高分子材料共混期末复习材料一
聚合物改性期末复习题
![聚合物改性期末复习题](https://img.taocdn.com/s3/m/f97eee53dcccda38376baf1ffc4ffe473368fdc0.png)
聚合物改性期末复习题一填空题:1 高分子聚合物的改性方法多种多样,总体上可划分为共混改性、填充改性、复合材料、化学改性、表面改性几大类;2 广义的共混包括物理共混、化学共混和物理/化学共混;3 第一个实现工业化生产的共混物是1942年投产的聚氯乙烯与丁腈橡胶的共混物;4 1964年,四氧化锇染色法问世,应用于电镜观测,使人们能够从微观上研究聚合物两相形态,成为聚合物改性研究中的重要里程碑;5 共混改性的方法又可按共混时物料的状态,分为熔融共混、溶液共混、乳液共混等;6 通常所说的机械共混,主要就是指熔融共混;7 共混物的形态是多种多样的,但可分为三种基本类型:均相体系、“海-岛结构”两相体系和“海-海结构”两相体系;8 在共混过程中,同时存在着“破碎”与“凝聚”这两个互逆的过程;当集聚过程与破碎过程达到动态平衡时,分散相粒子的粒径达到一个平衡值,这一平衡值称为“平衡粒径”9 塑料大形变的形变机理,包含两种可能的过程,其一是剪切形变过程,其二是银纹化过程;10 塑料基体可分为两大类:一类是脆性基体,以PS、PMMA为代表;另一类是准韧性基体,以PC、PA为代表;11 对于脆性基体,橡胶颗粒主要是在塑料基体中诱发银纹;而对于有一定韧性的基体,橡胶颗粒主要是诱发剪切带;12 两阶共混历程的关键是制备具有海-海结构的中间产物,这也是两阶共混不同于一般的“母粒共混”的特征所在;13 相容剂的类型有非反应性共聚物、反应性共聚物等,也可以采用原位聚合的方法制备;14 聚合物共混物,从总体上来说,可以分为以塑料为主体的共混物和以橡胶为主体的共混物两大类;15 在PVC硬制品中添加CPE,主要是起增韧改性的作用;而在PVC软制品中添加CPE是用作增塑剂,以提高PVC软制品的耐久性;16 为改善共混体系的透光性,通常有两种可供选择的途径,其一是使共混物组成间具有相近的折射率;其二是使分散相粒子的粒径小于可见光的波长;17 用在PVC制品中的ACR有两种类型,其一是用作加工流动改性剂的;其二是用作抗冲改性剂的;18 共混性热塑性弹性体的形态,是以橡胶为分散相,塑料为连续相;19 碳酸钙是用途广泛而价格低廉的填料,因制造方法不同,可分为重质碳酸钙和轻质碳酸钙;20 热固性树脂基纤维增强复合材料大多以玻璃纤维作为增强材料,所以俗称玻璃钢;21 在橡胶工业中,炭黑是用量最大的填充剂和补强剂;22 接枝共聚物有一个主要特征是,容易和它们相应的均聚物共混;23 制备嵌段共聚物最常用的方法有两种:活性加成聚合和缩聚合;24 制备IPN的方法主要有三种:分布聚合法、同步聚合法和乳液聚合法;25 聚合物表面有弱边界层,其表面能低、化学惰性、表面污染等影响表面的粘接、印刷以及其它应用;26 生成表面接枝聚合物的首要条件是生成表面引发中心,即表面自由基;二名词解释1 聚合物共混:两种或两种以上聚合物经混合制成宏观均匀的材料的过程;2 高分子合金:含多种组分的聚合物均相或多相体系,包括聚合物共混物和嵌段、接枝共聚物;而且,高分子合金材料通常应具有较高的力学性能,可用作工程塑料;3 海-岛结构:是一种两相体系,且一相为连续相,一相为分散相,分散相分散在连续相中,就好像海岛分散在大海中一样 ;4 海一海结构:也是两相体系,但两相皆为连续相,相互贯穿;5 分散度:指“海-岛结构”两相体系中分散相物料的破碎程度,可以用分散相颗粒的平均粒径和粒径分布来表征;6 均一性:指分散相物料分散的均匀程度,亦即分散相浓度的起伏大小;均一性可借助于数理统计的方法进行定量表征;7 相容性:是指共混物各组分彼此相互容纳,形成宏观均匀材料的能力;8 分布混合:指分散相粒径大小不变,只增加分散相在空间分布的随机性的混合过程;9 分散混合:是指既增加分散相分布的随机性,又减小粒径,改变分散相粒径分布的过程;10 共混性热塑性弹性体:采用动态硫化方法生产的新型热塑性弹性体材料;11 动态硫化:共混体系在共混过程中的剪切力作用下进行的硫化反应;12 接枝效率:13 热塑性弹性体:这种A-B-A型和型共聚物,叫做热塑弹性体,它同时具有交联橡胶的力学性能,又具有线形热塑聚合物的加工性能;14 IPN:由两种或多种互相贯穿的交联聚合物组成的共混物,其中至少有一种组分是紧邻在另一种组分存在下聚合或交联的,叫做互穿聚合物网络;15 等离子体聚合:是指在有机物蒸气中生成等离子体,所形成的气相自由基吸附到固体表面形成表面自由基,再与气相单体或等离子体中形成的单体衍生物在表面发生聚合反应,从而形成聚合物薄膜;16 填充改性:在聚合物基体中添加与基体在组成和结构上不同的固体添加物;17 “软包硬”规律:粘度低的一相总是倾向于生成连续相,而粘度高的一相则总是倾向于生成分散相;三简答1 相界面可以产生哪些效应答:相界面可以产生多种效应;包括力的传递效应、光学效应、诱导效应、以及其它效应如声学、电学、热学效应等;2 用电子显微镜研究共混物形态时,可以用OsO4和RuO4对样品进行染色观察,它们的染色机理分别是什么答:OsO4主要用于染色具有不饱和双键的橡胶,与双键反应形成锇酸酯;RuO4是一种强氧化剂,可与含有醚键、醇基、芳香基或胺基的聚合物反应;3 弹性体增韧塑料的机理是什么答:目前普遍接受的是“银纹-剪切带”理论;在橡胶或其它弹性体增韧塑料的两相体系中,橡胶是分散相,塑料是连续相;橡胶“小球”可以作为应力集中体,诱发大量的银纹或剪切带;外面作用于材料的能量,可以通过银纹或剪切带的形成而耗散掉,使材料的抗冲击性能明显提高;4 对于PVC等脆性基体,如何进行非弹性体增韧答:非弹性体增韧的对象,必须是有一定韧性的塑科基体,如尼龙、聚碳酸酯等;对于PVC这样的脆性基体,则需要用弹性体对其进行增韧,变成有一定韧性的基体,然后再用非弹性体对其进行进一步的增韧改性;5 非弹性体增韧塑料的机理是什么答:当韧性基体受到外界拉伸应力时,会在垂直于拉伸应力的方向上对脆性塑料粒子施以压应力;脆性粒子在强大的静压力作用下会发生塑料形变,从而将外界作用的能量耗散掉;6 MBS在PVC/MBS共混体系中呈现什么形态各种组分分别起着什么作用答: MBS粒子呈包含若干橡胶小球和塑料支链的“簇状结构”;其中,橡胶小球可起到增韧改性的作用,MMA可与PVC形成良好的相容性,苯乙烯形成的刚性链段则可使共混体系具有良好的加工流动性;7 无机刚性粒子对塑料的增韧机理是什么答:关于无机刚性粒子的增韧机理,一般认为,随着粒子的细微化,比表面积增大,与塑料基体的界面也增大;当填充复合材料受到外力时,微小的刚性粒子可引发大量银纹,同时粒子之间的塑料基体也产生塑性变形,吸收冲击能量,达到增韧的效果;8 聚合物填充改性的目的是什么答:聚合物填充改性的目的,有的是为了降低成本,有的是为补强或改善加工性能;还有一些填料具有阻燃或抗静电等作用;9 热塑性弹性体的结构有什么特点答:热塑性弹性体是由大量的软嵌段和少量的硬嵌段组成的两相嵌段共聚物;软硬两种嵌段各有各的用处,软嵌段提供柔韧的弹性,而硬嵌段则提供物理交联点和起填料的功能;10 偶联剂分子结构的最大特点是什么答:偶联剂分子结构最大的特点是分子中含有化学性质不同的两个基团,一个基团的性质亲无机物,易于与无机物表面起化学反应;另一个基团亲有机物,能与合成树脂起化学反应,生成化学键,或者能互相融合在一起;四简答1 简述共混物“均相”的概念,如何判断均相答:概括地讲,如果一种共混物具有类似于均相材料所具有的性能,这种共混物就可以认为是具有均相结构的共混物;在大多数情况下,可以用玻璃化转变温度Tg作为判定的标准;如果两种聚合物共混后,形成的共混物具有单一的Tg,则就可以认为该共混物为均相体系;2 如何判断“完全相容”、“部分相容”和“不相容”答:如果某聚合物对形成的共混物具有单一的Tg,则亦可认为该聚合物对是完全相容的;部分相容的聚合物,其共混物为两相体系;聚合物对部分相容的判据,是两种聚合物的共混物具有两个Tg,且两个Tg峰较每一种聚合物自身的Tg峰更为接近;不相容聚合物的共混物也有两个Tg峰,而且,两个Tg峰的位置与每一种聚合物自身的Tg峰是基本相同的;3 影响聚合物共混形态的因素有哪些,它们是怎样影响的答:①共混组分之间的配比,是影响共混物形态的一个重要因素,亦是决定哪一相为连续相,哪一相为分散相的重要因素;当两相共混体系中的某一组分含量体积分数大于74%时,这一组分就不再是分散相,而将是连续相;同样,当某一组分含量体积分数小于26%时,这一组分不再是连续相,而将是分散相;当组分含量介于26%与74%之间时,哪一组分为连续相,将不仅取决于组分含量之比,而且还要取决于其它因素,主要是两个组分的熔体粘度;②对于熔融共混体系,共混组分的熔体粘度亦是影响共混物形态的重要因素;熔体粘度对共混物形态的影响有一个基本的规律:粘度低的一相总是倾向于生成连续相,而粘度高的一相则总是倾向于生成分散相;③在组分含量介于26%与74%之间时,哪一相为连续相,哪一相为分散相,将取决于配比与熔体粘度的综合影响;④粘度比、剪切应力及界面张力对分散相粒径的综合影响⑤其他因素的影响,如加工温度、相容性等4 剪切形变过程和银纹化过程有哪些区别答:在产生方向上:剪切带产生于与正应力约呈45°的斜面上,而银纹与外加应力的方向垂直;特征:剪切屈服的特征是产生细颈,而银纹化过程的特征是应力发白现象和密度的下降;密度:材料在产生剪切带时,密度基本不发生变化,而产生银纹时密度下降;形成原因:剪切带的形成是由于聚合物内部结构的不均一性或某种缺陷,银纹的产生是由于内部结构的不均一性,造成应力集中;5 对于弹性体增韧,确定橡胶颗粒粒径的合适尺度要考虑哪些方面的因素答:首先,要保证增韧体系中橡胶颗粒有足够多的数量,以诱发大量的小银纹或剪切带;这就要求橡胶颗粒的粒径不能太大,以保证体系中有足够数量的橡胶颗粒;其次,从诱发银纹或剪切带考虑;较小粒径的橡胶颗粒对诱发剪切带有利,而较大粒径的橡胶颗粒对于诱发银纹有利;第三,从终止银纹的角度考虑;对于脆性基体,由于橡胶颗粒还要起到终止银纹的作用,要求其粒径与银纹的尺度相当;太小的橡胶粒子会被银纹“淹没”,起不到终止银纹的作用;而对于有一定韧性的基体,可以靠剪切带的生成来终止银纹,而不需要依赖橡胶颗粒来终止银纹,橡胶颗粒的粒径就可以小一些;综上所述,对于脆性基体,橡胶颗粒要引发银纹,又要终止银纹,其粒径要大一些;对于韧性基体,橡胶颗粒主要引发剪切带,又不需要其终止银纹,橡胶颗粒的粒径就要小一些6 弹性体增韧和非弹性体增韧有什么区别答:非弹性体增韧与弹性体增韧在增韧改性剂、增韧对象、对性能的影响等方面,都有明显的不同;首先,非弹性体增韧的增韧改性剂是脆性塑料广义的非弹性体增韧还包括无机填料粒子,而弹性体增韧的增韧改性剂是橡胶或热塑性弹性体;非弹性体增韧的对象,是有一定韧性的基体;而弹性体增韧的对象,可以是韧性基体,也可以是脆性基体;从增韧机理来看,弹性体增韧的机理主要是由橡胶球引发银纹或剪切带,橡胶球本身并不消耗多少能量;而非弹性体增韧则是依赖脆性塑料的塑性形变,将外界作用的能量耗散掉;从增韧剂的用量来看,对弹性体增韧体系,共混物的抗冲击性能会随弹性体用量增大而增加;而对于非弹性体增韧,脆性塑料的用量却有一个范围;在此范围内,可获得良好的抗冲改性效果,超过此范围,抗冲击性能却会急剧下降;以非弹性体脆性塑料对塑料基体进行增韧的最大优越性,就在于脆性塑料在提高材料抗冲击性能的同时,并不会降低材料的刚性,而且可使加工流动性获得改善;而弹性体增韧体系,却会随着弹性体用量的增大而使材料的刚性下降,其加工流动性往往要受到橡胶加工流动性差的影响;7 影响聚合物共混物相容性的因素有哪些溶解度参数:高分子间的溶解度参数越接近,其相容性越好;共聚物的组成:对于均聚物/共聚物体系,相容性与共聚物的组成有关;极性:高分子的极性愈相近,其相容性愈好;极性高分子共混时相容性一般较好;非弱极性高分子共混时相容性一般较差;极性/非极性高分子共混时一般不相容;表面张力:共混组分的表面张力愈接近,两相间的浸润、接触和扩散愈好,界面结合愈好;结晶能力:共混组分的结晶能力愈相近,其相容性愈好;非晶态高分子共混时常有理想的混合行为;晶态/非晶态或晶态高分子共混时,只有出现混晶对才相容;粘度:高分子的粘度愈相近,其相容性愈好;分子量:减小分子量,可增加相容性;8 等离子体处理聚合物表面,可以明显改善哪些性能答:1表面亲、疏水性改性:一般高分子材料经NH3、O2、CO、Ar、N2、H2等气体等离子体处理后,与空气接触,会在表面引入-COOH,-CO-,-NH2,-OH等基团,使表面亲水性增加,处理时间越长,与水接触角越低,而经含氟单体如CF4、CH2F2等气体等离子体处理则可氟化高分子材料表面,增加其憎水性;2增加粘接性:等离子体处理能很容易在高分子材料表面引入极性基团或活性点,它们或者与被粘合材料、粘合剂面形成化学键,或者增加了与粘合材料、粘合剂之间的范德华作用力,达到改善粘接的目的;3改善印染性能:等离子体表面处理一方面能增强被处理材料表面粗糙度,破坏其非晶区甚至晶区,使处理材料表面结构松散,微隙增大,增加对即印染/油墨分子的可及区;另一方面,表面引入的极性基团,使处理表面易于以范德华力、氨键或化学键吸附染料/油墨分子,从而改善材料的印染性能;4改善其它性能,如改善表面的生物相容性等;。
高分子材料基础复习资料
![高分子材料基础复习资料](https://img.taocdn.com/s3/m/0d835ef4f61fb7360b4c6540.png)
单体:单体是能与同种或他种分子聚合的小分子的统称。
是能起聚合反应或缩聚反应等而成高分子化合物的简单化合物重复单元又叫链节。
是高分子中重复出现的那部分,高分子结构式常以表示。
一般是由相应的小分子(事实上或假想的)衍生而来的。
结构单元构成高分子主链结构组成的单个原子或原子团。
【例】聚丙烯:其中—CH2—是一个链单元,也是一个结构单元;—CH(CH3)—是一个链单元,也是一个结构单元。
两者结成一个更大的结构单元—CH2—CH(CH3)—。
重复单元可以是—CH2—CH(CH3)—,也可以是—CH2—CH(CH3)—CH2—CH(CH3)—。
最小重复单元是—CH2—CH(CH3)—。
【注意】区分单体单元和重复单元如果高分子是由1种单体聚合而成的,其重复单元就是单体单元。
例如:聚氯乙烯,重复单元和结构单元都是—CH2—CHCl—,聚合度DP=n。
如果高分子是由2种或者2种以上的单体缩聚而成的,其重复单元由不同的单体单元组成,那么重复单元就不是单体单元了。
例如:尼龙,重复单元是—NH(CH2)6NHCO(CH2)4CO—,而单体单元是—NH(CH2)6NH—和—CO(CH2)4CO—两种,聚合度DP=2n。
齐聚物:由少数链节组成的聚合物。
如二聚体、三聚体、四聚体……无论是线形的还是环形的统称齐聚物。
齐聚物与通常所说的聚合物是很不同的,增减几个结构单元能使其物理性质有很大的变化。
聚合物定义:由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的有机化合物。
是由一类相对分子质量很高的分子聚集而成的化合物,也称为高分子、大分子等。
一般把相对分子质量高于10000的分子称为高分子。
高分子通常由103~105个原子以共价键连接而成。
由于高分子多是由小分子通过聚合反应而制得的,因此也常被称为聚合物或高聚物。
平均分子量(1)数均分子量设聚合物试样中,共有N个大分子,总质量为W。
若其中分子量为Mi的大分子有Ni个,其质量为Wi=NiMi,则有下列关系式:(2)质均分子量 对聚合物的稀溶液用光散射方法测定的是质均分子量,等于分子量乘上相应质量分数的加合。
高分子材料复习总结
![高分子材料复习总结](https://img.taocdn.com/s3/m/c4c37a06be23482fb4da4c72.png)
高分子材料复习总结1、乳白色半透明的蜡质状,易燃烧,离火后能继续燃烧,密度为0、85~1、0g/cm32、熔层:105℃~137℃、脆化温度(Tb)低于-50℃、最高使用温度100℃,最低使用温度-70℃、3、产量居塑料首位,约占塑料总量的1/3、4、分子呈非极性,其吸水性低,小于0、01%,加工前可以不进行干燥、合成:自由基聚合:偶氮类如偶氮二异丁腈(AIBN)、过氧类如过氧化二苯甲酰(BPO)配位聚合:Zieger-Natta 引发体系、茂金属引发体系分类:低密度聚乙烯LDPE0、91~0、94g/cm3高密度聚乙烯HDPE0、94~0、99g/cm3中密度聚乙烯MDPE线性低密度聚乙烯LLDPE超高分子量聚乙烯UHMWPE和茂金属聚乙烯mPE1、LDPE:高压法、压力150~250Mpa,温度180~300℃,在微量氧的存在下,氧气与乙烯作用可能生成乙烯过氧化氢(CH2=CHOOH),分解后产生自由基,引发自由基聚合、易产生支链,影响了分子的对称性和空间规整性,结晶度小,密度低、2、HDPE:离子型聚合、分子量高,支链短而少,结晶度大,密度高、采用Ziegler-Natta型引发剂或钼、镍、铬的氧化物、知识点:1、在HDPE,LDPE和LLDPE中,HDPE的透气性能最好,且对油、脂的阻隔性能也最高、2、 LLDPE:是乙烯与含量约8%的高级α烯烃(如1-丁烯、1-己烯和1-辛烯等)的共聚物、3、聚乙烯主链基本是饱和的脂肪烃长链,分子链上有甲基、短的或较长的烷基支链、不同类型的双键、4、在低压法获得的HDPE含有较多的双键,而在低密度聚乙烯中还存在有羰基和醚基、5、结晶性高聚物,LDPE结晶能力64%,HDPE结晶能力高87%~93%,LLDPE的结晶度略高于LDPE,远低于HDPE、6、高分子量聚乙烯(HMWHDPE)和超高分子量聚乙烯(UHMWPE)仍属高密度聚乙烯,分子结构和普通HDPE相同,1)耐磨性能、优于PTFE、MC尼龙、POM等、2)冲击强度、工程塑料中最高的,远高于ABS、PC和尼龙等材料3)自润滑性能、摩擦系数极低,与PTFE相当、4)耐化学腐蚀性能、分子链上不存在可反应的基因,且结晶度较高,具有良好的化学稳定性7、几种聚乙烯的结构:8、 PE在空气中会被氧化,在高温下更容易被氧化,因此,在加工过程中应避免与空气接触;或者在PE中加入抗氧剂、9、 PE的结晶能力强,结晶度高,成型收缩率大,一般在1、0~3、5%内,对于HDPE的成型收缩率可达5%、10、 LDPE上有较长的支链结构,其流动性比LLDPE和HDPE要好、11、当分子量分布宽时,低分子量的成份多,低分子量的部分对高分子量的部分起到了增塑作用,有利于改善流动性、改性:1、交联聚乙烯(PE-X):改善PE的耐热性和应力开裂性、常用高能辐射交联、过氧化物交联、硅烷交联2、氯化聚乙烯(CPE):PE是一种极易燃烧,且为非极性聚合物,染色和印刷性能差、氯化后可改善这些不足、3、氯磺化聚乙烯(CSM):白色海绵状弹性固体,阻燃性,耐候性提升、4、乙烯-乙酸乙烯酯共聚物(EVA):VA含量小于40%的共聚物称EVA共聚物,VA含量高于40%的简称VAE、具有光学透明性,比聚乙烯有更好的耐候性、5、乙烯-乙烯醇共聚物(EVOH):所有聚合物中,聚乙烯醇(PVOH)对各种气体的透过率最低,但其为水溶性的、与乙烯共聚后可克服水溶性的缺点、6、乙烯-(甲基)丙烯酸共聚物E(M)AA:光学性能、韧性、黏结力高于LDPE、7、乙烯-丙烯酸甲酯共聚物(EMA):优异乃应力开裂和耐低温冲击、8、乙烯-丙烯酸乙酯共聚物(EEA):优良耐冲击性能、耐应力开裂、耐疲劳、聚丙烯(PP)性质:1、PP是所有树脂中最轻的品种之一,密度0、90~0、91g/cm3,仅大于聚4-甲基-1-戊烯2、结晶融化温度164~176℃3、吸水率低,仅为0、01~0、04%、分类:等规聚丙烯(lsotacticpolypropylene,iPP)间规聚丙烯(SyndiotacticPolypropylene,sPP)无规聚丙烯(AtacticPolypropylene,aPP)知识点:1、晶相与非晶的密度差值较小,因此较PE有更好的透明性,而茂金属PP(mPP)的透明度可达96%,能与PET和PS相媲美、2、PP有优良的耐化学试剂性能,且随结晶度的增加而提高、3、 PP 中存在叔碳原子,易被氧化性介质侵蚀,当曝露在大气中,受到紫外线和热的作用下,大分子链产生断裂降解,性能劣化、因此对于PP,提高耐老化性能是相当重要的、4、 PP很容易在非极性有机溶剂中溶胀或溶解、但对极性有机溶剂却很稳定、5、当等规度IIP 相同时,随着MI的增大,拉伸屈服强度升高6、当MI一定时,随着IIP的提高,拉伸屈服强度增加7、 MI大的PP具有较低的分子量,易于结晶,结晶度高8、 IIP增加,结晶能力强,结晶度高9、在受热受力作用时,PP表面热氧化作用加剧,使分子量下降而产生应力开裂,这种现象称为热应力脆化,PP比PE有较好的耐应力开裂性,其分子量越大,耐应力开裂性能越好、PP共聚物的耐应力开裂性优于均聚物、10、 PP的五种晶体结构:a、b、g、d、拟六方、最常见最稳定的是a晶态11、立构规整性用等规度(或称全同指数、立构规整度IIP)来表示,常用沸腾正庚烷的萃取剩余物所占分数来表示、12、成形收缩率大1~2、5%,易发生缩孔、凹痕、变形、改性:茂金属聚丙烯mPP聚氯乙烯(PVC)性质:1、Tg为80℃,Tf约160℃,TD(热分解温度)约140℃,Tb-50~-60℃,大多数制品长期使用温度不宜超过55℃、2、密度约为1、4g/cm3、3、纯聚氯乙烯的吸水率和透气性都很小、4、离火即灭,火焰上端呈黄色,下端绿色,冒黑烟,发出刺激性酸味,滴下胶质5、聚氯乙烯树脂多为白色或淡黄色的粉料或粒料,塑化后可以变透明分类:1、按聚合度通用型PVC平均聚合度为500~1500高聚合度型PVC平均聚合度大于1700以上2、按增塑剂含量无增塑PVC(UPVC)增塑剂含量为0;硬质PVC增塑剂含量小于10%;半硬质PVC增塑剂含量为10-30%软质PVC增塑剂含量为30-70%;聚氯乙烯糊塑料增塑剂含量为80%以上知识点:1、聚乙烯分子间作用力大,Tf很高,接近分解温度,因此加入增塑剂以降低Tf、2、通过加入稳定剂提高TD才能进行加工成型、3、聚氯乙烯属于极性高聚物,对水等导电物质亲和力较大,故电阻较非极性的聚烯烃要小,但仍有较高的体积电阻和击穿电压4、聚氯乙烯树脂含有残留的少量双键及引发剂残基,且两相邻碳原子之间含有氯原子和氢原子,容易脱氯化氢,形成共轭的不饱和键、该反应会连锁进行,得到多个双键共轭的聚乙炔结构、5、聚氯乙烯脱去氯化氢,会出现变色,顺序为:白色→粉红色→淡黄色→褐色→红综色→约黑色→黑色、6、外加增塑剂起增塑效果的方法叫外增塑,用化学方法在分子链上引入其他基团或链段,减弱分子之间的作用力而起到增塑,叫内增塑、7、一般来说,增塑剂含量越多,拉伸强度、弹性模量较小,而伸长率越大、8、聚氯乙烯在加工前需要干燥处理,加工温度控制要精确,加工时间要尽量短9、稳定剂是阻止或延缓高分子材料降解的一类助剂10、增塑剂:是为了降低聚合物的软化温度和提高其加工性、柔韧性或延展性而加入的低挥发性的一类物质、而这种作用则称为增塑作用,其机理为:增塑剂分子插入到聚合物分子链之间,削弱了聚合物分子链间的应力,结果增加了聚合物分子链的移动性、降低了聚合物分子链的结晶度,从而使聚合物的塑性增加、如果增塑剂的分子仅能插入部分结晶的聚合物的无定形区域,则此增塑剂便是非溶剂型增塑剂,也就是所谓的辅助增塑剂、如果增塑剂的分子在插入聚合物的无定形区同时又能插入结晶区,则此增塑剂便是溶剂型增塑剂,即主增塑剂、11、增塑剂类型:邻苯二甲酸酯类:邻苯二甲酸二丁酯DBP邻苯二甲酸二辛酯DOP磷酸酯类:磷酸三甲酚酯磷酸三苯酯脂肪二元酸酯类:己二酸二辛酯癸二酸二辛酯;12、润滑剂:降低物料之间及物料和加工设备表面的摩擦力,提高熔体的流动性,提高制品表面的光洁度得助剂、在PVC及LLDPE中最重要、改性:氯化聚氯乙烯(CPVC):提高了耐热性和力学性能,但稳定性降低聚偏氯乙烯(PVDC):一般不独立应用,与其他单体共聚聚苯乙烯(PS)性质:1、PS透明性非常好,同PC和PMMA合称三大透明塑料2、 PS落地或敲打会发出类似金属的声音,易断,断口处呈现蚌壳色银光、3、 PS的耐热性能不好,PS的热变形温度约为70-98℃,Tg为80-105℃,制品长期使用温度为60-80℃、PS的耐低温性也不好,脆化温度为-30℃、4、相对密度:1、04~1、10g/cm35、 PS在高于300℃时将剧烈分解、易燃,燃烧时发浓烟,离火后继续燃烧、分类:1、通用型聚苯乙烯(GPPS)2、可发性聚苯乙烯(EPS):聚苯乙烯泡沫塑料,有吸水性小,隔音保湿、3、高抗冲聚苯乙烯(HIPS):橡胶增韧塑料,采用弹性体(顺丁橡胶或丁苯橡胶)对PS进行化学或物理改性、4、间规聚苯乙烯(sPS):利用茂金属作为引发剂,具有间规结构的PS,能快速结晶,具有高耐热性和耐化学腐蚀性、知识点:1、苯基基增大了空间位阻效应,使得PS分子链刚硬,分子链活动能力小,呈现刚性和脆性,制品易产生内应力,且PS空间立体规整度差,难于结晶,是一种无定形聚合物2、由于苯基的存在,主链上α氢原子活化,易于被空气中的氧氧化,制品长期户外使用变黄变脆、但苯基的存在使其有较高的耐辐射性3、 PS硬而脆、无延伸性、拉伸至屈服点附近即断裂、其拉伸强度和弯曲在通用热塑性塑料中最高,但冲击强度很小,难以用做工程塑料、4、 PS的耐磨性差,耐蠕变性一般,尺寸稳定性好,收缩率低,一般仅为0、2%-0、7%、5、线膨胀系数较大,与金属相差悬殊,故制品不易带金属嵌件、6、分子链上无极性基团,吸湿性小(约为0、02%),在加工前一般不需干燥;7、表面电阻和体积电阻均很大,也不吸水,因此很容易产生静电,使用时应加入抗静电剂8、塑料回收:01 PET02 HDPE03 PVC04 LDPE05 PP06 PS07 PC及其他类改性(机械共混或接枝共聚):1、AS/SAN(透明ABS):苯乙烯-丙烯腈的共聚物,无定型线形高聚物,具有较高的耐热性、优异的光泽和耐化学药品性的透明塑料、2、 AAS/ASA:丙烯腈、丙烯酸酯和苯乙烯共聚物,热塑性塑料,它是将聚丙烯酸酯橡胶的微粒分散于丙烯腈与苯乙烯共聚物(AS)中的接枝共聚物,3、 ABS:丙烯腈、丁二烯、苯乙烯共聚物,是坚韧、质硬、刚性的热塑性树脂、为无定型材料,外观为不透明呈象牙色,具很高的高光泽度、相对密度为1、05,有优良的力学性能,其冲击强度极好、4、 ACS:丙烯腈、氯化聚乙烯、苯乙烯的三元共聚物,物理性能虽然与ABS相似,但具有很高的阻燃性和优异的耐光性,不会因光照而变色,耐静电引起的灰尘积附的特性,不需要在配方中加入抗静电剂5、 AES:乙丙橡胶、丙烯腈、苯乙烯接枝共聚物,耐候性优于ABS聚甲基丙烯酸甲酯(PMMA)性质:1、具有分优异的光学性能,透光率90%~92%,折射率为1、49,可透过大部分紫外线和红外线、2、 Tg:80~100℃,使用温度在40~80℃、氧指数为17、3,易燃、知识点:1、70%~75%间同立构,不具有完全的规整结构,而且有庞大的侧基,是无定形的2、有优良的拉伸强度、弯曲强度和压缩强度,但冲击强度一般,且对缺口敏感较大;3、表面硬度一般,易于划伤,耐磨性较低,抗银纹能力较差、耐候性好,长期在户外使用,性能下降很小、4、酯基的存在使其耐溶剂一般,不耐芳烃、氯代烃5、注塑温度在180~230℃,加工温度范围窄,超过260℃以上即分解、6、加工前需要进行干燥处理,使其含水量在0、02%以下7、熔体粘度较大,成型中易产生内应力、须在85℃下进行缓慢退火处理、酚醛树脂定义:酚醛树脂是酚类与醛类在催化剂作用下形成树脂的统称性质1、酚醛树脂和环氧树脂、不饱和聚酯合称三大热固性树脂2、使用温度高,长期高使用温度150℃~200℃分类:1、常用的酚醛树脂是苯酚和甲醛缩聚制备,简称PF、2、热固性酚醛树脂、热塑性酚醛树脂知识点:1、热塑性机理:在酸性催化剂作用下,苯酚与甲醛反应生成羟甲基苯酚中间体、中间体与苯酚缩聚形成双羟基苯甲烷及其异构体,因为甲醛用量不足,没有多余的羟甲基活性基团,不能进一步产生交联,只能形成线聚合物、2、热固性机理:碱性催化剂作用下,甲醛在苯酚的邻对位进行加成反应,形成羟甲基苯酚,羟基苯甲酚之间互相缩聚形成立体网状结构、3、蠕变小,尺寸稳定性好4、阻燃性好,发烟量低5、酚醛树脂结构中含有大量酚基,吸水性较大,吸水后制品膨胀,出现翘曲,拉伸、弯曲强度降低,冲击强度提高6、热塑性酚醛树脂需要加入固化剂,才能使其固化、固化剂六次甲基四胺7、固化促进剂:MgO,促进树脂本身反应基团的化学活性,进而缩短反应时间;氨基树脂(AE)定义:含有氨基或酰胺基团的化合物与醛类化合物缩聚的产物、分类:尿甲醛树脂UF、三聚氰胺甲醛树脂(蜜胺树脂)MF、苯胺甲醛树脂知识点:1、氨基树脂合称包括加成反应和缩聚反应两个过程2、脲甲醛树脂为水溶性树脂,需要固化剂固化才能使用3、脲甲醛树脂表面硬度高,透明,易着色;但易吸水,吸水后变形或产生裂纹,耐热性差,长期使用温度低于70℃、4、密胺树脂耐热性好,可在沸水条件下长期使用,耐碱,介电性能好、环氧树脂(EP)定义:分子中含有两个或两个以上环氧基团的高分子化合物,通常分子量不高、性质:环氧树脂能够粘结从非金属到金属的多种材料,俗称“万能胶”、分类:缩水甘油醚类、缩水甘油酯类、缩水甘油胺类、线型脂肪族类、脂环族类知识点:1、未固化是线型热塑性树脂,固化后成为网状体型的热固性聚合物、2、双酚A缩水甘油醚型环氧树脂,通常被称为双酚A环氧树脂,占环氧树脂总产量的90%、3、含有1摩尔环氧基的环氧树脂的重量克数称为环氧当量、4、环氧值:是指在100克环氧树脂中所含环氧基的摩尔数,环氧值=100/环氧当量、5、环氧基含量:环氧树脂中环氧基的重量百分含量、环氧基含量=环氧值*43、6、固化机理:环氧树脂中的环氧被氨基打开,从而在环氧基之间发生交联反应7、能使环氧树脂的环氧基开环发生交联聚合,使树脂固化的物质,统称为固化剂,反应的过程叫做固化、8、胺的用量:G=E*(M/H)G-每100g环氧树脂所需要的胺量,单位:gM-胺的物质的量;H-1mol胺中活泼氢的数目E-环氧值9、其他助剂:稀释剂、增韧剂、填料、色料10、环氧树脂固化时不放出易挥发的小分子,不会生成气泡,固化收缩小、故环氧树脂的加工性能和尺寸稳定好、11、环氧树脂粘结性很好,是因环氧树脂中含有许多的极性大的羟基和醚键,可和其他表面上的活泼氢起反应形成化学键,极大地增强了结合力;另外还因为环氧树脂可以相当平稳地从液态变成固态,仅有轻微收缩,故能保持原有的键合作用不饱和聚酯(UP)定义:不饱和聚酯是由二元或多元酸同二元或多元醇,经过缩聚反应而成的一种主链含酯键的高分子化合物性质:容易燃烧,离火后继续燃烧,火焰呈黄色黑、密度为1、2-1、3g/cm3,玻纤增强后为1、6-1、7g/cm3折射率约1、5,在紫外光下通常发出蓝白色的荧光,吸水性0、1-1、0%、知识点:1、原料:不饱和二元酸(顺丁烯二酸酐、反丁烯二酸、次甲基丁烯二酸等)、饱和二元酸:芳香族二元酸、脂肪族二元酸多元醇:主要是二元醇,常用丙二醇、乙二醇等2、饱和二元酸作用:有效地调节聚酯分子链中双键的间距、增加树脂韧性、降低结晶倾向、改善树脂在乙烯类单体中的溶解性、3、一元醇作用:作为分子链长控制剂,多元醇可以得到高相对分子质量、高熔点的支化聚酯4、交联剂:苯乙烯(与不饱和聚酯及助剂混溶性好)乙烯基苯、二乙烯基苯甲基丙烯酸甲酯MMA(固化树脂透明)邻苯二甲酸二丙烯酯(适于浸溃制品)5、固化引发剂:一般为有机过氧化物或偶氮类有机物(BPO、AIBN)6、促进剂:促进引发剂分解产生自由基,加快交联反应7、不饱和键越多,交联密度越大、刚度增大、耐磨性提高8、不饱和聚酯树脂不耐氧化性介质、在硝氧化性介质中树脂极易老化变质,温度升高老化过程加速、对其它酸、碱、溶剂耐蚀能力较差,但有较好的耐水性聚氨酯(PU)定义:指大分子链中含有许多重复的氨基甲酸酯基团的一类聚合物,全称为聚氨基甲酸酯、分类:浇注型聚氨酯弹性体(简称CPU)应用最广、产量最大的一种;热塑型聚氨酯弹性体(简称TPU)混炼型聚氨酯弹性体(简称MPU)知识点:1、由于树脂分子链含有氨基甲酸酯基,分子间存在很强的氢键,在外力作用下断裂,外力除去后氢键又会形成,因此具有高模量、耐撕裂、很好的磨耗性能和减震效果2、聚氨酯是由多异氰酸酯(常用的是二异氰酸酯)与多元醇反应生成的,常用的二异氰酸酯:有甲苯二异氰酸酯(TDI)、二苯甲烷二异氰酸酯(MDI)3、聚氨酯可看作是由高极性的氨基甲酸酯链节(硬段)和玻璃化转变温度Tg低于室温的聚合物-O-R-O-(软段)交替组成的嵌段共聚物、在常温下,软段处于高弹态,而硬段则处于玻璃态或结晶态4、聚氨酯弹性体中微相分离的程度愈高,TPU的强度和模量愈高、5、弹性可调,调节树脂的成分配比,可从极坚硬的调节到极柔韧的弹性涂层6、反应注射成型简称RIM、增强反应注射型简称RRIM工程塑料通用工程塑料:聚酰胺(PA)定义:分子链上含有酰胺基团的高分子化合物性质:聚酰胺又称尼龙(Nylon)脂肪族聚酰胺是乳白色角质状固体,密度在1、01-1、16g/cm3聚酰胺是塑料中吸湿性最强的品种之一,分子链上酰胺基含量越大,吸水性越强在火源作用下可以燃烧,多数聚酰胺具有自熄性,即使燃烧,火焰传播速度也很慢、分类:1、p型聚酰胺:由ω-氨基酸自缩聚或由内酰胺开环聚合制得,p代表单体中所含碳原子数、mp型聚酰胺:由二元胺与二元羧酸缩聚得到,其中m代表所用二元胺中所含碳原子数,p代表所用二元羧酸的碳原子数、2、脂肪族聚酰胺、香族聚酰胺(芳纶)、脂环族聚酰胺、含杂环的聚酰胺、半芳香聚酰胺知识点:1、所有脂肪族聚酰胺分子链都是线型结构,分子链骨架由-C-N-,-CH2-组成,具有良好的柔曲性,赋予材料良好的韧性、分子链上有规律地交替排列着较强的极性酰胺基,分子链很规整,具有较强的结晶能力、极性的酰胺基可以使分子链之间形成氢键,氢键的形成增大了分子链之间的作用力,使聚合物的结晶能力进一步增强,同时也使聚合物的熔点升高、2、对于聚酰胺,由于吸湿性强,水分对材料有增塑作用、随着吸水率的增加,拉伸、弯曲和压缩强度均下降,而冲击强度增高,延伸率也增大、3、聚酰胺具有良好的耐磨耗性,是优良的耐磨材料之一、结晶愈高,材料硬度愈大,耐磨性愈好、4、聚酰胺是半结晶型聚合物,结晶度一般小于聚乙烯、聚丙烯、聚四氟乙烯等高结晶度聚合物、5、聚酰胺分子链中含有极性酰胺基,干燥的条件下,聚酰胺尚具有较好的电性能,但明显低于聚乙烯、聚苯乙烯等材料、在潮湿环境下,体积电阻率和介电强度均会下降,介电常数和介质损耗也明显增大、6、暴露到室外大气环境中,性能会逐渐地明显下降,主要的变化是发暗、变脆,力学性能下降、7、吸湿性强,加工前必须充分干燥、熔体粘度低,注塑中会有流涎现象,需采用自锁式喷嘴防止流涎、8、单体浇铸聚酰胺缩写为MC聚酰胺,是将单体直接浇铸到模具内进行聚合并成为制品的一种方法,该方法得到的聚酰胺制品分子量高于一般的聚酰胺,制品力学性能、耐热性均明显高于一般聚酰胺制品、改性:1、透明聚酰胺:向分子链上引入侧基的方法破坏分子链的规整性,抑制结晶、如聚对苯二甲酰三甲基已二胺和PACP-9/6聚碳酸酯(PC)定义:聚碳酸酯是指分子链中含有碳酸酯基的聚合物,没有特别加以说明的情况下,通常所说的聚碳酸酯都是指双酚A型聚碳酸酯及其改性品种性质:密度1、2g/cm3-1、27g/cm3,吸水率0、35%透光率90%以上,作为光学玻璃有光学畸变,表面易磨损Tg:145-150℃,Tf:220-235℃,TD:320-340℃,Tb:-100℃、知识点:1、PC分子链以刚性为主,分子间作用力强,分子链的缠结不易解除,大分子难取向且取向后不易自行回复,聚合物处于无定态,残余应力难以自行解除、2、双酚A型PC分子链易形成稳定的原纤维聚集结构,构成疏松的网络,使聚合物内存在大量空隙(自由空间),在快速的外加载荷作用下,聚合物以原纤维为单位可自由移动,吸收大量外载荷的能量、因此尽管双酚A型PC具有刚性分子链,但却具有优异的韧性、3、分子链上的苯环决定了分子链属于刚性链、具有较高的玻璃化温度和熔融温度、熔体粘度高、蠕变小、尺寸稳定性优4、耐老化性优良在户外环境中3年,性能基本无变化、5、PC吸水性虽不大,但少量水分在成型温度下也会引起酯基水解、断链,使制品力学性能,也会严重影响制品外观、因此,成型前必须对粒料严格干燥6、冲击性能强度高,在工程塑料中居首位7、耐蠕变性能优良,且吸水性低,尺寸稳定、8、熔体粘度高,成型加工较困难,残余应力大,易产生应力开裂9、耐溶剂性差,耐磨性差,价格贵聚甲醛(POM)性质:POM产量仅次于PA与PC,合称三大通用工程塑料力学性能和刚性好并接近金属材料,是替代铜、铸锌、钢、铝等金属材料的理想材料POM 耐磨损、自润性和摩擦性好,与UHMWPE、PA、F4一起称为四大耐磨塑料材料制品表面光滑并有光泽,一般不透明,薄壁部分呈半透明淡黄色或白色、长期耐热性不高,但短期可耐160℃,长期不超过100℃、易燃,熔融落滴、分类:均聚甲醛(三聚甲醛或甲醛)、共聚甲醛(与少量二氧五环共聚)、嵌段共聚甲醛知识点:1、均聚物或共聚物的分子两端,带有聚合时产生的低分子聚合物和不稳定的半缩醛端基、加热时易从端基开始分解放出甲醛而引起解聚2、聚甲醛主链上均由-C-O-组成,理应是“柔性的”,但由于化学结构即规整又对称,没有侧链,分子间作用力大,堆砌紧密,易结晶,使得分子运动和链的内旋变得困难、3、由于POM上的-C-O-键较-C-C-键距离近,均聚POM的-C-O-键含量大,所以均聚POM 的规整性比共聚POM好,使其密度、力学性能均好于共聚POM、但两者相差不大、4、机械强度较高,优越的耐冲击性,耐蠕变性,耐疲劳性,较高的磨蚀阻力和较低的磨擦系数、耐磨性好,自润滑性好但缺口敏感性大5、化学稳定性高,电绝缘性优良、有良好的耐溶剂性,透气性小、6、聚甲醛的结晶度高,从无定形转变为结晶形时有较大的体积变化、收缩率高达3、5%、7、难以粘合,也难于加阻燃剂改进其易燃性聚苯醚(PPO)性质:Tg为210℃,Tm为260℃,Td为350℃,Tb-170℃,长期使用温度范围为-125~120℃、密度为1、06g/cm3,难燃,离火后熄灭,火焰明亮有浓黑烟、是工程塑料中吸水率最低的品种、在热水中长时间浸泡其物理性能仍很少下降、知识点:1、由于链节含有大量酚基芳香环,链段难以内旋,主链僵硬,刚性大2、二个侧甲基封闭了酚基的两个邻位活性点,所以使这种聚合物的稳定性大,3、由于聚合物中无极性基团和水解基团,故耐水性好,吸湿性低,制品尺寸稳定性好,电性能优良、4、由于主链上的端基有。
高分子材料物理化学实验复习资料整理
![高分子材料物理化学实验复习资料整理](https://img.taocdn.com/s3/m/35fdaf2643323968011c9227.png)
Huggins式: sp K H C C
2
ln 2 Kramer式: K K C C
外推至 C→0, 两直线相交于一点此截距即为[]。 两条直线的斜率
4 / 11
{
图2
lg C
sp
ln 对 C和 对C 的关系图 C C
3 / 11
图 1 DSC 法测定结晶速率 (a)等温结晶 DSC 曲线 (b)结晶分数与时间关系
高材物化实验复习资料
4
放热峰。当曲线回到基线时,表明结晶过程已完成。记放热峰总面积为 A0,从结晶起始时刻(t0)到任一时 刻 t 的放热峰面积 At 与 A0 之比记为结晶分数 X(t): Avrami 指数 n=空间维数+时间维数(空间维数:球晶:1;片晶:2;针状:3;时间维数:均相成核:1, 异相成核:0; ) DSC: (纵坐标:放热峰朝下,吸热峰朝上) 图:Tg,冷结晶峰,熔融峰。 如何去除冷结晶峰? 升温一次,去除热历史。
二、声速法测定纤维的取向度和模量
测定取向度的方法有 X 射线衍射法、双折射法、二色性法和声速法等。其中,声速法是通过对声波在纤 维中传播速度的测定,来计算纤维的取向度。其原理是基于在纤维材料中因大分子链的取向而导致声波传播 的各向异性。 几个重要公式: ①传播速度 C=
L 10 3 (km / s) (TL t ) 10 6
N2。
注意:定要掌握三张图的含义。
五、粘度法测定高聚物分子量
1、测定高聚物分子量的方法有多种,如端基测定法、渗透法、光散射法、超速离心法和粘度法等。 2、马克(Mark)公式: KM 。该式实用性很广,式中 K、值主要依赖于大分子在溶液中的形态。
高分子材料科学基础期末复习资料总结
![高分子材料科学基础期末复习资料总结](https://img.taocdn.com/s3/m/351a80e2ba0d4a7303763a0e.png)
第一章:绪论高分子材料:指由许许多多原子或原子团,主要以共价键结合而成的相对分子质4量很高(10~107)的化合物.均聚物:由一种单体聚合而成的聚合物称为均聚物。
共聚物:由两种或两种以上单体共聚而成的聚合物称为共聚物。
高分子材料分类:按用途分类---塑料、橡胶、纤维、粘合剂、涂料按主链的元素组成分类---碳链、杂链、元素有机和无机高分子按聚合物受热时的不同行为分类---热塑性和热固性聚合物英文缩写PE 聚乙烯 PP 聚丙烯PS 聚苯乙烯 PTFE 聚四氟乙烯PVC 聚氯乙烯 ABS 丙烯腈—丁二烯—苯乙烯共聚物 PA 聚酰胺 POM 聚甲醛PAN 聚丙烯腈 PC 聚碳酸酯PMMA 聚甲基丙烯酸甲酯 CPE 氯化聚乙烯PF 酚醛树脂 EP 环氧树脂BR 聚丁二烯橡胶 PU 聚氨酯SBR 丁苯橡胶 NBR 丁腈橡胶CR 氯丁橡胶 NR 天然橡胶PET 聚对苯二甲酸乙二醇酯 PBT 聚对苯二甲酸丁二醇酯第二章高分子材料的结构与性能聚合物分子量有两个基本特点:(1)分子量大:一般而言,聚合物的力学性能随分子量的增大而提高。
①如玻璃化温度,拉伸强度,密度,比热容等,刚开始时,随分子量增大而上升,最后达到一极限值。
②如粘度,弯度强度等,随分子量增大而不断提高,不存在极限值。
(2)分子量具有多分散性:①塑料:分子量分布窄时对加工和性能有利;②橡胶:分子量分布宽一些好,可以改善流动性而有利于加工;③薄膜及纤维:分子量分布窄时对加工和性能有利。
聚集态结构:是指在分子间力的作用下,大分子相互聚集在一起所形成的组织结构。
晶态结构:结构规则、简单的以及分子间作用力强的大分子易于形成晶态结构。
非晶态(无定形)结构:结构比较复杂、不规则的大分子则往往形成无定形即非晶态结构。
结晶对聚合物性能的影响:结晶使高分子链规整排列,堆砌紧密,因而增强了分子链间的作用力,使聚合物的密度、强度、硬度、耐热性、耐溶剂性、耐化学腐蚀性等性能得以提高,从而改善塑料的使用性能。
材料导论-高分子期末复习材料
![材料导论-高分子期末复习材料](https://img.taocdn.com/s3/m/57cd93c758f5f61fb7366622.png)
4.氯乙烯, 4.氯乙烯,苯乙烯的聚合物名称分别是 聚氯乙烯 氯乙烯 PVC),聚苯乙烯. ),聚苯乙烯 (PVC),聚苯乙烯. 5.给出聚合度的定义; 5.给出聚合度的定义;如何计算一个已知聚合度的 给出聚合度的定义 聚合物的分子量? 聚合物的分子量? 聚合物分子链中连续出现的重复单元( 聚合物分子链中连续出现的重复单元(或称 链节)的次数. 链节)的次数.聚合度是衡量高分子大小的一个指 标. 聚合度两种表示法: 聚合度两种表示法: 以大分子链中的结构单元数目表示, 以大分子链中的结构单元数目表示,记作 x n 以大分子链中的重复单元数目表示, 以大分子链中的重复单元数目表示,记作 DP
5.合成橡胶的分类 5.合成橡胶的分类 合 成 橡 胶 通用合成橡胶
按其性 能和用 途
特种合成橡胶
6.天然橡胶的主要成分是( 6.天然橡胶的主要成分是(从自然界含胶植物中 天然橡胶的主要成分是 制取的一种高弹性物质) 制取的一种高弹性物质) 综合性能最好的橡胶是(聚异戊二烯( 综合性能最好的橡胶是(聚异戊二烯(天然橡 CH3 胶))
4.写出自由基聚合的主要步骤及聚合特点 4.写出自由基聚合的主要步骤及聚合特点 自由基聚合: 自由基聚合:链引发 链增长 链终止 (1)链引发 慢 单体自由基 (2)链增长 快 活性高分子链 (3)链终止 速 稳定大分子 自由基聚合反应的特征: 自由基聚合反应的特征: 1.可明显区分出引发 增长,终止, 可明显区分出引发, 1.可明显区分出引发,增长,终止,转移等基元反 慢引发,快增长,速终止. 应.慢引发,快增长,速终止. 2.大分子瞬时形成 聚合物的聚合度无大的变化. 大分子瞬时形成, 2.大分子瞬时形成,聚合物的聚合度无大的变化. 3.聚合过程中 单体浓度逐步降低, 聚合过程中, 3.聚合过程中,单体浓度逐步降低,聚合物转化率 逐步增大. 逐步增大.
药用高分子材料期末复习资料及答案
![药用高分子材料期末复习资料及答案](https://img.taocdn.com/s3/m/0d8f0b6d7375a417866f8fff.png)
名词解释1.PE :聚乙烯 P2482.PVP:聚维酮(聚乙烯吡咯烷酮)P2003.Polymer: 聚合物 P194.CMC-Na:羧甲纤维素钠P1325.PS:聚苯乙烯P2516.HPMCP:羟丙甲纤维素酞酸酯P1517.PEC: 氯化聚乙烯8.HPMCAS:醋酸羟丙甲纤维素琥珀酸酯P1529.PET:聚苯二甲酸乙二醇酯P25110.EVA: 乙烯—醋酸乙烯(酯)共聚物P20611.CMS-Na:羧甲淀粉钠(或乙醇酸淀粉钠)P10712.Pluronic:泊洛沙姆的商品名普流罗尼P21713.PAA:聚丙烯酸P18114. pentaerythritol :季戊四醇15. PEG:聚乙二醇P20816. Poloxamer: 泊洛沙姆是聚氧乙烯—聚氧丙烯嵌段共聚物的非专利名P21617.PP: 聚丙烯P24918.聚乙二醇: HO-[CH2-CH2-O] n-H19.amylose: 支链淀粉20. powdered cellulose :粉状纤维素P11221.CAP:纤维醋法酯(又称醋酸纤维素酞酸酯)P12922.MC:甲基纤维素P13523.HPC:羟丙纤维素P14324.HEC:羟乙纤维素P14125:L—HPC:低取代羟丙纤维素P14526.HPMCP:羟丙甲纤维素酞酸酯P151 (和 6 题重复)27. Carbomer :卡波沫为丙烯酸键合蔗糖(或季戊四醇)P18528.NF:法国标准的代号29.De:30.DDS:给药系统1.大多数共混聚合物都是非均相体系。
(√)P352.高分子化合物是以配位键连接若干个重复单元所形成的以长链结构为基础的大分子量化合物。
(×)P183.聚ε - 己内酰胺和聚ε- 氨基己酸是同一种聚合物。
(√) P234.乙烯 / 醋酸乙烯共聚物在分子量相同时,则醋酸乙烯比例越大,材料的溶解性、柔软性、弹性和透明性越大。
(√)P2065.无机高分子由除碳以外的其他元素原子组成,即在主链和侧链结构中均无碳原子,一般呈(不)规则交联的面型结构或体型结构。
高分子材料复习要点1
![高分子材料复习要点1](https://img.taocdn.com/s3/m/b907b20a7cd184254b353510.png)
绪论:1.标志性的事件:塑料的(1)19世纪中叶第一种工业化的塑料----赛璐珞”(Celluloid)的塑料(1869)(最早被应用的塑料)(2)雷奥.比克兰德合成酚醛树脂(PF)也是第一个工业化生产的合成树脂(第一种人工合成树脂)(3)1920年,Staudinger首先提出了高分子的概念(4)Zieglar-Natta催化剂合成出了低压高密度聚乙烯(HDPE, 1953~1955)和聚丙烯(PP)橡胶的(1)1823年,苏格兰化学家马金托什,像印第安人一样把白色浓稠的橡胶液体涂抹在布上,制成防雨布,并缝制了“马金托什”防水斗蓬,这是世界上最早的雨衣,也是橡胶工业的起点(2)1826年,英国人汉考克发明了双辊开炼机,用此设备可以将各种助剂混入橡胶中,1839年,美国化学家固特异尔偶然中发明了橡胶的硫化,解决了橡胶遇热变软发粘的缺点,制造出了世界第一双橡胶防水鞋,这两项发明使橡胶的应用得到了突破性的进展,奠定了现代橡胶加工业的基础(是什么发现导致了近现代意义橡胶工业的诞生?)橡胶是继石油、铁矿和有色金属之后的第四大战略资源2、概念:通用塑料:产量大、用途广、价格低、性能一般,主要用于非结构材料,如:聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚苯乙烯(PS)。
工程塑料:具有较高的力学性能,能够经受较宽的温度变化范围和较苛刻的环境条件,并在此条件下长时间使用,可作为结构材料。
热塑性塑料:受热熔融、可进行各种成型加工,冷却时硬化。
再受热又可熔融、加工。
具有多次重复加工性。
热固性塑料:受热熔化,成型的同时发生固化发应,形成高分子立体网状结构,再受热不熔融,也不在溶剂中溶解。
树脂:树脂通常是指受热后有软化或熔融范围,软化时在外力作用下有流动倾向,常温下是固态、半固态,有时也可以是液态的有机聚合物。
广义地讲,可以作为塑料制品加工原料的任何聚合物都称为树脂。
橡胶:是一类线型柔性高分子聚合物。
其分子链柔顺性好,在外力作用下可产生较大的变形,除去外力后能迅速恢复原状。
高分子材料基础期末复习.doc
![高分子材料基础期末复习.doc](https://img.taocdn.com/s3/m/1597395b4a7302768e9939b3.png)
答:PE 聚乙烯 PP 聚丙烯 EVA乙烯醋酸乙烯共聚物 HIPS高抗冲聚苯乙烯 PA 聚酰胺、尼龙PVC 聚氯乙烯 GPPS 普通聚苯乙烯 SPS 茂金属聚苯乙烯P0M 聚甲醛 PS 聚苯乙烯 CPE 氯化聚乙烯 EPS 可发性聚苯乙烯 ABS 丙烯賭丁二烯苯乙烯PC 聚碳酸酯 PTFE 聚四氟乙烯 EP 环氧树脂PF 酚醛树脂PET 聚对苯二甲酸乙二醇酯高分子材料基础期末复习题第一次思考题作业题1 •聚丙烯无规共聚物及其性能。
答:聚丙烯无规共聚物是在聚丙烯链上引入不同的单体共聚,最常见的共聚单体是乙烯(质量分数为1%〜7% o 乙烯单体无规地嵌入,阻碍了聚合物结晶,使性能发生变化,与均聚物PP 相比,无 规PP 共聚物有较好的光学透明性、耐冲击性和柔顺性,较低的刚性和熔融温度,从而降低了加 工和热封合温度。
2 •耐冲击聚丙烯合金及其制备方法。
答:通过与弹性体共混,克服聚丙烯韧性差的缺点,开发耐冲击的聚丙烯合金。
聚丙烯与乙丙共聚物、聚异丁烯、聚丁二烯等共混,改善其低温脆性,提高冲击强度;聚丙烯与EVA 共混,不仅提高其 冲击强度,还改进了加丁•性、印刷性和耐应力开裂性。
与尼龙共混,不仅增加韧性,而且使耐磨 性、耐热性、染色性获得改善。
冃前,聚内烯合金多用于汽车业,其应用领域将进一步扩大。
3. 热塑性聚合物 (Thennoplsstics Polymer )o答:聚合物大分子Z 间以物理力聚集而成,加热时可熔融,并能溶于适当的溶剂屮。
热塑性聚合物受 热时可以塑化,冷却时则可以固化成型,并且可以如此反复进行。
4. 为何PVC 制品都是多组分的塑料? 答(1) PVC 是冃前加入添加剂品种和数量最多的塑料Z-o(2) P VC 塑料及其制品:聚氯乙烯树脂+添加剂。
主要添加剂:增塑剂、热稳定剂、增韧剂、 填充剂、润滑剂、着色剂等。
(3) PVC 的热稳定性差,加工屮耍加入热稳定剂;(4) 为改善PVC 制品的表而性能,减少制品的收缩,降低脆性以及着色等冃的,加入润滑剂、加 工助剂、填料、增韧剂和颜料等;(5) PVC 塑料中加入增塑剂,能提高树脂流动性、降低塑化温度,使制品变软。
高分子导论复习大纲---高分子材料PPT课件
![高分子导论复习大纲---高分子材料PPT课件](https://img.taocdn.com/s3/m/c477ead3cc1755270622085b.png)
2021
5
2021
6
• 4、添加剂类型
① 有助于加工的润滑剂和热稳定剂; ② 改进材料力学性能的填料、增强剂、抗冲
改性剂、增塑剂等; ③ 改进耐燃性能的阻燃剂; ④ 提高使用过程中耐老化性的各种稳定剂。
2021
7
• 一、通用塑料
• (一)、聚乙烯(PE) ——分子量要求:1万以上(塑料) ——合成方法:
2021
13
⊕化学稳定性:优异。室温下耐盐酸、氢氟酸、磷酸、 甲酸、氨、胺类、过氧化氢、氢氧化钠、氢氧化钾、 稀硫酸和稀硝酸;发烟硫酸、浓硝酸、硝化混酸、铬 酸-硫酸混合液在室温下能缓慢溶解;>90℃,硫酸 和硝酸能迅速破坏PE;
⊕其它稳定性:易光氧化、热氧化、臭氧分解;光降解 (紫外线→炭黑优异的光屏蔽作用);辐射可发生交 联、断链、形成不饱和基团等(主要倾向交联反应);
均采用齐格勒-纳塔催化剂,其聚合工艺基本上与 低压PE相同。聚合过程中有5%~7%的无规PP,可 用己烷、庚烷溶剂进行萃取分离。等规PP结晶不溶, 无规物溶解→进行分离。在正庚烷中不溶部分的质 量分数作为PP的等规定。
2021
20
——性能
⊕耐化学性:好,抗硫酸、盐酸及氢氧化钠的能力 优于PE及PVC; ⊕耐热性:高,对80%的硫酸可耐100℃; ⊕稳定性:易受光、热、氧的作用发生降解和老化 (叔碳原子上H的存在)→添加稳定剂; ⊕燃烧性:与PE一样,易燃,火焰有黑烟,燃烧后 滴落并有石油味。
(1)单体乙烯的制备方法 ⊕主要方法:由石油烷烃热裂解后,分离精制而得。 ⊕次要方法:乙醇脱水、乙炔加氢、天然气中分离出 乙烯等。
2021
8
(2)乙烯聚合方法 ⊕高压聚合法(ICI法):压力150-300MPa、温度
高分子材料复习整理DOC
![高分子材料复习整理DOC](https://img.taocdn.com/s3/m/0e83df0ecc7931b764ce151c.png)
高分子材料复习整理1. 什么叫热塑性塑料?什么叫热固性塑料?试各举三例说明。
(P124)热塑性塑料:塑料加热后软化,冷却后变硬,这种软化、变硬可重复循环,因此可重复成型。
(聚乙烯、聚丙烯、聚氯乙烯)热固性塑料:有单体直接形成网状聚合物或通过交联线型预聚体而形成,一旦形成交联聚合物,受热后不能再回复到可塑状态。
(制品不溶不熔)(酚醛树脂、环氧树脂、氨基树脂、不饱和聚酯)2. 高分子构型与构象的区别(P79)高分子的几何异构和旋光异构称为构型,构型不同,分子形状也不同,但要改变构型非破坏化学键不可一般而言,大分子链是由众多的C-C单键(或C-N,C-O,Si-O等类单键)构成的。
这些单键是由σ电子组成的σ键,其电子云分布对键轴是对称的,所以以σ键连接的两个原子可以相对旋转,这称为分子的内旋转。
在分子内旋转的作用下,大分子链具有很大的柔曲性,可采取各种可能的形态,每种形态所对应原子及键的空间排列称为构象。
构象是由分子内部热运动而产生的,是一种物理结构。
3.ABS树脂的结构,每个组分的作用ABS树脂是由苯乙烯、丁二烯和丙烯腈三种成分构成的共混物。
最初以机械共混法制备,现在多采用接枝共聚-共混法。
苯乙烯:贡献是刚性、表面光洁性和易加工性丁二烯:贡献是柔顺性、高抗冲性和耐低温性丙烯腈:贡献是耐化学药品性、热稳定性和老化稳定性ABS塑料的具体性能决定于三种单体的比例和形态结构ABS塑料存在有两相,连续相成称为基体(由苯乙烯或其烷基衍生物和丙烯腈的共聚树脂所组成),以丁二烯为基础形成的弹性体为分散相4. 产量大、应用广的工程塑料主要有哪些?(P136~137)产量大、应用广的工程塑料有聚酰胺(PA):开发最早的工程塑料,产量首位;聚碳酸酯(PC),应用广泛;聚甲醛(POM):产量位居第三位。
5.高聚物高弹性的特点(P95)高弹性即橡胶弹性,同一般的固体物质所表现出的普弹性相比,有如下特点:(1)弹性模量小,形变大。
高分子物理复习材料by四川大学冉蓉(精)
![高分子物理复习材料by四川大学冉蓉(精)](https://img.taocdn.com/s3/m/4c13edb4ccbff121dc368340.png)
高分子物理习题集第一章高聚物的结构1.简述高聚物结构的主要特点。
2.决定高分子材料广泛应用的基本分子结构特征是什么?3.高分子凝聚态结构包括哪些内容?4.高分子的构型和构象有何区别?如果聚丙烯的规整度不高,是否可以通过单键的内旋转提高它的规整度?5.试写出线型聚异戊二烯加聚产物可能有那些不同的构型。
6.分子间作用力的本质是什么?影响分子间作用力的因素有哪些?试比较聚乙烯、聚氯乙烯、聚丙烯、聚酰胺(尼龙 -66 、聚丙烯酸各有那些分子间作用力?7.下列那些聚合物没有旋光异构,并解释原因。
A .聚乙烯 B .聚丙烯 C . 1, 4-聚异戊二烯 D . 3, 4-聚丁二烯 E .聚甲基丙烯酸甲酯 F .硫化橡胶8.何谓大分子链的柔顺性?试比较下列高聚物大分子链的柔顺性,并简要说明理由。
9. 写出下列各组高聚物的结构单元,比较各组内几种高分子链的柔性大小并说明理由 :1 聚乙烯,聚丙烯,聚苯乙烯;2 聚乙烯,聚乙炔,顺式 1,4聚丁二烯;3 聚丙烯,聚氯乙烯,聚丙烯腈;4 聚丙烯,聚异丁稀;5 聚氯乙烯,聚偏氯乙烯;6 聚乙烯,聚乙烯基咔唑,聚乙烯基叔丁烷;7 聚丙烯酸甲酯,聚丙烯酸丙脂,聚丙酸戌酯;8 聚酰胺 6.6,聚对苯二甲酰对苯二胺;9 聚对苯二甲酸乙二醇酯,聚对苯二甲酸丁二醇酯。
C H 2C H C lnC H C H 2nNC H 2nC C H 3C H C H 2C H 2nC H 2H O nO10.为什么真实的内旋高分子链比相应的高斯链的均方末端距要大些? 11.分子量不相同的聚合物之间用什么参数比较其大分子链的柔顺性? 12.试从统计热力学观点说明高分子链柔顺性的实质。
13.用键为单位统计大分子链的末端距与用链段为单位统计末端距有何异同?那种方法更复合实际情况?14.一个高分子链的聚合度增大 100倍,其链的尺寸扩大了多少倍? 15. 假定聚丙烯中键长为 0.154nm , 键角 109.5o , 无扰尺寸 A=483510nm -⨯, 刚性因子(空间位阻参数1.76σ=,求其等效自由结合链的链段长度 b 。
高分子复习题2010
![高分子复习题2010](https://img.taocdn.com/s3/m/475d16244b7302768e9951e79b89680203d86b82.png)
高分子复习题2010高分子期末复习题1.高分子的定义如何?如何区分结构单元、重复单元、单体单元,请举例说明。
定义:相对分子质量很高的一类化合物。
在笔记上面。
2.写出聚丙烯酸、聚甲基丙烯酸甲酯、聚苯乙烯、聚对苯二甲酸乙二醇酯、聚乙二醇、聚乳酸、天然橡胶和聚乙烯基吡咯烷酮的分子式及单体结构。
3.高分子的结构分哪几个层次?高分子的结构按其研究单元不同分为高分子链结构(分子内结构)和高分子聚集态结构两大类。
分子内结构包括两个层次:近程结构和远程结构。
近程结构:指单个分子链结构单元的化学结构和立体化学结构,是反映高分子各种特性的最主要结构层次。
远程结构:指分子的大小与构象。
与高分子链的柔性和刚性有直接关系。
聚集态结构是指高分子材料整体的内部结构,包括晶态结构、非晶态结构、取向结构和织态结构。
4.什么是高分子的构型与构象?构型:分子中由化学键所固定的原子在空间的几何排列(包括旋光异构、几何异构);构象:高分子主链的单键由于内旋而产生的分子在空间的不同形态。
5.高分子的分类方法有哪些?有单体来源、合成方法、性能和用途、高分子结构。
根据所制成的材料的性能和用途分成:塑料、橡胶、纤维、黏合剂、涂料。
根据高分子的主链结构分为有机高分子、元素有机高分子和无机高分子。
有机高分子:主链结构完全由碳或氮氧磷硫等常见原子组成;元素有机高分子:主链由硅、铝、氮氧磷硫,主链不含碳,侧基为有机基团的高分子;无机高分子:主链和侧链均无碳原子的高分子。
6.药用高分子材料在药剂学中的作用有哪些?P4、5、61.作为片剂(湿法制粒或直接压片)和一般固体制剂(胶囊剂)的崩解剂、黏合剂、赋形剂、外壳。
2.作为缓释、控释制剂的骨架材料和包衣材料。
3.作为液体制剂和半固体制剂的辅料。
4.作为生物黏着性材料。
5.可生物降解的高分子材料。
6.用作新型给药装置的组件。
7.用作药品的包装材料。
7.聚合反应的分类有哪些?按照单体与聚合物在元素组成和结构上的变化,聚合反应分为加聚反应、缩聚反应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1名词解释相结构(相形态)界面层界面张力粘度相反转单相连续结构共连续结构海岛结构相畴尺寸2 填空1 测试玻璃化转变温度的方法有动态粘弹分析、示差扫描量热、介电松弛谱等。
2 PPO/PS共混/体系只有一个玻璃化转变温度,而PPO/PMMA共混体系则有两个玻璃化温度,因此共混体系相容性更好3 相分离的机理包括成核和增长机理(NG)及。
4聚合物共混物形态结构的基本类型包括单相连续结构、及相互贯穿的两相连续结构。
5 随着聚合物相容性增加,两组分之间的分子链扩散程度增大,相界面越来越模糊,界面层厚度3 判断1聚合物A和B组成的共混体系中,随着温度升高,哈金斯参数增大,结合二元体系的相图说明这一共混体系是具有最高临界相容温度还是具有最低临界相容温度。
2由显微电镜图可知,未增容的试样分散相粒子尺寸大、界面模糊、界面粘结力弱,增容处理的试样分散相粒径极小、断面光滑。
3以PVC/NBR体系为例,其中NBR组分中,丙烯腈含量由0增加到20%再增大到40%时,体系相容性逐渐增大,相区尺寸则减小;丙烯腈含量达到40%时,共混物接近于均相,此时体系的性能最好。
分别举出两种完全相容(miscibility)的聚合物共混物及两种具有一定相容性(compatibility ) 的聚合物共混物.Osmium tetroxide staining can be accomplished by exposing sample to osmium tetroxide vapor for a week, or by soaking in a 1% aqueous solution overnight. And it would selectively stain and harden the unsaturated rubber.Compatibility requires that the free energy of mixing be negative, which can only be achieved by exothermic mixing or a large entropy of mixing. For most polymers, however, the mixing is endothermic and the entropy contribution is small because of the high molecular weights. Therefore, most polymer blends are not compatible. However,truely miscible is not a requirement in most case. Adhesion between the polymer phases is necessary, greater compatibility can be achived for polymers containing polar groups. For non-polar polymers, better compatabilty can only be achived when the solubility parameters of components are closely matched.The types of stress–strain curves are below: Brittle plastic stress–strain curve is linear up to fracture at about 1% to 2% elongation. Ordinary polystyrene behaves this way.(2) An example of a tough plastic is polyethylene,which is semicrystalline. Its Young’s modulus, given by the initial slope of the stress–strain curve, is somewhat lower than that of the brittle, glassy plastic. Typically this class of polymer exhibits a yield point, followed by large elongation at almost constant stress. This is called the plastic flow region and is clearly a region of nonlinear viscoelasticity.The main methods on improving compatibility is introducing a third component which was calledcompatibilizer. Based on the reaction kinds, compatibilizer can be divided into two kinds. One is reactive compatibilizer, the other is non-reactive compatibilizer. The improving in compatibility with reactive compatibilizer is through chemical reaction between the two components with the help of compatibilizer. Such as in PA/PP blends, PP-g-MA can be used as compatibilizer because of the reaction of MA with PA.4简答1举两个例子从不同方面说明聚合物共混物的形态结构对其性能的影响。
2试分析改善改善界面相容性的方法3 界面层的结构组成与独立相的区别List the main preparation methods for polymer blends (In English)The choice principle of polymer blend pairs:(1). According to the properties of final products(2). Partial compatibility or semicompatibility in polymer pairs(3). Close matching in cure rate of both components.(4) Close matching in viscosity of polymer pairs.The characteristics of NR structure:a. Non-polar and high chain flexibility confer high elasticityb. Unsaturated rubber and high curing rateC. Crystallizing upon extension confers self-reinforcement and crystallinity at low temperature(below -24℃)d. Autoadhesione. Thermoplastics of raw rubberf. Good processabilityThe characteristics of BR structure:a. Non-polar and high chain flexibility confer excellent elasticity and freeze resistanceb. Low loss modulus and low heat generationd. High abrasion resistance and slip resistancee. High fatigue resistance and flexing resistancef. Unsaturation and high curing rateThe aim of NR/BR blend:a. The main application of NR/BR blends is used in tyre especially in tyre tread.b. Improving the heat generation, abrasion resistance, slip resistance and freeze resistance.c. Reducing compound cost.For this purpose, we have to consider the influence of morphology, the distribution of fillers and covulcanization in the blend.Characteristics of both components are compareda. Since the SP of both rubbers are very close(NR 16.7, BR17.1), there is a high miscibility on this system.b. The cure rate of BR is a little faster than the cure rate of NR.c. The affinity between BR and carbon black is higher than that of NR and carbon black. According to the characteristics of both polymers, it is necessary to choose an optimal milling scheme, curing system, loading of addictive.。