪地间的动摩擦因数就会从0.25变为0.125.一滑雪者从倾角为θ=37°斜坡雪道的某处A由静止开始自由下滑,滑至坡底B处(B处为一长度可忽略的光滑小圆弧)后又滑上一段水平雪道,最后停在水平雪道BC之间的某处.如图所示,不计空气阻力,已知AB长14.8m,取g=10m/s2,sin37°=0.6,cos37°=0.8,求:(1)滑雪者从静止开始到动摩擦因数发生变化时(即速度达到4m/s )所经历的时间; (2)滑雪者到达B 处的速度;(3)滑雪者在水平雪道上滑行的最大距离. 【答案】(1)1s ;(2)12m/s ;(3)54.4m . 【解析】 【分析】(1)根据牛顿第二定律求出滑雪者在斜坡上从静止开始加速至速度v 1=4m/s 期间的加速度,再根据速度时间公式求出运动的时间.(2)再根据牛顿第二定律求出速度大于4m/s 时的加速度,球心速度为4m/s 之前的位移,从而得出加速度变化后的位移,根据匀变速直线运动的速度位移公式求出滑雪者到达B 处的速度.(3)分析滑雪者的运动情况,根据牛顿第二定律求解每个过程的加速度,再根据位移速度关系求解. 【详解】(1)滑雪者从静止开始加速到v 1=4m/s 过程中: 由牛顿第二定律得:有:mgsin37°-μ1mgcos37°=ma 1; 解得:a 1=4m/s 2;由速度时间关系得 t 1=11v a =1s(2)滑雪者从静止加速到4m/s 的位移:x 1=12a 1t 2=12×4×12=2m 从4m/s 加速到B 点的加速度:根据牛顿第二定律可得:mgsin37°-μ2mgcos37°=ma 2; 解得:a 2=5m/s 2;根据位移速度关系:v B 2−v 12=2a 2(L −x 1) 计算得 v B =12m/s(3)在水平面上第一阶段(速度从12m/s 减速到v=4m/s ):a 3=−μ2g =−1.25m /s 222223341251.222 1.25B v v x m a --===-⨯ 在水平面上第二阶段(速度从4m/s 减速到0)a 4=−μ1g =−2.5m /s 2,2443.22v x m a -== 所以在水平面上运动的最大位移是 x=x 3+x 4=54.4m 【点睛】对于牛顿第二定律的综合应用问题,关键是弄清楚物体的运动过程和受力情况,利用牛顿第二定律或运动学的计算公式求解加速度,再根据题目要求进行解答;知道加速度是联系静力学和运动学的桥梁.5.如图所示,质量M=1kg的木板静止在粗糙的水平地面上,木板与地面间的动摩擦因数μ1=0.1,在木板的左端放置一个质量m=1kg、大小可忽略的铁块,铁块与木板间的动摩擦因数μ2=0.4,g取10m/s2,(1)若木板长L=1m,在铁块上加一个水平向右的恒力F=8N,经过多长时间铁块运动到木板的右端?(2)若在铁块右端施加一个从零开始连续增大的水平向右的力F假设木板足够长,在图中画出铁块受到木板的摩擦力f随拉力F大小变化而变化的图像.【答案】(1)1s;(2)见解析【解析】【分析】【详解】(1)铁块的加速度大小=4m/s2木板的加速度大小2m/s2设经过时间t铁块运动到木板的右端,则有解得:t=1s(2)6.如图所示,长L=2m,质量M=1kg的木板B静止在水平地面上,其正中央放置一质量m=2kg的小滑块A,现对B施加一水平向右的恒力F.已知A与B、B与地面间的动摩擦因数分别为120.20.4μμ==、,重力加速度210/g m s =,试求:(1)若A 、B 间相对滑动,F 的最小值;(2)当F =20N 时,若F 的作用时间为2s ,此时B 的速度大小; (3)当F =16N 时,若使A 从B 上滑下,F 的最短作用时间. 【答案】(1)min 18F N = (2)220/v m s = (3)2 1.73t s = 【解析】 【分析】 【详解】(1)A 、B 间恰要相对滑动的临界条件是二者间达到最大静摩擦力,对A ,由牛顿第二定律可知,加速度212/a g m s μ==;对B ,由牛顿第二定律可知,()min 21F m M g mg Ma μμ-+-=, 解得min 18F N =(2)F=20N>18N ,二者间会相对滑动,对B ,由牛顿第二定律;()211F m M g mg Ma μμ-+-=解得214/a m s =;设A 从左端滑出的时间为1t ,则22111111222L a t gt μ=-, 解得112t s s =<,此时B 的速度1114/==v a t m s故在F 作用后的1s 内,对B ,22F Mg Ma μ-=,解得2216/a m s =此时B 的速度()2121220/v v a t m s =+-=(3)若F=16N<18N ,则二者一起加速,由牛顿第二定律可知整体加速度()2204/3F M m ga m s M mμ-+==+; 当A 刚好从B 上滑下,F 的最短时间为2t ,设刚撤去F 瞬间,整体的速度为v ,则02v a t =撤去F 后,对A ,2112/a g m s μ==,对B :()21'228/m M g mga m s Mμμ+-==经分析,B 先停止运动,A 最后恰滑至B 的最右端时速度减为零,故221222'2v v La a -=联立解得23 1.73t s s ==点睛:此题是牛顿第二定律的综合应用问题;解决本题的关键是先搞清物体运动的物理过程,根据物体的受力判断出物体的运动情况,结合牛顿第二定律和运动学公式进行求解.7.如图所示,质量,的木板()f x 静止在光滑水平地面上.木板右端与竖直墙壁之间距离为,其上表面正中央放置一个质量的小滑块A .A 与B 之间动摩擦因数为0.2μ=,现用大小为18F N =的推力水平向右推B ,两者发生相对滑动,作用1s t =后撤去推力F .通过计算可知,在B 与墙壁碰撞时.A 没有滑离B .设B 与墙壁碰撞时间极短,且无机械能损失,重力加速度210m/s g =.求:(1)A 相对B 滑动的整个过程中.A 相对B 向左滑行的最大距离; (2)A 相对B 滑动的整个过程中,A 、B 系统产生的摩擦热. 【答案】(1)(2)【解析】 【详解】(1)在施加推力F 时,方向向右24/B F mga m s Mμ-==方向向右 ls 末,F 撤去时,211112A s a t m =⋅=221122B s a t m =⋅= ∴A 相对B 向左滑动的距离撤去F 至A 、B 达到共同速度的过程中,方向向右,方向向左设A 、B 速度相等经历的时间为t 222A A B B V a t V a t '==得在此时间内B 运动的位移为∵s 2+s 3<s∴B 与墙碰前速度相等,A 、B 的共同速度A 相对B 向左滑动的距离(2)与墙壁碰后:AB AB MV mV m M V -=+共() 22311mg ()()22AB s M m V M m V μ⋅=+-+V 共∴∵∴点睛:此题物理过程较复杂,解决本题的关键理清木块和木板在整个过程中的运动规律,按照物理过程发生的顺序,结合能量守恒定律、动量守恒定律、牛顿第二定律和运动学公式综合求解.8.如图所示,质量为M =2 kg 的长木板静止在光滑水平面上,现有一质量m =1 kg 的小滑块(可视为质点)以v 0=3.6 m/s 的初速度从左端沿木板上表面冲上木板,带动木板一起向前滑动.已知滑块与木板间的动摩擦因数μ=0.1,重力加速度g 取10 m/s 2.求:(1)滑块在木板上滑动过程中,长木板受到的摩擦力大小f 和方向; (2)滑块在木板上滑动过程中,滑块加速度大小;(3)若长木板长L 0=4.5m ,试判断滑块与长木板能达到的共同速度v ,若能,请求出共同速度大小和小滑块相对长木板上滑行的距离L ;若不能,请求出滑块滑离木板的速度和需要的时间.【答案】(1)f=1N ,方向向右;(2)a=1m/s 2;(3)能,v=1.2m/s 【解析】 【分析】 【详解】(1)木板所受摩擦力为滑动摩擦力: f=μmg=1N 方向向右;(2) 由牛顿第二定律得:μmg=ma 得出:a=μg=1m/s 2 ;(3) 以木板为研究对象,根据牛顿第二定律:μmg=Ma′ 可得出木板的加速度为:a′=0.5m/s 2设经过时间t ,滑块和长木板达到共同速度v ,则满足: 对滑块有:v=v 0-at对长木板有:v=a′t由以上两式得:滑块和长木板达到的共同速度:v=1.2m/s ,t=2.4s 在2.4s 内木板前进的位移为:1 1.2 2.4 1.4422v x t m m ==⨯= 木块前进的位移为:02 3.6 1.2 2.4 5.7622v v x t m m ++==⨯= 木板的长度最短为:L=x 2-x 1=4.32m<4.5m ,所以两者能达到共同速度.9.半径R =4500km 的某星球上有一倾角为30o 的固定斜面,一质量为1kg 的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行.如果物块和斜面间的摩擦因数3μ=,力F 随时间变化的规律如图所示(取沿斜面向上方向为正),2s 末物块速度恰好又为0,引力常量11226.6710/kg G N m -=⨯⋅.试求:(1)该星球的质量大约是多少?(2)要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要多大速度?(计算结果均保留二位有效数字)【答案】(1)242.410M kg =⨯ (2)6.0km/s【解析】 【详解】(1)假设星球表面的重力加速度为g ,小物块在力F 1=20N 作用过程中,有:F 1-mg sin θ-μmg cos θ=ma 1小物块在力F 2=-4N 作用过程中,有:F 2+mg sin θ+μmg cos θ=ma 2 且有1s 末速度v=a 1t 1=a 2t 2 联立解得:g=8m/s 2. 由G2MmR =mg 解得M=gR 2/G .代入数据得M=2.4×1024kg(2)要使抛出的物体不再落回到星球,物体的最小速度v 1要满足mg=m 21v R解得v 1gR =6.0×103ms=6.0km/s即要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要6.0km/s 的速度.【点睛】本题是万有引力定律与牛顿定律的综合应用,重力加速度是联系这两个问题的桥梁;第二题,由重力或万有引力提供向心力,求出该星球的第一宇宙速度.10.如图所示,t =0时一质量m =1 kg 的滑块A 在大小为10 N 、方向与水平向右方向成θ=37°的恒力F 作用下由静止开始在粗糙水平地面上做匀加速直线运动,t 1=2 s 时撤去力F ; t =0时在A 右方x 0=7 m 处有一滑块B 正以v 0=7 m/s 的初速度水平向右运动.已知A 与地面间的动摩擦因数μ1=0.5,B 与地面间的动摩擦因数μ2=0.1,取重力加速度大小g =10 m/s 2,sin37°=0.6,cos37°=0.8.两滑块均视为质点,求:(1)两滑块在运动过程中速度相等的时刻; (2)两滑块间的最小距离. 【答案】(1)3.75s (2)0.875m 【解析】 【分析】(1)根据牛顿第二定律先求解撤去外力F 前后时A 的加速度以及B 的加速度;根据撤去F 之前时速度相等和撤去F 之后时速度相等列式求解;(2)第一次共速时两物块距离最大,第二次共速时两物块距离最小;根据位移公式求解最小值. 【详解】(1)对物块A ,由牛顿第二定律:()11cos sin F mg F ma θμθ--=;对物体A 撤去外力后:11mg ma μ='; 对物体B :22a g μ=A 撤去外力之前两物体速度相等时:102a t v a t =-,得t =1 sA 撤去外力之后两物体速度相等时:()111102a t a t t v a t --=-''',得t ′=3.75 s (2)第一次共速时两物块距离最大,第二次共速时两物块距离最小,则:△x =x 0+x 2-x 1;220212x v t a t =-'' ()()22111111111122x a t a t t t a t t '''=+--- 得△x =0.875 m。

高考物理牛顿运动定律的应用真题汇编(含答案)及解析

高考物理牛顿运动定律的应用真题汇编(含答案)及解析

高考物理牛顿运动定律的应用真题汇编(含答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ;(2)木板的最小长度;(3)木板右端离墙壁的最终距离.【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m【解析】(1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s =碰撞后木板速度水平向左,大小也是v 4m/s = 木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m s g s μ-=解得20.4μ=木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212x vt at =+带入可得21/a m s =木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ=可得10.1μ=(2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214/3a m s = 对滑块,则有加速度224/a m s =滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =-=末速度18/3v m s =滑块向右位移214/022m s x t m +== 此后,木块开始向左加速,加速度仍为224/a m s =木块继续减速,加速度仍为214/3a m s = 假设又经历2t 二者速度相等,则有22112a t v a t =-解得20.5t s =此过程,木板位移2312121726x v t a t m =-=末速度31122/v v a t m s =-= 滑块位移24221122x a t m == 此后木块和木板一起匀减速.二者的相对位移最大为13246x x x x x m ∆=++-=滑块始终没有离开木板,所以木板最小的长度为6m(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度211/a g m s μ==位移23522v x m a== 所以木板右端离墙壁最远的距离为135 6.5x x x m ++=【考点定位】牛顿运动定律【名师点睛】分阶段分析,环环相扣,前一阶段的末状态即后一阶段的初始状态,认真沉着,不急不躁2.如图所示,质量为2kg 的物体在与水平方向成37°角的斜向上的拉力F 作用下由静止开始运动.已知力F 的大小为5N ,物体与地面之间的动摩擦因数μ为0.2,(sin37°=0.6,cos37°=0.8)求:(1)物体由静止开始运动后的加速度大小;(2)8s 末物体的瞬时速度大小和8s 时间内物体通过的位移大小;(3)若8s 末撤掉拉力F ,则物体还能前进多远?【答案】(1)a =0.3m/s 2 (2)x =9.6m (3)x ′=1.44m【解析】(1)物体的受力情况如图所示:根据牛顿第二定律,得: F cos37°-f =maF sin37°+F N =mg又f =μF N联立得:a =cos37(sin 37)F mg F mμ--o o 代入解得a =0.3m/s 2(2)8s 末物体的瞬时速度大小v =at =0.3×8m/s=2.4m/s8s 时间内物体通过的位移大小219.6m 2x at == (3)8s 末撤去力F 后,物体做匀减速运动,根据牛顿第二定律得,物体加速度大小22.0m/s f mg a g m m μμ===='' 由v 2=2a ′x ′得:21.44m 2v x a =''= 【点睛】本题关键是多次根据牛顿第二定律列式求解加速度,然后根据运动学公式列式求解运动学参量.3..某校物理课外小组为了研究不同物体水下运动特征, 使用质量m =0.05kg 的流线型人形模型进行模拟实验.实验时让模型从h =0.8m 高处自由下落进入水中.假设模型入水后受到大小恒为F f =0.3N 的阻力和F =1.0N 的恒定浮力,模型的位移大小远大于模型长度,忽略模型在空气中运动时的阻力,试求模型(1)落到水面时速度v 的大小;(2)在水中能到达的最大深度H ;(3)从开始下落到返回水面所需时间t .【答案】(1)4m/s (2)0.5m (3)1.15s【解析】【分析】【详解】(1)模型人入水时的速度记为v ,自由下落的阶段加速度记为a 1,则a 1=g ;v 2=2a 1h 解得v=4m/s ;(2)模型人入水后向下运动时,设向下为正,其加速度记为a 2,则:mg-F f -F=ma 2 解得a 2=-16m/s 2 所以最大深度:2200.52vH m a -== (3)自由落体阶段:1t 0.4v s g == 在水中下降2200.25v t s a -== 在水中上升:F-mg-F f =ma 3解得a 3=4.0m/s 2所以:3320.5H t s a == 总时间:t=t 1+t 2+t 3=1.15s4.如图所示,质量M=2kg 足够长的木板静止在水平地面上,与地面的动摩擦因数μ1=0.1,另一个质量m=1kg 的小滑块,以6m/s 的初速度滑上木板,滑块与木板之间的动摩擦因数μ2=0.5,g 取l0m/s 2.(1)若木板固定,求小滑块在木板上滑过的距离.(2)若木板不固定,求小滑块自滑上木板开始多长时间相对木板处于静止.(3)若木板不固定,求木板相对地面运动位移的最大值.【答案】(1)20 3.6m 2v x a==(2)t=1s (3)121x x m += 【解析】【分析】【详解】试题分析:(1)225m /s a g μ==20 3.6m 2v x a== (2)对m :2125/a g m s μ==,对M :221()Ma mg m M g μμ=-+,221m /s a =012v a t a t -=t=1s(3)木板共速前先做匀加速运动2110.52x at m == 速度121m /s v a t ==以后木板与物块共同加速度a 3匀减速运动 231/a g m s μ==,22310.52x vt a t m =+= X=121x x m +=考点:牛顿定律的综合应用5.如图所示,水平传送带长为L =11.5m ,以速度v =7.5m/s 沿顺时针方向匀速转动.在传送带的A 端无初速释放一个质量为m =1kg 的滑块(可视为质点),在将滑块放到传送带的同时,对滑块施加一个大小为F =5N 、方向与水平面成θ=370的拉力,滑块与传送带间的动摩擦因数为μ=0.5,重力加速度大小为g =10m/s 2,sin37°=0.6,cos37°=0.8.求滑块从A 端运动到B 端的过程中:(1)滑块运动的时间;(2)滑块相对传送带滑过的路程.【答案】(1)2s (2)4m【解析】【分析】(1)滑块滑上传送带后,先向左匀减速运动至速度为零,以后向右匀加速运动.根据牛顿第二定律可求得加速度,再根据速度公式可求出滑块刚滑上传送带时的速度以及速度相同时所用的时间; 再对共速之后的过程进行分析,明确滑块可能的运动情况,再由动力学公式即可求得滑块滑到B 端所用的时间,从而求出总时间.(2)先求出滑块相对传送带向左的位移,再求出滑块相对传送带向右的位移,即可求出滑块相对于传送带的位移.【详解】(1)滑块与传送带达到共同速度前 , 设滑块加速度为1a ,由牛顿第二定律:()13737Fcos mg Fsin ma μ︒+-︒=解得:217.5/a m s = 滑块与传送带达到共同速度的时间:111v t s a == 此过程中滑块向右运动的位移:11 3.752v s t m == 共速后 , 因 ()3737Fcos mg Fsin μ︒>-︒ ,滑块继续向右加速运动,由牛顿第二定律:()23737Fcos mg Fsin ma μ︒--︒=解得:220.5/a m s =根据速度位移关系可得:()22212B v v a L s -=-滑块到达 B 端的速度:8/B v m s = 滑块从共速位置到 B 端所用的时间:221B v v t s a -== 滑块从 A 端到 B 端的时间:122t t t s =+=(2)0∼1s 内滑块相对传送带向左的位移:111 3.75s vt s m =-=V ,1s ∼2s 内滑块相对传送带向右的位移: ()2120.25s L s vt m =--=V, 0∼2s 内滑块相对传送带的路程: 124s s s m =+=V V V6.传送带以恒定速率v =4m/s 顺时针运行,传送带与水平面的夹角θ=37°.现将质量m =1 kg 的小物块轻放在其底端(小物品可看成质点),平台上的人通过一根轻绳用恒力F =10 N 拉小物块,经过一段时间物块被拉到离地高为H =1.8m 的平台上,如图所示.已知物块与传送带之间的动摩擦因数μ=0.5,设最大静摩擦力等于滑动摩擦力,g 取10m/s 2,已知sin37°=0.6,cos37°=0.8.求:(1)物块在传送带上运动的时间;(2)若在物块与传送带速度相等的瞬间撤去恒力F ,则物块还需多少时间才能脱离传送带?【答案】(1)1s (2)【解析】【详解】(1)物体在达到与传送带速度v =4 m/s 相等前,做匀加速直线运动,有:F +μmgcos37°-mgsin37°=ma 1解得a 1=8 m/s 2由v=a1t1得t1=0.5s位移x1=a1t12=1m物体与传送带达到共同速度后,因F-mgsinθ=4 N=μmgcos37°故物体在静摩擦力作用下随传送带一起匀速上升.位移x2=-x1=2mt2==0.5s总时间为t=t1+t2=1s(2)在物体与传送带达到同速瞬间撤去恒力F,因为μ<tan37°,故有:mgsin37°-μmg cos37°=ma2解得:a2=2m/s2假设物体能向上匀减速运动到速度为零,则通过的位移为x==4 m>x2故物体向上匀减速运动达到速度为零前已经滑上平台.故x2=vt3-a2t32解得t3=(2-)s或t3=(2+)s(舍去)【点睛】本题关键是受力分析后判断物体的运动状态,再根据牛顿第二定律求解出加速度,然后根据运动学公式列式求解时间.7.下暴雨时,有时会发生山体滑坡或泥石流等地质灾害.某地有一倾角为θ=37°(sin37°=)的山坡C,上面有一质量为m的石板B,其上下表面与斜坡平行;B上有一碎石堆A(含有大量泥土),A和B均处于静止状态,如图所示.假设某次暴雨中,A浸透雨水后总质量也为m(可视为质量不变的滑块),在极短时间内,A、B间的动摩擦因数μ1减小为,B、C间的动摩擦因数μ2减小为0.5,A、B开始运动,此时刻为计时起点;在第2s末,B的上表面突然变为光滑,μ2保持不变.已知A开始运动时,A离B下边缘的距离l=27m,C足够长,设最大静摩擦力等于滑动摩擦力.取重力加速度大小g=10m/s2.求:(1)在0~2s时间内A和B加速度的大小;(2)A在B上总的运动时间.【答案】(1)a1=3m/s2; a2=1m/s2;(2)4s【解析】本题主要考查牛顿第二定律、匀变速运动规律以及多物体多过程问题;(1)在0-2s内,A和B受力如图所示由滑动摩擦力公式和力的平衡条件得:⑴...⑵⑶⑷以沿着斜面向下为正方向,设A和B的加速度分别为,由牛顿第二定律可得:⑸⑹联立以上各式可得a1=3m/s2⑺a2=1m/s2..⑻(2)在t1=2s,设A和B的加速度分别为,则v1=a1t1=6m/s ⑼v2=a2t1=2m/s ⑽t>t1时,设A和B的加速度分别为,此时AB之间摩擦力为零,同理可得:⑾⑿即B做匀减速,设经时间,B的速度减为零,则:⒀联立⑽⑿⒀可得t2=1s ..⒁在t1+t2时间内,A相对于B运动的距离为⒂此后B静止不动,A继续在B上滑动,设再经时间后t3,A离开B,则有可得,t3=1s(另一解不合题意,舍去,)则A在B上的运动时间为t总.t总=t1+t2+t3=4s(利用下面的速度图象求解,正确的,参照上述答案信参考给分)【考点定位】牛顿第二定律;匀变速直线运动;【方法技巧】本题主要是考察多过程问题,要特别注意运动过程中摩擦力的变化问题.要特别注意两者的运动时间不一样的,也就是说不是同时停止的.8.质量为m的长木板静止在水平地面上,质量同样为m的滑块(视为质点)以初速度v0从木板左端滑上木板,经过0.5s滑块刚好滑到木板的中点,下右图为滑块滑上木板后的速度时间图像,若滑块与木板间动摩擦因数为μ1,木板与地面间的动摩擦因数为μ2,求:(1)μ1、μ2各是多少?(2)滑块的总位移和木板的总长度各是多少?【答案】(1)0.6;0.2(2)1.5m,2.0m【解析】【详解】(1)设0.5s 滑块的速度为v 1,由v-t 图像可知:v 0=4m/s v 1=1m/s滑块的加速度 20116/v v a m s t-== 木板的加速度大小2122/v a m s t == 对滑块受力分析根据牛顿定律:μ1mg=ma 1所以μ1=0.6对木板受力分析:μ1mg-μ2∙2mg= ma 2解得 μ2=0.2(2)0.5s 滑块和木板达到共同速度v 1,假设不再发生相对滑动则2ma 3=μ2∙2mg 解得a 3=2m/s 2 因ma 3=f<μ1mg假设成立,即0.5s 后滑块和木板相对静止,滑块的总位移为s 1则20111122v v v s t a +=+ 解得s 1=1.5m由v-t 图像可知011222v v v L s t +∆==- 所以木板的长度 L=2.0m9.半径R =4500km 的某星球上有一倾角为30o 的固定斜面,一质量为1kg 的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行.如果物块和斜面间的摩擦因数3μ=,力F 随时间变化的规律如图所示(取沿斜面向上方向为正),2s 末物块速度恰好又为0,引力常量11226.6710/kg G N m -=⨯⋅.试求:(1)该星球的质量大约是多少?(2)要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要多大速度?(计算结果均保留二位有效数字)【答案】(1)242.410M kg =⨯ (2)6.0km/s【解析】【详解】(1)假设星球表面的重力加速度为g ,小物块在力F 1=20N 作用过程中,有:F 1-mg sin θ-μmg cos θ=ma 1小物块在力F 2=-4N 作用过程中,有:F 2+mg sin θ+μmg cos θ=ma 2且有1s 末速度v=a 1t 1=a 2t 2联立解得:g=8m/s 2.由G 2Mm R =mg 解得M=gR 2/G .代入数据得M=2.4×1024kg(2)要使抛出的物体不再落回到星球,物体的最小速度v 1要满足mg=m 21v R解得v 1=gR =6.0×103ms=6.0km/s即要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要6.0km/s 的速度.【点睛】本题是万有引力定律与牛顿定律的综合应用,重力加速度是联系这两个问题的桥梁;第二题,由重力或万有引力提供向心力,求出该星球的第一宇宙速度.10.如图所示,t =0时一质量m =1 kg 的滑块A 在大小为10 N 、方向与水平向右方向成θ=37°的恒力F 作用下由静止开始在粗糙水平地面上做匀加速直线运动,t 1=2 s 时撤去力F ; t =0时在A 右方x 0=7 m 处有一滑块B 正以v 0=7 m/s 的初速度水平向右运动.已知A 与地面间的动摩擦因数μ1=0.5,B 与地面间的动摩擦因数μ2=0.1,取重力加速度大小g =10 m/s 2,sin37°=0.6,cos37°=0.8.两滑块均视为质点,求:(1)两滑块在运动过程中速度相等的时刻;(2)两滑块间的最小距离.【答案】(1)3.75s (2)0.875m【解析】【分析】(1)根据牛顿第二定律先求解撤去外力F 前后时A 的加速度以及B 的加速度;根据撤去F 之前时速度相等和撤去F 之后时速度相等列式求解;(2)第一次共速时两物块距离最大,第二次共速时两物块距离最小;根据位移公式求解最小值.【详解】(1)对物块A ,由牛顿第二定律:()11cos sin F mg F ma θμθ--=;对物体A 撤去外力后:11mg ma μ='; 对物体B :22a g μ=A 撤去外力之前两物体速度相等时:102a t v a t =-,得t =1 sA 撤去外力之后两物体速度相等时:()111102a t a t t v a t --=-''',得t ′=3.75 s (2)第一次共速时两物块距离最大,第二次共速时两物块距离最小,则:△x =x 0+x 2-x 1;220212x v t a t =-'' ()()22111111111122x a t a t t t a t t '''=+--- 得△x =0.875 m。

高中物理必修一 第4章第4节 牛顿运动定律的应用练习)解析版)

高中物理必修一 第4章第4节 牛顿运动定律的应用练习)解析版)

第四章运动和力的关系4. 5 牛顿运动定律的应用一、单选题1、航母“辽宁舰”甲板长300m,起飞跑道长100m,目前顺利完成了舰载机“歼-15”起降飞行训练。

“歼-15”降落时着舰速度大小约为70m/s,飞机尾钩钩上阻拦索后,在甲板上滑行50m左右停下,(航母静止不动)假设阻拦索给飞机的阻力恒定,则飞行员所承受的水平加速度与重力加速度的比值约为( )A.2B.5C.10D.50【答案】B【解析】根据速度和位移关系可知:v2−v02=2ax,解得:a=0−7022×50=−49m/s2,故ag=499.8=5,故B正确,A、C、D错误;故选B。

2、交通事故的分析中,刹车线的长度是很重要的依据,刹车线是汽车刹车后,停止转动的轮胎在地面上发生滑动时留下的滑动痕迹.在某次交通事故中,汽车的刹车线长度是15m,假设汽车轮胎与地面间的动摩擦因数恒为0.75,该路段限速60km/h,取g=10m/s2,则汽车刹车前的速度以及是否超速的情况是( )A.速度为7.5m/s,超速B.速度为15m/s,不超速C.速度为15m/s,超速D.速度为7.5m/s,不超速【答案】B【解析】设汽车刹车后滑动时的加速度大小为a,由牛顿第二定律得:μmg=ma解得:a=μg=7.5m/s2由匀变速直线运动的速度位移关系式有:v02=2ax可得汽车刹车前的速度为:v0==15m/s=54km/h<60km/h所以不超速.A.速度为7.5m/s,超速,与结论不相符,选项A错误;B.速度为15m/s,不超速,与结论相符,选项B正确;C.速度为15m/s,超速,与结论不相符,选项C错误;D.速度为7.5m/s,不超速,与结论不相符,选项D错误;3、一物体放在光滑水平面上,初速为零,先对物体施加一向东的恒力F,历时1s,随即把此力改为向西,大小不变,历时1s;,接着又把此力改为向东,大小不变,历时1s;如此反复,只改变力的方向,共历时1min,之后撤去该力。

物理牛顿运动定律的应用题20套(带答案)及解析

物理牛顿运动定律的应用题20套(带答案)及解析

物理牛顿运动定律的应用题20套(带答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。

(3)木板的最小长度L 是0.7m 。

【解析】 【详解】(1)对AB 整体分析,由牛顿第二定律得:F 1=(M +m )a 1 对B ,由牛顿第二定律得:f =ma 1联立解得f =1N ,方向水平向右;(2)对AB 整体,由牛顿第二定律得:F m =(M +m )a 2对B ,有:μmg =ma 2联立解得:F m =10N(3)因为F 2>F m ,所以AB 间发生了相对滑动,木块B 加速度为:a 2=μg =2m/s 2。

木板A 加速度为a 3,则:F 2-μmg =Ma 3解得:a 3=3m/s 2。

1s 末A 的速度为:v A =a 3t =3m/s B 的速度为:v B =a 2t =2m/s 1s 末A 、B 相对位移为:△l 1=2A Bv v t -=0.5m 撤去F 2后,t ′s 后A 、B 共速 对A :-μmg =Ma 4可得:a 4=-0.5m/s 2。

共速时有:v A +a 4t ′=v B +a 2t ′可得:t ′=0.4s 撤去F 2后A 、B 相对位移为:△l 2='2A Bv v t -=0.2m 为使物块不从木板上滑下,木板的最小长度为:L =△l 1+△l 2=0.7m 。

物理牛顿运动定律的应用练习题20篇及解析

物理牛顿运动定律的应用练习题20篇及解析
由几何关系及速度分解有: 解得:
(2)滑块在 B 点时的速度大小为 滑块从 B 点运动到 C 点过程中,由牛顿第二定律有: 可得加速度 设滑块到达 C 点时的速度大小为 vC,有: 解得:
此过程所经历的时间为: 故滑块通过传送带的过程中,以地面为参考系,滑块的位移 x1=L=6m, 传送带的位移 x2=vt=4m; 传送带和滑块克服摩擦力所做的总功为: 代入数据解得: 【点睛】 此题需注意两点,(1)要利用滑块沿 BC 射入来求解滑块到 B 点的速度;(2)计算摩擦力对物 体做的功时要以地面为参考系来计算位移。
4.如图所示,长 L=10m 的水平传送带以速度 v=8m/s 匀速运动。质量分别为 2m、m 的小 物块 P、Q,用不可伸长的轻质细绳,通过固定光滑小环 C 相连。小物块 P 放在传送带的最 左端,恰好处于静止状态,C、P 间的细绳水平。现在 P 上固定一质量为 2m 的小物块(图中 未画出),整体将沿传送带运动,已知 Q、C 间距大于 10 m,重力加速度 g 取 10m/s2.求:
由牛顿第二定律得:F=m vB2 r
解得:F=5 2 N
由牛顿第三定律知小球对细管作用力大小为 5 2 N,
6.如图所示,在竖直平面内有一倾角 θ=37°的传送带 BC.已知传送带沿顺时针方向运行的 速度 v=4 m/s,B、C 两点的距离 L=6 m。一质量 m=0.2kg 的滑块(可视为质点)从传送带上 端 B 点的右上方比 B 点高 h=0. 45 m 处的 A 点水平抛出,恰好从 B 点沿 BC 方向滑人传送 带,滑块与传送带间的动摩擦因数 μ=0.5,取重力加速度 g=10m/s2 ,sin37°= 0.6,cos 37°=0.8。求:
(1)经历多长时间 A 相对地面速度减为零;

高考物理牛顿运动定律的应用题20套(带答案)及解析

高考物理牛顿运动定律的应用题20套(带答案)及解析

高考物理牛顿运动定律的应用题20套(带答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。

已知木板与物块间动摩擦因数μ1=3,木板与传送带间的动摩擦因数μ2=34,取g=10m/s 2,最大静摩擦力等于滑动摩擦力。

(1)若在恒力F 作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m ; (3)若F=10N ,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q 。

【答案】(1)木块处于静止状态;(2)9.0N (3)1s 12J 【解析】 【详解】(1)对小木块受力分析如图甲:木块重力沿斜面的分力:1sin 2mg mg α=斜面对木块的最大静摩擦力:13cos 4m f mg mg μα== 由于:sin m f mg α> 所以,小木块处于静止状态;(2)设小木块恰好不相对木板滑动的加速度为a ,小木块受力如图乙所示,则1cos sin mg mg ma μαα-=木板受力如图丙所示,则:()21sin cos cos m F Mg M m g mg Ma αμαμα--+-= 解得:()99.0N 8m F M m g =+=(3)因为F=10N>9N ,所以两者发生相对滑动对小木块有:21cos sin 2.5m/s a g g μαα=-=对长木棒受力如图丙所示()21sin cos cos F Mg M m g mg Ma αμαμα--+-'=解得24.5m/s a =' 由几何关系有:221122L a t at =-' 解得1t s =全过程中产生的热量有两处,则()2121231cos cos 2Q Q Q mgL M m g vt a t μαμα⎛⎫=+=+++ ⎪⎝⎭解得:12J Q =。

(物理)物理牛顿运动定律的应用练习题含答案

(物理)物理牛顿运动定律的应用练习题含答案

(物理)物理牛顿运动定律的应用练习题含答案一、高中物理精讲专题测试牛顿运动定律的应用1.传送带与平板紧靠在一起,且上表面在同一水平面内,两者长度分别为L 1=2.5 m 、L 2=2 m .传送带始终保持以速度v 匀速运动.现将一滑块(可视为质点)轻放到传送带的左端,然后平稳地滑上平板.已知:滑块与传送带间的动摩擦因数μ=0.5,滑块与平板、平板与支持面的动摩擦因数分别为μ1=0.3、μ2=0.1,滑块、平板的质量均为m =2 kg ,g 取10 m/s 2.求:(1)若滑块恰好不从平板上掉下,求滑块刚滑上平板时的速度大小; (2)若v =6 m/s ,求滑块离开平板时的速度大小. 【答案】(1)4/m s (2)3.5/m s 【解析】 【详解】(1)滑块在平板上做匀减速运动,加速度大小:a 1=1mgmμ=3 m/s 2由于μ1mg>2μ2mg故平板做匀加速运动,加速度大小:a 2=122mg mgmμμ-⨯=1 m/s 2设滑块滑至平板右端用时为t ,共同速度为v′,平板位移为x ,对滑块: v′=v -a 1t(1分)L 2+x =vt -12a 1t 2 对平板:v′=a 2tx =12a 2t 2 联立以上各式代入数据解得:t =1 s ,v =4 m/s. (2)滑块在传送带上的加速度:a 3=mgmμ=5 m/s 2若滑块在传送带上一直加速,则获得的速度为: v 1112a L 5 m/s<6 m/s 即滑块滑上平板的速度为5 m/s设滑块在平板上运动的时间为t′,离开平板时的速度为v″,平板位移为x′ 则v″=v 1-a 1t′ L 2+x′=v 1t′-12a 1t′2 x′=12a 2t′2联立以上各式代入数据解得:t′1=12s ,t′2=2 s(t′2>t ,不合题意,舍去) 将t′=12s 代入v″=v -a 1t′得:v″=3.5 m/s.2.如图所示,长木板B 质量为m 2=1.0 kg ,静止在粗糙的水平地面上,长木板左侧区域光滑.质量为m 3=1.0 kg 、可视为质点的物块C 放在长木板的最右端.质量m 1=0.5 kg 的物块A ,以速度v 0=9 m /s 与长木板发生正碰(时间极短),之后B 、C 发生相对运动.已知物块C 与长木板间的动摩擦因数μ1=0.1,长木板与地面间的动摩擦因数为μ2=0.2,最大静摩擦力等于滑动摩擦力,整个过程物块C 始终在长木板上,g 取10 m /s 2.(1)若A 、B 相撞后粘在一起,求碰撞过程损失的机械能. (2)若A 、B 发生弹性碰撞,求整个过程物块C 相对长木板的位移.【答案】(1)13.5J (2)2.67m 【解析】(1)若A 、B 相撞后粘在一起,由动量守恒定律得1012()m v m m v =+由能量守恒定律得 22101211()22E m v m m v ∆=-+ 解得损失的机械能 21201213.52()m m v E J m m ∆==+ (2)A 、B 发生完全弹性碰撞,由动量守恒定律得101122m v m v m v =+由机械能守恒定律得222101122111222m v m v m v =+ 联立解得 1210123/m m v v m s m m -==-+, 1201226/m v v m s m m ==+之后B 减速运动,C 加速运动,B 、C 达到共同速度之前,由牛顿运动定律, 对长木板: 2231321-()m m g m g m a μμ+-= 对物块C : 1332m g m a μ=设达到共同速度过程经历的时间为t ,212v a t a t += 这一过程的相对位移为22121211322x v t a t a t m ∆=+-= B 、C 达到共同速度之后,因12μμ<,二者各自减速至停下,由牛顿运动定律, 对长木板: 2231323-()m m g m g m a μμ++=对物块C :1334-m g m a μ=这一过程的相对位移为 2222243()()1223a t a t x m a a ∆=-=-- 整个过程物块与木板的相对位移为 1282.673x x x m m ∆=∆-∆== 点睛:此题是多研究对象、多过程问题,过程复杂,分析清楚物体的运动过程,应用牛顿第二定律、运动学公式、动量守恒定律、机械能守恒定律即可正确解题.3.如图所示,质量为m=2kg 的物块放在倾角为θ=37°的斜面体上,斜面质量为M=4kg ,地面光滑,现对斜面体施一水平推力F ,要使物块m 相对斜面静止,求:(取sin37°=0.6,cos37°=0.8,g=10m/s 2)(1)若斜面与物块间无摩擦力,求m 加速度的大小及m 受到支持力的大小; (2)若斜面与物块间的动摩擦因数为μ=0.2,已知物体所受滑动摩擦力与最大静摩擦力相等,求推力F 的取值.(此问结果小数点后保留一位) 【答案】(1)7.5m/s 2;25N (2)28.8N≤F≤67.2N 【解析】 【分析】(1)斜面M 、物块m 在水平推力作用下一起向左匀加速运动,物块m 的加速度水平向左,合力水平向左,分析物块m 的受力情况,由牛顿第二定律可求出加速度a 和支持力.(2)用极限法把F 推向两个极端来分析:当F 较小(趋近于0)时,由于μ<tanθ,因此物块将沿斜面加速下滑;若F 较大(足够大)时,物块将相对斜面向上滑,因此F 不能太小,也不能太大,根据牛顿第二定律,运用整体隔离法求出F 的取值范围. 【详解】(1)由受力分析得:物块受重力,斜面对物块的支持力,合外力水平向左.根据牛顿第二定律得: mgtanθ=ma得 a=gtanθ=10×tan37°=7.5m/s 2 m 受到支持力20N=25N cos cos37N mg F θ==︒(2)设物块处于相对斜面向下滑动的临界状态时的推力为F 1,此时物块的受力如下图所示:对物块分析,在水平方向有 Nsinθ﹣μNcosθ=ma 1 竖直方向有 Ncosθ+μNsinθ﹣mg=0 对整体有 F 1=(M+m )a 1 代入数值得a 1=4.8m/s 2 ,F 1=28.8N设物块处于相对斜面向上滑动的临界状态时的推力为F 2, 对物块分析,在水平方向有 N ′sin θ﹣μN′cos θ=ma 2 竖直方向有 N ′cos θ﹣μN ′sin θ﹣mg =0 对整体有 F 2=(M +m )a 2 代入数值得a 2=11.2m/s 2 ,F 2=67.2N综上所述可以知道推力F 的取值范围为:28.8N≤F ≤67.2N . 【点睛】解决本题的关键能够正确地受力分析,抓住临界状态,运用牛顿第二定律进行求解,注意整体法和隔离法的运用.4.如图所示,质量为M =10kg 的小车停放在光滑水平面上.在小车右端施加一个F =10N 的水平恒力.当小车向右运动的速度达到2.8m/s 时,在其右端轻轻放上一质量m =2.0kg 的小黑煤块(小黑煤块视为质点且初速度为零),煤块与小车间动摩擦因数μ=0.20.假定小车足够长.(1)求经过多长时间煤块与小车保持相对静止 (2) 求3s 内煤块前进的位移 (3)煤块最终在小车上留下的痕迹长度 【答案】(1) 2s (2) 8.4m (3) 2.8m 【解析】 【分析】分别对滑块和平板车进行受力分析,根据牛顿第二定律求出各自加速度,物块在小车上停止相对滑动时,速度相同,根据运动学基本公式即可以求出时间.通过运动学公式求出位移. 【详解】(1)根据牛顿第二定律,刚开始运动时对小黑煤块有:1N F ma μ=F N -mg =0代入数据解得:a 1=2m/s 2 刚开始运动时对小车有:2N F F Ma μ-=解得:a 2=0.6m/s 2经过时间t ,小黑煤块和车的速度相等,小黑煤块的速度为:v 1=a 1t车的速度为:v 2=v +a 2t解得:t =2s ;(2)在2s 内小黑煤块前进的位移为:21114m 2x a t ==2s 时的速度为:11122m/s 4m/s v a t ==⨯=此后加速运动的加速度为:235m/s 6F a M m ==+ 然后和小车共同运动t 2=1s 时间,此1s 时间内位移为:2212321 4.4m 2x v t a t =+=所以煤块的总位移为:128.4m x x +=(3)在2s 内小黑煤块前进的位移为:21114m 2x a t ==小车前进的位移为:21116.8m 2x v t a t '=+=两者的相对位移为:m 1 2.8x x x '∆=-=即煤块最终在小车上留下的痕迹长度2.8m . 【点睛】该题是相对运动的典型例题,要认真分析两个物体的受力情况,正确判断两物体的运动情况,再根据运动学基本公式求解.5.如图所示,一质量M =40kg 、长L =2.5m 的平板车静止在光滑的水平地面上. 一质量m =10kg 可视为质点的滑块,以v 0=5m/s 的初速度从左端滑上平板车,滑块与平板车间的动摩擦因数μ=0.4,取g=10m/s2.(1)分别求出滑块在平板车上滑行时,滑块与平板车的加速度大小;(2)计算说明滑块能否从平板车的右端滑出.【答案】(1),(2)恰好不会从平板车的右端滑出.【解析】根据牛顿第二定律得对滑块,有,解得对平板车,有,解得.设经过t时间滑块从平板车上滑出滑块的位移为:.平板车的位移为:.而且有解得:此时,所以,滑块到达小车的右端时与小车速度相等,恰好不会从平板车的右端滑出.答:滑块与平板车的加速度大小分别为和.滑块到达小车的右端时与小车速度相等,恰好不会从平板车的右端滑出.点睛:对滑块受力分析,由牛顿第二定律可求得滑块的加速度,同理可求得平板车的加速度;由位移关系可得出两物体位移间相差L时的表达式,则可解出经过的时间,由速度公式可求得两车的速度,则可判断能否滑出.6.图示为仓库中常用的皮带传输装置示意图,它由两台皮带传送机组成,一台水平传送,A、B 两端相距3m ,另一台倾斜,传送带与地面的倾角θ= 37°,C、D 两端相距4.45m,B、C相距很近。

高中物理牛顿运动定律的应用的技巧及练习题及练习题(含答案)及解析

高中物理牛顿运动定律的应用的技巧及练习题及练习题(含答案)及解析

高中物理牛顿运动定律的应用的技巧及练习题及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求:(1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8)(2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ;(3)滑块在传送带上滑行的整个过程中产生的热量.【答案】(1)7.5N (2)0.25(3)0.5J【解析】【分析】【详解】(1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ,代入数据得:F =7.5N.(2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒,故有:mgh =212mv 解得v 2gh ;滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动;根据动能定理有:μmgL =2201122mv mv 代入数据得:μ=0.25(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为:x=v 0t对物体有:v 0=v −atma=μmg滑块相对传送带滑动的位移为:△x=L−x相对滑动产生的热量为:Q=μmg△x代值解得:Q=0.5J【点睛】对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs,由运动学公式求得传送带通过的位移,即可求得相对位移.2.如图所示,质量为2kg的物体在与水平方向成37°角的斜向上的拉力F作用下由静止开始运动.已知力F的大小为5N,物体与地面之间的动摩擦因数μ为0.2,(sin37°=0.6,cos37°=0.8)求:(1)物体由静止开始运动后的加速度大小;(2)8s末物体的瞬时速度大小和8s时间内物体通过的位移大小;(3)若8s末撤掉拉力F,则物体还能前进多远?【答案】(1)a=0.3m/s2 (2)x=9.6m (3)x′=1.44m【解析】(1)物体的受力情况如图所示:根据牛顿第二定律,得: F cos37°-f=maF sin37°+F N=mg又f=μF N联立得:a=cos37(sin37) F mg Fmμ--o o代入解得a=0.3m/s2(2)8s末物体的瞬时速度大小v=at=0.3×8m/s=2.4m/s8s 时间内物体通过的位移大小219.6m 2x at == (3)8s 末撤去力F 后,物体做匀减速运动,根据牛顿第二定律得,物体加速度大小22.0m/s f mg a g m m μμ===='' 由v 2=2a ′x ′得:21.44m 2v x a =''= 【点睛】本题关键是多次根据牛顿第二定律列式求解加速度,然后根据运动学公式列式求解运动学参量.3.如图所示,水平面与倾角θ=37°的斜面在B 处平滑相连,水平面上A 、B 两点间距离s 0=8 m .质量m =1 kg 的物体(可视为质点)在F =6.5 N 的水平拉力作用下由A 点从静止开始运动,到达B 点时立即撤去F ,物体将沿粗糙斜面继续上滑(物体经过B 处时速率保持不变).已知物体与水平面及斜面间的动摩擦因数μ均为0.25.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)物体在水平面上运动的加速度大小a 1;(2)物体运动到B 处的速度大小v B ;(3)物体在斜面上运动的时间t .【答案】(1)4m/s 2 (2)8m/s (3)2.4s【解析】【分析】(1)在水平面上,根据牛顿第二定律求出加速度;(2)根据速度位移公式求出B 点的速度;(3)物体在斜面上先向上减速,再反向加速度,求出这两段的时间,即为物体在斜面上的总时间.【详解】(1)在水平面上,根据牛顿第二定律得:1F mg ma μ-=代及数据解得:214/a m s =(2)根据运动学公式:2102B v a s =代入数据解得:8/B v m s =(3)物体在斜面上向上做匀减速直线运动过程中,根据牛顿第二定律得:23737mgsin mgcos ma μ︒+︒=①物体沿斜面向上运动的时间:22B v t a = ② 物体沿斜面向上运动的最大位移为:222212s a t = ③因3737mgsin mgcos μ︒>︒,物体运动到斜面最高点后将沿斜面向下做初速度为0的匀加速直线运动根据牛顿第二定律得:33737mgsin mgcos ma μ︒-︒=④ 物体沿斜面下滑的时间为:223312s a t =⑤ 物体在斜面上运动的时间:23t t t =+⑥联立方程①-⑥代入数据解得:()2312 2.4t t t s s =+=+≈【点睛】本题主要考查了牛顿第二定律及运动学基本公式的直接应用,注意第二问求的是在斜面上的总时间,不是上滑时间.4.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。

高考物理牛顿运动定律的应用解题技巧分析及练习题(含答案)及解析

高考物理牛顿运动定律的应用解题技巧分析及练习题(含答案)及解析

高考物理牛顿运动定律的应用解题技巧分析及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆= 【解析】 【分析】物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:222011-22A Bv v v L a a =+ 又: 011-=A Bv v v a a 解得:a B =6m/s 2再代入F +μMg =ma B 得:F =1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N(2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v0-a A t=a B t 解得:t=0.25sA滑行距离 x A=v0t-12a A t2=1516mB滑行距离:x B=12a B t2=716m最大距离:Δx=x A-x B=0.5m【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.2.如图甲所示,有一倾角为37°的光滑固定斜面,斜面底端的水平面上放一质量为M的木板。

(物理)物理牛顿运动定律的应用练习题含答案及解析

(物理)物理牛顿运动定律的应用练习题含答案及解析

(物理)物理牛顿运动定律的应用练习题含答案及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,钉子A 、B 相距5l ,处于同一高度.细线的一端系有质量为M 的小物块,另一端绕过A 固定于B .质量为m 的小球固定在细线上C 点,B 、C 间的线长为3l .用手竖直向下拉住小球,使小球和物块都静止,此时BC 与水平方向的夹角为53°.松手后,小球运动到与A 、B 相同高度时的速度恰好为零,然后向下运动.忽略一切摩擦,重力加速度为g ,取sin53°=0.8,cos53°=0.6.求:(1)小球受到手的拉力大小F ; (2)物块和小球的质量之比M :m ;(3)小球向下运动到最低点时,物块M 所受的拉力大小T【答案】(1)53F Mg mg =- (2)65M m = (3)()85mMg T m M =+(4855T mg =或811T Mg =) 【解析】 【分析】 【详解】 (1)设小球受AC 、BC 的拉力分别为F 1、F 2 F 1sin53°=F 2cos53° F +mg =F 1cos53°+ F 2sin53°且F 1=Mg 解得53F Mg mg =- (2)小球运动到与A 、B 相同高度过程中 小球上升高度h 1=3l sin53°,物块下降高度h 2=2l 机械能守恒定律mgh 1=Mgh 2 解得65M m = (3)根据机械能守恒定律,小球回到起始点.设此时AC 方向的加速度大小为a ,重物受到的拉力为T牛顿运动定律Mg –T =Ma 小球受AC 的拉力T ′=T 牛顿运动定律T ′–mg cos53°=ma解得85mMg T m M =+()(4885511T mg T Mg ==或) 【点睛】本题考查力的平衡、机械能守恒定律和牛顿第二定律.解答第(1)时,要先受力分析,建立竖直方向和水平方向的直角坐标系,再根据力的平衡条件列式求解;解答第(2)时,根据初、末状态的特点和运动过程,应用机械能守恒定律求解,要注意利用几何关系求出小球上升的高度与物块下降的高度;解答第(3)时,要注意运动过程分析,弄清小球加速度和物块加速度之间的关系,因小球下落过程做的是圆周运动,当小球运动到最低点时速度刚好为零,所以小球沿AC 方向的加速度(切向加速度)与物块竖直向下加速度大小相等.2.如图所示,水平面与倾角θ=37°的斜面在B 处平滑相连,水平面上A 、B 两点间距离s 0=8 m .质量m =1 kg 的物体(可视为质点)在F =6.5 N 的水平拉力作用下由A 点从静止开始运动,到达B 点时立即撤去F ,物体将沿粗糙斜面继续上滑(物体经过B 处时速率保持不变).已知物体与水平面及斜面间的动摩擦因数μ均为0.25.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)物体在水平面上运动的加速度大小a 1; (2)物体运动到B 处的速度大小v B ; (3)物体在斜面上运动的时间t .【答案】(1)4m/s 2 (2)8m/s (3)2.4s 【解析】 【分析】(1)在水平面上,根据牛顿第二定律求出加速度;(2)根据速度位移公式求出B 点的速度;(3)物体在斜面上先向上减速,再反向加速度,求出这两段的时间,即为物体在斜面上的总时间. 【详解】(1)在水平面上,根据牛顿第二定律得:1F mg ma μ-=代及数据解得:214/a m s =(2)根据运动学公式:2102B v a s =代入数据解得:8/B v m s =(3)物体在斜面上向上做匀减速直线运动过程中,根据牛顿第二定律得:23737mgsin mgcos ma μ︒+︒=①物体沿斜面向上运动的时间:22Bv t a =② 物体沿斜面向上运动的最大位移为:222212s a t = ③因3737mgsin mgcos μ︒>︒,物体运动到斜面最高点后将沿斜面向下做初速度为0的匀加速直线运动根据牛顿第二定律得:33737mgsin mgcos ma μ︒-︒=④ 物体沿斜面下滑的时间为:223312s a t =⑤ 物体在斜面上运动的时间:23t t t =+⑥联立方程①-⑥代入数据解得:()2312 2.4t t t s s =+=+≈ 【点睛】本题主要考查了牛顿第二定律及运动学基本公式的直接应用,注意第二问求的是在斜面上的总时间,不是上滑时间.3.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。

高中物理牛顿运动定律练习题(含解析)

高中物理牛顿运动定律练习题(含解析)

高中物理牛顿运动定律练习题学校:___________姓名:___________班级:___________一、单选题1.关于电流,下列说法中正确的是( )A .电流跟通过截面的电荷量成正比,跟所用时间成反比B .单位时间内通过导体截面的电量越多,导体中的电流越大C .电流是一个矢量,其方向就是正电荷定向移动的方向D .国际单位制中,其单位“安培”是导出单位2.2000年国际乒联将兵乓球由小球改为大球,改变前直径是0.038m ,质量是2.50g ;改变后直径是0.040m ,质量是2.70g 。

对此,下列说法正确的是( )A .球的直径大了,所以惯性大了,球的运动状态更难改变B .球的质量大了,所以惯性大了,球的运动状态更难改变C .球的直径大了,所以惯性大了,球的运动状态更容易改变D .球的质量大了,所以惯性大了,球的运动状态更容易改变3.在物理学的探索和发现过程中常用一些方法来研究物理问题和物理过程,下列说法错误的是( )A .在伽利略研究运动和力的关系时,采用了实验和逻辑推理相结合的研究方法B .在推导匀变速直线运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,再把各小段位移相加,这里运用了理想化模型法C .在不需要考虑物体本身的大小和形状时用质点来代替物体,运用了理想化模型法D .比值定义包含“比较”的思想,例如,在电场强度的概念建立过程中,比较的是相同的电荷量的试探电荷受静电力的大小4.下列说法中正确的是( )A .物体做自由落体运动时没有惯性B .物体速度小时惯性小,速度大时惯性大C .汽车匀速行驶时没有惯性,刹车或启动时才有惯性D .惯性是物体本身的属性,无论物体处于何种运动状态,都具有惯性5.如图所示,质量为10kg 的物体A 拴在一个被水平拉伸的弹簧一端,弹簧的拉力为6N 时,物体处于静止状态。

若小车以20.8m /s 的加速度向右加速运动(取210m /s g ),则( )A .物体A 受到的弹簧拉力不变B .物体相对小车向左运动C .物体A 相对小车向右运动D .物体A 受到的摩擦力增大6.下列说法中错误的是( ) A .沿着一条直线且加速度存在且不变的运动,叫做匀变速直线运动B .为了探究弹簧弹性势能的表达式,把拉伸弹簧的过程分为很多小段,拉力在每一小段可以认为是恒力,用各小段做功的代数和代表弹力在整个过程所做的功,物理学中把这种研究方法叫做微元法C .从牛顿第一定律我们得知,物体都要保持它们原来的匀速直线运动或静止的状态,或者说,它们都具有抵抗运动状态变化的“本领”D .比值定义法是一种定义物理量的方法,即用两个已知物理量的比值表示一个新的物理量,如电容的定义式Q C U=,表示C 与Q 成正比,与U 成反比,这就是比值定义的特点7.一辆货车运载着圆柱形光滑的空油桶。

【物理】物理牛顿运动定律的应用练习题20篇含解析

【物理】物理牛顿运动定律的应用练习题20篇含解析

(1)求经过多长时间煤块与小车保持相对静止 (2) 求 3s 内煤块前进的位移 (3)煤块最终在小车上留下的痕迹长度 【答案】(1) 2s (2) 8.4m (3) 2.8m 【解析】
【分析】
分别对滑块和平板车进行受力分析,根据牛顿第二定律求出各自加速度,物块在小车上停
止相对滑动时,速度相同,根据运动学基本公式即可以求出时间.通过运动学公式求出位
k(X x) mg ma Fmax Mg Ma
以上各式代如数据联立解得
Fmax 168N
该开始向上拉时有最小拉力则
Fmin kX (M m)g (M m)a
解得
Fmin 72N
考点:牛顿第二定律的应用 点评:难题.本题难点在于确定最大拉力和最小拉力的位置以及在最大拉力位置时如何列 出牛顿第二定律的方程,此时的弹簧的压缩量也是一个难点.
(1)分别求出滑块在平板车上滑行时,滑块与平板车的加速度大小;
(2)计算说明滑块能否从平板车的右端滑出.
【答案】(1)

(2)恰好不会从平板车的右端滑出.
【解析】
根据牛顿第二定律得
对滑块,有

解得
对平板车,有

解得

设经过 t 时间滑块从平板车上滑出 滑块的位移为:

平板车的位移为:

而且有 解得: 此时, 所以,滑块到达小车的右端时与小车速度相等,恰好不会从平板车的右端滑出.
移.
【详解】
(1)根据牛顿第二定律,刚开始运动时对小黑煤块有:
代入数据解得:a1=2m/s2 刚开始运动时对小车有:
FN ma1
FN-mg=0
F FN Ma2
解得:a2=0.6m/s2 经过时间 t,小黑煤块和车的速度相等,小黑煤块的速度为:

高中物理牛顿运动定律的应用的技巧及练习题及练习题(含答案)及解析

高中物理牛顿运动定律的应用的技巧及练习题及练习题(含答案)及解析

高中物理牛顿运动定律的应用的技巧及练习题及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,质量分别为m A =2kg 、m B =4kg 的A 、B 小球由轻绳贯穿并挂于定滑轮两侧等高H =25m 处,两球同时由静止开始向下运动,已知两球与轻绳间的最大静摩擦力均等于其重力的0.5倍,且最大静摩擦力等于滑动摩擦力.两侧轻绳下端恰好触地,取g =10m/s 2,不计细绳与滑轮间的摩擦,求:,(1)A 、B 两球开始运动时的加速度. (2)A 、B 两球落地时的动能. (3)A 、B 两球损失的机械能总量.【答案】(1)25m/s A a =27.5m/s B a = (2)850J kB E = (3)250J【解析】 【详解】(1)由于是轻绳,所以A 、B 两球对细绳的摩擦力必须等大,又A 得质量小于B 的质量,所以两球由静止释放后A 与细绳间为滑动摩擦力,B 与细绳间为静摩擦力,经过受力分析可得:对A :A A A A m g f m a -= 对B :B B B B m g f m a -=A B f f = 0.5A A f m g =联立以上方程得:25m/s A a = 27.5m/s B a =(2)设A 球经t s 与细绳分离,此时,A 、B 下降的高度分别为h A 、h B ,速度分别为V A 、V B ,因为它们都做匀变速直线运动 则有:212A A h a t =212B B h a t = A B H h h =+ A A V a t = B B V a t = 联立得:2s t =,10m A h =,15m B h =,10m/s A V =,15m/s B V =A 、B 落地时的动能分别为kA E 、kB E ,由机械能守恒,则有:21()2kA A A A A E m v m g H h =+- 400J kA E =21()2kB B B B B E m v m g H h =+- 850J kB E = (3)两球损失的机械能总量为E ∆,()A B kA kB E m m gH E E ∆=+-- 代入以上数据得:250J E ∆= 【点睛】(1)轻质物体两端的力相同,判断A 、B 摩擦力的性质,再结合受力分析得到. (2)根据运动性质和动能定理可得到. (3)由能量守恒定律可求出.2.如图甲所示,倾角为θ=37°的传送带以恒定速率逆时针运行,现将一质量m =2 kg 的小物体轻轻放在传送带的A 端,物体相对地面的速度随时间变化的关系如图乙所示,2 s 末物体到达B 端,取沿传送带向下为正方向,g =10 m/s 2,sin 37°=0.6,求:(1)小物体在传送带A 、B 两端间运动的平均速度v ; (2)物体与传送带间的动摩擦因数μ; (3)2 s 内物体机械能的减少量ΔE . 【答案】(1)8 m/s (2)0.5 (3)48 J 【解析】 【详解】(1)由v-t 图象的面积规律可知传送带A 、B 间的距离L 即为v-t 图线与t 轴所围的面积,所以:112122v v v L t t t =++代入数值得:L =16m由平均速度的定义得:168/2L v m s t ===(2)由v-t 图象可知传送代运行速度为v 1=10m/s ,0-1s 内物体的加速度为:22110/10/1v a m s m s t V V === 则物体所受的合力为:F 合=ma 1=2×10N=20N .1-2s 内的加速度为:a2=21=2m/s2,根据牛顿第二定律得:a1=mgsin mgcosmθμθ+=gsinθ+μgcosθa2=mgsin mgcosmθμθ-=gsinθ-μgcosθ联立两式解得:μ=0.5,θ=37°.(3)0-1s内,物块的位移:x1=12a1t12=12×10×1m=5m传送带的位移为:x2=vt1=10×1m=10m 则相对位移的大小为:△x1=x2-x1=5m则1-2s内,物块的位移为:x3=vt2+12a2t22=10×1+12×2×1m=11m0-2s内物块向下的位移:L=x1+x3=5+11=16m 物块下降的高度:h=L sin37°=16×0.6=9.6m 物块机械能的变化量:△E=12m v B2−mgh=12×2×122−2×10×9.6=-48J负号表示机械能减小.3.如图所示,质量M=1kg的木板静置于倾角为37°的足够上的固定斜面上的固定斜面上的某个位置,质量m=1kg的可视为质点的小物块以初速度v0=5m/s从木板的下端冲上木板,同时在木板上端施加一个沿斜面向上的外力F=14N,使木板从静止开始运动,当小物块与木板共速时,撤去该外力,最终小物块从木板的下端滑出.已知小物块与木板之间的动摩擦因素为0.25,木板与斜面之间的动摩擦因数为0.5,g=10m/s2,sin37°=0.6,cos37°=0.8.(1)物块和木板共速前,物块和木板的加速度各为多少;(2)木板的长度至少为多少;(3)物块在木板上运动的总时间是多少.【答案】(1)a 1=8m/s 2,方向沿斜面向下, a 2=2m/s 2,方向沿斜面向上 (2)min 61m 48L =(3)5(8t = 【解析】试题分析:(1)物块与木板共速前,对物块分析:11sin cos mg mg ma θμθ+= 得:a 1=8m/s 2,方向沿斜面向下,减速上滑对木板分析:122cos sin ()cos F mg Mg m M g Ma μθθμθ+--+= 得:a 2=2m/s 2,方向沿斜面向上,加速上滑 (2)共速时:021=v v a t -共 得:10.5s t =,=1m/s v 共 共速前的相对位移:22101112111 1.25m 22x v t a t a t ∆=--= 撤掉F 后:物块相对于木板上滑,加速度仍未a 1=8m/s 2,减速上滑而木板:212sin ()cos cos Mg M m g mg Ma θμθμθ++-=' 则:2212m/s a =',方向沿斜面向下,减速上滑 由于:12sin cos ()cos Mg mg M m g θμθμθ+<+ 木板停止后,物块在木板上滑动时,木板就不再运动 过21s 12t =,木板停止,过21s 8t '=,物块减速到0 此过程,相对位移:21m 48x ∆=木板至少长度min 1261m 48L x x =∆+∆=(3)物块在木板上下滑,木板不动物块加速度211sin cos 4m/s a g g θμθ=-=' 2min 1312L a t '=得:3t =在木板上的总时间:1235(8t t t t =++=' 考点:考查牛顿第二定律、匀变速直线运动.【名师点睛】动力学的解题思路:已知受力研究运动;已知运动研究受力情况.4.传送带以恒定速率v=4m/s顺时针运行,传送带与水平面的夹角θ=37°.现将质量m=1 kg的小物块轻放在其底端(小物品可看成质点),平台上的人通过一根轻绳用恒力F=10 N拉小物块,经过一段时间物块被拉到离地高为H=1.8m的平台上,如图所示.已知物块与传送带之间的动摩擦因数μ=0.5,设最大静摩擦力等于滑动摩擦力,g取10m/s2,已知sin37°=0.6,cos37°=0.8.求:(1)物块在传送带上运动的时间;(2)若在物块与传送带速度相等的瞬间撤去恒力F,则物块还需多少时间才能脱离传送带?【答案】(1)1s(2)【解析】【详解】(1)物体在达到与传送带速度v=4 m/s相等前,做匀加速直线运动,有:F+μmgcos37°-mgsin37°=ma1解得a1=8 m/s2由v=a1t1得t1=0.5s位移x1=a1t12=1m物体与传送带达到共同速度后,因F-mgsinθ=4 N=μmgcos37°故物体在静摩擦力作用下随传送带一起匀速上升.位移x2=-x1=2mt2==0.5s总时间为t=t1+t2=1s(2)在物体与传送带达到同速瞬间撤去恒力F,因为μ<tan37°,故有:mgsin37°-μmgcos37°=ma2解得:a2=2m/s2假设物体能向上匀减速运动到速度为零,则通过的位移为x==4 m>x2故物体向上匀减速运动达到速度为零前已经滑上平台.故x2=vt3-a2t32解得t3=(2-)s或t3=(2+)s(舍去)【点睛】本题关键是受力分析后判断物体的运动状态,再根据牛顿第二定律求解出加速度,然后根据运动学公式列式求解时间.5.如图所示,绷紧的传送带始终保持着大小为v=4m/s的速度水平匀速运动一质量m=1kg的小物块无初速地放到皮带A处,物块与皮带间的滑动动摩擦因数μ=0.2,A、B 之间距离s=6m,求物块(1)从A运动到B的过程中摩擦力对物块做多少功?(g=10m/s2)(2)A到B的过程中摩擦力的功率是多少?【答案】(1)8J;(2)3.2W;【解析】(1)小物块开始做匀加速直线运动过程:加速度为:.物块速度达到与传送带相同时,通过的位移为:,说明此时物块还没有到达B点,此后物块做匀速直线运动,不受摩擦力.由动能定理得,摩擦力对物块所做的功为:(2)匀加速运动的时间,匀速运动的时间,摩擦力的功率6.高台滑雪以其惊险刺激而闻名,运动员在空中的飞跃姿势具有很强的观赏性。

高考物理牛顿运动定律的应用题20套(带答案)含解析

高考物理牛顿运动定律的应用题20套(带答案)含解析

高考物理牛顿运动定律的应用题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律的应用1.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆= 【解析】 【分析】物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:222011-22A Bv v v L a a =+ 又: 011-=A Bv v v a a 解得:a B =6m/s 2再代入F +μMg =ma B 得:F =1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N(2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t 解得:t =0.25s A 滑行距离 x A =v 0t -12a A t 2=1516m B 滑行距离:x B =12a B t 2=716m 最大距离:Δx =x A -x B =0.5m 【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.2.如图所示,一速度v =4m/s 顺时针匀速转动的水平传送带与倾角θ=37°的粗糙足长斜面平滑连接,一质量m =2Kg 的可视为质点的物块,与斜面间的动摩擦因数为μ1=0.5,与传送带间的动摩擦因数为µ2=0.4,小物块以初速度v 0=10m/s 从斜面底端上滑求:(g =10m/s 2) (1)小物块以初速度v 0沿斜面上滑的最大距离?(2)要使物块由斜面下滑到传送带上时不会从左端滑下,传送带至少多长?(3)若物块不从传送带左端滑下,物块从离传送带右侧最远点到再次上滑到斜面最高点所需时间?【答案】(1) x 1=5m (2) L =2.5m (3)t =1.525s【解析】(1)小物块以初速度v 0沿斜面上滑时,以小物块为研究对象,由牛顿第二定律得: 1sin cos mg mg ma θμθ+=,解得2110/a m s =设小物块沿沿斜面上滑距离为x 1,则211020a x v -=-,解得15x m =(2)物块沿斜面下滑时以小物块为研究对象,由牛顿第二定律得:2sin cos mg mg ma θμθ-=,解得: 222/a m s =设小物块下滑至斜面底端时的速度为v 1,则21212v a x =解得: 125/v m s =设小物块在传送带上滑动时的加速度为a 3, 由牛顿第二定律得: 23µmg ma =,解得: 234/a m s =设物块在传送带向左滑动的最大距离为L ,则23120a L v -=-,解得: 2.5L m = 传送带至少2.5m 物块不会由传送带左端滑下(3)设物块从传送带左端向右加速运动到和传送带共速运动的距离为x 2,则222ax v =,解得: 22 2.5x m m =<,故小物体先加速再随传送带做匀速运动。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(物理)物理牛顿运动定律的应用练习题及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,钉子A 、B 相距5l ,处于同一高度.细线的一端系有质量为M 的小物块,另一端绕过A 固定于B .质量为m 的小球固定在细线上C 点,B 、C 间的线长为3l .用手竖直向下拉住小球,使小球和物块都静止,此时BC 与水平方向的夹角为53°.松手后,小球运动到与A 、B 相同高度时的速度恰好为零,然后向下运动.忽略一切摩擦,重力加速度为g ,取sin53°=0.8,cos53°=0.6.求:(1)小球受到手的拉力大小F ; (2)物块和小球的质量之比M :m ;(3)小球向下运动到最低点时,物块M 所受的拉力大小T【答案】(1)53F Mg mg =- (2)65M m = (3)()85mMg T m M =+(4855T mg =或811T Mg =) 【解析】 【分析】 【详解】 (1)设小球受AC 、BC 的拉力分别为F 1、F 2 F 1sin53°=F 2cos53° F +mg =F 1cos53°+ F 2sin53°且F 1=Mg 解得53F Mg mg =- (2)小球运动到与A 、B 相同高度过程中 小球上升高度h 1=3l sin53°,物块下降高度h 2=2l 机械能守恒定律mgh 1=Mgh 2 解得65M m = (3)根据机械能守恒定律,小球回到起始点.设此时AC 方向的加速度大小为a ,重物受到的拉力为T牛顿运动定律Mg –T =Ma 小球受AC 的拉力T ′=T 牛顿运动定律T ′–mg cos53°=ma解得85mMg T m M =+()(4885511T mg T Mg ==或) 【点睛】本题考查力的平衡、机械能守恒定律和牛顿第二定律.解答第(1)时,要先受力分析,建立竖直方向和水平方向的直角坐标系,再根据力的平衡条件列式求解;解答第(2)时,根据初、末状态的特点和运动过程,应用机械能守恒定律求解,要注意利用几何关系求出小球上升的高度与物块下降的高度;解答第(3)时,要注意运动过程分析,弄清小球加速度和物块加速度之间的关系,因小球下落过程做的是圆周运动,当小球运动到最低点时速度刚好为零,所以小球沿AC 方向的加速度(切向加速度)与物块竖直向下加速度大小相等.2.如图所示,质量为2kg 的物体在与水平方向成37°角的斜向上的拉力F 作用下由静止开始运动.已知力F 的大小为5N ,物体与地面之间的动摩擦因数μ为0.2,(sin37°=0.6,cos37°=0.8)求:(1)物体由静止开始运动后的加速度大小;(2)8s 末物体的瞬时速度大小和8s 时间内物体通过的位移大小; (3)若8s 末撤掉拉力F ,则物体还能前进多远? 【答案】(1)a =0.3m/s 2 (2)x =9.6m (3)x ′=1.44m 【解析】(1)物体的受力情况如图所示:根据牛顿第二定律,得: F cos37°-f =ma F sin37°+F N =mg 又f =μF N联立得:a =cos37(sin 37)F mg F mμ--o o代入解得a =0.3m/s 2(2)8s 末物体的瞬时速度大小v =at =0.3×8m/s=2.4m/s 8s 时间内物体通过的位移大小219.6m 2x at == (3)8s 末撤去力F 后,物体做匀减速运动, 根据牛顿第二定律得,物体加速度大小22.0m/s f mg a g m mμμ====''由v2=2a′x′得:21.44m2vxa=''=【点睛】本题关键是多次根据牛顿第二定律列式求解加速度,然后根据运动学公式列式求解运动学参量.3.质量为m=0.5 kg、长L=1 m的平板车B静止在光滑水平面上,某时刻质量M=l kg的物体A(视为质点)以v0=4 m/s向右的初速度滑上平板车B的上表面,在A滑上B的同时,给B施加一个水平向右的拉力.已知A与B之间的动摩擦因数μ=0.2,重力加速度g取10 m/s2.试求:(1)如果要使A不至于从B上滑落,拉力F大小应满足的条件;(2)若F=5 N,物体A在平板车上运动时相对平板车滑行的最大距离.【答案】(1)1N3NF≤≤ (2)0.5mx∆=【解析】【分析】物体A不滑落的临界条件是A到达B的右端时,A、B具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A、B速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F的大小范围.【详解】(1)物体A不滑落的临界条件是A到达B的右端时,A、B具有共同的速度v1,则:222011-22A Bv v vLa a=+又:011-=A Bv v va a解得:a B=6m/s2再代入F+μMg=ma B得:F=1N若F<1N,则A滑到B的右端时,速度仍大于B的速度,于是将从B上滑落,所以F必须大于等于1N当F较大时,在A到达B的右端之前,就与B具有相同的速度,之后,A必须相对B静止,才不会从B的左端滑落,则由牛顿第二定律得:对整体:F=(m+M)a对物体A:μMg=Ma解得:F=3N若F大于3N,A就会相对B向左滑下综上所述,力F应满足的条件是1N≤F≤3N(2)物体A滑上平板车B以后,做匀减速运动,由牛顿第二定律得:μMg=Ma A解得:a A=μg=2m/s2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t 解得:t =0.25s A 滑行距离 x A =v 0t -12a A t 2=1516m B 滑行距离:x B =12a B t 2=716m 最大距离:Δx =x A -x B =0.5m 【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.4.如图甲所示,质量为1kg m =的物体置于倾角为37θ︒=的固定且足够长的斜面上,对物体施以平行于斜面向上的拉力F ,10.5s t = 时撤去拉力,物体速度与时间v-t 的部分图象如图乙所示。

(210/,sin 370.6,cos370.8g m s ︒︒===)问: (1)物体与斜面间的动摩擦因数μ为多少? (2)拉力F 的大小为多少?【答案】(1)0.5 (2)30N 【解析】 【详解】(1)由速度时间图象得:物体向上匀减速时加速度大小:22110-5m/s 10m/s 0.5a == 根据牛顿第二定律得:1sin cos mg mg ma θμθ+=代入数据解得:0.5μ=(2)由速度时间图象得:物体向上匀加速时:2220m /s va t∆==∆根据牛顿第二定律得:2sin cos F mg mg ma θμθ--=代入数据解得:30N F =5.如图所示,质量m 1=0.3 kg 的小车静止在光滑的水平面上,车长L =1.5 m ,现有质量m 2=0.2 kg 可视为质点的物块,以水平向右的速度v 0=2 m/s 从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数μ=0.5,取g =10 m/s 2,求:(1)物块与小车共同速度; (2)物块在车面上滑行的时间t ; (3)小车运动的位移x ;(4)要使物块不从小车右端滑出,物块滑上小车左端的速度v ′0不超过多少? 【答案】(1)0.8 m/s (2)0.24 s (3)0.096 m (4)5 m/s 【解析】 【详解】(1、2)根据牛顿第二定律得,物块的加速度大小为:a 2=μg =0.5×10m/s 2=5m/s 2, 小车的加速度大小为:222110.5210m/s m/s 0.33m ga m μ⨯=== 根据v =v 0-a 2t =a 1t得则速度相等需经历的时间为:0120.24v t s a a =+=; v =0.8m/s (3)小车运动的位移22111100.24m 0.096m 223x a t ==⨯⨯= (4)物块不从小车右端滑出的临界条件为物块滑到小车右端时恰好两者达到共同速度,设此速度为v ,由水平方向动量守恒得:m 2 v 0′=(m 1+m 2)v根据能量守恒得:μm 2gL =12m 2v 0′2−12(m 1+m 2)v 2 代入数据,联立解得v 0′=5m/s 。

6.如图所示,质量为m=1kg 的滑块,在水平力F 作用下静止在倾角为θ=30°的光滑斜面上,斜面的末端处与水平传送带相接(滑块经过此位置滑上皮带时无能量损失),传送带的运行速度为v 0=3m/s ,长为L=1.4m ,今将水平力撤去,当滑块滑到传送带右端C 时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数μ=0.25,g=10m/s 2.求(1)水平作用力F的大小;(2)滑块开始下滑的高度h;(3)在第(2)问中若滑块滑上传送带时速度大于3m/s,求滑块在传送带上滑行的整个过程中产生的热量Q.【答案】(1)(2)0.1 m或0.8 m (3)0.5 J【解析】【分析】【详解】解:(1)滑块受到水平推力F、重力mg和支持力F N处于平衡,如图所示:水平推力①解得:②(2)设滑块从高为h处下滑,到达斜面底端速度为v下滑过程由机械能守恒有:,解得:③若滑块冲上传送带时的速度小于传送带速度,则滑块在带上由于受到向右的滑动摩擦力而做匀加速运动;根据动能定理有:④解得:⑤若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受到向左的滑动摩擦力而做匀减速运动;根据动能定理有:⑥解得:⑦(3)设滑块在传送带上运动的时间为t,则t时间内传送带的位移:s=v0t由机械能守恒有:⑧⑨滑块相对传送带滑动的位移⑩ 相对滑动生成的热量⑪⑫7.风洞实验室中可产生水平方向的,大小可调节的风力.现将一套有球的细直杆放入风洞实验室.小球孔径略大于细杆直径.如图所示.(1)当杆水平固定时,调节风力的大小,使小球在杆上做匀速运动,这时小球所受的风力为小球所受重力的0.5倍,求小球与杆间的动摩擦因数.(2)保持小球所受风力不变,使杆与水平方向夹角为37°并固定,则小球从静止出发在细杆上滑下距离s=3.75m 所需时间为多少?(sin37°=0.6,cos37°=0.8) 【答案】(1)0.5(2)1s 【解析】 【分析】 【详解】(1)小球做匀速直线运动,由平衡条件得:0.5mg=μmg ,则动摩擦因数μ=0.5; (2)以小球为研究对象,在垂直于杆方向上,由平衡条件得:000.5sin 37cos37N F mg mg +=在平行于杆方向上,由牛顿第二定律得:000.5cos37sin 37N mg mg F ma μ+-=代入数据解得:a=7.5m/s 2小球做初速度为零的匀加速直线运动,由位于公式得:s=12at 2 运动时间为22 3.7517.5s t s s a ⨯===; 【点睛】此题是牛顿第二定律的应用问题,对小球进行受力分析是正确解题的前提与关键,应用平衡条件用正交分解法列出方程、结合运动学公式即可正确解题.8.水平的浅色长传送带上放置一质量为0.5kg 的煤块.煤块与传送带之间的动摩擦因数μ=0.2.初始时,传送带与煤块都是静止的.现让传送带以恒定的加速度a 0=3m/s 2开始运动,其速度达到v=6m/s 后,便以此速度做匀速运动.经过一段时间,煤块在传送带上留下一段黑色痕迹后,煤块相对传送带不再滑动.210/g m s =,求: (1)求煤块所受滑动摩擦力的大小. (2)求黑色痕迹的长度. (3)摩擦力对传送带做的功 【答案】(1)1N (2)3m (3)12J 【解析】 【分析】传送带与煤块均做匀加速直线运动,黑色痕迹为相对滑动形成的;分别求出有相对运动时,煤块及传送带的位移则可以求出相对位移.根据能量关系求解摩擦力对传送带做的功 【详解】(1)煤块所受滑动摩擦力的大小 f=μmg=0.2×5N=1N .(2)煤块运动的加速度为a=μg=2m/s 2;煤块与传送带相对静止所用时间632v t s a ===, 通过的位移6392x vt m m =⨯==;在煤块与传送带相对滑动的时间内:传送带由静止加速到6m/s 所用时间10623v t s s a =V == 在相对滑动过程中,传送带匀速运动的时间t 2=t-t 1=1s ,则传送带的位移x ′=2v t 1+vt 2=62×2+6×1m =12m ,则相对滑动的位移△x=x′-x=12-9m=3m .由于煤块与传送带之间的发生相对滑动产生黑色痕迹,黑色痕迹即为相对滑动的位移大小,即黑色痕迹的长度3m .(3)此过程中摩擦力对传送带做功:21122W mv mg x J μ=+∆=9.某粮仓为了把大米送到一定高度处的储藏间,铺设如图所示的传输装置,其中 AB 为长度 L1=4m 的水平传送带,CD 为长度 L2=9m 、倾角θ=37°的倾斜传送带,两传送带的运行速度可调。

相关文档
最新文档