巧找分数应用题中的单位“1”
六年级上册巧找单位方法总结(人教版)
教师:同学们通过分享交流,我们各取所长。数学乐园根据大家的错题,为大家准备了几个游戏,在游戏中学习和成长吧!
例如: 1、甲有人民币100元,乙的 钱数是甲的1/2,求乙有人民币多少元? 在这道题中,甲的钱数是单位“1”的量 。
2、甲有人民币100元,乙的钱数占 甲的1/2,求乙有人民币多少元?甲的钱 数是单位“1”的量。
三、把分率作为突破口,找准单位“1”
分数应用题存在着三种数量(即比较量、标准量和 分率),这三种数量有着如下的关系:
标准量×分率=比较量 比较量÷标准量=分率 比较量÷分率=标准量 要正确找准单位“1”的量(即标准量)必须从题 目中的分率着手,看这个分率是哪个量的分率,哪个 量就是标准量。 例如:幸福村有旱地300亩,水亩面积是旱地面 积的3/5,水田面积有多少亩? 这道题中的分率3/5是旱地面积的3/5,所以旱地 面积是单位“1”的量。
例如,一个长方形的宽是长的5/12
。在这关键句中,很明显是以长作
《义务教育数学课程标准(2011年版)》在“课程内容”的“第二学段”的“统计与概率”部分中的“(二)随机现象发生的可能性
”中提出: (2)感知
为标准,宽和长相比较,也就是说
哪位同学帮她解决?还有没有不懂的?
长是单位“1”。 又如,今年的产量 教师:同学们通过分享交流,我们各取所长。数学乐园根据大家的错题,为大家准备了几个游戏,在游戏中学习和成长吧!
3、甲有人民币100元,乙的钱数比 甲多1/2,求乙有人民币多少元?甲的钱 数是单位“1”的量。
4、甲有人民币100元,乙的钱 数等于甲的1/2,求乙有人民币 多少元?甲的钱数是单位“1” 的量。
5、甲有人民币100元,乙的 钱数相当于甲的1/2,求乙有人 民币多少元?甲的钱数是单位 “1”的量。
找准单位“1”,量率对应,巧解分百数应用题
找准单位“1”,量率对应,巧解分百数应用题教学目标1.分析题目确定单位“1”2.准确找到量所对应的率,利用量÷对应率=单位“1”解题3.抓住不变量,统一单位“1”知识点拨:一、知识点概述分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。
在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系例如:(1)a是b的几分之几,就把数b看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1 199÷=.二、怎样找准分数应用题中单位“1”(一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。
解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。
(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。
这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。
【原创】巧用单位“1”解分数应用题
【原创】巧⽤单位“1”解分数应⽤题分数应⽤题在⽇常⽣活、⼯农业⽣产和科研中有着⼴泛的应⽤。
由于其⽐较抽象,难于理解,使其成为数学教学中的难点。
为了突破这⼀难点,本⽂给出巧⽤单位“1”解分数应⽤题的算术解法。
⾸先,确定单位“1”。
单位“1”的确定是解答分数应⽤题的关键,其⽅法如下:1、根据题意仔细辨认,以含有分率的语句中去寻找。
2、⼀般选择题中的不变量、中间量、未知量为单位“1”。
3、当题⽬中有多个量⽐较时,应选与其它量均有直接关系的量为单位“1”。
其次,查找单位“1”的量是已知还是未知,确定解题策略:1、当单位“1”的数量已知时,⽤乘法。
即⽤单位“1”的数量乘以所求的量占单位“1”的分率,所得结果为所求的量的数值。
2、当单位“1”的数量未知时,⽤除法。
即⽤已知条件中已知数量(含有单位的)除以这⼀数量占单位“1”的分率,可得单位“1”的数值。
3、对于⽐较复杂的分数应⽤题,占单位“1”的分率计算⽅法如下:在原题中,把单位“1”的数量看作1,所求分率的量改为⼏分之⼏,再读题,审题,便可得出。
例1、⼀张课桌⽐⼀把椅⼦贵10元,如果椅⼦的单价是课桌单价的3/5,课桌和椅⼦的单价各是多少元?分析:1)由“椅⼦的单价是课桌单价的3/5”知:课桌单价为单位“1”,且为未知量,从⽽确定⽤除法。
2)由课桌单价的分率为1,可知椅⼦的分率为3/5,进⽽可得出已知数量“10元”的分率为(1﹣3/5)。
3)由此可知,可知的单价为10÷(1﹣3/5),从⽽亦可得椅⼦的单价。
例2、汽车⼚计划⽣产汽车12600辆,结果上半年完成全年计划的3/5,下半年完成全年计划的5/9。
去年超产汽车多少辆?分析:1)由题意可知,全年计划是单位“1”,且数量已知,⽤乘法。
2)由去年全年实际⽣产的分率为(5/9﹢3/5)。
则去年超产的分率是(5/9﹢3/5﹣1)。
3)由此可列出下式:12600×(5/9﹢3/5﹣1)。
小学六年级分数应用题单位1的确定
小学六年级:分数应用题中单位“1”的确定分数应用题中怎样分析数量之间的关系,如求一个数比另一个数多(或少)百分之几的问题.解决的核心是要弄清楚哪个量是“单位1”,这多(或少)的百分之几究竟是谁的百分之几?常用的方法有以下3种:(1)在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”.如:有120吨货物,运走了24吨,还剩下百分之几没有运走?这个问题中120吨是总数量,24吨是部分数量,因此120吨就是单位1;六(1)班女生占总人数的3/5,六(1)班总人数就是单位1.(2)熟练掌握几个关键的字:“比”、“是”、“的”、“占”、“相当于”等. 一般情况下,“比”后“的”前的量是“单位1”,“是”、“相当于”、“占”后面的量是“单位1”.举例说明如下:将正确列式的选项填在相应的括号里.①李明家养了120只灰兔,白兔的只数是灰兔的40%,李明家养了多少只白兔?()②李明家养了120只灰兔,占白兔只数的40%,李明家养了多少只白兔?()③李明家养了120只灰兔,比白兔的只数少40%,李明家养了多少只白兔?()④李明家养了120只灰兔,白兔的只数比灰兔少40%,李明家养了多少只白兔?()A.120×(1-40%)B.120÷40%C.120÷(1-40%)D.120×40%解析:①中,“白兔的只数是灰兔的40% ”,“是”后面是灰兔,因此灰兔的只数是“单位1”;②中,“占白兔只数的40% ”,“占”后面是白兔,因此白兔的只数是“单位1”;③中,“比白兔的只数少40% ”,“比”后面是白兔,因此白兔的只数是“单位1”;④中,“白兔的只数比灰兔少40% ”,“比”后面是灰兔,因此灰兔的只数是“单位1”.正确答案是(1)D(2)B(3)C(4)A.(3)原数量与现数量的比较型问题,一般原数量是单位1.如:一种机器零件成本从8元降到6元,成本降低了百分之几?原来的数量是8元,现在是6元,单位1就是原数量8元.再如:水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12.象这样的水和冰两种数量到底谁作为单位“1”?我们只要看,原来的数量是谁,谁就是单位“1”.比如水结成冰,原来的数量是水,那么水就是单位“1”;冰融化成水,原来的数量是冰,所以冰的体积就是单位“1”.【易错题型练习】1.()比28千克多12.5%.A.3.5千克B.24.5千克C. 31.5千克D.32千克2.今年棉花产量比去年增加20%,就是()A.今年的棉花产量是去年的102%;B.去年棉花产量比今年少20%;C.今年的棉花产量是去年的120%;D.去年产量比今年少80%.3.李叔叔10月份看中的轿车是12万元,到了年底降到了10.8万元.问降了百分之几?4.李奶奶家养母鸡25只,公鸡20只.(1)李奶奶家养的母鸡比公鸡多百分之几?(2)李奶奶家养的公鸡比母鸡少百分之几?5.(1)利民服装厂计划11月份加工服装25万件,实际加工30万件.实际比计划多加工百分之几?(2)利民服装厂计划11月份加工服装25万件,实际比计划多加工5万件.实际比计划多加工百分之几?(3)利民服装厂计划11月份加工服装25万件,实际比计划多加工5万件. 实际加工的相当于计划的百分之几?(4)利民服装厂11月份实际加工服装30万件,比计划多加工5万件. 实际比计划多加工百分之几?6.把一个长6厘米、宽5厘米、高4厘米的长方体木块,加工成一个棱长是4厘米的正方体木块.体积减少了百分之几?7.甲校学生人数比乙校学生人数多25%,求乙校学生人数比甲校学生人数少百分之几?8.已知甲数比乙数多3/5,那么乙数比甲数少百分之几?9.一本科幻小说有96页,小军看了43页.小军说“剩下的比这本书的1/2少5页”,小丽说“剩下的比这本书的5/12多13页”.小军和小丽谁说的对?10.建筑工地要运进一批沙子,第一次运进总量的25%,第二次运进总量的40%,第二次比第一次多运30吨.这批沙子共有多少吨?11.一根竹竿不足8米,如果从一头量到4米做一记号,再从另一头量到4米做一记号,若这两个记号之间的长度是全长的25%,那么竹竿全长是多少米?【答案】1. 28千克就是单位1,比28多12.5%的数就是 28×(1+12.5%)=31.5,正确答案选C.2.“比去年增加20%”,“比”后的“去年”就是单位1,因此今年的产量就是(1+20%)=120%,正确答案是C.3.原数量12万元就是单位1,(12-10.8)÷12=10%.4.(1)公鸡是单位1:(25-20)÷20=25%;(2)母鸡是单位1:(25-20)÷25=20%.5.本题的4问中,单位1都是计划加工服装的件数.(1)(30-25)÷25=20%;(2)5÷25=20%;(3)(25+5)÷25=120%;(4)5÷(30-5)=20%.6.虽然没有“比、是、的”这些关键的字,但是认真读题,不难看出题中的意思是“正方体的体积比长方体的体积减少了百分之几?”,因此长方体的体积是单位1.(6×5×4-4×4×4)÷(6×5×4)≈46.7%.7.1+25%=125% (125%-1)÷125%=20%.8.第一句是“甲数比乙数”,因此“比”后的乙数就是单位1,甲数就是(1+3/5)=8/5.;第二句“乙数比甲数”,因此甲数就是单位1,(8/5-1)÷8/5= 37.5%.9.小军说“剩下的比这本书的1/2少5页”,是以“这本书”为单位1的,96×1/2=48,48-5=43,而剩下的页数是(96-43)=53页,因此小军说错了;小丽说“剩下的比这本书的5/12多13页”,也是以“这本书”为单位1的,96×5/12=40,40+13=53,和剩下的页数是相等的,因此小丽说的对.10.题中的25%和40%都是针对总量的,也就是总量就是单位1,两次的差额40%-25%=15%,也是占总量的15%,30÷15%=200吨.11.画出示意图:25%就是两次重合的部分,设竹竿的全长是x米,由题意可得 x+25%x=4+4 ,可解得x=6.4,即竹竿全长为6.4米.。
单位一怎么找口诀六年级
单位一怎么找口诀六年级
单位“1“藏得巧,根据分率把你找。
“其中“的前站得好,”是、占、比“后坐得妙;“问答式“能找到,补充说明要搞好。
百分数常遇到,不带“率“字有礼貌。
找出一对好朋友,然后确定乘除号。
一个物体,一个图形,一个计量单位,都可看作单位“1”。
把单位“1”平均分成几份,表示这样一份或几份的数叫做分数。
1、2、3、4、5,屈指可数数。
1枝花、2颗糖,3只猴,4本书。
校园操场边,还有5棵树。
我会写,还会读,比比划划数一数。
我会分,还会组,一个不少全记住。
找单位“1“的说明:
抓住含有不带单位名称的分数的“关键句“、“关键词”,进行剖析,这样就解决了不少学生对于分数应用题苦于不知“从何下手”进行分析数量关系。
因此,使学生学会迅速找“关键句”、“关键词语”进行剖析数量关系,不仅能有利于掌握解答分数应用题的一般规律,而且也能培养学生的能力,发展学生的智力。
先“找”后“析”是六年级学生普遍的学习规律,切记引导学生认真有序地进行分析。
怎样确定单位“1”的量
怎样确定单位“1”的量〖数学广角〗解答分数应用题,首先要确定单位“1”的量。
怎样才能正确地找出单位“1”的量呢?一、根据分数的意义确定单位“1”的量。
例如:从“排球的个数是足球的25 ”这句话中,我们知道,这里25 的意义是把“足球的个数”平均分成5份,排球的个数占其中的2份,所以,“足球的个数”是单位“1”的量。
二、当部分与整体比较时,整体是单位“1”的量。
例如:学校有学生1200人,六年级学生占总人数的15 ,六年级有学生多少人?这道题是“六年级学生人数”(部分)和“全校学生人数”(整体)相比,15 表示把“全校学生人数”平均分成5份,“六年级学生人数”占其中的1份。
所以,整体——“全校学生人数”是单位“1”的量。
三、题目中被比较的量往往是单位“1”的量。
例如:从“甲班人数比乙班多18 ”这句话中,我们知道,这里是“甲班”与“乙班”相比,“乙班人数”是被比较的量。
根据分数的意义,18 表示把“乙班人数”平均分成8份,“甲班人数”比“乙班人数”多其中的1份。
所以,被比较的量——“乙班人数”是单位“1”的量。
你能从下面几句话中分别找出单位“1”的量吗?请试一试。
1、公鸡的只数是母鸡的35 。
2、桃树的棵树占果树棵树的2 7。
3、八月份生产的吨数相当于七月份的5 6。
4、某厂去年用电比前年节约1 10。
5、实际产煤量比计划增加1 9。
〖智慧密码〗例1:有两根同样长的钢管,第一根用去310米,第二根用去310,哪一根剩下的部分长一些?思路点睛:由题目的条件我们知道,两根钢管同样长,第一根用去310米,第二根用去310。
这里的“310米”与“310”虽然仅相差一个字,但表示的意义却不一样。
“310米”是一个具体的数量,“310”是一个分率,它所对应的具体数量随钢管的长短而变化。
因此,要求哪根钢管剩下的部分长些,就必须分三种情况去考虑:(1)如果原来钢管长1米,第二根用去1×310=310(米),与第一根用去的同样长,那么两根剩下的部分长度相等。
找单位“1”的方法
抓关键词“ 相当于” 抓关键词“是”、“比”、“等于”、“相当于” 等于” 找准单位“ ” 找准单位“1” 分数应用题,题目中经常出现“ 分数应用题,题目中经常出现“是”、“占”、 等于” 相当于”这些词,一般来说, “比”、“等于”、“相当于”这些词,一般来说,单 位“1”的量就隐藏在这些的后面,只要从这些词的后 ”的量就隐藏在这些的后面, 面寻找,就可以找出单位“ ”的量,例如: 面寻找,就可以找出单位“1”的量,例如: 1、甲有人民币 、甲有人民币100元,乙的钱数是甲的 ,求乙 元 乙的钱数是甲的1/2, 有人民币多少元?在这道题中,甲的钱数是单位“ ” 有人民币多少元?在这道题中,甲的钱数是单位“1” 的量。 的量。 2、甲有人民币 、甲有人民币100元,乙的钱数占甲的 ,求乙 元 乙的钱数占甲的1/2, 有人民币多少元?在这道题中,甲的钱数是单位“ ” 有人民币多少元?在这道题中,甲的钱数是单位“1” 的量。 的量。 3、甲有人民币 、甲有人民币100元,乙的钱数比甲多 ,求乙 元 乙的钱数比甲多1/2, 有人民币多少元?在这道题中,甲的钱数是单位“ ” 有人民币多少元?在这道题中,甲的钱数是单位“1” 的量。 的量。
Байду номын сангаас
二、解决问题
1、一个果园共有果树480棵,其中苹果树占 % ,梨 、一个果园共有果树 棵 其中苹果树占17% 树占25% 桃树占28%。其余的是杏树, %。其余的是杏树 树占 % ,桃树占 %。其余的是杏树,杏树有多少 棵?
2、一桶汽油第一天用去了它的2/7 ,第二天用去了 、一桶汽油第一天用去了它的 47.5千克,这时桶里还剩 千克, 千克, 千克 这时桶里还剩17.5千克,这桶汽油原来有多 千克 少千克? 少千克?
在题目的关键句中找 “比”字,单位“1”就是比 “字”后面的量。如“小明比小红高1/8”,单位“1” 就是小红的身高。 二、省略句式补充找 如“现价降低4/7”,先补充成“现价(比原价)降 低4/7”,“原价”就是单位“1”的量。 三、特殊句式慎重找 有些关键句比较特殊,就像“吃去的比剩下的多总 量的2/5”这个关键句中,既出现了“的”,又出现了 “比”,怎么办?这就要仔细思考了。当“比”和“的” 都出现时,以“的”优先,所以单位“1”是总量,而 不是剩下的量。
六年级--找分数单位1的方法、练习
正确找准单位“1”一、基本思路:分数的意义,“把单位1平均分成若干份,表示这样的一份或几份的数,叫分数”。
所以单位1的判定,就是看把谁平均分了,就把谁看作单位1.谁的几分之几,谁就把谁看作单位1。
.如一桶油用去14,男生占全班的25,桃树棵数相当于梨树棵树的34,一台电视机降价15。
男生比女生多全班的18.把全班人数看作单位1。
.正确找准单位“1”,是解答分数(百分数)应用题的关键。
每一道分数应用题中总是有关键句(含有分率的句子)。
如何从关键句中找准单位“1”,我觉得可以从以下这些方面进行考虑。
一、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如我国人口约占世界人口的1/5,世界人口是总数,我国人口是部分数,所以,世界人口就是单位“1”。
再如,食堂买来100千克白菜,吃了2/5,吃了多少千克在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1”。
解答这类分数应用题,只要找准总数和部分数,确定单位“1”就很容易了。
二、两种数量比较分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带指向性特征的“占”、“是”、“相当于”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多1/2。
就是以女生人数为标准(单位“1”),男生比女生多的人数作为比较量。
在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。
这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。
例如,一个长方形的宽是长的5/12。
在这关键句中,很明显是以长作为标准,宽和长相比较,也就是说长是单位“1”。
又如,今年的产量相当于去年的4/3倍。
那么相当于后面的去年的产量就是标准量,也就是单位“1”。
三、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。
在分数应用题中如何确定单位“1”
在分数应用题中如何确定单位“1”的量在我的教学实践中,我发现在小学数学的学习阶段,让学生感到困惑和难以掌握的就是应用题的学习,特别是分数应用题难度更大,而解这类应用题的关键,就是能否准确判断单位“1”的量(标准量)、分率对就量(比较量)和对应分率,而单位“1”的量是这个三个量的核心。
为此,我根据多种题型和自己的教学经验,认为单位“1”的量的确定方法大致有以下四种,仅供参考:1.找关键字,题中如在分数前出现“是谁”、“占谁”、“比谁”、或“超过谁”等词时,那么“是、占、比、超过”等字后的这个“谁”就是该分数所对应的单位“1”的量。
例如:(1)一套西服160元,其中裤子的价格是上衣的3/5,上衣是多少元》?分析:3/5前有“是上衣”一词,则“是”后的“上衣”是3/5对应的单位“1”的量。
(2)校园里有60棵树,杨树占总株数的1/5,杨树有多少棵?分析:“占”的后面是总株数,则它就是1/5对应的单位“1”的量。
2.在没有关键字时,如果在分数前有若干个量,可找最接近分数的这个量,就是这个分数对应的单位“1”的量。
例如:某汽车厂去年计划生产汽车12600辆,结果上半年完成全年计划的5/9,下半年完成全年计划的3/5,去年超产汽车多少辆?分析:题中5/9和3/5为两个量,但最接近分数的是“全年计划”,则它就是该分数对应的单位“1”的量。
3.在某些题中的分数前,既没有关键字,又没有出现量,那么这个分数的单位“1”的量便隐含题中,但通过读该题,便让单位“1”浮现在上面,很容易确定。
例如:六(1)班有学生68人,今天到校了33/34,到校人数有多少人?分析:很明显,全班人数是分数对应的单位(1)的量。
4.较复杂的分数应用题是基本应用题的延续和发展,题中的单位“1”的量不定,因为这类题中的已知条件之间,已知条件与所求问题之间的变幻关系可逐步确定而灵活选择。
例如:某学校六年级有四个班去植树,一班植树的棵数是其他班级的1/2,二班植树棵数是其他班级的1/3,三班植树棵数是其他班级的1/4,而四班植了130棵,问四个班级一共植树多少棵?分析:题中出现了3个不同的单位“1”的量,1/2对应的是二、三、四班植树的总棵数,1/3对应的是一、三、四班植的总棵数,1/4对应的一、二、四班植的总棵数,但解这道题如果逐步进行,按对应关系计算就太复杂,可选择不变量四个班植树总棵数来统一单位“1”的量,此计算过程要简单些。
巧找分数应用题中的单位“1”
巧找分数应用题中的单位“1”印江实验学校李锐锋分数应用题在日常生产和生活中有着非常广泛的应用,也是小学数学的重要内容,同时还是教学中的一个难点。
因为这类应用题比较抽象,对小学生来说要构建数学模型是有一定难度的。
而找准单位“1”是正确解答分数应用题的关键所在。
只要单位“1”找准了,再来理解和分析单位“1”在分数应用题中的地位和作用,这样就能帮助我们确定正确的解题方法。
但在分数应用题的实际教学过程中,往往是这样教学生的:先找出题目中含有分率的句子,句中的“占”、“比”、“相当于”等词语后面的量就是单位“1”。
我认为这种方法不是万能的。
比如:“红花朵数的四分之三是黄花朵数。
”这里就不能把黄花朵数看着单位“1”,而应把红花朵数看着单位“1”。
要使学生能够正确地找到单位“1”,还得要正确理解分数的意义,然后从题目中找到关键句——含有分率的句子。
以下是我对如何找单位“1”的一些肤浅看法。
一、在正确理解分数的意义中寻找单位“1”。
在分数应用题中,单位“1”与分数的意义是紧密相连,所以先引导学生从分数的意义来分析,把单位1平均分成若干份,表示这样一份或几份的数叫分数。
单位“1”可以是一个物体,可以是一个计数单位,也可以是一个整体,让学生明白谁被平均分成若干份,谁就是单位“1”。
比如上例中是把红花的朵数平均分成4份,黄花的朵数相当于这样的3份,所以红花的朵数才是单位“1”的量。
二、从生活中对分数经验的积累,加强对单位“1”的理解。
数学来源于生活,但又服务于生活。
所以在现实生活中也不乏含有分率的句子。
在教学中我们就应该进行有效的引导,让学生经常留意身边的分数,并记录下来和老师同学交流这些“含有分率的句子”的含义,并用它们来描述身边的数据。
比如学生不理解“一件衣服的售价比成本价提高了2/5。
”是什么意思的话,可以引导学生到商店去调查一下真实数据,然后用分数来描述售价与成本间的关系。
三、补充扩句,找准单位“1”。
在实际教学中,分数应用题的叙述往往都不仅相同,也不像例题那么完整,许多习题会像语文中的省略句一样把单位“1”省掉。
正确找准单位“1”解决应用题
正确找准单位“1”解决应用题正确找准单位“1”,是解答小学六年级分数(百分数)应用题的关键。
每一道分数应用题中总是有关键句(含有分数率的句子)。
如何从关键句中找准单位“1”,我觉得可以从以下这些方面进行考虑:一、 解决问题的基本思路:分数的意义,“把单位1平均分成若干份,表示这样的一份或几份的数,叫分数”。
所以单位1的判定,就是看把谁平均分了,就把谁看作单位1.二、找单位“1”的具体方法:(一)、部分和总体:在同一整体中,部分和总体作比较关系时,部分通常作为比较量,而总体则作为标准量,那么总体就是单位“1”。
例如:我国人口约占世界人口的1/5,世界人口是总数,我国人口是部分数,所以,世界人口就是单位“1”。
再如,食堂买来100千克白菜,吃了52,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1”。
解答这类分数应用题,一般有两种方法::一种是先求出已知量是总量的几分之几的部分量,在用总量减去这个部分量,求出另一个量;另一种是先求出要求的部分量占总量的几分之几,再根据分数乘法的意义求出这个部分量是多少。
例如:食堂里有540千克大米,第一周吃掉总数的31,第二周吃掉总数的21,第二周比第一周多吃去多少千克?分析:把540千克看做单位“1”,单位“1”的数量是已知的,所以用乘法计算,要求“第二周比第一周多吃去多少千克”所以用减法。
即:540×21-540×31=270-180=90千克(二)、两种数量比较:分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带指向性特征的“占”、“是”、“相当于”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多21。
就是以女生人数为标准(单位“1”),男生比女生多的人数作为比较量。
在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。
小学数学人教版五年级上册解答分数乘除法应用题时单位“1”怎么找
小学数学人教版五年级上册解答分数乘除法应用题时,单位“1”怎么找?在解答分数乘除法应用题时,如何确定分数乘除法应用题中的单位“1”(只要找出关键字,关键字后面的就是单位“1”)正确找准单位“1”是解答分数(百分数)应用题的关键,每一道分数应用题中总是有关键句(含有分率的句子)。
如何从关键句中找准单位“1”,我觉得可以从以下这些方面进行考虑。
一、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如,(1)小明看一本100页的书,看了这本书的4/5,他看了多少页?在这里,这本100页的书是总数,看了的是部分数,所以100页就是单位“1”。
(2)六年级一班有学生44人,参加合唱队的占全班学生的2/11。
参加合唱队的有多少人?这里六年级一班有学生44人是总数,参加合唱队的学生数是部分数,所以44人就是单位“1”。
解答这类分数应用题,只要找准总数和部分数,确定单位“1”就很容易了。
二、两种数量比较分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”、“正好”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:篮球的价钱比排球多1/2。
就是以排球的价钱为标准(单位“1”),篮球比排球多的钱数作为比较量。
在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。
这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。
例如,(1)有一块4公顷的果园,苹果树占果园面积的3/4,苹果树占地多少公顷?在这关键句中,很明显是以果园面积作为标准,苹果树面积和果园面积相比较,也就是说果园面积是单位“1”。
又如(2)一种小汽车的最快速度是每小时行140千米。
相当于一种超音速飞机速度的1/15。
这种超音速飞机每小时飞行多少千米?小汽车的最快速度相当于一种超音速飞机速度的1/15。
六年级数学 找准单位“1”的方法和练习
找准单位“1”正确找准单位“1”,是解答分数(百分数)应用题的关键,每一道分数应用题中总是有关键句(含有分率的句子)。
如何从关键句中找准单位“1”,可以从以下这些方面进行。
一、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如我国人口约占世界人口的1/5,世界人口是总数,我国人口是部分数,所以,世界人口就是单位“1”。
再如,食堂买来100千克白菜,吃了2/5,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1”。
解答这类分数应用题,只要找准总数和部分数,确定单位“1”就很容易了。
二、单位“1”的一般情况下的位置:单位“1”在之前:“。
的”、“几分之几的”前面的那几个字,是单位“1”,单位“1”在之后:“比,占,是,相当于、正好”字的后面的那几个字例如:六(2)班男生比女生多1/2。
就是以女生人数为标准(单位“1”),男生比女生多的人数作为比较量。
例如,一个长方形的宽是长的5/12。
在这关键句中,很明显是以长作为标准,宽和长相比较,也就是说长是单位“1”。
又如,今年的产量相当于去年的4/3倍。
那么相当于后面的去年的产量就是标准量,也就是单位“1”。
三、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。
这类分数应用题的单位“1”比较难找。
例如,水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12。
象这样的水和冰两种数量到底谁作为单位“1”?两句关键句的单位“1”是不是相同?用上面讲过的两种方法不容易找出单位“1”。
其实我们只要看,原来的数量是谁?这个原来的数量就是单位“1”!比如水结成冰,原来的数量就是水,那么水就是单位“1”。
冰融化成水,原来的数量是冰,所以冰的体积就是单位“1”。
四、总结归根到底,单位1 是与分数作比较的;就是被分成若干份的那个量.;是谁的几分之几;比谁多(少)几分之几;谁就是单位1。
最新巧找单位1方法总结
5
甲占乙的5
2 5
2、乙的几分之几是甲?女生的 2 是男生
5
乙的几分之几相当于乙甲?女生 2 的相当于乙男生
5
3、一根铁丝,用去 2
5
一本书,看了 2
5
一桶油,用了 2
5
二.填空题:
1. 看了全书的 4/7, 单位“1”是
但也要注意,不是所有的“的”字 前面就是单位“1”,这个“的”字既要 在关键句中,又得紧挨在分数前面,否 则就会找错单位“1”了!
3. 省略句式补充找 . 如“现价降低4/7”,先补充成“现价(比 原价)降低4/7”,“原价”就是单位“1”的量。 4.、特殊句式慎重找 . 有些关键句比较特殊,就像“吃去的比剩 下的多总量的2/5”这个关键句中,既出现了 “的”,又出现了“比”,怎么办?这就要仔 细思考了。当“比”和“的”都出现时,以 “的”优先,所以单位“1”是总量,而不是剩 下的量。
四、分析整体和部分之间的数量关 系,找准单位“1”
有些分数应用题,存在着整体和部分 两个数量,一般来说,部分是比较量,整 体是标准量。部分数和总数作比较关系时, 部分数通常作为比较量,而总数则作为标 准量,那么总数就是单“1”。
例如:我国人口约占世界人口的1/5, 世界人口是总数,我国人口是部分数,所 以,世界人口就是单位“1”。
三、把分率作为突破口,找准单位“1”
分数应用题存在着三种数量(即比较量、标准量和 分率),这三种数量有着如下的关系:
标准量×分率=比较量 比较量÷标准量=分率 比较量÷分率=标准量 要正确找准单位“1”的量(即标准量)必须从题 目中的分率着手,看这个分率是哪个量的分率,哪个 量就是标准量。 例如:幸福村有旱地300亩,水亩面积是旱地面 积的3/5,水田面积有多少亩? 这道题中的分率3/5是旱地面积的3/5,所以旱地 面积是单位“1”的量。
怎样找准分数应用题中单位“1”的量
怎样找准分数应用题中单位“1”的量
在分数应用题中,单位“1”通常代表了一个特定的数量或值。
要找准这个数量或值,可以根据题目给出的条件和信息逐步推导。
以下是一些方法:
1. 找到已知量和未知量:首先找到已知量和未知量,根据它们
的关系来寻找单位“1”的量。
例如,如果题目中已知2个苹果等于
1个梨,那么单位“1”就是1个梨。
2. 注意题目中的比例关系:有时题目中会给出比例关系,可以
根据比例关系来推算出单位“1”的量。
例如,题目中给出每10个
人中有3个女性,那么单位“1”就是3/10的女性。
3. 找到数学关系:有些分数应用题中有明显的数学关系,例如,如果题目中说1/4等于25%,那么单位“1”就是25。
4. 审查单位:有时候单位本身就能够揭示出单位“1”的量。
例如,如果题目中给出了每分钟跑4公里,那么单位“1”就是4公
里/分钟。
总之,要找准分数应用题中的单位“1”,需要仔细阅读、分析
和推导题目,特别是注意题目中给出的已知量、未知量、比例关系
和数学关系,以及单位本身的意义。
找单位“1”的方法
找单位“1”的方法
一、标准句式直接找 (1)找“的”字。 这个“的”字既要在关键句中,又得紧挨在 分数前面! 例:一本故事书有200页,小明看了全书的 1/2,求看了多少页?
(2)找“比”字。 在题目的关键句中找 “比”字,单位“1”就 是比“字”后面的量。 例“小明比小红高1/8” “四月份用水个果园共有果树480棵,其中苹果树占17% ,梨 树占25% ,桃树占28%。其余的是杏树,杏树有多少 棵?
2、 一个果园种苹果树1000棵,种的苹果树比梨树少 20%,梨树有多少棵?
3、学校有20个足球,比篮球多25%,篮球有多少个?
1. 看了全书的 4/7, 单位“1”是( ( )平均分成7份,(
),把 )占其中的4份。
2. 两次正好运了这批水果的25%,是把 ( )看作单位“1”把( 成100份,( )占其中的25份,
)平均分
3.养鸡的只数比鸭的只数少40%,单位“1” 是( ),把( )平均分成100 份,( )占其中的40份。 所以用 ,还可以 用 。 4.冰的体积比水的体积增加10%,,单位 “1”是( ),把( )平均分成 10份,( )占其中的1份。 所以用 ,还可以 用 。
• 二、省略句式补充找 • 如“现价降低4/7”,先补充成“现价(比 原价)降低4/7”,“原价”就是单位“1”的量。 • 三、特殊句式慎重找 • 有些关键句比较特殊 例:“吃去的比剩下的多总量的2/5” 当“比”和“的”都出现时,以“的”优先, 所以单位“1”是总量,而不是剩下的量。
一.填空题:
1、甲有人民币100元,乙的钱数是甲的1/2,求乙 有人民币多少元? 2、甲有人民币100元,乙的钱数占甲的1/2,求乙 有人民币多少元? 3、甲有人民币100元,乙的钱数比甲多1/2,求乙 有人民币多少元? 4、甲有人民币100元,乙的钱数等于甲的1/2,求 乙有人民币多少元? 5、甲有人民币100元,乙的钱数相当于甲的1/2, 求乙有人民币多少元?
人教版小学数学六年级巧找单位1
正确找准单位“1”,是解答分数 (百分数)应用题的关键,也是教师教学 此类应用题的重点和难点。每一道分数应 用题中总是有关键句(含有分率的句子)。 如何从关键句中找准单位“1”,我定位词
• 在应用题中,如果有“是”“占”“比”“相当
于”等定位词,该定位词后面就是单位“1”
六年级有50人, (全班人数的)4/5是女生。单位“1”是六年级人数。
食堂买来100千克白菜,吃了(食堂买来白菜的)2/5,吃了多少千克? 单位“1”就是食堂100千克白菜。
三、找原数量(换定位词找)
例如: 水结成冰后体积增加了1/10。单位“1”是水 换定位词:冰比水体积增加了1/10。 冰融化成水后,体积减少了1/12。单位“1”是冰 换定位词:水比冰体积减少了1/10。
• 例如:
六年级有50人,其中女生是男生的4/5。单位“1”是男生。 六年级有50人,其中女生比男生少1/5。单位“1”是男生。 六年级有50人,其中女生占男生的4/5。单位“1”是男生。 六年级有50人,其中女生相当于男生的1/5。单位“1”是男生。
二、补充句子找单位“1”
例如:
六年级有50人,其中女生占(全班人数的)4/5。单位“1”是六年级 人数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、原数量与现数量 有的关键句中不是很明显地带有一些指向性特征的词 语,也不是部分数和总数的关系。这类分数应用题的单位 “1”比较难找。其实我们只要看,原来的数量是谁?这个 原来的数量就是单位“1”
例如 水结成冰后体积增加了1/10,冰融化成水后体积减少 了1/12。水结成冰,原来的数量就是水,那么水就是单位 “1”。冰融化成水,原来的数量是冰,所以冰的体积就是 单位“1”。
ห้องสมุดไป่ตู้
二、两种数量比较 分数应用题中,两种数量相比的关键句非常多。有的是 “比”字句,有的则没有“比”字,而是带指向性特征的 “占”、“是”、“相当于”。在含有“比”字的关键句中, 比后面的那个数量通常就作为标准量,也就是单位“1”。 六(2)班男生比女生多1/2。就是以女生人数为标准 例如: (单位“1”),男生比女生多的人数作为比较量。 又如 今年的产量相当于去年的4/3倍。那么相当于后面的去 年的产量就是标准量,也就是单位“1”。
找准分数应用题中的单位“1”
正确找准单位“1”,是解答分数(百分数)应 用题的关键。每一道分数应用题中总是有关键句 (含有分率的句子)。如何从关键句中找准单位 “1”,我们可以从以下这些方面进行考虑。
一、部分数和总数 在同一整体中,部分数和总数作比较关系时,部分数 通常作为比较量,而总数则作为标准量,那么总数就是单 位“1”。 例如 我国人口约占世界人口的1/5,世界人口是总数,我 国人口是部分数,所以,世界人口就是单位“1”。 再如 食堂买来100千克白菜,吃了2/5,吃了多少千克?在 这里,食堂一共买来的白菜是总数,吃掉的是部分数,所 以100千克白菜就是单位“1”。
单位“1”的应用 我们在解决分数应用题时,一般有两种类型:求一个 数的几分之分是多少?我们确定这个数是单位“1”,然后 用乘法计算,公式=单位“1”的量×几分之分,还有就是 一个数比另一个数多(少)几分之分的应用题,一般“比” 后面的数就是单位“1”,公式=单位“1”的量×(1+几分 几分)或单位“1”的量×(1—几分几分)单位1的量×分 率=分率对应量; 分率对应量÷分率=单位1的量
练一练
四、 挖掘隐蔽找单位“1” 单位“1”的量,有时在题目中是明显的,有时要从题 目中去找出隐含的单位“1”。这就需要正确理解题意,分 清哪是单位“1”。 如 王庄栽树360棵,比张庄多栽1/4,比张庄多栽树多少 棵?这里如果理解不好,就会把王庄栽树栽树看作单位 “1”,而实际上是张庄栽树的棵数为单位“1”,要求王 庄比张庄多载多少棵?必须知道张庄栽树多少棵。张庄栽 树的棵数看作是单位“1”的量
五、 比较数量找单位“1” 有的应用题,单位“1”是变化的,我们通过比较数量,分 析问题,从而理解题意,最后确定把总量确定为单位“1”。 “小明和小红共有50张邮票,如果小明拿出1/3给小红, 比如 小红再拿出1/2给小明,这时小明和小红邮票的比是7∶3,” 这道题很容易被1/2和1/3两个分率所迷惑,不过只要我们确 定单位“1”是50张邮票时,就可以求出小明的邮票35张,小 红的邮票15张,小红给小明1/2邮票,还剩下15张,没给小明 前有邮票:15÷(1—1/2)=30(张),小明有邮票20张。小 明给小红1/3邮票后还剩下20张,所以,小明原来有邮票: 20÷(1—1/3)=30(张),小红原来有邮票20张。