高中数学试卷命题空白模板(自行加题就行了)
2024年高中数学高考试卷(3篇)
![2024年高中数学高考试卷(3篇)](https://img.taocdn.com/s3/m/51b3e196f71fb7360b4c2e3f5727a5e9856a2789.png)
数学(理科)考试时间:150分钟满分:150分一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 设函数$f(x) = \frac{x^2 - 4}{x - 2}$,则$f(x)$的定义域为()A. $(-\infty, -2) \cup (2, +\infty)$B. $(-\infty, -2) \cup (2, +\infty) \cup \{2\}$C. $(-\infty, 2) \cup (2, +\infty)$D. $(-\infty, 2) \cup (2, +\infty) \cup \{-2\}$2. 已知向量$\vec{a} = (1, 2)$,$\vec{b} = (2, 3)$,则$\vec{a} \cdot\vec{b}$的值为()A. 7B. 5C. 1D. -13. 函数$y = \log_2(x + 1)$的图像与直线$y = 2x + 1$的图像有()A. 1个交点B. 2个交点C. 3个交点D. 无交点4. 在等差数列$\{a_n\}$中,若$a_1 = 2$,$a_5 = 10$,则该数列的公差为()A. 1C. 3D. 45. 若不等式$2x - 3 < 5x + 2$的解集为$x > -1$,则实数$k$的值为()A. -1B. 0C. 1D. 26. 已知函数$y = x^3 - 3x$,若$x_1$,$x_2$,$x_3$是方程$y = 0$的三个根,则$x_1 + x_2 + x_3$的值为()A. 0B. 1C. -1D. 37. 在直角坐标系中,点$A(1, 2)$关于直线$y = x$的对称点为()A. $(2, 1)$B. $(1, 2)$C. $(-2, -1)$D. $(-1, -2)$8. 若复数$z = a + bi$(其中$a$,$b$为实数)满足$|z - 3i| = |z + 3i|$,则实数$a$的值为()A. 0B. 3C. -3D. 不存在9. 已知平面直角坐标系中,点$P(2, 3)$,点$Q$在直线$y = x + 1$上,则点$PQ$的长度最小值为()A. 1B. $\sqrt{2}$C. 2D. $\sqrt{5}$10. 在三角形ABC中,$A = 60^\circ$,$b = 2$,$c = 3$,则边$a$的长度为()A. $\sqrt{3}$B. $\sqrt{6}$C. $\sqrt{7}$D. $\sqrt{8}$11. 若复数$z$满足$|z - 1| = |z + 1|$,则复数$z$的几何意义为()A. 复数$z$对应的点在实轴上B. 复数$z$对应的点在虚轴上C. 复数$z$对应的点在单位圆上D. 复数$z$对应的点在直线$y = x$上12. 已知函数$f(x) = \frac{x^2 - 4}{x - 2}$,则$f(2)$的值为()A. 2B. -2C. 4D. 无意义二、填空题(本大题共6小题,每小题5分,共30分。
高中数学测试题及答案doc原创
![高中数学测试题及答案doc原创](https://img.taocdn.com/s3/m/c02fe41f326c1eb91a37f111f18583d049640fe8.png)
高中数学测试题及答案doc原创一、选择题(每题4分,共40分)1. 下列哪个选项不是实数集的子集?A. 有理数集B. 整数集C. 无理数集D. 复数集答案:D2. 若函数f(x)=2x+1,则f(-1)的值为:A. -1B. 1C. 3D. -3答案:A3. 一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 100πD. 25答案:B4. 等差数列{an}的首项a1=3,公差d=2,那么a5的值为:A. 13B. 11C. 9D. 7答案:A5. 已知集合A={1,2,3},B={2,3,4},则A∩B的值为:A. {1}B. {2,3}C. {3,4}D. {1,2,3,4}答案:B6. 函数y=x^2-4x+3的顶点坐标是:A. (2,-1)B. (2,1)C. (-2,1)D. (-2,-1)答案:A7. 一个等腰三角形的两边长分别为3和4,那么它的周长是:A. 10B. 11C. 12D. 13答案:C8. 已知数列{an}满足a1=1,an+1=2an+1,那么a3的值为:A. 7B. 5C. 3D. 1答案:A9. 函数y=1/x的图像关于:A. 原点对称B. y轴对称C. x轴对称D. 直线y=x对称答案:A10. 一个正方体的体积为27,那么它的表面积是:A. 54B. 108C. 216D. 486答案:A二、填空题(每题4分,共20分)1. 若sinα=3/5,且α为锐角,则cosα=______。
答案:4/52. 一个数列的前三项为1,2,4,从第四项开始,每一项是前三项的和,那么这个数列的第五项是______。
答案:73. 已知函数f(x)=x^3-3x+1,求f'(x)=______。
答案:3x^2-34. 一个圆的直径为10,那么它的周长是______。
答案:π*105. 一个等比数列的首项为2,公比为3,那么它的第五项是______。
答案:486三、解答题(每题10分,共40分)1. 已知函数f(x)=x^2-6x+8,求函数的顶点坐标和对称轴。
高中数学命题与充要条件练习题附答案精选全文完整版
![高中数学命题与充要条件练习题附答案精选全文完整版](https://img.taocdn.com/s3/m/58550354591b6bd97f192279168884868662b84c.png)
可编辑修改精选全文完整版1.已知x∈R,命题“若x2>0,则x>0”的逆命题、否命题和逆否命题中,正确命题的个数是()A.0B.1C.2 D.3解析:选C.命题“若x2>0,则x>0”的逆命题是“若x>0,则x2>0”,是真命题;否命题是“若x2≤0,则x≤0”,是真命题;逆否命题是“若x≤0,则x2≤0”,是假命题.综上,以上3个命题中真命题的个数是2.故选C.2.已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的()A.逆命题B.否命题C.逆否命题D.否定解析:选B.命题p:“正数a的平方不等于0”可写成“若a是正数,则它的平方不等于0”,从而q是p的否命题.3.(2018·陕西质量检测(一))设a,b∈R,则“(a-b)a2<0”是“a<b”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件解析:选A.由(a-b)a2<0可知a2≠0,则一定有a-b<0,即a<b;但是a<b即a -b<0时,有可能a=0,所以(a-b)a2<0不一定成立,故“(a-b)a2<0”是“a<b”的充分不必要条件,选A.4.在△ABC中,角A,B,C的对边分别为a,b,c,则“sin A>sin B”是“a>b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C.设△ABC外接圆的半径为R,若sin A>sin B,则2R sin A>2R sin B,即a>b;若a>b,则a2R>b2R,即sin A>sin B,所以在△ABC中,“sin A>sin B”是“a>b”的充要条件,故选C.5.有下列命题:①“若x+y>0,则x>0且y>0”的否命题;②“矩形的对角线相等”的否命题;③“若m ≥1,则mx 2-2(m +1)x +m +3>0的解集是R ”的逆命题; ④“若a +7是无理数,则a 是无理数”的逆否命题. 其中正确的是( ) A .①②③ B .②③④ C .①③④D .①④解析:选C .①的逆命题为“若x >0且y >0,则x +y >0”为真,故否命题为真; ②的否命题为“不是矩形的图形对角线不相等”,为假命题; ③的逆命题为“若mx 2-2(m +1)x +m +3>0的解集为R ,则m ≥1”. 因为当m =0时,解集不是R ,所以应有⎩⎪⎨⎪⎧m >0,Δ<0,即m >1.所以③是真命题;④原命题为真,逆否命题也为真.6.(2018·石家庄模拟)“log 2(2x -3)<1”是“4x >8”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选A .由log 2(2x -3)<1⇒0<2x -3<2⇒32<x <52,4x >8⇒2x >3⇒x >32,所以“log 2(2x -3)<1”是“4x >8”的充分不必要条件,故选A .7.已知直线l ,m ,其中只有m 在平面α内,则“l ∥α”是“l ∥m ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选B .当l ∥α时,直线l 与平面α内的直线m 平行、异面都有可能,所以l ∥m 不一定成立;当l ∥m 时,根据直线与平面平行的判定定理知直线l ∥α,即“l ∥α”是“l ∥m ”的必要不充分条件,故选B .8.命题“对任意x ∈[1,2),x 2-a ≤0”为真命题的一个充分不必要条件可以是( ) A .a ≥4 B .a >4 C .a ≥1D .a >1解析:选B .要使“对任意x ∈[1,2),x 2-a ≤0”为真命题,只需要a ≥4,所以a >4是命题为真的充分不必要条件.9.(2017·高考浙江卷)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C .因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d ,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5,故选C .10.(2018·惠州第三次调研)设函数y =f (x ),x ∈R ,“y =|f (x )|是偶函数”是“y =f (x )的图象关于原点对称”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件解析:选C .设f (x )=x 2,y =|f (x )|是偶函数,但是不能推出y =f (x )的图象关于原点对称.反之,若y =f (x )的图象关于原点对称,则y =f (x )是奇函数,这时y =|f (x )|是偶函数,故选C .11.(2018·贵阳检测)设向量a =(1,x -1),b =(x +1,3),则“x =2”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A .依题意,注意到a ∥b 的充要条件是1×3=(x -1)(x +1),即x =±2.因此,由x =2可得a ∥b ,“x =2”是“a ∥b ”的充分条件;由a ∥b 不能得到x =2,“x =2”不是“a ∥b ”的必要条件,故“x =2”是“a ∥b ”的充分不必要条件,选A .12.(2018·郑州第一次质量预测)已知命题p :1a >14,命题q :∀x ∈R ,ax 2+ax +1>0,则p 成立是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A .命题p 等价于0<a <4.命题q ,对∀x ∈R ,ax 2+ax +1>0,必有⎩⎪⎨⎪⎧a =01>0或⎩⎪⎨⎪⎧a >0a 2-4a <0,则0≤a <4,所以命题p 成立是命题q 成立的充分不必要条件,故选A . 13.下列命题中为真命题的是________. ①命题“若x >1,则x 2>1”的否命题; ②命题“若x >y ,则x >|y |”的逆命题; ③命题“若x =1,则x 2+x -2=0”的否命题; ④命题“若x 2>1,则x >1”的逆否命题.解析:对于①,命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x 2=4>1,故①为假命题;对于②,命题“若x >y ,则x >|y |”的逆命题为“若x >|y |,则x >y ”,分析可知②为真命题;对于③,命题“若x =1,则x 2+x -2=0”的否命题为“若x ≠1,则x 2+x -2≠0”,易知当x =-2时,x 2+x -2=0,故③为假命题;对于④,命题“若x 2>1,则x >1”的逆否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x 2=4>1,故④为假命题.答案:②14.给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限.在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是________.解析:原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y =f (x )的图象不过第四象限,则函数y =f (x )是幂函数”,显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个.答案:115.若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________. 解析:由题意知ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立;当a ≠0时,得⎩⎪⎨⎪⎧a <0,Δ=4a 2+12a ≤0,解得-3≤a <0,故-3≤a ≤0. 答案:[-3,0]16.(2018·长沙模拟)给出下列命题:①已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的充分不必要条件; ②“x <0”是“ln(x +1)<0”的必要不充分条件;③“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”是“a =1”的充要条件;④“平面向量a 与b 的夹角是钝角”的充要条件是“a·b <0”.其中正确命题的序号是________.(把所有正确命题的序号都写上)解析:①因为“a =3”可以推出“A ⊆B ”,但“A ⊆B ”不能推出“a =3”,所以“a =3”是“A ⊆B ”的充分不必要条件,故①正确;②“x <0”不能推出“ln(x +1)<0”,但“ln(x +1)<0”可以推出“x <0”,所以“x <0”是“ln(x +1)<0”的必要不充分条件,故②正确;③f (x )=cos 2ax -sin 2ax =cos 2ax ,若其最小正周期为π,则2π2|a |=π⇒a =±1,因此“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”是“a =1”的必要不充分条件,故③错误;④“平面向量a 与b 的夹角是钝角”可以推出“a·b <0”,但由“a·b <0”,得“平面向量a 与b 的夹角是钝角或平角”,所以“a·b <0”是“平面向量a 与b 的夹角是钝角”的必要不充分条件,故④错误.正确命题的序号是①②.答案:①②1.(2017·高考天津卷)设θ∈R ,则“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析:选A .因为⎪⎪⎪⎪θ-π12<π12⇔-π12<θ-π12<π12⇔0<θ<π6, sin θ<12⇔θ∈⎝⎛⎭⎫2k π-7π6,2k π+π6,k ∈Z ,⎝⎛⎭⎫0,π6⎝⎛⎭⎫2k π-7π6,2k π+π6,k ∈Z ,所以“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件. 2.下列选项中,p 是q 的必要不充分条件的是( ) A .p :x =1,q :x 2=x B .p :|a |>|b |,q :a 2>b 2 C .p :x >a 2+b 2,q :x >2ab D .p :a +c >b +d ,q :a >b 且c >d解析:选D.A 中,x =1⇒x 2=x ,x 2=x ⇒x =0或x =1⇒/ x =1,故p 是q 的充分不必要条件;B 中,因为|a |>|b |,根据不等式的性质可得a 2>b 2,反之也成立,故p 是q 的充要条件;C 中,因为a 2+b 2≥2ab ,由x >a 2+b 2,得x >2ab ,反之不成立,故p 是q 的充分不必要条件;D 中,取a =-1,b =1,c =0,d =-3,满足a +c >b +d ,但是a <b ,c >d ,反之,由同向不等式可加性得a >b ,c >d ⇒a +c >b +d ,故p 是q 的必要不充分条件.综上所述,故选D.3.已知p :x ≥k ,q :(x +1)(2-x )<0,如果p 是q 的充分不必要条件,则实数k 的取值范围是( )A .[2,+∞)B .(2,+∞)C .[1,+∞)D .(-∞,-1]解析:选B .由q :(x +1)(2-x )<0,得x <-1或x >2,又p 是q 的充分不必要条件,所以k >2,即实数k 的取值范围是(2,+∞),故选B .4.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是________.解析:因为A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ={x |-1<x <3},x ∈B 成立的一个充分不必要条件是x ∈A ,所以A B ,所以m +1>3,即m >2.答案:m >25.已知集合A =⎩⎨⎧⎭⎬⎫y |y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝⎛⎭⎫x -342+716,因为x ∈⎣⎡⎦⎤34,2,所以716≤y ≤2, 所以A =⎩⎨⎧⎭⎬⎫y |716≤y ≤2.由x +m 2≥1,得x ≥1-m 2, 所以B ={x |x ≥1-m 2}.因为“x ∈A ”是“x ∈B ”的充分条件,所以A ⊆B ,所以1-m 2≤716,解得m ≥34或m ≤-34,故实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞. 6.已知两个关于x 的一元二次方程mx 2-4x +4=0和x 2-4mx +4m 2-4m -5=0,求两方程的根都是整数的充要条件.解:因为mx 2-4x +4=0是一元二次方程,所以m ≠0.又另一方程为x 2-4mx +4m 2-4m -5=0,且两方程都要有实根,所以⎩⎪⎨⎪⎧Δ1=16(1-m )≥0,Δ2=16m 2-4(4m 2-4m -5)≥0,解得m ∈⎣⎡⎦⎤-54,1. 因为两方程的根都是整数, 故其根的和与积也为整数,所以⎩⎪⎨⎪⎧4m∈Z ,4m ∈Z ,4m 2-4m -5∈Z .所以m 为4的约数. 又因为m ∈⎣⎡⎦⎤-54,1, 所以m =-1或1.当m =-1时,第一个方程x 2+4x -4=0的根为非整数; 而当m =1时,两方程的根均为整数, 所以两方程的根均为整数的充要条件是m =1.。
高考数学试卷大题模板
![高考数学试卷大题模板](https://img.taocdn.com/s3/m/f3970741974bcf84b9d528ea81c758f5f71f2965.png)
一、选择题1. (本题主要考查数列的概念及性质)在数列{an}中,an=3n-2,则数列{an}的前n项和S_n的最大值为:A. 6n-1B. 9n-2C. 3n^2-2nD. 6n-22. (本题主要考查导数的概念及运用)函数f(x)=ax^2+bx+c在x=1处取得极小值,则下列选项中正确的是:A. a>0,b=0,c任意B. a>0,b≠0,c任意C. a<0,b=0,c任意D. a<0,b≠0,c任意3. (本题主要考查复数的运算及几何意义)设复数z=1+i,那么|z-2i|^2的值为:A. 2B. 3C. 4D. 54. (本题主要考查空间几何及向量)在空间直角坐标系中,点A(1,2,3),B (4,5,6),则向量AB与向量OA的夹角θ的余弦值为:A. -1/√10B. 1/√10C. 1/√5D. -1/√55. (本题主要考查概率及统计)袋中有5个红球,3个蓝球,从中随机取出3个球,取出的球都是红球的概率为:A. 1/5B. 1/2C. 3/10D. 3/5二、填空题6. (本题主要考查数列的通项公式及求和公式)数列{an}的通项公式为an=2n-1,则数列{an}的前10项和S_10为______。
7. (本题主要考查导数的概念及运用)函数f(x)=x^3-3x+2在x=1处的导数值为______。
8. (本题主要考查复数的运算及几何意义)复数z=3+i,那么|z|^2的值为______。
9. (本题主要考查空间几何及向量)在空间直角坐标系中,点A(1,2,3),B (4,5,6),则向量AB的模长为______。
10. (本题主要考查概率及统计)从1到9这9个数字中随机取出3个不同的数字,组成一个三位数,那么这个三位数是奇数的概率为______。
三、解答题11. (本题主要考查数列的通项公式及求和公式)已知数列{an}的通项公式为an=2n-1,求:(1)数列{an}的前n项和S_n;(2)数列{an}的前10项和S_10。
高中数学答题卷答题模板
![高中数学答题卷答题模板](https://img.taocdn.com/s3/m/d8ced83d998fcc22bdd10dc6.png)
级 线
__
__ __
号
证 考 准
题
答
得
不
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 登封一中 2014—2015 学年高二上学期第一次段考 18.(本题满分 12 分) 19.(本题满分 12 分) 数 学答 题 卡 二、填空题:本大题共 4 小题,每小题 5 分,满分 20 分。
13.________ _________ 14._____________________ 15.______________________ 16._____________________ 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本题满分(10 分)
内
班
_ __ __ 名 姓
封
密
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 座号
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效20.(本题满分12分)21.(本题满分12分)22.(本题满分12分)
D
A
B600C
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效。
高中数学试题卷及答案大全
![高中数学试题卷及答案大全](https://img.taocdn.com/s3/m/ef233b8e4bfe04a1b0717fd5360cba1aa8118c83.png)
高中数学试题卷及答案大全一、选择题(每题3分,共30分)1. 已知函数f(x) = 2x + 3,下列哪个选项是f(-1)的值?A. -1B. 1C. -5D. 52. 以下哪个是二次函数y = ax^2 + bx + c的对称轴?A. x = aB. x = bC. x = -b/2aD. x = c3. 一个圆的半径为5,那么这个圆的面积是多少?A. 25πB. 50πC. 75πD. 100π4. 已知向量\(\vec{a} = (3, 4)\),\(\vec{b} = (-4, 3)\),下列哪个选项是\(\vec{a} \cdot \vec{b}\)的值?A. -7B. 25C. -25D. 75. 以下哪个不等式表示的是x > 2?A. x - 2 > 0B. x - 2 < 0C. 2 - x > 0D. 2 - x < 06. 一个等差数列的首项是3,公差是2,那么这个数列的第5项是多少?A. 13B. 11C. 9D. 77. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = |x|8. 一个三角形的三边长分别为3, 4, 5,那么这个三角形的面积是多少?A. 3B. 4C. 6D. √79. 以下哪个选项是方程x^2 - 5x + 6 = 0的解?A. 2, 3B. -2, -3C. 2, -3D. -2, 310. 以下哪个选项是函数y = sin(x)的周期?A. 2πB. πC. 1D. √2答案:1. C2. C3. B4. D5. A6. A7. B8. D9. A10. A二、填空题(每题4分,共20分)11. 已知函数f(x) = x^2 - 4x + 3,那么f(1)的值是_。
12. 一个等比数列的首项是2,公比是3,那么这个数列的第3项是_。
13. 一个三角形的内角和是_。
高考数学试卷文本模板
![高考数学试卷文本模板](https://img.taocdn.com/s3/m/ee72c196a0c7aa00b52acfc789eb172ded639936.png)
一、选择题(本大题共25小题,每小题4分,共100分)1. 若函数f(x) = x^2 - 3x + 2在区间[1, 2]上单调递增,则实数a的取值范围是()A. a < 1B. a ≥ 1C. a < 2D. a ≥ 22. 已知向量a = (2, 3),向量b = (-1, 2),则向量a与向量b的点积是()A. 1B. -1C. 7D. -73. 若等差数列{an}的公差d > 0,且首项a1 = 3,则第10项a10与第5项a5的和为()A. 18B. 21C. 24D. 274. 在平面直角坐标系中,点A(2, 3),点B(5, 1)在直线y = kx + b上,则直线AB的斜率k和截距b分别是()A. k = -2,b = 7B. k = 2,b = 7C. k = -2,b = -7D. k = 2,b = -75. 若复数z满足|z - 3i| = 5,则复数z的实部取值范围是()A. -2 ≤ Re(z) ≤ 2B. -5 ≤ Re(z) ≤ 5C. -5 ≤ Re(z) ≤ 2D. -2 ≤ Re(z) ≤ 56. 函数y = log2(x - 1)的图像与直线y = x相交于点P,则点P的坐标是()A. (2, 1)B. (3, 2)C. (4, 3)D. (5, 4)7. 在△ABC中,∠A = 60°,∠B = 45°,则sinC的值为()A. √3/2B. 1/2C. √2/2D. 18. 若函数f(x) = |x - 2| + |x + 1|在区间[-1, 2]上的最小值为4,则实数x的取值范围是()A. -1 ≤ x ≤ 2B. -1 < x < 2C. -1 ≤ x < 2D. -1 < x ≤ 29. 若等比数列{an}的公比q > 0,且首项a1 = 2,则第5项a5与第3项a3的积为()A. 16B. 32C. 64D. 12810. 在平面直角坐标系中,点P(1, 2)关于直线y = x的对称点为Q,则点Q的坐标是()A. (2, 1)B. (1, 2)C. (2, 2)D. (1, 1)11. 若函数y = x^3 - 6x^2 + 9x - 1在区间[0, 2]上有极值点,则实数a的取值范围是()A. a < 0B. a > 0C. a ≤ 0D. a ≥ 012. 在△ABC中,∠A = 30°,∠B = 75°,则sinC的值为()A. √3/2B. 1/2C. √2/2D. 113. 若函数y = 2^x在区间[0, 1]上单调递增,则函数y = log2(x + 1)在区间[-1, 0]上()A. 单调递增B. 单调递减C. 有极值点D. 不是单调函数14. 在平面直角坐标系中,点A(1, 2),点B(4, 5)在直线y = kx + b上,则直线AB的斜率k和截距b分别是()A. k = 1,b = 1B. k = 1,b = 3C. k = -1,b = 1D. k = -1,b = 315. 若复数z满足|z - 3i| = 5,则复数z的虚部取值范围是()A. -2 ≤ Im(z) ≤ 2B. -5 ≤ Im(z) ≤ 5C. -5 ≤ Im(z) ≤ 2D. -2 ≤ Im(z) ≤ 516. 函数y = log2(x - 1)的图像与直线y = x相交于点P,则点P的坐标是()A. (2, 1)B. (3, 2)C. (4, 3)D. (5, 4)17. 在△ABC中,∠A = 60°,∠B = 45°,则cosC的值为()A. √3/2B. 1/2C. √2/2D. 118. 若函数y = |x - 2| + |x + 1|在区间[-1, 2]上的最大值为5,则实数x的取值范围是()A. -1 ≤ x ≤ 2B. -1 < x < 2C. -1 ≤ x < 2D. -1 < x ≤ 219. 若等比数列{an}的公比q > 0,且首项a1 = 2,则第5项a5与第3项a3的积为()A. 16B. 32C. 64D. 12820. 在平面直角坐标系中,点P(1, 2)关于直线y = x的对称点为Q,则点Q的坐标是()A. (2, 1)B. (1, 2)C. (2, 2)D. (1, 1)21. 若函数y = x^3 - 6x^2 + 9x - 1在区间[0, 2]上有极值点,则实数a的取值范围是()A. a < 0B. a > 0C. a ≤ 0D. a ≥ 022. 在△ABC中,∠A = 30°,∠B = 75°,则cosC的值为()A. √3/2B. 1/2C. √2/2D. 123. 若函数y = log2(x + 1)在区间[-1, 0]上单调递增,则函数y = 2^x在区间[0, 1]上()A. 单调递增B. 单调递减C. 有极值点D. 不是单调函数24. 在平面直角坐标系中,点A(1, 2),点B(4, 5)在直线y = kx + b上,则直线AB的斜率k和截距b分别是()A. k = 1,b = 1B. k = 1,b = 3C. k = -1,b = 1D. k = -1,b = 325. 若复数z满足|z - 3i| = 5,则复数z的实部取值范围是()A. -2 ≤ Re(z) ≤ 2B. -5 ≤ Re(z) ≤ 5C. -5 ≤ Re(z) ≤ 2D. -2 ≤ Re(z) ≤ 5二、填空题(本大题共10小题,每小题5分,共50分)26. 已知函数f(x) = 2x - 3,若f(2) = 1,则x的值为______。
高考自创模拟数学试卷
![高考自创模拟数学试卷](https://img.taocdn.com/s3/m/1498e97a2e60ddccda38376baf1ffc4fff47e272.png)
一、选择题(本大题共12小题,每小题5分,共60分)1. 若函数f(x) = ax^2 + bx + c的图像开口向上,且顶点坐标为(-2,3),则下列说法正确的是:A. a > 0,b < 0,c < 0B. a < 0,b > 0,c > 0C. a > 0,b > 0,c > 0D. a < 0,b < 0,c < 02. 在直角坐标系中,点A(2,3),B(-3,-4),C(5,-2)的斜率分别为k1、k2、k3,则下列说法正确的是:A. k1 > k2 > k3B. k1 < k2 < k3C. k1 = k2 = k3D. k1、k2、k3无法比较3. 若等差数列{an}的公差为d,且a1 = 3,a4 = 9,则d的值为:A. 3B. 6C. 9D. 124. 若复数z满足|z - 1| = 2,则复数z的实部a的取值范围是:A. -1 ≤ a ≤ 3B. -3 ≤ a ≤ 1C. a ≥ 1 或 a ≤ -3D. a ≤ 1 或 a ≥ -35. 若不等式|2x - 1| < 3的解集为A,不等式|x + 2| ≥ 4的解集为B,则A∩B 的结果是:A. {x | -3 ≤ x < 2}B. {x | -1 ≤ x < 2}C. {x | -2 ≤ x < 1}D. {x | -1 ≤ x ≤ 2}6. 若函数f(x) = x^3 - 3x + 2在区间[-2,2]上的最大值为M,最小值为m,则M - m的值为:A. 6B. 8C. 10D. 127. 若等比数列{bn}的公比为q,且b1 = 2,b3 = 8,则q的值为:A. 2B. 4C. 8D. 168. 若平面直角坐标系中,点P(1,2)到直线y = -2x + 5的距离为d,则d的值为:A. 1B. 2C. 3D. 49. 若函数f(x) = x^2 + 2x + 1在区间[-1,3]上的图像关于点(1,2)对称,则下列说法正确的是:A. f(0) = f(2)B. f(-1) = f(3)C. f(0) = f(-2)D. f(1) = f(-3)10. 若等差数列{an}的前n项和为Sn,且S5 = 25,S10 = 75,则a1的值为:A. 1B. 2C. 3D. 411. 若复数z = 3 + 4i的共轭复数为z',则|z - z'|的值为:A. 5B. 10C. 15D. 2012. 若函数f(x) = (x - 1)^2在区间[0,2]上的图像关于点(1,0)对称,则下列说法正确的是:A. f(0) = f(2)B. f(1) = f(3)C. f(0) = f(-2)D. f(1) = f(-3)二、填空题(本大题共4小题,每小题10分,共40分)13. 若函数f(x) = x^3 - 3x^2 + 2x - 1在x = 1处的切线斜率为k,则k的值为______。
高考数学试卷答案解答模板
![高考数学试卷答案解答模板](https://img.taocdn.com/s3/m/85c4bf68b80d6c85ec3a87c24028915f814d847e.png)
一、选择题解答模板【题目】(单选题)若函数f(x) = x^2 - 4x + 3在区间[1,3]上的最大值为M,最小值为m,则M + m的值为:【解答】1. 首先确定函数f(x) = x^2 - 4x + 3的对称轴,由于二次函数的对称轴公式为x = -b/2a,可得对称轴为x = 2。
2. 判断区间[1,3]是否包含对称轴x = 2,显然包含。
3. 由于二次函数在对称轴两侧的函数值相同,因此最大值和最小值一定在对称轴两侧。
4. 在区间[1,2]上,函数f(x)单调递减;在区间[2,3]上,函数f(x)单调递增。
5. 所以,最大值M发生在x = 1时,即M = f(1) = 1^2 - 41 + 3 = 0;最小值m 发生在x = 2时,即m = f(2) = 2^2 - 42 + 3 = -1。
6. 因此,M + m = 0 + (-1) = -1。
【答案】D(-1)二、填空题解答模板【题目】已知等差数列{an}的前n项和为Sn,若a1 = 2,公差d = 3,则S10的值为:【解答】1. 根据等差数列的前n项和公式Sn = n/2 (a1 + an),可得S10 = 10/2 (a1 + a10)。
2. 由a1 = 2和公差d = 3,可得a10 = a1 + (10 - 1)d = 2 + 93 = 29。
3. 将a1和a10代入S10的公式,得S10 = 10/2 (2 + 29) = 5 31 = 155。
【答案】155三、解答题解答模板【题目】已知函数f(x) = ax^2 + bx + c(a≠0),若f(1) = 2,f(-1) = 0,f(2) = -4,求a、b、c的值。
【解答】1. 根据题意,列出方程组:f(1) = a1^2 + b1 + c = 2f(-1) = a(-1)^2 + b(-1) + c = 0f(2) = a2^2 + b2 + c = -42. 将方程组整理为:a +b +c = 2a -b +c = 04a + 2b + c = -43. 解方程组,可得:a = -1b = 2c = 3【答案】a = -1,b = 2,c = 3以上是高考数学试卷答案解答的模板,希望对同学们有所帮助。
高中数学试卷(含答案)
![高中数学试卷(含答案)](https://img.taocdn.com/s3/m/47366fd46aec0975f46527d3240c844769eaa0e7.png)
高中数学试卷(含答案)高中数学试卷(含答案)第一部分:选择题(共50分)1. 若实数a满足a² - 3a + k = 0有两个相等的实根,则k的取值范围是()A. k < 0B. k = 0C. k > 0D. k ≠ 3/2答案:C解析:对于二次方程a² - 3a + k = 0,判别式Δ = (-3)² - 4 × 1 × k需要满足Δ = 0。
解得k = 9/4,因此k > 0。
2. 已知三阶行列式的展开式为|A| = a₁₂a₂₃a₃₁ + a₁₃a₂₁a₃₂ - a₁₁a₂₃a₃₂ - a₁₂a₂₁a₃₃ + a₁₃a₂₂a₃₁ - a₁₃a₂₂a₃₃,则|A|的值为()A. 0B. 1C. -1D. 2解析:根据行列式的展开式可得|A| = a₁₂a₂₃a₃₁ + a₁₃a₂₁a₃₂- a₁₁a₂₃a₃₂ - a₁₂a₂₁a₃₃ + a₁₃a₂₂a₃₁ - a₁₃a₂₂a₃₃。
由于这是一个三阶行列式,对于任意的i,aᵢᵢ出现了两次,所以|A| = 0。
3. 已知二次函数f(x) = ax² + bx + c的图像过点(2,1),且在x轴上有一个零点。
下列说法正确的是()A. a > 0且c > 0B. a < 0且c < 0C. a > 0且c < 0D. a < 0且c > 0答案:C解析:由已知条件得到方程f(2) = a(2)² + b(2) + c = 1,化简得4a +2b + c = 1。
又由于在x轴上有一个零点,即方程ax² + bx + c = 0有实根,所以b² - 4ac ≥ 0。
联立两个方程,解得a > 0且c < 0。
4. 若a + b = 2c,则下列选项中一定为正数的是()A. a + 2b - 3cB. 3a + 4b - 5cC. a - 4b + 3cD. 2a + 3b - 4c解析:利用已知条件a + b = 2c,可以将选项中的式子用a和b表示。
高考数学试卷答题卷面范本
![高考数学试卷答题卷面范本](https://img.taocdn.com/s3/m/fcf1b86b3868011ca300a6c30c2259010302f34b.png)
一、选择题(本大题共12小题,每小题5分,共60分)1. 下列各数中,有理数是()A. $\sqrt{2}$B. $\pi$C. $\frac{1}{3}$D. $-2\sqrt{3}$答案:C2. 函数$f(x) = x^2 - 4x + 4$的图像是()A. 顶点在$(2,0)$的抛物线B. 顶点在$(0,4)$的抛物线C. 顶点在$(0,-4)$的抛物线D. 顶点在$(4,0)$的抛物线答案:A3. 已知等差数列$\{a_n\}$的前$n$项和为$S_n$,若$a_1 + a_2 + a_3 = 9$,$a_4 + a_5 + a_6 = 21$,则$a_7 + a_8 + a_9$的值为()A. 33B. 39C. 45D. 51答案:B4. 已知直线$y = 2x + 1$与圆$x^2 + y^2 = 1$相交于A、B两点,则弦AB的长度为()A. $\sqrt{2}$B. $\sqrt{3}$C. $\sqrt{5}$D. $\sqrt{7}$答案:B5. 若复数$z$满足$|z - 1| = |z + 1|$,则复数$z$对应的点在()A. 虚轴上B. 实轴上C. 第一象限D. 第二象限答案:A6. 函数$f(x) = \log_2(x + 2)$的定义域是()A. $x > -2$B. $x \geq -2$C. $x > 0$D. $x \geq 0$答案:A7. 已知集合$A = \{x | x^2 - 5x + 6 = 0\}$,$B = \{x | x^2 - 4x + 3 =0\}$,则$A \cap B$的元素个数是()A. 1B. 2C. 3D. 4答案:B8. 已知函数$f(x) = ax^2 + bx + c$的图像开口向上,且顶点坐标为$(1, -3)$,则$a$、$b$、$c$的符号关系是()A. $a > 0$,$b > 0$,$c > 0$B. $a > 0$,$b < 0$,$c < 0$C. $a < 0$,$b > 0$,$c > 0$D. $a < 0$,$b < 0$,$c < 0$答案:B9. 在三角形ABC中,$a = 5$,$b = 7$,$c = 8$,则角A、B、C的大小关系是()A. $A > B > C$B. $B > A > C$C. $C > A > B$D. $C > B > A$答案:A10. 若复数$z$满足$|z - 1| = |z + 1|$,则$z$在复平面上的轨迹是()A. 圆心在原点的圆B. 圆心在$(1,0)$的圆C. 圆心在$(-1,0)$的圆D. 圆心在$(0,1)$的圆答案:C11. 函数$f(x) = |x - 2| + |x + 1|$的图像是()A. 抛物线B. 双曲线C. 直线D. 梯形答案:C12. 若等比数列$\{a_n\}$的公比$q \neq 1$,且$a_1 + a_2 + a_3 = 6$,$a_4 + a_5 + a_6 = 18$,则$a_7 + a_8 + a_9$的值为()A. 24B. 30C. 36D. 42答案:C二、填空题(本大题共6小题,每小题5分,共30分)13. 函数$f(x) = \frac{x^2 - 4x + 3}{x - 1}$的值域是__________。
高中数学试卷展示模板1
![高中数学试卷展示模板1](https://img.taocdn.com/s3/m/8a46c41616fc700abb68fc94.png)
宁阳四中导师辅导材料高一 17 班 数学 学科规范答题指南1.本表可打印,可手写,还可把材料复印(包括缩印)或拍照后粘贴。
各科完全根据学科实际自由、灵活地调整、改进、扬弃。
请试 卷 原 题答 卷 展 示 导 师 指 导原题再现试题出处:宁阳四中高一上学期阶段性考试数学试题试题原题:20、(本小题满分13分)已知函数1()f x x x=+. (I)判断函数的奇偶性,并加以证明; (II)用定义证明()f x 在()0,1上的单调性;(III)函数()f x 在()1,0-上是单调增函数还是单调减函数?(直接写出答案,不要求写证明过程).规 范 答 卷优点推广 与 提分指津1,书写规范,条理。
认真。
2,分布解答,思路清晰。
标准 解答20.证明:(I)函数为奇函数11()()f x x x f x x x ⎛⎫-=--=-+=- ⎪⎝⎭ (II)设()1,0,21∈x x 且12x x <()2121212112111()()1f x f x x x x x x x x x ⎛⎫-=+--=-- ⎪⎝⎭211212()(1)x x x x x x --=.01,1,10212121<-<∴<<<x x x x x x21210x x x x >∴-> .()()()()1212,0x f x f x f x f <<-∴因此函数()f x 在()0,1上是减函数问题答卷问题会诊 与 提分指津1,书写不规范。
2,思路混乱。
3,乱写乱画。
宁阳四中导师辅导材料各位老师及时、随时地提供,每次可以提供一份,也可以提供多份;我们的原则是“务实、有效、提质”。
2.每张表主要对试卷中的某一两个典型的大题或小题进行针对性分析,以达到“两个引领”的目的:引领学生培养题型意识和母子题思维,做到归类建模、举一反三;引领学生培养考点意识和得分点思维,做到科学应考、规范答卷。
全国卷高考数学答题卡模板(文理通用)
![全国卷高考数学答题卡模板(文理通用)](https://img.taocdn.com/s3/m/b1373403376baf1ffd4fad32.png)
重庆两江育才中学高2020级高一(上)第一次月考数学试题答题卡座号 ________________________ 准考证号考生禁填: 缺考考生由监考员填涂右边的缺考标记.填 涂样 例 注意事项1.答题前,考生先将自己的姓名、准考证号填写清楚,并认真检查监考员所粘贴的条形码;2.选择题必须用2B 铅笔填涂,解答题必须用0.5毫米黑色签字笔书写,字体工整,笔迹清楚;3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠、不要弄破。
正确填涂错误填涂 √ × ○●一、选择题(每小题5分,共60分)A B C D 1 A B C D2 A B C D3 A BCD4A B C D 5 A B C D 6 A C D B 7 A CDB 8 ACD B 9 A C D B 10 请在各题13、______ ___ __ ___ 14、_______ _______15、______ __ ______ 16、 二、填空题(每小题5分,共20分)三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) A C D B 11 ACDB12考 生 条 形 码 粘 贴 处请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 18、(本小题满分12分)19、(本小题满分12分)17、(本小题满分12分)班级 姓名 考场号 座位号…………………………………………密…………………………………封…………………………………………请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效20、(本小题满分12分)21、(本小题满分12分).题(10分)。
高中数学卷子试题及答案
![高中数学卷子试题及答案](https://img.taocdn.com/s3/m/be382afcb1717fd5360cba1aa8114431b80d8e75.png)
高中数学卷子试题及答案一、选择题(每题3分,共30分)1. 若函数\( f(x) = 3x^2 - 2x + 1 \),求\( f(-1) \)的值是:A. 0B. 4C. 6D. 82. 已知等差数列的前三项分别为2,5,8,该数列的公差是:A. 1B. 2C. 3D. 43. 圆的半径为5,圆心到直线的距离为4,求圆与直线的位置关系:A. 相切B. 相交C. 相离D. 无法确定4. 已知\( \sin 30^\circ = \frac{1}{2} \),求\( \cos 30^\circ \)的值:A. \( \frac{\sqrt{3}}{2} \)B. \( \frac{\sqrt{2}}{2} \)C. \( \frac{\sqrt{6}}{2} \)D. \( \frac{\sqrt{5}}{2} \)5. 若\( a \)和\( b \)互为相反数,那么\( a + b \)等于:B. 1C. 2D. -16. 已知\( \log_{10} 100 = 2 \),求\( \log_{10} 1000 \)的值:A. 3B. 4C. 5D. 67. 函数\( y = x^3 - 3x^2 + 2x \)的导数是:A. \( 3x^2 - 6x + 2 \)B. \( 3x^2 - 6x + 1 \)C. \( 3x^2 - 2x + 2 \)D. \( 3x^2 - 2x + 1 \)8. 已知点A(1,2),B(4,6),求直线AB的斜率:A. 1B. 2C. 3D. 49. 抛物线\( y = x^2 \)的焦点坐标是:A. (0, 0)B. (0, 1/4)C. (0, -1/4)D. (1/4, 0)10. 若\( \frac{1}{x} + \frac{1}{y} = 1 \),求\( x + y \)的值:A. 2C. 4D. 5答案:1. B 2. B 3. A 4. A 5. A 6. A 7. A 8. B 9. B 10. C二、填空题(每题4分,共20分)11. 已知\( a^2 + b^2 = 10 \),\( a + b = 5 \),求\( ab \)的值。
高中数学试题卷及答案
![高中数学试题卷及答案](https://img.taocdn.com/s3/m/bc5ee95778563c1ec5da50e2524de518974bd313.png)
高中数学试题卷及答案一、选择题(每题5分,共30分)1. 下列哪个选项是不等式x^2 - 4 > 0的解集?A. x < -2 或 x > 2B. x < 2 或 x > -2C. x < -2 或 x > 2D. x ≤ -2 或x ≥ 22. 函数f(x) = 2x + 3的反函数是:A. f^(-1)(x) = (x - 3) / 2B. f^(-1)(x) = (x + 3) / 2C. f^(-1)(x) = 2x - 3D. f^(-1)(x) = (x - 3) / 23. 已知圆的方程为x^2 + y^2 - 6x - 8y + 24 = 0,圆心坐标为:A. (3, 4)B. (-3, -4)C. (3, -4)D. (-3, 4)4. 直线x + 2y + 3 = 0与直线2x - y - 4 = 0的交点坐标是:A. (1, -1)B. (-1, 1)C. (-1, -1)D. (1, 1)5. 一个等差数列的前三项依次为2,5,8,那么第10项是:A. 17B. 19C. 21D. 236. 已知函数f(x) = x^2 - 4x + 3,求f(2)的值:A. -1B. 1C. 3D. 5二、填空题(每题5分,共20分)7. 计算(3x - 2)(x + 1)的结果为______。
8. 已知等比数列的前三项为2,6,18,则第四项为______。
9. 函数y = 3x - 2的图像与x轴交点的横坐标为______。
10. 一个圆的半径为5,圆心在原点,该圆的面积为______。
三、解答题(每题10分,共50分)11. 解方程:2x^2 - 5x + 2 = 0。
12. 已知函数f(x) = x^3 - 3x^2 + 2,求导数f'(x)。
13. 证明:对于任意实数a和b,等式a^2 + b^2 ≥ 2ab成立。
14. 计算定积分:∫(0到1) (3x^2 - 2x + 1) dx。
新高考数学试卷答题卡模板
![新高考数学试卷答题卡模板](https://img.taocdn.com/s3/m/17cbe76eef06eff9aef8941ea76e58fafab04537.png)
一、基本信息1. 姓名:___________2. 准考证号:___________3. 考试科目:数学二、选择题部分(共20题,每题5分,共100分)1. ()若a、b、c为等差数列,且a+c=2b,则b的值为:A. 2B. 1C. 0D. -12. ()下列函数中,有最小值的是:A. y=2x+1B. y=x^2C. y=x^3D. y=x^43. ()若向量a=(2,3),向量b=(-1,2),则向量a与向量b的夹角θ的余弦值为:A. 1/5B. 2/5C. 3/5D. 4/54. ()已知函数f(x)=x^2-2ax+1,若f(x)的图像关于直线x=a对称,则a的值为:A. 1B. 2C. 3D. 45. ()下列命题中,正确的是:A. 平方根为正数的数一定是正数B. 平方根为负数的数一定是负数C. 平方根为0的数一定是0D. 平方根为1的数一定是16. ()已知等差数列{an}的前n项和为Sn,若a1=1,公差d=2,则S10的值为:A. 55B. 60C. 65D. 707. ()若复数z满足|z+1|=|z-1|,则复数z的实部为:A. 0B. 1C. -1D. 28. ()下列函数中,是奇函数的是:A. y=x^2B. y=x^3C. y=x^4D. y=x^59. ()若等比数列{an}的前n项和为Sn,若a1=1,公比q=2,则S6的值为:A. 63B. 64C. 65D. 6610. ()若向量a=(1,2),向量b=(2,3),则向量a与向量b的模长分别为:A. 1,2B. 2,3C. 3,4D. 4,511. ()下列命题中,正确的是:A. 等差数列的通项公式为an=a1+(n-1)dB. 等比数列的通项公式为an=a1q^(n-1)C. 等差数列的前n项和公式为Sn=n(a1+an)/2D. 等比数列的前n项和公式为Sn=n(a1-an)/q12. ()若复数z满足|z|=1,则复数z的实部与虚部的和为:A. 0B. 1C. -1D. 213. ()下列函数中,是偶函数的是:A. y=x^2B. y=x^3D. y=x^514. ()若等比数列{an}的前n项和为Sn,若a1=1,公比q=2,则S7的值为:A. 127B. 128C. 129D. 13015. ()若向量a=(1,2),向量b=(2,3),则向量a与向量b的数量积为:A. 5B. 6C. 7D. 816. ()下列命题中,正确的是:A. 平方根为正数的数一定是正数B. 平方根为负数的数一定是负数C. 平方根为0的数一定是0D. 平方根为1的数一定是117. ()若复数z满足|z+1|=|z-1|,则复数z的虚部为:A. 0B. 1C. -1D. 218. ()下列函数中,是奇函数的是:B. y=x^3C. y=x^4D. y=x^519. ()若等比数列{an}的前n项和为Sn,若a1=1,公比q=2,则S8的值为:A. 255B. 256C. 257D. 25820. ()若向量a=(1,2),向量b=(2,3),则向量a与向量b的模长分别为:A. 1,2B. 2,3C. 3,4D. 4,5三、解答题部分(共2题,共50分)21. (20分)已知函数f(x)=x^3-3x^2+2,求:(1)函数f(x)的图像的顶点坐标;(2)函数f(x)在区间[0,2]上的最大值和最小值。
高中数学试卷模板
![高中数学试卷模板](https://img.taocdn.com/s3/m/0259be56daef5ef7bb0d3c75.png)
2011年10月高三模拟考试理科数学试题(卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第I卷(选择题共60分)评卷人得分一、选择题(本大题共10小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的。
)1.设的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.函数f(x)=+lg(1+x)的定义域是( )A.(-∞,-1) B.(1,+∞)C.(-1,1)∪(1,+∞) D.(-∞,+∞)3.函数y=2(x≥0)的反函数为( )A.y=(x∈R) B.y=(x≥0)C.y=4x2(x∈R) D.y=4x2(x≥0) 4.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 ( )A. B. C.D.5.下列函数中既是奇函数,又在区间上单调递增的函数是()A. B. C. D.6.函数为奇函数,且,则等于()A.0B.1C.-1 D.27.已知随机变量ξ服从正态分布N(2,σ2),且P(ξ<4)=0.8,则P(0<ξ<2)= ( )A.0.6 B.0.4 C.0.3 D.0.28.函数,若 ,则的值为()A.3B.0C.-1D.29.设是函数的反函数,则使成立的x的取值范围为()A. B. C. D.10.若函数在区间内单调递增,则a的取值范围是()A. B. C. D.11.定义在R上的偶函数满足,且在[-1,0]上单调递增,设,,,则大小关系是()A. B. C. D.12.已知函数f(x)的图象如图所示,f′(x)是f(x)的导函数,则下列数值排序正确的是( )A.0<f′(2)<f′(3)<f(3)-f(2) B.0<f′(3)<f(3)-f(2)<f′(2)C.0<f′(3)<f′(2)<f(3)-f(2) D.0<f(3)-f(2)<f′(2)<f′(3)第Ⅱ卷(非选择题共90分)评卷人得分二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)。
高考数学试卷模板整齐
![高考数学试卷模板整齐](https://img.taocdn.com/s3/m/43bd924ba31614791711cc7931b765ce05087a8d.png)
一、选择题(本大题共15小题,每小题5分,共75分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数f(x) = ax^2 + bx + c,若f(1) = 2,f(2) = 8,则a的值为()A. 1B. 2C. 3D. 42. 在等差数列{an}中,若a1 = 2,d = 3,则第10项an的值为()A. 29B. 30C. 31D. 323. 已知圆的方程为x^2 + y^2 - 4x - 6y + 9 = 0,则该圆的半径为()A. 1B. 2C. 3D. 44. 在三角形ABC中,若∠A = 30°,∠B = 45°,则∠C的度数为()A. 105°B. 120°C. 135°D. 150°5. 已知函数y = log2(x + 1),则函数的图像为()A. B. C. D.6. 若等比数列{an}的首项a1 = 3,公比q = 2,则第n项an的值为()A. 3 2^(n-1)B. 3 2^nC. 3 / 2^(n-1)D. 3 / 2^n7. 已知函数f(x) = |x - 1|,则函数的图像为()A. B. C. D.8. 在三角形ABC中,若AB = AC,则∠B的度数为()A. 45°B. 60°C. 90°D. 120°9. 已知函数y = e^x,则函数的图像为()A. B. C. D.10. 若等差数列{an}的前三项分别为1,4,7,则该数列的公差d为()A. 1B. 2C. 3D. 411. 在等腰三角形ABC中,若AB = AC,∠B= 40°,则∠C的度数为()A. 40°B. 50°C. 60°D. 70°12. 已知函数y = sin(x),则函数的图像为()A. B. C. D.13. 在三角形ABC中,若∠A = 30°,∠B = 60°,则∠C的度数为()A. 60°B. 90°C. 120°D. 150°14. 已知函数y = 2^x,则函数的图像为()A. B. C. D.15. 若等比数列{an}的首项a1 = 1,公比q = 3,则第n项an的值为()A. 3^(n-1)B. 3^nC. 1 / 3^(n-1)D. 1 / 3^n二、填空题(本大题共10小题,每小题5分,共50分。
高中数学命题试题及答案
![高中数学命题试题及答案](https://img.taocdn.com/s3/m/427ef7a28ad63186bceb19e8b8f67c1cfbd6ee72.png)
高中数学命题试题及答案一、选择题(每题4分,共40分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x + 1D. f(x) = x^2 + 1答案:B2. 已知集合A={1, 2, 3},B={2, 3, 4},则A∩B等于:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}答案:B3. 若直线l的方程为y=2x+3,则直线l的斜率k等于:A. 2B. 3C. -2D. -3答案:A4. 函数y=ln(x)的定义域是:A. (-∞, 0)B. (0, +∞)C. (-∞, +∞)D. [0, +∞)答案:B5. 已知向量a=(3, -2),b=(2, 1),则向量a·b等于:A. 4C. 1D. -1答案:A6. 已知等比数列{an}的首项a1=2,公比q=3,则a5等于:A. 486B. 162C. 243D. 81答案:A7. 函数f(x)=x^2-4x+3的最小值是:A. 0B. -1C. 3答案:B8. 已知三角形ABC中,a=5,b=7,c=8,则三角形ABC的面积S等于:A. 12B. 10C. 15D. 20答案:B9. 已知双曲线x^2/a^2 - y^2/b^2 = 1的焦点在x轴上,且a=2,b=3,则双曲线的离心率e等于:A. √5B. √13/2C. 2D. 5/2答案:B10. 已知函数f(x)=sin(x)+cos(x),则f(π/4)等于:A. √2B. 1C. 0D. -1答案:A二、填空题(每题4分,共20分)11. 已知等差数列{an}的首项a1=1,公差d=2,则a10等于_________。
答案:1912. 函数y=x^3-3x^2+2的导数y'等于_________。
答案:3x^2-6x13. 已知抛物线y=x^2-4x+3的顶点坐标为_________。