土力学 地基土的附加应力
地基附加应力的计算
可以求得a/z与竖向附加应 可以求得a/z与竖向附加应
α0 a/z
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0.268
0.400
0.518
0.637
0.766
0.918
1.110
1.387
1.908
∞
纽马克感应图由9个同心圆和20条通过圆心均匀分布的放射线 纽马克感应图由9个同心圆和20条通过圆心均匀分布的放射线 组成,如下图所示。 根据上表中的数据,这9 根据上表中的数据,这9个 同心圆的半径a 同心圆的半径ai(i=1,2,3 …,9)分别为:a1=0.268z, ,9)分别为:a =0.268z, a2=0.400z,a3=0.518z… =0.400z, =0.518z… 则由第一个圆(半径为a 则由第一个圆(半径为a1) 上的均布荷载在圆心O点下
或查表3 或查表3-2可得αgi,则第i单元上的集中力Qi在M点引起的竖 可得α ,则第i单元上的集中力Q 向附加应力为
根据叠加原理,可得M点总的竖向附加应力为
等代荷载法是一种近似计算方法,其计算精度取决于单元划 分的多少。单元划分的数目越多,每个单元面积就越小,其 计算精度就越高。 利用此方法计算时,可根据具体工程问题编写计算机程序, 利用计算机计算以提高计算精度。 另外,等代荷载法虽然是一种近似计算方法,但其适用范围 十分广泛,对于任意面积、任意分布荷载均适用。
令
称为均布圆形荷载中心点下 的竖向附加应力系数
则σz=α0p0 式中:z——计算点至地表的垂直深度; 式中:z——计算点至地表的垂直深度; α ——圆形基底的半径。 ——圆形基底的半径。
土力学与地基基础(土中的应力计算)
矩形基础:A=b× 矩形基础:A=b×L
d1 + d2 Gk =A
Gk = γ G Ad
γG=20kN/m3
2、偏心荷载下的基底压力 单向偏心荷载下的矩形基础如图。 单向偏心荷载下的矩形基础如图。 设计时, 设计时,通常基底长边方向取与偏心 方向一致, 方向一致,最大压力值与最小压力值 按材料力学短柱偏心受压公式计算: 按材料力学短柱偏心受压公式计算:
p0 = pk − σ c
四、地基附加应力
地基附加应力是指建筑物荷载在土体中引起的附加于原有应力之上的应力。 地基附加应力是指建筑物荷载在土体中引起的附加于原有应力之上的应力。
(一)竖向集中应力作用下的地基附加应力
1、布辛奈斯克解 、
3p z3 3 1 p σz = = 2π ( r 2 + z 2 )5 / 2 2π ( r / z )2 + 1 5 / 2 z 2
第三章 地基土中的应力计算
一、概述 地基土中的应力: 地基土中的应力: 1、自重应力 2、附加应力
建筑物修建以前, 建筑物修建以前,地基中由于土 体本身的有效重量所产生的应力。 体本身的有效重量所产生的应力。 建筑物修建以后,建筑物重量等 建筑物修建以后, 外荷载在地基中引起的应力, 外荷载在地基中引起的应力,所 谓的“附加” 谓的“附加”是指在原来自重应 力基础上增加的压力。 力基础上增加的压力。
γ
γ′
均质地 基
γ1(γ
1
< γ2 )
γ2 γ′ 2
成层地基
(二)水平向自重应力
σ cx = σ cy = K 0σ cz
式中: 土的侧压力系数或静止土压力系数, 式中:K0——土的侧压力系数或静止土压力系数,经验值可查课本 土的侧压力系数或静止土压力系数 表3.1
土力学---附加应力
,
z) B
F (m, n)
条形面积竖直三角形荷载作用时的 应力分布系数
根据 x , z BB
查表4-15
23
§3 土体中的应力计算 §3.4 地基中附加应力的计算
例题:某条形基础上作用着荷载F=300KN,基础宽度 b=2m,基础埋深1.2m,γ=19KN/m3 , M=42KN.m,求基础 中点下的附加应力。
24
25
26
§3 土体中的应力计算 §3.4 地基中附加应力的计算
小结
z
k
P z2
——竖直集中荷载作用下
z ks p0 ——矩形面积竖直均布荷载作用角点下
z kt pt ——矩形面积三角形分布荷载作用角点下
z
k
s z
p0
——条形面积竖直均布荷载作用时
z
k
t z
pt
——条形面积三角形分布荷载作用时
3. 各向异性地基
Ex与Ez不相等,泊松比相等时
•当Ex/Ez<1 时,应力集中——Ex相对较小,不利于应力扩散 •当Ex/Ez>1 时,应力扩散——Ex相对较大,有利于应力扩散
29
3.5饱和土的有效应力原理
孔隙流体
三相体系
土= 固体颗粒骨架 + 孔隙水 + 孔隙气体
受外荷载作用
总应力由土骨架和孔隙流体共同承受 对所受总应力,骨架和孔隙流体如何分担? 它们如何传递和相互转化? 它们对土的变形和强度有何影响?
32
饱和土的有效应力原理
(1)饱和土体内任一平面上受到的总应力可分为两部分σ’ 和u,并且
'u
通常,
总应力已知或易知 'u
土力学完整课件土中应力计算
积分,得
z t p
Y
t f (m l / b, n z / b)
三角分布矩形荷载角点下的竖向附加应 力系数.可查表. 注意l—荷载不变化边 的长度; b—荷载变化边的长度.
水平均布荷载
q
z
x z
2
2 pz 3
2
2
(二)条形荷载下的附加应力计算 1.均布条形荷载下的附加应力 p O x b/2 b/2 z x M z 2. 三角形荷载的附加应力 pt O x b z x M z
z u p
z x u f u m , n b b
l
pmax pmin
基础底面的抵 抗矩;矩形截 面W=(bl2)/6
讨论:
N 6e pmax 1 bl l min
当e<l/6时,pmax,pmin>0,基底压力呈梯形分布 当e=l/6时,pmax>0,pmin=0,基底压力呈三角形分布 当e>l/6时,pmax>0,pmin<0,基底出现拉应力,基底压力重分布
F=400kN/m 0.1m M=20kN •m/m
3.基底中点下附加压 力计算
1.5m 2m 112.6kPa
0 =18.5kN/m3
292.0kPa
179.4kPa
112.6kPa
分析步骤Ⅳ:
F=400kN/m 0.1m M=20kN •m/m
1.5m
1m 1m 2m 2m 2m
0 =18.5kN/m3
3. r 0 ,随 z 从 0 开始增大, z 先随之增大,后随之减小;
地基中的应力计算
地基中的应力计算地基是地下工程中最基本的构造部分,承受着上部结构的重量和荷载,承担着巨大的压力作用。
在地基设计中,应力计算是非常重要的一部分,它能够提供地基承载力和安全性的评估。
本文将介绍地基中应力计算的方法和计算公式。
首先,需要了解地基中的应力是如何形成的。
地基承受的主要应力有自重应力、活载荷载应力和附加应力。
自重应力是由于地基材料本身的重量所引起的应力,可以通过材料的密度和重力加速度计算得到。
活载荷载应力是由上部结构的荷载所引起的应力,可以根据上部结构的设计荷载计算得到。
附加应力是由于地基中存在的其他因素所引起的应力,比如建筑物的自身形变引起的应力。
接下来,我们介绍如何计算地基中的应力。
地基中的应力计算可以根据不同的地基类型和荷载情况采用不同的方法。
下面以均质土壤的地基为例,介绍几种常用的应力计算方法。
1.利用铁索计算应力:铁索是一种常用的应力计算工具,可以通过测量铁索的伸长量来计算地基中的应力。
首先,在地基中铺设一根长度合适的铁索,然后测量并记录铁索的伸长量。
根据该伸长量和铁索的初始长度,可以通过应力-应变关系计算得到地基中的应力。
2.利用试孔计算应力:试孔是另一种用于计算地基中应力的方法。
首先,在地基中进行试孔,并记录试孔的深度和直径。
然后,根据试孔的直径和土壤的剪切强度,可以计算得到地基中的应力分布情况。
3.利用数值模拟计算应力:数值模拟是一种常用的计算地基应力的方法,它可以通过建立地基的有限元模型来模拟地基的应力分布情况。
首先,需要根据地基的实际情况建立有限元模型,然后通过数值计算方法求解得到地基中的应力。
综上所述,地基中的应力计算是地基设计的重要环节,可以通过铁索、试孔和数值模拟等多种方法进行计算。
在进行应力计算时,需要考虑地基的类型、荷载情况和材料特性等因素,确保计算结果的准确性和可靠性。
地基中的应力计算对于确保地基的稳定性和安全性具有重要意义,是地基设计中不可或缺的一环。
土力学-地基中的应力计算概述
基础传至地 基的荷载
地基
基础 埋深
(1)集中荷载作用下的解 ( Boussinesq 解,1885 )
P
x
r
y
x
y
R
z
z
• 位移解
ux4PG[R xz3(12)R(Rxz)]
uz
4PG[R z23
(1)1]
R
Valentin Joseph Boussinesq (1842-1929)
法国著名物理家和数学 家,对数学物理、流体力学 和固体力学都有贡献。
a
a
a
b
角点
b
p
b
中心点
1
2
34
任意点
z
z
z
k(a , b
z) b
p
z
z
z
4k(a, b
2z) b
p
z z
k k1 k2 k3 k4
z k p
3)矩形线性荷载 (角点下)
角点
b
角点
p
z
a
z
p
z
k(b , a
z) a
p
查表计算
3. 应力计算小结
(1)自重应力及均匀满布荷载作用下的附加应力,可利用平衡方程 等通过简单方法获得。
(2)线状荷载作用下的应力(Flamant解)
p
1)属平面应变问题,即:
a. 应变 y 0 。
dP pdy
b. 位移、应力等量仅与坐标
x、z有关。
x
2)利用Boussinesq解,通过 沿荷载分布线积分得到应力。
x - dx=2p(x2x2zz2)2
y
xz
2p
土力学---附加应力
h
i
d
g
a
f
例题4-6 P72 例题
b
c
e
9
10
11
12
13
14
§3 土体中的应力计算
σz = ∫
B L 0
§3.4 地基中附加应力的计算
y
dP
四. 矩形面积三角形分布荷载作用下的附加应力计算
0
∫ dσ
P σz = k ⋅ 2 z
集中力作用下的 应力分布系数
查表3 查表3-1
4
§3 土体中的应力计算
P σz = k ⋅ 2 z
特点
§3.4 地基中附加应力的计算
一. 竖直集中力作用下的附加应力计算-布辛内斯克课题
3 1 k= 2π [1+ (r / z)2 ]5/ 2
1.P作用线上, 1.P作用线上,r=0,z=0, σz→∞,z→∞,σz→0 , , 2.在某一水平面上 在某一水平面上, 最大; r↑, 减小, 2.在某一水平面上,r=0, σ 最大; r↑,a减小,σz减小
22
八. 条形面积三角形分布荷载作用下的附加应力计算
σ z = k pt
t z
x z k = F(B, x, z) = F( , ) = F(m, n) B B
t z
条形面积竖直三角形荷载作用时的 应力分布系数
P84 例题 例题3.3
x z 根据 , B B
查表4-15 查表
23
§3 土体中的应力计算
竖直线布荷载
宽度积分
条形面积竖直均布荷载
圆形面积竖直均布荷载
4土中应力(自重-地基附加应力)解析
F
实际情况
F
基底附加压力在数 值上等于基底压力 扣除基底标高处原 有土体的自重应力
d
p0
p
0
d
基底附加压力
p0 p 0 d
自重应力
基底压力呈梯形分布时, 基底附加压力
p0 m a x p0 m in
pm a x pm in
0d
注意
❖因为基础具有一定的埋深,弹性力学解答具有近似性。 ❖ 基坑平面尺寸和深度较大时,坑底回弹是明显的,在沉降 计算中,为了适当考虑这种坑底回弹和再压缩增加沉降,取
若基础底面的形状或分布荷载都是有规律时,用积分法。
dA dd dF p(x, y)dd
( 3 )圆形面积上作用均布荷载时,土中附加应力的计算
z r p0
r f (z / r0 )
additional stress induced by uniform circular load
条形均布荷载下地基中的应力分布规律
土力学中应力符号的规定
z
zx
地基:半无限空间
xy
x
o
∞
y yz
x
∞
y z
∞
ij=
x xy xz yx y yz
zx zy z
一. 土力学中应力符号的规定
- zx
z
+
材料力学
xz
x
z
- zx +
土力学
xz
x
正应力
剪应力
拉为正 顺时针为正 压为负 逆时针为负
压为正 逆时针为正 拉为负 顺时针为负
e>l/6
e=l/6
pmin=0
基底ቤተ መጻሕፍቲ ባይዱ力重分布
土力学课程讲解第4章
土力学
厦门大学
土木系
29
P 解:(1) σ Z = α ⋅ 2 Z
z=2, r=0,1,2,3,4m,α 查表可知,求σz后绘出图 (2)同理,r=0, z=0,1, 2,3,4m,求出σz后绘出图 (3)反算
【例4-3】解答
土力学
厦门大学
土木系
30
二、矩形面积受竖向均布荷载的 地基附加应力
1 矩形均布荷载角点下的应力 积分法求矩形荷载面角点下的地 基附加应力。
一、基底压力
1 中心荷载作用下基底压力 2 偏心荷载作用下基底压力
二、基底附加应力
土力学
厦门大学
土木系
16
二、基底附加压力
作用在基础底面的压力与基地处建前土自重应力之差。
p 0 = p − σ ch = p − γ m h
土力学
厦门大学
土木系
17
二、基底附加压力
卸荷应力、变形:卸荷理论涉及岩土介质的本构关系、 卸荷原理、卸荷过程,分析计算方法等,目前在理论 上还很不完善,工程应用不广泛,只在大型工程中由 大的科研机构承担一些探索性的研究。
(3)O点在荷载面边缘外侧 σZ=(αCⅠ﹣αCⅡ+αCⅢ﹣αCⅣ)po e Ⅳ o h Ⅱ a g d c abcd可看Ⅰ由(ofbg)与Ⅱ (ofah)之差和Ⅲ(oecg) 与Ⅳ(oedh)之差合成
f
b 厦门大学 土木系
34
土力学
二、矩形面积受竖向均布荷载的 地基附加应力
(4)O点在荷载面角点外侧 σZ=(αCⅠ﹣αCⅡ﹣αCⅢ﹢αCⅣ)po e d c 荷载面由Ⅰ(ohce),Ⅳ (ogaf)两个面积中扣除 Ⅱ(ohbf)和Ⅲ(ogde)
土力学
厦门大学
土力学地基中的应力计算
p
arctan
1
2(x / b) 2(z / b)
arctan 1 2(x / b) 2(z / b)
4 z [4( x )2 4( z )2 1]
bb
b
[4( x )2 4( z )2 1]2 16( z )2
b b
b
b
b
13
•带状三角形荷载
b
p
x
z
Mx
(x, z)
z
查表3-3
e 基底压力呈三角形分布
e 基底局部出现拉应力
基底与地基脱开
对于矩形底面,= b
6
37
(1) 矩形底面单轴偏心荷载作用时(e)
由竖向、弯矩平衡方程
P
b 2
(
p1
p2 ) a
M
b 2 ( p1
p2
)
a
(
b 2
b) 3
p1 p2
PM AW
P (1 A
e)
P 1 A
6e b
e a
b
P M Pe
z
p
{x b
(arctan
x z
/ /
b b
arctan
x
/b 1) z/b
z b
(x
/
b
x/b 1)2
1 (z
/
b)2
}
k(x b
,
z b
)
p
•带状梯形荷载
14
5、矩形均布面积荷载作用下附加应力旳计算
1)角点下旳垂直附加应力
dP pdxdy
d z
3dP 2
z3 R5
3p 2
z3 R5
dxdy
土力学-第四章
水平向自重应力
地基中自重应力
必须指出:只有通过土粒接触点传递的粒间应力,才
能使土粒彼此挤紧,从而引起土的变形,而粒间应力又是
影响土体强度的一个重要因素,所以粒间应力又称为有效 应力。因此,土中自重应力可定义为土自身有效重力在土
体中引起的应力。土中竖向和侧向的自重应力一般均指有
效自重应力。为简便起见,常把σCZ称为自重应力,用σC表 示。
静止侧压 力系数
4.2.2 水平向自重应力
x cx
E
E
cz
cy 0
cx cy
1
cz
4.2.2 水平向自重应力
K0—— 静止侧压力系数,它是在无侧向变 形条件下水平有效应力与竖向有效应力之
比。其值由试验确定,与土层应力历史及
土的类型、重度等有关。
z1 t1 pt
z2 a t1 p0 t2 pt
t是m,n的函数,其中n=L/b,m=z/b。 b是沿
三角形分布方向上的长度,z是从基底起算的 深度。
矩形面积基底受水平荷载角点下的 竖向附加应力
注意:b是平行于水平荷载作 用方向的长度。
圆形面积均布荷载作用中心的附加应力
重应力等于单位面积上覆土柱的有效重量。 天然地面
cz z
cz
σcz= z
z
cy
cz
cx
1
1
z
4.2.1 竖向自重应力
二、成层土的自重应力计算
a
h1
天然地面
b
1
2 3
1 h 1
cz 1h1 2 h2 h3 i hi
'
条形基础均布荷载作用下地基中的附加应力
若采用直角坐标系,如下图所示。 取坐标轴的原点在均布荷载的中点处。取微单元dξ,其上的 荷载用线荷载q=p0 dξ代替,利用Flamant解
则该线荷载在M点引起的附加应力为:
则
式中:αi——条形均布荷载作用下竖向附加应力系数,查P60 表3-5。
n=x/b ;m=z/b 。 力
四、条形基础在三角形及梯形分布荷载作用下地基中的附加应
型ቤተ መጻሕፍቲ ባይዱ平面应变问题之一,垂直 于y轴各平面的应力状态完全 相同。因此,只研究xoz平面 内的应力状态就可以了。
1.极坐标系下
已知线荷载下, 若采用下图所示的极坐标系时,从M点到荷载边缘的连线与
竖直线间的夹角分别为β1和β2 ,其正负号规定是,从竖直线
MN到连线逆时针转时为正,反之为负。在下图中的β1和β2均 为正值。
0.0200 0.0179 0.0160 0.0144 0.0129 0.0116 0.0105 0.0095
2.20
2.40 2.60 2.80 3.00 3.50 4.00 4.50 5.00
0.0058
0.0040 0.0029 0.0021 0.0015 0.0007 0.0004 0.0002 0.0001
n`=l/b
1.05
1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45
0.0744
0.0658 0.0581 0.0513 0.0454 0.0402 0.0357 0.0317 0.0282
1.55
1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95
0.0224
式中: αg——集中荷载作用下的竖向附加应力系数; z——计算点至地表的垂直深度。 在工程实践中,是没有集中力的,均为分布荷载。但当计算 点的r值远大于分布荷载边界最大尺寸时,可将分布荷载用一
土力学及地基基础第8讲 地基附加应力
p0 b/2 b/2 x z
0
x z M
x sx p0 z sz p0 xz sxz p0
附加应力系数,是z/b, x/b的函数,表2-3
1,3
p0
( 0 sin 0 )
大主应力方向与视角平分线一致。
6m
c
s
αc(查表2-2) 0.051 0.131 0.033 0.084
z 100 (0.051 0.131 0.033 0.084) 6.5kPa
郑州大学远程教育学院
3m 1m
4m
a i
b r
j
三、均布条形荷载作用下的竖向附加应力
若在无限弹性体表面作用无限长条形的分布荷载,荷载在宽度上任意,
点法计算矩形基础外k点下深度z=6m处N点竖向应力sz值。
4m
d
6m
c 3m
s
z z (ajki) z (iksd ) z (bjkr) z (rksc)
郑州大学远程教育学院
3m
a i
r
1m
b
j k
【解】将k点置于假设的矩形 受荷面积的交点处。
计算基本假定: 地基土是连续、均匀、各向同性的半 无限空间的线弹性体。 所以,可用弹性力学公式,且叠加原理成立。
最基本的就是布辛奈斯克解答:竖向集中力作用下的附 加应力。
郑州大学远程教育学院
一、竖向集中荷载作用下的地基附加应力
o x y P
3Pz3 3P x z 2R 5 2R 2 cos3 q
2
郑州大学远程教育学院
两个集中力作用 下σz的叠加
地基附加应力的计算
1.1竖 向集 中力 作用 下的 地基 附加 应力
2.集中力作用下的σz分布特征
图2-13 集中力作用下土中的应力σz的分布
1.1竖 向集 中力 作用 下的 地基 附加 应力
2.集中力作用下的σz分布特征
在集中力P作用 在r>0的竖直线 线上的σz分布 上的σz分布
1)
1.角点下任意深度的附加应力
图2-17 矩形均布荷载作用时角点下的附加应力σz
1.2矩 形面 积上 均布 荷载 作用 下的 地基 附加 应力
2.非角点下任意深度的附加应力
当矩形面积上均布荷载作用下的附加应力计算点不 位于角点下时,可通过角点下的应力计算公式(2 1 5)和应力叠加原理求得。例如,求非角点Q下任意深 度的附加应力时,可通过Q点将荷载面积划分为几块 小矩形面积,使Q点为每块小矩形面积的共同角点, 利用式(2 15)分别求出Q点下同一深度在每个小矩 形均布荷载作用下的应力值,然后利用叠加原理求出 总的附加应力,这就是角点法。如图2 18所示,角 点法可分为四种情况。
2)
在一定深度z处 的水平面上的
σz分布
3)
1.1竖 向集 中力 作用 下的 地基 附加 应力
2.集中力作用下的σz分布特征 图2-14集中力作用下σz的等值线
1.1竖 向集 中力 作用 下的 地基 附加 应力
3.多个集中力作用下的σz
图2-15 两个集中力作用下σz的叠加
1.1竖 向集 中力 作用 下的 地基 附加 应力
土力学与中应力
1.1竖 向集 中力 作用 下的 地基 附加 应力
1.计算公式
法国J.布辛奈斯克(Boussinesq,1885)运用弹性理论 推出了这些应力分量的解,其中竖向正应力 σz在建筑工程 中对基础沉降计算意义最大,其表达式为
土力学与地基基础——第3章 地基土中的应力计算
三、水平向自重应力 土的水平向自重应力cx和cy可按下式计算:
cxcyK0cz
天然地面
土的侧压力系数/ 静止土压力系数
cz cx
广义虎克定律推导出
理论关系为
K0
1
。
值K可0 以在实验室测定。
cy
编辑ppt
z
四、例题分析
【例】一地基由多层土组成,地质剖面如下图所示,试计
算并绘制自重应力σcz沿深度的分布图
土中应力
自重应力
附加应力
编辑ppt
建筑物修建以前,地 基中由土体本身重量 所产生的应力
建筑物重量等外荷载 在地基中引起的应力 增量
土中应力计算的目的:
第一节 概述
土中应力过大时,会使土体因强度不够发生破坏, 甚至使土体发生滑动失去稳定。
土中应力的增加会引起土体变形,使建筑物发生沉 降,倾斜以及水平位移。
布。根据平衡条件求得重分布后的基底最大压应力。
pmax
pmin pmax
pmin=0
e<l/6
e=l/6
pmax
e>l/6
pmin<0 基底压力重分编布辑pppt max
2(F G) pmax 3( l e)b pmin=0
基底压力重分布
l
l/2-e e>l/6
偏心荷载作用线
应与基底压力的
b
编辑ppt
法国数学家布辛内斯克(J. Boussinesq)1885年推出了该
问题的理论解,包括六个应力分量和三个方向位移的表达
式
教材P48页
其中,竖向应力z:
z3 2 PR z3 52 3 [1(r1 /z)2]5/2zP 2z P 2
土体中的应力计算—附加应力的计算(土力学课件)
z 2 p
x
p x
z z
x z
二、条形面积受均布荷载土中附加应力
2.条形面积受三角形荷载作用下的附加应力
土中任意点所受的附加应力
z 3 p
-x 0
z x
p x
z
注意坐标系的建立,以荷载0为坐标原点,向荷 载增大的方向为正方向。
二、条形面积受均布荷载土中附加应力
3.圆形面积均布荷载作用下的竖向附加应力
(1)距离地面越深, 附加应力的分布范围 越广,r/z=2.5范围内。
(2)在距地面为z的平 面上,集中力作用线 下的附加应力最大, 向两侧逐渐减小。
集中力作用下附加应力分布图
一、竖直集中荷载作用下的地基附加应力计算
1、附加应力分布规律
(3)距P作用线为r竖直 线上的附加应力随深 度先增加再减小。
171
332 kPa
134
条形荷载作用下土中附加应力
(1)p1=134kPa
+x
+x
+(x 2)p2=198kPa
-x
z x1 x/b z/b
x2 x/b z/b
00 0 0 1
134 1 0.5 0 0.500 99 233
1 0 0 0.5 0.820 110 1 0.5 0.5 0.410 81 191
条形荷载作用下 土中附加应力
条形荷载作用下土中附加应力
条形荷载作用下土中附加应力
1.条形面积受均布荷载作用下的土中竖向附加应力
土中任意点所受的附加应力 x
z 2 p
2 ——条形均布荷载作用
下的竖向附加应力系数
2 (x / b, z / b)
土力学名词解释
土力学名词解释(总2页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1、土粒级配:是指土中各粒组的相对百分含量,或土中中各粒组占总质量的百分数。
6、塑性指数:表示粘性土呈可塑状态的含水率的变化范围,其大小等于液限与塑限的差7、液性指数:表征了粘性土的天然含水率和界限含水率之间的相对关系,用来区分天然土所处的状态。
1、自重应力:由土体本身重量在地基中产生的应力。
2、附加应力:由外荷载(建筑荷载)作用在地基土体中引起的应力。
3、基底压力:建筑物上部结构荷载和基础自重通过基础传递给地基,作用于基础底面传至地基的单位面积压力。
3、渗透力:由渗透水流施加在单位土体上的拖曳力。
4、流土:渗流作用下,局部土体表面隆起,或某一范围内土粒群体同时发生移动的现象。
5、管涌:在渗流作用下,无粘性土中的细小颗粒通过较大颗粒的孔隙,发生移动并被带出的现象。
6、超固结比:先期固结压力pc与现时的土压力p0的比值。
7、前期固结压力:指土层在历史上曾经受过的最大有效固结压力。
8、最终沉降量:地基变形稳定后基础底面的沉降量。
9、固结:土体在压力作用下,压缩量随时间增长的过程。
1、土的抗剪强度:土体对外荷载产生剪应力的极限抵抗能力。
2、土的极限平衡状态:摩尔应力圆与抗剪强度线相切时的应力状态。
3、极限平衡条件:根据摩尔库仑破坏准则来研究土体单元处于极限平衡状态时的应力条件及大小主应力之间的关系,该关系称为土的极限平衡条件。
7、灵敏度:原状土的单轴抗压强度与重塑土的单轴抗压强度的比值。
1、土压力:指挡土墙后的填土因自重或外荷载作用对墙背产生的侧压力。
2、静止土压力:挡土墙在压力作用下不发生任何变形和位移,墙后填土处于弹性平衡状态时,作用在挡土墙背的土压力。
3、主动土压力:挡土墙背离土体方向移动时,当墙后土体达到主动极限平衡状态时,土压力降为最小值,作用在墙背的土压力。
4、被动土压力:挡土墙向着土体方向移动时,当墙后土体达到被动极限平衡状态时,土压力达到最大值,作用在墙背的土压力。
土力学-第三章-地基自重应力计算1、基底压力计算、地基附加应力计算 张丙印
竖直集中力-布辛内斯克课题
法国数学家布辛内斯克(J. Boussinesq)1885年
推出了该问题的理论解,包括六个应力分量和三
个方向位移的表达式
其中,竖向应力z:
教材P98~99页
σz
P π
z R
π [ (r / z) ]/
P z
K
P Z2
集中力作用下的 应力分布系数 查图3-23
集中荷载的附加应力
19
§3.5 附加应力计算– 集中荷载
竖直集中力-布辛内斯克课题
智者乐水 仁者乐山
σz
π [ (r / z) ]/
P z
K
P Z2
垂直应力分布规律
σz与α无关,呈轴对称分布 P
P作用线上 在某一水平面上 在r﹥0的竖直线上
z等值线-应力泡
集中荷载的附加应力
20
基底压力是地基和 基础在上部荷载作 用下相互作用的结 果,受荷载条件、 基础条件和地基条 件的影响
暂不考虑上部结构的影 响,用荷载代替上部结 构,使问题得以简化
智者乐水 仁者乐山
•大小
荷载条件: •方向
•分布
基础条件:
• 刚度 • 形状 • 大小 • 埋深
• 土类
地基条件: • 密度
• 土层结构等
简化计算方法: 假定基底压力按直线分布的材料力学方法
基底压力的简化计算
10
§3.4 基底压力计算 – 计算方法
竖直中心
竖直偏心
矩
P
形
l
b
pP A
P
x y
o
l
b
p( x, y) P M x y M y x
A Ix
Iy
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
地基的破坏
p
滑裂面
地基
二、条形基础的地基附加应力的计算
计算此种情况的附加应力时,应先求出均布Pn和三角 形分布Pt的基底附加应力,和水平向的均布切力Ph。
例:如图所示的挡土墙,基础底面 宽度为6m,埋置于地面1.5m处, 每米墙自重及其上部其他竖向荷载 Fv=2400KN/m,作用位置离墙基 础前缘A点3.2m;因土压力等作用 墙背受到水平力Fh=400KN/m;其 作用点距离基底面2.4m。设地基重 度为19KN/m3,若不计入墙后填土 对地基附加应力的影响,试求因Fv、 Fh的作用基础中心及前缘A点下深度 Z=7.2m处M点、N点附加应力。
角点法:当需要计算基底面积范围内或以外任意点O下某深 度Z处的附加应力时,可以通过O点画出若干辅助线将基 础底面划分为若干矩形,使0点成为所有矩形的公共角点, 然后分别计算每个矩形在0点下给定深度的竖向附加应力, 然后将他们叠加就得到原基底的在0处的竖向附加应力。
角点法
荷载与应力间 满足线性关系 叠加原理 角点下竖直附加 应力的计算公式
b
c
e
例:如下图所示,矩形基底长为4m,宽为2m,基础埋深为 0.5m,基础两侧土的重度为18KN/m3.已知上部中心荷载 和基础自重计算得到的基底均布压力为140KPa。试求基 础中心0点下、A点下、H点下Z=1m深度处的竖向附加应 力。
地基附加应力分布规律:
应力叠加问题
这两个筒仓是农场用来储存饲 料的,建于加拿大红河谷的Lake Agassiz粘土层上,由于两筒之间 的距离过近,在地基中产生的应力 发生叠加,使得两筒之间地基土层 的应力水平较高,从而导致内侧沉 降大于外侧沉降,仓筒向内倾斜。
土力学第八讲
-----地基土的附加应力计算
本讲要求掌握: (1)基地压力的计算方法 (2)以角点法计算均布矩形荷载下的地基附 加应力 (3)运用叠加原理计算条形基础的地基附加 应力
地基应力计算:
空间问题:矩形、圆形(L/B<10)
(通常用角点法计算附加应力)
平面问题:条形基础(L/B>10)
一、角点法计算均布矩形荷载下的地基附加应力来自BAC
地基中任意点的附加应力 如两种情况::
D
a.矩形面积内 A B D z (K s K s K C K s )p s b.矩形面积外
h
i
d
g f
a
z (K begh K afgh K cegi K dfgi )p s s s s
注:每个矩形遵照约定:各分块的长边为L,短边为B