2014年高考理科数学试题(四川卷)及参考答案
2014年普通高等学校招生全国统一考试数学理试题(四川卷,解析版)
2014年普通高等学校招生全国统一考试理科参考答案〔四川卷〕一.选择题:本大题共10小题,每一小题5分,共50分.在每一小题给出的四个选项中,只有一个是符合题目要求的。
1.集合2{|20}A x x x =--≤,集合B 为整数集,如此A B ⋂= A .{1,0,1,2}- B .{2,1,0,1}-- C .{0,1} D .{1,0}- 【答案】A【解析】{|12}A x x =-≤≤,B Z =,故A B ⋂={1,0,1,2}- 2.在6(1)x x +的展开式中,含3x 项的系数为A .30B .20C .15D .10 【答案】C【解析】含3x 项为24236(1)15x C x x ⋅=3.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上 所有的点A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度 【答案】A【解析】因为,故可由函数sin 2y x =的图象上所有的点向左平行移动12个单位长度得到4.假设0a b >>,0c d <<,如此一定有A .a b c d >B .a b c d <C .a b d c >D .a b d c < 【答案】D【解析】由1100c d d c <<⇒->->,又0a b >>,由不等式性质知:0a b d c ->->,所以a bd c <5.执行如图1所示的程序框图,如果输入的,x y R ∈,如此输出的S 的最大值为A .0B .1C .2D .3 【答案】C【解析】当001x y x y ≥⎧⎪≥⎨⎪+≤⎩时,函数2S x y =+的最大值为2,否如此,S 的值为1.6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能拍甲,如此不同的排法共有 A .192种 B .216种 C .240种 D .288种 【答案】B【解析】当最左端为甲时,不同的排法共有55A 种;当最左端为乙时,不同的排法共有14C 44A 种。
高考四川理科数学试题及答案(详解纯word版)
2014年普通高等学校招生全国统一考试(四川卷)数 学(理工类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。
第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。
满分150分。
考试时间120分钟。
考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。
考试结束后,将本试题卷和答题卡一并交回。
第Ⅰ卷 (选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。
第Ⅰ卷共10小题。
一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂= A .{1,0,1,2}- B .{2,1,0,1}-- C .{0,1} D .{1,0}- 2.在6(1)x x +的展开式中,含3x 项的系数为A .30B .20C .15D .103.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点A .向左平行移动12个单位长度 B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度 4.若0a b >>,0c d <<,则一定有A .a b c d >B .a b c d <C .a b d c >D .a b d c<5. 执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为A .0B .1C .2D .3 6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有A .192种B .216种C .240种D .288种 7.平面向量(1,2)a =,(4,2)b =,c ma b =+(m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =A .2-B .1-C .1D .2 8.如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点。
2014四川高考真题数学理(含解析)
2014 年普通高等学校招生全国统一考试(四川卷)数学(理工类)一、选择题:本大题共10 小题,每小题5 分,共50 分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合A ={x | x2 -x - 2 ,集合B 为整数集,则A ().A.{-1, 0,1, 2} B.{-2,-1, 0,1} C.{0, 1} D.{-1, 0}2.在x(1+x)6 的展开式中,含x3 项的系数为().A.30 B.20 C.15 D.103.为了得到函数y = sin(2x +1) 的图象,只需把函数y = sin 2x 的图象上所有的点().A.向左平行移动12个单位长度B.向右平行移动12个单位长度C.向左平行移动1个单位长度D.向右平行移动1个单位长度4.若a >b > 0,c <d < 0,则一定有().A.a b>B.a <b C.a b>D.c d c d d ca b<d c5.执行如图 1 所示的程序框图,如果输入的x, y ∈R ,则输出的S的最大值为().A.0 B.1 C.2 D.36.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有().A.192种B.216 种C.240 种D.288 种7.平面向量a = (1, 2),b = (4, 2),c =m a +b(m∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =().A.-2 B.-1 C.1 D.28.如图,在正方体ABCD -A1B1C1D1 中,点O 为线段BD的中点.设点P 在线段CC 上,直线OP1与平面A1BD 所成的角为α,则sinα的取值范围是().A.[ 3 ,1]3 B.[ 6 ,1]3C.[ 6 , 2 2 ]3 3D.[2 2 ,1]39.已知f (x) = ln(1+x) - ln(1-x) ,x∈(-1, 1) .现有下列命题:().①f (-x) =-f (x) ;②2xf ( ) = 2 f (x)x 1;③| f (x) |≥ 2 | x | .其中的所2有正确命题的序号是A.①②③B.②③C.①③D.①②1/ 1510.已知F 是抛物线y =x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA⋅OB = 2(其中2O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是().17 28A.2 B.3 C.D.10二、填空题:本大题共5 小题,每小题5 分,共25 分.11.复数2 2i-=1+i.12.设f (x) 是定义在R 上的周期为2 的函数,当x∈[-1, 1) 时,f (x)⎧- 2 +-≤<4x 2, 1 x 0, =⎨x, 0 ≤x <1,⎩,则3f ( ) =.213.如图,从气球 A 上测得正前方的河流的两岸 B,C 的俯角分别为67 ,30 ,此时气球的高是46m ,则河流的宽度 BC 约等于m .(用46m30°67°四舍五入法将结果精确到个位.参考数据:s i n 6 7≈0 . ,cos 67 ≈ 0.39,sin 37 ≈ 0.60 ,cos 37 ≈ 0.80 , 3 ≈1.73)B C14.设m∈R,过定点A的动直线x +my = 0 和过定点B的动直线mx -y -m + 3 = 0交于点P(x, y) ,则| PA|⋅| PB |的最大值是.15.以A 表示值域为 R 的函数组成的集合,B 表示具有如下性质的函数ϕ(x) 组成的集合:对于函数ϕ,存在一个正数M ,使得函数ϕ(x) 的值域包含于区间[-M,M ] .例如,当ϕ=,(x) 1(x) x3 ϕ=时,ϕ1(x)∈A, 2 (x) B2(x) sin xϕ∈.现有如下命题:①设函数f (x) 的定义域为D ,则“f (x)∈A”的充要条件是“∀b∈R,∃a∈D,f (a) =b ”;②函数f (x)∈B 的充要条件是f (x) 有最大值和最小值;③若函数f (x) ,g(x) 的定义域相同,且f (x)∈A,g(x)∈B ,则f (x) +g(x)∉B ;④若函数f (x) =a ln(x + 2) +x(x >-2,a∈R )有最大值,则f (x)∈B .x +12其中的真命题有.(写出所有真命题的序号)三、解答题:本大题共6 小题,共75 分.解答须写出文字说明,证明过程或演算步骤.16.已知函数πf (x) = sin(3x +) .4(1)求f (x) 的单调递增区间;(2)若α是第二象限角,(α ) = 4 cos(α+π) cos 2αf3 5 4,求cosα-sinα的值.2/ 1517.一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得 10 分,出现两次音乐获得 20 分,出现三次音乐获得 100 分,没有出现音乐则扣除 200 分(即获得 200分).设每次击鼓出现音乐的概率为且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?12,(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.3/ 1518.三棱锥A-BCD及其侧视图、俯视图如图所示.设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN ⊥NP .(1)证明:P 为线段BC 的中点;(2)求二面角A-NP-M 的余弦值.4/ 1519.设等差数列{a }的公差为d ,点(a ,b )在函数f (x) = 2x 的图象上(n∈N* ).n n n(1)若a1 =-2 ,点(a ,4b ) 在函数f (x) 的图象上,求数列{a }的前n 项和8 7 n S ;n(a ,b ) 处的切线在x 轴上的截距为2 1(2)若a1 =1,函数f (x) 的图象在点a-,求数列{ n } 2 2b ln 2n 的前n 项和T .n5/ 15x y2 2+=(a >b > 0)的焦距为 4,其短轴的两个端点与长轴的一个端点构成正20.已知椭圆C: 2 2 1a b三角形.(1)求椭圆C 的标准方程;(2)设F 为椭圆C 的左焦点,T 为直线x =-3上任意一点,过F 作TF 的垂线交椭圆C 于点P,Q.(i)证明:OT 平分线段PQ(其中O 为坐标原点);(ii)当|TF || PQ |最小时,求点T 的坐标.6/ 1521.已知函数f (x) = e x -ax2 -bx -1,其中a,b∈R ,e = 2.71828 为自然对数的底数.(1)设g(x) 是函数f (x) 的导函数,求函数g(x) 在区间[0,1]上的最小值;(2)若f (1) = 0,函数f (x) 在区间(0,1) 内有零点,求a 的取值范围.7/ 152014 年普通高等学校招生全国统一考试(四川卷理科)答案解析一、选择题:本大题共10 小题,每小题5 分,共50 分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.A【解析】A ={x -1 ,所以A , 0,1, 2}2.C【解析】x(1+x)6 =x(1+6x+15x2 +20x3 +15x4 +6x5 +x6),所以含x 项的系数为 1533.Ay =x +=x +,所以只需把y = sin 2x 的图像上所有的点向左平移1sin(2 1) sin 2( )1【解析】2 2个单位4.D∴->->,又a >b > 0, a b 01 1 ∴->->, a b【解析】0 ,∴-c >-d > 0 ,∴<d c d c d c 5.C⎧x⎪⎨y【解析】该程序执行以下运算,已知⎪+x y⎩,求S=2x y+的最大值,作出⎧x⎪⎨y⎪+x y⎩表示的区域如图所示,由图可知,当⎧x =1⎨=⎩y 0时,S = 2 x+y的取最大值,最大值为S = 26.B【解析】最左端排甲,有A5 =种排法,最左端排乙,有4A4 = 96种排法,共有120+96 = 216 种5 1204排法7.D【解析】由题意得c ⋅a c ⋅b a b +8 8m+ 20=⇒m = 5 2 528.B【解析】设正方体的棱长为 1,AC =,1 12 AC =,1 3A O =OC =+=, 11 OC =,1 31 12 2 2 8/ 153 3+- 2 12 2cos∠AOC ==所以 1 13 32⨯2 ,sin3 1+-3 32 2 2 2cos∠AOC ==-AOC =, 11 13 332⨯2,sin6AOC =,所以sinα的范围为13⎡⎤6⎢,1⎥3⎣⎦9.C【解析】①f (-x) = ln(1-x) - ln(1+x) =-f (x) ,成立②左边的x可以取任意值,而右边的x ∈ (-1,1) ,故不成立③作出图像易知成立10.B【解析】依题意,1F ( ,0) ,设4A(x , y ),1 1B x y ,则 2 1 2 1 2 2( , ) x =y , 2x =y ,y2 y2 +y y =,得2 2 1 1 2 2y y =-或1 2 2 y y =,因为A ,B 位于x 轴两侧所以,1 2 1y y =-两面积之和为1 2 21 1 12 1 2 9 S =x y -x y +⨯⨯y =+y +⨯y =+y1 2 2 1 1 1 1 12 2 4 y 8 y 81 1二、填空题:本大题共5 小题,每小题5 分,共25 分.11.-2i【解析】2-2i 2(1-i)2= =-2i 1+i (1+i)(1-i)12. 1【解析】3 1 1f ( ) =f (-) =-4⨯+ 2 =12 2 413.60【解析】AC = 92,14.546AB =,cos 67AB =BC ,AB sin 37 60BC =≈sin 30 sin 37 sin 309/ 15【解析】易得A(0, 0) ,B(1, 3) ,设P(x,y) ,则消去m得:x2 +y2 -x-3y =0,所以点P 在以AB为直径的圆上,PA ⊥PB,所以PA ⨯PB AB22515.①③④【解析】①若对任意的b∈R ,都有∃a∈D,使得f (a) =b ,则f (x) 的值域必为R ;反之f (x) 的值域为,则对任意的R ,b∈R,都有∃a∈D,使得f (a) =b ;②比如函数f (x) =x(-1 <x < 1) 属于B ,但是它既无最大值也无最小值,故错误;③正确;④正确三、解答题:本大题共6 小题,共75 分.解答须写出文字说明,证明过程或演算步骤.π16.已知函数f (x) = sin(3x +) .4(1)求f (x) 的单调递增区间;(2)若α是第二象限角,(α ) = 4 cos(α+π ) cos 2αf3 5 4,求cosα-sinα的值.πππ解:(1)2kπ-k ∈Z2 4 23ππ2kπ-,4 42 2kπ-πkππ,3 4 3 12∴求f (x) 的单调递增区间为⎡2kπ-π2kπ+π⎤∈,,k Z .⎢⎥⎣ 3 4 3 12⎦(2)fα=α+π=α+πα,4( ) sin( ) cos( )cos 2 3 4 5 42 4 2( s i n c o s ) ( c o s s i n ) ( c o s α+α=⋅α-α2 α+α, 2 5 22 5(cos sin )α-α=, α是第二象限角,4∴sinα> cosα5∴cosα-sinα=-.217.一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得 10 分,出现两次音乐获得 20 分,出现三次音乐获得 100 分,没有出现音乐则扣除 200 分(即获得-200分).设每次击鼓出现音乐的概率为各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?12,且10/ 15(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.解:X 可取 10,20,100,-200.1 2⎛ 1 ⎫⎛ 1 ⎫ 3P(X 10) C 1== ⎪ -⎪=13⎝ 2 ⎭⎝ 2 ⎭82 1⎛ 1 ⎫⎛ 1 ⎫ 3P(X = 20) = C ⎪ 1-⎪=23⎝ 2 ⎭⎝ 2 ⎭83 0⎛ 1 ⎫⎛ 1 ⎫ 1P(X =100) = C ⎪ 1-⎪=33⎝ 2 ⎭⎝ 2 ⎭80 3⎛ 1 ⎫⎛ 1 ⎫ 1P(X 200) C 1=-=0 ⎪ -⎪=3⎝ 2 ⎭⎝ 2 ⎭8X 10 20 100 -200P 3 3 1 18 8 8 8 (2)设至少有一盘出现音乐为事件A .一盘中不出现音乐的概率为1 P =P(X =-200) =.83P =P A =-⎛⎪⎫=( ) 11 511⎝ 8 ⎭512.(3)每一盘游戏的期望为:10E(X ) =10⋅P(X =10) + 20⋅P(X = 20) +100⋅P(X =100) + (-200)⋅P(X =-200) =-8 这说明每盘游戏得分是负分,由概率统计的知识可知:若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.18.三棱锥A-BCD及其侧视图、俯视图如图所示.设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN ⊥NP .(1)证明:P 为线段BC 的中点;(2)求二面角A-NP-M 的余弦值.解:(1)由三棱锥A-BCD及其侧视图、俯视图可知,在三棱锥中,平面ABD ⊥平面CBD, AB =AD =BD =CD =CB = 2,设O 为BD的中点,连接OA,OC ,于是OA ⊥BD ,OC ⊥BD ,所以BD ⊥平面OAC ⇒BD ⊥AC,因为M ,N 分别为线段AD ,AB 的中点,所以MN//BD ,11/ 15又 MN ⊥ NP ,故 BD ⊥ NP ,假设 P 不是线段 BC 的中点,则直线 NP 与直线 AC 是平面 ABC 内 相交直线,从而 BD ⊥平面 ABC ,这与 ∠DBC = 60 矛盾,所以 P 是线段 BC 的中点(2)以O 为坐标原点,OB 、OC 、OA 分别为 x 、 y 、 z 轴建立空间直角坐标系,则 A (0, 0, 3) , B,C (0,1, 0) , M (- 1 ,0, 3), (1 ,0, 3)(1, 0, 0)N, 22221 3 P ( , ,0)2 2于是 AN = ( ,0,- 3) , (0, 3 , 3)PN = - , MN = (1, 0, 0) 2 2 2 2设平面 ANP 和平面 NPM 的法向量分别为 m = (x , y , z ) 和 111n = (x , y , z )222由⎧ 1 3 x - z = 0⎪⎧⎪ ⇒ ⎪ ⎨⎨1 12 2 ⎪⎪PN ⋅m = 0 33 ⎩- + =yz ⎪ ⎩ 2211,设 y 1 =1,则 m = ( 3 ,1,1)由 ⎧x = 0 ⎧⎪ ⇒ ⎪ ⎨ ⎨332⎩⎩ PN n ⋅ = 0 - y +z =⎪ ⎪212 2,设 y 2 =1,则 n = (0,1,1) 0 cos2 10 m ⋅n == ⋅ 5m n5 2,所以二面角 A - NP -M 的余弦值 10 5 19.设等差数列{ }a 的公差为 d ,点(a ,b )在函数 f (x ) = 2x 的图象上( n ∈ N * ).nnn(1)若 a 1 = -2 ,点(a ,4b ) 在函数 f (x ) 的图象上,求数列{a }的前 n 项和87nS ;n(a ,b ) 处的切线在 x 轴上的截距为 21a(2)若a1 =1,函数f (x) 的图象在点-,求数列{ n } 2 2b ln 2n 的前n 项和T .nb =,又等差数列{} 【解析】(1)点(a ,b )在函数f (x) = 2x 的图像上,所以 2a 的公差为d ,所ann n n n以b 1 2 2an+1n+==d b 2ann因为点(a8,4b7 ) 在函数f (x) 的图像上,所以b4b = 2a =b ,所以8 d2d == 4 ⇒= 2 ,又87 8 b7a =-,1 2所以n(n -1)S =na + d =-2n +n -n =n -3n2 2n 12( 2 )由 f (x) = 2x ,得到 f '(x ) = x2 l n,函数f (x) 的图像在点(a ,b ) 处的切线方程为2 2by -b2 = (2 ln 2)(x -a2 ) ,所以切线在x 轴上的截距为a a -,得22a=,从而222 2a ln 22 a =n ,b = 2n ,n n得到anbn1=n⋅( )2n1 1 1T =⋅+⋅ 2 +①,1 2 ( ) )nn2 2 212/ 151 1 1 1 1T =⋅+⋅+⋅+n⋅+②,1 ( )2 ( ) ) ( ) ( )2 3 n n 1 n2 2 2 2 2①-②,得1 1 1 1 1 1T =++-n⋅+=-n ++( ) ( ) 1 ( 2)( )2 n 1 n 1 n2 2 2 2 2 21T =-n ++2 ( 2)( )n 1故n2x y2 2+=(a >b > 0)的焦距为 4,其短轴的两个端点与长轴的一个端点构20.已知椭圆 C: 2 2 1a b成正三角形.(1)求椭圆 C 的标准方程;(2)设 F 为椭圆 C 的左焦点,T 为直线x =-3上任意一点,过 F 作 TF 的垂线交椭圆 C 于点 P,Q.(i)证明:OT 平分线段 PQ(其中 O 为坐标原点);(ii)当|TF || PQ |最小时,求点 T 的坐标.解:(1)2c = 4,c = 2a =b, a2 = 3b2 = 4 +b23∴b2 = 2,a2 = 6∴椭圆C 的标准方程:x +y =.2 216 2(2)(i)m - 0 1F(-2, 0), T(-3,m),k ==-m,∴k =FT PQ-3+ 2 m.P Q: y1 (x )m∴=+m⎧=+1() y x m ⎪⎪m ,⎛+⎫++-=3 12 121 x x 6 02⎪⎝m ⎭m m2 2 2, ()m2 + 3 x2 +12x +12 - 6m2 = 0⎨ xy22⎪ += 1⎪⎩ 6 2 ∆ > 0 x + x =P Q12 - 6m2x ⋅ x =PQm2-12 m 2+11144m ()() ()y + y =x + 2 + x + 2 = x + x += PQPQPQ+mmmm m 32PQ 中点⎛ -m ⎫m6 2 ,O T : y = -x + + ⎪ ⎝ m 3 m 3⎭322-6 ⋅⎛- ⎫⎪= 2 m mm 3 3 m 32 + ⎝ ⎭ 2 +∴OT 平分 PQ (ii)TF =-2 + 3 + 0 - m = m +1,222PQ()1 2 6 m m +122 6 m +1 2= 1+=mm3m3 22+2+13 / 15tTF m + 32==PQ m +2 6 12t 2 =()()()2 2m2 m2 m2 m2+ 3 +1 +4 +1 +4 +1 1 1 1 1 1 = = + + + = ()()()24 m +1 24 m +1 24 6 6 m +1 144 6 32 2 2m2 +1 1=当且仅当()24 6 2 1m +时取到等于号,∴(+),m2 +1=2 ,m2 =1,∴T(-3,±1).2m2 1 =421.已知函数f (x) =e x -ax2 -bx -1,其中a,b∈R ,e = 2.71828 为自然对数的底数.(1)设g(x) 是函数f (x) 的导函数,求函数g(x) 在区间[0,1]上的最小值;(2)若f (1) = 0,函数f (x) 在区间(0,1) 内有零点,求a 的取值范围.解:(1)g (x)=f '(x)=e - 2ax -b , g'(x)=e - 2a .因为x∈[0,1],1 ,所以x x①若1a 则2a 所以函数g (x)在区间[0,1]上单增,2g (x)=g ()=-min 0 1 b②若'()()[][]gx=e 1 e<<则1< 2a <e, 于是当0 <x < ln(2a)时,() 2 0,a ,g'x =e x - a <当ln(2a)<x <1时,2 2x-2a>0,ln(2a)ln(2a)1gx,,所以函数在区间上单减,在区间上单增,g x =g ⎣⎡ a ⎦⎤= a - a a -min ln 2 2 2 ln(2 ) b()()③若ea 则2a ()x 2g'x =e - a 所以函数g (x)在区间[0,1]上单减,2g (x)=g ()=e - a -min 1 2 b⎧ -1 1 ba⎪ 2⎪ ⎪1e综上:函数 g (x )在区间[0,1]上的最小值为( )= ⎨ -- < <gx 2a 2a ln(2a ) b a,min2 2 ⎪ ⎪--ee 2a ba ⎪ ⎩2(2)由 f (1)= 0,e - a -b -1= 0,b = e - a -1, 又 f (0) = 0若函数 f (x ) 在区间 (0,1) 内有零点,则函数 f (x ) 在区间(0,1) 内至少有三个单调区间.1由(1)知当 a 或ea函数 f (x ) 在区间(0,1) 上单调,不可能满足条件.若11 ' = - ( ) h x x ln 0,由( )' = - > ⇒ < h x1 e 3< < g (x ) = g ⎡⎣ ( a )⎤⎦ = a - a a - ,令 ( ) ( ) a , min ln 2 2 2 ln(2 ) b h x = x - x ln x -e -1 1< x < e , 2 2 2 ln 2 2xxe14/ 15所以函数h(x) 在区间(1, e)上单增,在区间( e,e) 上单减.3h x =h e = e - e e -e -<即()()()ln 1 0g min x < 0 恒成立.max2于是,函数f (x) 在区间(0,1) 内至少有三个单调区间⎧(0)= 2 -+> 0 ⎧>- 2⎪g e a a e⇔⎨⇒⎨,g (1)=-a +1> 0 a <1⎪⎩⎩又1 e<a <,所以e-2 <a <1.2 2综上,a 的取值范围为(e - 2,1).15/ 15。
2014年全国高考四川省数学(理)试卷及答案【精校版】
2014年普通高等学校招生全国统一考试理科(四川卷)参考答案第I 卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂=A .{1,0,1,2}-B .{2,1,0,1}--C .{0,1}D .{1,0}-【答案】A2.在6(1)x x +的展开式中,含3x 项的系数为A .30B .20C .15D .10【答案】C3.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点A .向左平行移动12个单位长度B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度【答案】A4.若0a b >>,0c d <<,则一定有A .a b c d > B .a b c d< C .a b d c > D .a b d c < 【答案】D5.执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为A .0B .1C .2D .3【答案】C6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有A .192种B .216种C .240种D .288种【答案】B7.平面向量a=(1,2), b=(4,2), c=ma+b (m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =A .2-B .1-C .1D .2【答案】D8.如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点。
设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是A .B .C .D . 【答案】B9.已知()ln(1)ln(1)f x x x =+--,(1,1)x ∈-。
2014年普通高等学校招生全国统一考试(四川卷)(理科数学)【全word,精心排版】
2014年普通高等学校招生全国统一考试(四川卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个符合题目要求. 1.已知集合{}220A x x x =--…,集合B 为整数集,则AB =( )A .{}1,0,1,2-B .{}2,1,0,1--C .{}0,1D .{}1,0- 2.在()61x x +的展开式中,含3x 项的系数为( ) A .30 B .20 C .15 D .103.为得到函数()sin 21y x =+的图像,只需把函数sin 2y x =的图像上所有的点( )A .向左平行移动12个单位长度 B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度 4.若0a b >>,0c d <<,则一定有( )A .a b c d >B .a b c d <C .a b d c >D .a b d c<5.执行如图所示的程序框图,如果输入的,x y ∈R ,则输出的S 的最大值为( )A .0B .1C .2D .36.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( ) A .192种 B .216种 C .240种 D .288种7.平面向量()1,2=a ,()4,2=b ,m =+c a b ()m ∈R ,且c 与a 的夹角等于c 与b 的夹角,则m =( ) A .2- B .1- C .1 D .28.如图,在正方体1111ABCD A BC D -中,点O 为线段BD 的中点。
设点P 在线段 1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是( )A.⎤⎥⎣⎦ B.⎤⎥⎣⎦ C.⎣⎦ D.⎤⎥⎣⎦9.已知()()()ln 1ln 1f x x x =+--,()1,1x ∈-.现有下列命题: ①()()f x f x -=-;②()2221x f f x x ⎛⎫=⎪+⎝⎭;③()2f x x …. 其中的所有正确命题的序号是( )A .①②③B .②③C .①③D .①②10.已知F 是抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO △与AFO △面积之和的最小值是( ) 23OD 1C 1B 1A 1DCA二.填空题:本大题共5小题,每小题5分,共25分. 11.复数22i1i-=+ . 12.设()f x 是定义在R 上的周期为2的函数,当[)1,1x ∈-时,()242,10, 01x x f x x x ⎧-+-<=⎨<⎩…剎,则32f ⎛⎫=⎪⎝⎭. 13.如图,从气球A 上测得正前方的河流的两岸,B C 的俯角分别为67,30,此时气球的高是46m ,则河流的宽度BC 约等于 m . (用四舍五入法将结果精确到个位.参考数据:sin 670.92≈, cos670.39≈,sin 370.60≈,cos370.80≈1.73≈)14.设m ∈R ,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(),P x y ,则PA PB ⋅的最大值是 .15.以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[],M M -.例如,当()31x x ϕ=,()2sin x x ϕ=时,()1x A ϕ∈,()2x B ϕ∈.现有如下命题:① 设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“b ∀∈R ,a D ∃∈,()f a b =”; ② 函数()f x B ∈的充要条件是()f x 有最大值和最小值;③ 若函数()f x ,()g x 的定义域相同,且()f x A ∈,()g x B ∈,则()()f x g x B +∉; ④ 若函数()()2ln 21xf x a x x =+++()2,x a >-∈R 有最大值,则()f x B ∈. 其中的真命题有 .(写出所有真命题的序号)三.解答题:本大题共6小题,共 75分.解答须写出文字说明,证明过程或演算步骤. 16.已知函数()πsin 34f x x ⎛⎫=+⎪⎝⎭.(1)求()f x 的单调递增区间; (2)若α是第二象限角,4πcos cos 2354f ααα⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,求cos sin αα-的值.17.一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得200-分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立. (1)设每盘游戏获得的分数为X ,求X 的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少? (3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.18.三棱锥A BCD -及其侧视图、俯视图如图所示.设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN NP ⊥.(1)证明:P 为线段BC 的中点;(2)求二面角A NP M --的余弦值.19.设等差数列{}n a 的公差为d ,点(),n n a b 在函数()2xf x =的图像上()*n ∈N .(1)若12a =-,点()87,4a b 在函数()f x 的图像上,求数列{}n a 的前n 项和n S ; (2)若11a =,函数()f x 的图像在点()22,a b 处的切线在x 轴上的截距为12ln 2-,求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n T .20.已知椭圆()2222:10x y C a b a b+=>>的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C 的标准方程;(2)设F 为椭圆C 的左焦点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点,P Q . (i )证明:OT 平分线段PQ (其中O 为坐标原点);(ii )当TF PQ最小时,求点T 的坐标.21.已知函数()2e 1x f x ax bx =---,其中,a b ∈R ,e 2.71828=为自然对数的底数.(1)设()g x 是函数()f x 的导函数,求函数()g x 在区间[]0,1上的最小值; (2)若()10f =,函数()f x 在区间()0,1内有零点,求a 的取值范围.2014年普通高等学校招生全国统一考试(四川卷)数学(理科)参考答案一、选择题:ACADC BDBAB二、填空题:11.2i - 12.1 13.60 14.5 15.①③④ 详解:1.22012x x x --⇒-剟 ,故集合A 中整数为1-,0,1,2.所以{}1,0,1,2AB =-.故选A2.在()61x +的展开式中,含2x 的项为22236C 15T x x =⋅=,故含3x 的项的系数为15.故选C 3.()1sin 21sin 22y x x ⎡⎤⎛⎫=+=+⎪⎢⎥⎝⎭⎣⎦,故只需把函数sin 2y x =的图像上所有的点向左平移移动12个单位长度 即可得到()sin 21y x =+的图像.故选A4.解法一:110001100 0 0c d cd c d d c c d cd cd d ca b --⎫<<⇒>>>⎫⎪⇒<<⇒<<⇒⇒⎬⎬<<⎭⎪>>⎭a b a b d c d c -->⇒<. 解法二:依题意取2a =,1b =,2c =-,1d =-,代入验证得A ,B ,C ,均错误,只有D 正确.故选D5.在条件001x y x y ⎧⎪⎨⎪+⎩………下,2S x y =+的最大值应在点()1,0处取得,即max 2102S =⨯+=,显然21>,故选C .6.若最左端排甲,其他位置共有55A 120=种排法;若最左端排乙,最右端共有4种排法,其余4个位置 有44A 24=种排法,所以共有120424216+⨯=种排法.故选B7.解法一:由c 与a 的夹角等于c 与b的夹角,可设()λλ⎛⎫+=∈ ⎪ ⎪⎝⎭R a b c =a b ,因为m +c =a b,所以21m m ⎧=⎪⎪⇒=⎨⎪=⎪⎩.故选D解法二:()4,22m m m +=++c =a b ,因为c 与a 的夹角等于c 与b 的夹角,且向量夹角的取值范围是[]0,π,所以⋅⋅=⋅⋅a cb ca cb c,所以()()22444416442m m m m m ⋅=⋅⇒+++=+++⇒=a c b c . 8.由正方体的性质易求得11sin 3C OA ∠=,1sin 3COA ∠=,9.()()()()()()ln 1ln 1ln 1ln 1f x x x x x f x -=--+=-+--=-⎡⎤⎣⎦,①正确,()()222222211222ln 1ln 1ln ln 11111x x x x x f x x x x x +-⎛⎫⎛⎫⎛⎫=+--=- ⎪ ⎪ ⎪+++++⎝⎭⎝⎭⎝⎭, 因为()1,1x ∈-,所以()()()()()222ln 12ln 12ln 1ln 121x f x x x x f x x ⎛⎫=+--=+--=⎡⎤⎪⎣⎦+⎝⎭,②正确.当[)0,1x ∈时,()()()1ln 1ln 1ln1x f x x x x +=+--=-,22x x =,令()1ln21xg x x x+=--, 则()22201x g x x'=-…,所以()g x 在[)0,1上为增函数,所以()()00g x g =…,即()2f x x >>; 当()1,0x ∈-时,()()()1ln 1ln 1ln1xf x x x x+=--+=--,22x x =-, 令()12ln 1xh x x x +=--,则()22201x h x x -'=<-,所以()h x 在()1,0-上为减函数, 所以()0h x >,即()2f x x >>.所以当()1,1x ∈-时,()2f x x …,③正确.故选A 10.不妨设(1A x,(2,B x,12222OA OB x x ⋅=⇒=⇒=1=-(舍去).当12x x =时,有122x x ==,则ABO AFO S S +==△△; 当12x x ≠时,直线AB的方程为)112y x x =-,则直线AB 与x 轴的交点坐标为()2,0.于是112322ABO AFO S S +=⨯⨯+△△=“=”),而38>.故选B . 11.()()()221i 22i 2i 1i 1i 1i --==-++-. 12.2311124212222f f f ⎛⎫⎛⎫⎛⎫⎛⎫=-+=-=-⨯-+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 13.不妨设气球A 在地面的投影为点D ,则46AD =,于是()cos67tan 90674619.5sin 67BD AD =⋅-=⨯=,()tan 90304679.6DC AD =⋅-=≈,所以()79.619.560m BC DC BD =-=-≈.14.易知()0,0A ,()1,3B 且PA PB ⊥,所以22210PA PB AB +==,所以2252PA PBPA PB +⋅=…(当且仅当PA PB =时取“=”). 15.依题意可直接判定①正确;令()(]()2,1xf x x =∈-∞,显然存在正数2,使得()f x 的值域(][]0,22,2⊆-,但()f x 无最小值,②错误;假设()()f x g x B +∈,则存在正数M ,使得当x 在其公共定义域内取值时, 有()()f x g x M +…,则()()f x M g x -…,又因为()g x B ∈,则存在正数1M ,使()[]11,g x M M ∈-, 所以()1g x M -…,即()1M g x M M -+…,所以()1f x M M +…,与()f x A ∈矛盾,③正确; 当0a =时,()211,122x f x x ⎡⎤=∈-⎢⎥+⎣⎦,即()f x B ∈,当0a ≠时,因为()ln 2y a x =+的值域为(),-∞+∞, 而211,122x x ⎡⎤∈-⎢⎥+⎣⎦,此时()f x 无最大值,故0a =,④正确. 三、解答题:16.解:(1)因为函数sin y x =的单调递增区间为ππ2π,2π22k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z .由πππ2π32π242k x k -+++剟,k ∈Z ,得π2ππ2π43123k k x -++剟,k ∈Z . 所以,函数()f x 的单调递增区间为π2ππ2π,43123k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z . (2)由已知,有()22π4πsin cos cos sin 454αααα⎛⎫⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭, 所以()22ππ4ππsin coscos sin cos cos sin sin cos sin 44544αααααα⎛⎫+=-- ⎪⎝⎭. 即()()24sin cos cos sin sin cos 5αααααα+=-+.当sin cos 0αα+=时,由α是第二象限角,知3π2π4k α=+,k ∈Z .此时,cos sin αα-=.当sin cos 0αα+≠时,有()25cos sin 4αα-=.由α是第二象限角,知cos sin 0αα-<,此时cos sin αα-=.综上所述,cos sin αα-=或 17.解:(1)X 可能的取值为10,20,100,200-.根据题意,有()121311310C 1228P X ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭,()212311320C 1228P X ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭,()333111100C 1228P X ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭,3111⎛⎫⎛⎫(2)设“第i 盘游戏没有出现音乐”为事件()1,2,3i A i =,则()()()()2312008i P A P A P A P X ====-=. 所以,“三盘游戏中至少有一次出现音乐”的概率为()323115111118512512i P A A A ⎛⎫-=-=-=⎪⎝⎭. 因此,玩三盘游戏至少有一盘出现音乐的概率是511512. (3)X 的数学期望为33115102010020088884EX =⨯+⨯+⨯-⨯=-.这表明,获得分数X 的均值为负.因此,多次游戏之后分数减少的可能性更大.18.解:(1)如图,取BD 中点O ,连接AO ,CO .由侧视图及俯视图知,ABD △,BCD △为正三角形,因此AO BD ⊥,OC BD ⊥. 因为AO ,OC ⊂平面AOC 内,且AO OC =O ,所以BD ⊥平面AOC .又因为AC ⊂平面AOC ,所以BD AC ⊥.取BO 的中点H ,连接NH ,PH . 又M ,N 分别为线段AD ,AB 的中点,所以//NHAO ,//MN BD .因为AO BD ⊥,所以NH BD ⊥.因为MN NP ⊥,所以NP BD ⊥.因为NH ,NP ⊂平面NHP ,且NH NP N =,所以BD ⊥平面NHP . 又因为HP ⊂平面NHP ,所以BD HP ⊥.又OC BD ⊥,HP ⊂平面BCD , OC ⊂平面BCD ,所以//HP OC .因为H 为BO 中点,故P 为BC 中点. (2)解法一:如图,作NQ AC ⊥于Q ,连接MQ .由(I )知,//NP AC ,所以NQ NP ⊥.因为MN NP ⊥,所以MNQ ∠为二面角A NP M --的一个平面角.由(1)知,ABD △,BCD △是边长为2的正三角形,所以AO=OC = 由俯视图可知,AO ⊥平面BCD .因为OC ⊂平面BCD ,所以AO OC ⊥.因此在等腰Rt AOC △中,AC .作BR AC ⊥于R .在ABC △中,AB BC =,所以2BR ==.因为在平面ABC 内,NQ AC ⊥,BR AC ⊥,所以//NQ BR . 又因为N 为AB 的中点,所以Q 为AR 的中点,因此2BR NQ ==MQ =, 所以在等腰MNQ △中,24cos MN BDMNQ NQ NQ ∠===.故二面角A NP M --的余弦值是解法二:由俯视图(I )可知,AO ⊥平面BCD .因为OC ,OB ⊂平面BCD ,所以AO OC ⊥,AO OB ⊥.又OC OB ⊥,所以直线OA ,OB ,OC 如图,以O 为坐标原点,以OB ,OC ,OA 的方向为x 轴,y 轴,z (()CH OPN M D BARPBNM DCAH OQ因为M ,N 分别为线段AD ,AB 的中点,又由(I )知,P 为线段BC 的中点,所以12M ⎛-⎝⎭,12N ⎛ ⎝⎭,12P ⎛⎫ ⎪ ⎪⎝⎭.于是(1,0,AB =,()BC =-,()1,0,0MN =,NP ⎛= ⎝⎭.设平面ABC 的一个法向量()1111,,x y z =n ,则11,,AB BC ⎧⊥⎪⎨⊥⎪⎩n n 即110,0,AB BC ⎧⋅=⎪⎨⋅=⎪⎩n n 有()(()()111111,,1,0,0,,,0,x y z x y z ⎧⋅=⎪⎨⋅-=⎪⎩从而11110,0.x x ⎧-=⎪⎨-=⎪⎩取11z =,则1x =11y =,所以)1=n .设平面MNP 的一个法向量()2222,,x y z =n ,则22,,MN NP ⎧⊥⎪⎨⊥⎪⎩n n 即220,0,MN NP ⎧⋅=⎪⎨⋅=⎪⎩n n ,有()()()222222,,1,0,00,,,0,x y z x y z ⋅=⎧⎪⎛⎨⋅= ⎪ ⎝⎭⎩从而2220,0.22x y z =⎧-=⎪⎩,取21z =,所以()20,1,1=n . 设二面角A NP M --的大小为θ,则1212cos θ⋅===⋅n nn n . 故二面角A NP M -- 19.解:(1)由已知,772ab =,88724ab b ==,有87722422aaa +=⨯=.解得872d a a =-=.所以,()()2112132n n n S na d n n n n n -=+=-+-=-. (2)函数()2x f x =在()22,a b 处的切线方程为()()22222ln 2aay x a -=-,它在x 轴上的截距为21ln 2a -.由题意,2112ln 2ln 2a -=-,解得22a =.所以211d a a =-=.从而n a n =,2nn b =.所以231123122222n n n n n T --=+++++,3112321222n n n T -=++++.因此,12111111222122222222n n n n n n n n n nn T T +-----=++++-=--=.所以,1222n n nn T +--=. 20.解:(1)由已知可得224b c ===⎪⎩解得26a =,22b =,所以椭圆C 的标准方程是22162x y +=. (2)(i )由(1)可得,F 的坐标是()2,0-,设T 点的坐标为()3,m -.则直线TF 的斜率()32TF m k m -==----.当0m ≠时,直线PQ 的斜率1k =.直线PQ 的方程是2x my =-.设()11,P x y ,()22,Q x y ,将直线PQ 的方程与椭圆C 的方程联立,得222162x my x y =-⎧⎪⎨+=⎪⎩.消去x ,得()223420m y my +--=,其判别式()2216830m m ∆=++>.所以12243m y y m +=+,12223y y m -=+,()121221243x x m y y m -+=+-=+. 所以PQ 的中点M 的坐标为2262,33m m m -⎛⎫ ⎪++⎝⎭.所以直线OM 的斜率3OM m k =-, 又直线OT 的斜率3OT mk =-,所以点M 在直线OT 上,因此OT 平分线段PQ . (ii )由(i)可得,TF =.所以PQ ===)2213m m +=+.所以TF PQ==. 当且仅当22411m m +=+,即1m =±时,等号成立,此时TF PQ取得最小值.所以当TF PQ最小时,T 点的坐标是()3,1-或()3,1--.21.解:(1)由()2e 1x f x ax bx =---,有()()e 2x g x f x ax b '==--.所以()e 2x g x a '=-. 因此,当[]0,1x ∈时,()[]12,e 2g x a a '∈--.当12a …时,()0g x '…,所以()g x 在[]0,1上单调递增. 因此()g x 在[]0,1上的最小值是()01gb =-;当e 2a …时,()0g x '…,所以()g x 在[]0,1上单调递减.因此()g x 在[]0,1上的最小值是()1e 2g ab =--; 当1e22a <<时,令()0g x '==,得()()ln 20,1x a =∈.所以函数()g x 在区间()0,ln 2a ⎡⎤⎣⎦上单调递减,在区间()(ln 2,1a ⎤⎦上单调递增.于是,()g x 在[]0,1上的最小值是()()()ln 222ln 2g a a a ab =--.综上所述,当12a …时,()g x 在[]0,1上的最小值是()01gb =-; 当1e22a <<时,()g x 在[]0,1上的最小值是()()()ln 222ln 2g a a a ab =--; 当ea …时,()g x 在[]0,1上的最小值是()1e 2g ab =--.11 (2)设0x 为()f x 在区间()0,1内的一个零点,则由()()000f f x ==可知,()f x 在区间()00,x 上不可能单调递增,也不可能单调递减.则()g x 不可能恒为正,也不可能恒为负.故()g x 在区间()00,x 内存在零点1x . 同理()g x 在()0,1x 区间内存在零点2x .所以()g x 在区间()0,1内至少有两个零点.由(1)知,当12a …时,()g x 在[]0,1上单调递增,故()g x 在()0,1内至多有一个零点. 当e 2a …时,()g x 在[]0,1上单调递减,故()g x 在()0,1内至多有一个零点.所以1e 22a <<. 此时()g x 在区间()0,ln 2a ⎡⎤⎣⎦上单调递减,在区间()(ln 2,1a ⎤⎦上单调递增.因此()(10,ln 2x a ∈⎤⎦,()()2ln 2,1x a ∈,必有()010g b =->,()1e 20g a b =-->.由()10f =,有e 12a b +=-<,有()01e 20g b a =-=-+>,()1e 210g a b a =--=->.解得e 21a -<<.当e 21a -<<时,()g x 在区间[]0,1内有最小值()()ln 2g a . 若()()ln 20g a …,则()[]()00,1g x x ∈…,从而()f x 在区间[]0,1上单调递增,这与()()010f f ==矛盾,所以()()ln 20g a <.又()0e 20g a =-+>,()110g a =->,故此时()g x 在()()0,ln 2a 和()()ln 2,1a 内各只有一个零点1x 和2x .由此可知()f x 在[]10,x 上单调递增,在()12,x x 上单调递减,在[]2,1x 上单调递增.所以()()100f x f >=,()()210f x f <=,故()f x 在()12,x x 内有零点.综上可知,a 的取值范围是()e 2,1-.。
2014年高考理科数学四川卷-答案
【提示】(1)设每盘游戏获得的分数为X ,求出对应的概率,即可求X 的分布列; (2)求出有一盘出现音乐的概率,独立重复试验的概率公式即可得到结论. (3)计算出随机变量的期望,根据统计与概率的知识进行分析即可. 【考点】排列组合,古典概型,分布列,用期望分析问题
18.【答案】(1)由三棱锥A BCD -及其侧视图、俯视图可知,在三棱锥A BCD -中:平面ABD ⊥平面CBD ,
2AB AD BD CD CB =====,设O 为BD 的中点,连接OA ,OC ,
于是OA BD ⊥,OC BD ⊥所以BD ⊥平面OAC ⇒BD AC ⊥,
因为M ,N 分别为线段AD ,AB 的中点,所以//MN BD ,又MN NP ⊥,故BD NP ⊥, 假设P 不是线段BC 的中点,则直线NP 与直线AC 是平面ABC 内相交直线, 从而BD ⊥平面ABC ,这与60DBC ∠=o 矛盾,所以P 为线段BC 的中点.
【提示】(1)用线面垂直的性质和反证法推出结论,
(2)先建空间直角坐标系,再求平面的法向量,即可求出二面角的余弦值.
【提示】(1)求出()f x 的导数得()g x ,再求出()g x 的导数,对它进行讨论,从而判断()g x 的单调性,求出()g x 的最小值;
(2)利用等价转换,若函数()f x 在区间(0,1)内有零点,则函数()f x 在区间(0,1)内至少有三个单调区间,所以()g x 在(0,1)上应有两个不同的零点.
【考点】函数的导函数,极值,最值,函数的零点。
2014四川高考数学试卷(理工类)及部分参考答案
2x 2 f x ; 2 1 x
3 f x 2 x . ○
其中的所有正确命题的序号是(
C
) 1
诗蜀博士特教育
预祝四川学子金榜题名
2 ○ 3 (B)○ 1 ○ 3 (C)○ 1 ○ 2 (D)○
1 ○ 2 ○ 3 (A)○
10、已知 F 为抛物线 y 2 x 的焦点,点 A,B 在该抛物线上且位于 x 轴的两侧, OA OB 2 (其中 O 为坐标原点) , 则△ ABO 与△ AFO 面积之和的最小值是( (A)2 (B)3 (C) 第Ⅱ卷
6 ,1 3
(C)
6 2 2 , 3 3
(D)
2 2 ,1 3
第8题 图
9、已知 f x ln 1 x ln 1 x ,x 1,1 ,现有下列命题:
1 f x f x ; ○ 2 f ○
诗蜀博士特教育
预祝四川学子金榜题名
2014 年全国普通高等学校招生统一考试数
第Ⅰ卷 (选择题 共 50 分) 注意事项: 必须使用 2B 铅笔在答题卡上将所选答案对应的标号涂黑。 一、选择题. 1、已知集合 A {x x x 2 0} ,集合 B 为整数集,则 A
2
学(四川卷理工类)
(ii)
当
TF 最小时,求点 T 的坐标. PQ
21. (本小题满分 14 分) 已知函数 f x e ax bx 1 其中 a,b R,e 2.71828
x 2
为自然对数的底数.
(Ⅰ)设 g x 是函数 f x 的导函数,求函数 g x 在区间 0 ,1 上的最小值; (Ⅱ)若 f 1 0 ,函数 f ( x) 在区间 0,1 内有零点,求 a 的取值范围.
2014四川高考数学答案
2014年普通高等学校招生全国统一考试(四川卷)数学(理工类)参考答案及评分意见第I卷(选择题共50分)一、选择题:(每小题5分,共50分)1.A2.C;3.A;4.D;5.C;6.B;7.D;8.B;9.C; 10.B.第II卷(非选择题共100分)二、填空题:(每小题5分,共25分)11. ; 12.13.; 14.; 15.①③④.三、解答题:(共75分)16.令得故的单调增区间为6分由题设得7分8分若且为第二象限角,有此时9分若有而10分可得12分17.经分析知可取故分布列为6易知每一盘不出现音乐的概率为8分故三盘至少有一盘出现音乐的概率为10分由得11分由概率学知识得的数学期望为负,故许多人经过若干盘游戏后,与最初的分数相比,分数没有增加反而会减少. 12分18.取中点,由三视图知识得两两垂直故可建立如图所示空间直角坐标系可得,取中点,有又,故与重合,即有点为中点6分设平面的法向量为有可得一解同理可得平面的一个法向量为11分经分析知所求二面角的余弦值为12分19.由题设可得,为定值故数列是以为公比的等比数列由题设得,可得6分7分函数在处切线方程为8分而点在该直线上,可得9分故10分①①×得②①-②得化简整理得12分20.由题设条件得故椭圆的方程为4分当直线斜率不存在时,易得平分线段5分当直线斜率存在时,设必有,有7分此时,线段中点坐标为在直线上综上所述平分线段9分当直线斜率不存在时,易得当直线斜率存在时,由可得10分令得因为当仅当即时,等号成立12分故,又最小时,点的坐标为13分21.1分当时,恒成立,此时单调递增2分当时,恒成立,此时单调递增3分当时,恒成立,此时单调递减4分当时,可得唯一零点此时有5分综上所述:时,7分由题设得故在上有零点在在有解记函数令故14分。
2014年普通高等学校招生全国统一考试四川理科数学试题及答案解析(Word版)
2014年普通高等学校招生全国统一考试(四川卷)数学(理工类)一. 选择题1. 已知集合2{|20},A x x x B =--≤集合为整数集,则A B =( A )A .{-1,0,1,2} B.{-2,-1,0,1} C.{0,1} D.{-1,0} 2.在6(1)x x +的展开式中,含3x 的系数的为( C ) A .30 B.20 C.15 D.10 解析:即求6226(1)15x x C +=中的系数为.3.为了得到函数sin(21)y x =+的图像,只需把函数sin 2y x =的图像上所有的点( A )A.向左平移12个单位长度 B.向右平移12个单位长度C.向左平移1个单位长度D.向右平移1个单位长度解析:1sin(21)=sin 2()2y x x =++,将sin 2y x =向左平移12个单位长度. 4.若0,0,a b c d >><<则一定有( D )A.a b c d > B. a b c d < C. a b d c > D. a b d c<解析:(1)特殊值法:取2,1,2,1a b c d ===-=-即可; (2)利用不等式的性质:110,0,c d c d d c<<∴->->->- 又0,0,a b a ba b d c d c >>∴->->∴<5.执行如图的程序框图,如果输入的,x y R ∈, 那么输出的S 的最大值为( C ) A .0 B.1C .2 D.3解析:本题将程序框图和线性规划结合起来,有一定的新颖性,摆脱了传统的线性规划考题模式,关键是能够理解程序框图表达的含义,将原题转化为:已知001x y x y ≥⎧⎪≥⎨⎪+≤⎩,求解2S x y =+的最大值. 作图易知,S 在(1,0)处取得最大值2.6.六个人从左自右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法有( B ) A .192种 B. 216种 C .240种 D.288种 解析:由甲,乙的位置分两种情况:(1)最左端排甲,有5!120=种;(2)最左端排乙,有44!96⨯=种. 共120+96=216种. 7.平面向量(1,2),(4,2),a b c ma b ===+,且c a c b 与的夹角等于与的夹角,则m=( D ) A.-2 B.-1 C.1 D.2 解析:==a cb cc a c b a b⋅⋅⇔与的夹角与的夹角 8.在正方体1111ABCD A BC D -中,点O 为线段BD 的中点,设点P 在线段1CC 上,直线OP 与平面1A BDαα的夹角为,则sin 的取值范围是( B )A.3B. 3C.3D. [,1]3结束输出S S=1S=2x+y否是x≥0,y≥0,x+y≤1?输入x,y开始C解析:设棱长为1,则11111AC AC AO OC OC =====所以1111111cos ,sin 333AOC AOC AOC AOC ====. 9.已知()ln(1)ln(1),(1,1)f x x x x =+--∈-. 现有下列命题: ①()()f x f x -=-;②22()2()1xf f x x=+;③()2f x x ≥ 其中所有的正确命题序号是( C )A. ①②③B. ②③C. ①③D. ①② 解析:①()()f x f x -=-显然成立;②左边22()1xf x+中的x 只是不能为1,右边()f x 中的(1,1)x ∈-,故不对;③由于左右两边均为偶函数,只需判断()2,(0,1)f x x x ≥∈即可, 记()()2,(0,1)g x f x x x =-∈,则22'()20,(0,1)1g x x x =->∈-,故()(0)0g x g >=,于是③成立.10.已知F 为抛物线2y x =的焦点,点,A B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=. 则ABO AFO ∆∆与面积之和的最小值是 A .2 B.3D.10 解析:由题意得22112211221(,0),(,),(,),,,4F A x y B x y y x y x ==设则由2OA OB ⋅=得,22121212122x x y y y y y y +=+=,于是1221y y =-或,又点,A B 位于x 轴的两侧,故122y y =-. 所以2212211122111111122428ABO AFO S S x y x y y y y y y y ∆∆+=⨯-+⨯⨯=-+12111111121293888y y y y y y y y =-+=++=+≥. 注:已知原点1122,(,),(,)O A x y B x y ,设过点A ,B 的直线斜率为k ,则 直线AB 为211121()y y y x x y x x -=-+-,所以1112122122111222ABOx y S x x y x yx y ∆=-=-=. 二.填空题11.复数221ii-=+2i-12.设()f x是定义在R上的周期为2的函数,当[1,1)x∈-时,242,10,(),01,x xf xx x⎧-+-≤<=⎨≤<⎩则3()2f=113.从气球A上测得正前方的河流的两岸B,C的府角分别是67,30,此时气球的高度是46m,则河流的宽度BC约等于60 m(四舍五入将结果精确到个位.参考数据:sin670.92,cos670.39,sin370.60,cos37 1.73≈≈≈≈≈) 解析:解三角形的实际问题,利用正弦定理即可.14.设m R∈,过定点A的动直线0x my+=和过定点B的动直线30mx y m--+=交于点(,)P x y,则PA PB⋅的最大值是 5解析:由题意得(0,0),(1,3)A B,消去m得P点方程为:2230x y x y+--=上,所以点P 在以AB为直径的圆上,且PA PB⊥,故222522PA PB ABPA PB+⋅≤==.15.以A表示值域为R的函数组成的集合,B表示具有如下性质的函数()xϕ组成的集合:对于函数()xϕ,存在一个正数M,使得函数()xϕ的值域包含于区间[,]M M-. 例如,当312(),()sinx x x xϕϕ==时,12(),()x A x Bϕϕ∈∈. 现有如下命题①设函数()f x的定义域为D,则“()f x A∈”的充要条件是“,,()b R a D f a b∀∈∃∈=”;②函数()f x B∈的充要条件是()f x有最大值和最小值;③若函数(),()f xg x的定义域相同,且(),(),f x Ag x B∈∈则()()f xg x B+∉;④若函数2()ln(2)(2,)1xf x a x x a R x =++>-∈+有最大值,则()f x B ∈. 其中证明题有_________________________解析:①集合A 的特点是:函数是满射;②()x ϕ一定有上下确界,不一定有最值; ③正确;④要使函数()f x 取到最大值,则必有0a =,故2()1xx B x =∈+. 三.解答题16.已知函数()sin(3)4f x x π=+(1)求()f x 的单调递增区间; (2)若α是第二象限角,4()cos()cos 2,cos sin 354f απαααα=+-求的值. 解:(1)由232242k x k πππππ-≤+≤+得()f x 的单调递增区间为:22[,],34312k k k Z ππππ-+∈;(2)由4()cos()cos 2354f απαα=+得4sin()cos()cos 2454ππααα+=+整理得25(cos sin )4αα-=,又α是第二象限角,所以cos sin 0αα-<,故cos sin 2αα-=-. 17.击鼓游戏规则如下,每盘游戏都需要击鼓三次,没次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获10分,出现2次音乐获20分,出现三次音乐获100分,没有出现音乐则扣除200分(即获得-200分). 设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立. (1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发. 若干盘游戏后,与最初的分数相比,分数没有增加反而减少. 请运用概率统的相关知识分析分数减少的原因.解析:(1)X 的可能取值为-200,10,20,100,所以X 的分布列为(2) 至少有一盘出现音乐的概率是311()8-=511512; (3)54EX =-,说明获得分数X 的均值为负,因此多次游戏后分数减少的可能性更大. 18.三棱锥A BCD -及其侧视图,俯视图如图所示. 设,M N 分别为线段,AD AB 的中点,P 为线段BC 上的点,且MN NP ⊥.俯视图11侧视图1BC(1)证明:P 是线段BC 的中点; (2)求二面角A NP M --的余弦值.519.设等差数列{}n a 的公差为d,点(,)n n a b 在函数()2xf x =的图像上(*n N ∈) (1)若12a =-,点87(,4)a b 在函数()f x 的图像上,求数列{}n a 的前n 项和n S ; (2)若11a =,函数()f x 的图像在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列{}n nab 的前n 项和n T . 解析: 点(,)n n a b 在函数()2xf x =的图像上,∴ 2n an b =(1)点87(,4)a b 在函数()f x 的图像上,∴8742ab =,即872722a a b -==,所以87872,2a a d a a -==-=,故{}22n a -是首项为,公差为的等差数列.因此,2(1)2232n n n S n n n -=-+⨯=-; (2)由'()2ln 2xf x =得,函数()f x 的图像在点22(,)a b 处的切线为:2222ln 2()a y x a b =-+,其在x 轴上的截距为:22221122ln 2ln 2ln 2a b a a -=-=-, 所以22a =,故{}11n a 是首项为,公差为的等差数列,=,2n n n a n b =由=2n n n a nb 得,12311231++++22222n n n n n T --=⋅⋅⋅+ ①234111231++++222222n n n n nT +-=⋅⋅⋅+ ② ①-②得,12311111[1()]11111222++12222222212n n n n n n n n n T +++-+=+⋅⋅⋅+-=-=-- 所以222n n nT +=-.20.已知椭圆2222:1(0)x y C a b a b+=>>的焦距为4,其短轴的两个端点与长轴的的一个端点构成正三角形,(1)求椭圆C 的标准方程;(2)设F 是椭圆C 的左焦点, T 为直线x=-3上任意一点,过F 做TF 的垂线交椭圆C 于点P ,Q ,(i )证明:OT 平分线段PQ ;(ii )当TP PQ最小时,求点T 的坐标.解析:(1)由题意得24,c a ==,解得a b ==所以椭圆C 的标准方程为:22162x y +=;21.已知函数2()1x f x e ax bx =---,其中,a b R ∈(1)设()g x 是函数()f x 的导函数,求函数()g x 在区间[0,1]的最小值; (2)若(1)0f =,函数()f x 在区间(0,1)内有零点,求a 的取值范围. 解:(1)()'()2,[0,1],'()2xxg x f x e ax b x g x e a ==--∈=-则 当0a ≤时,'()0g x >,min ()(0)1g x g b ==-; 当0a >时,令'()0g x =得ln 2x a =,(i)当10ln 202a a <≤≤时,,()g x 在[0,1]上单调递增, min ()(0)1g x g b ==-;(ii )当1ln 2122ea a <<<<时,0,()g x 在[0,ln 2]a 上单调递减,在[ln 2,1]a 上单调递增,所以min ()(ln 2)2(ln 2)g x g a ab a a ==--; (iii )当ln 212ea a ≥≥时,,()g x 在[0,1]上单调递减,所以 min ()(1)2g x g e a b ==--.综上所述,min11,21()2(ln 2),222,2b a e g x a b a a a e e a b a ⎧-≤⎪⎪⎪=--<<⎨⎪⎪--≥⎪⎩(2)由(1)0f =得,1b e a =--注意到(0)(1)0f f ==,()f x 在区间[0,1]内连续, (i)当102a <≤时,min ()120g x b a e =-=+-<;。
2014年高考理科数学四川卷答案及解析(word版)
2014四川理科卷一、选择题1. 答案:A解析:{|12},{1,0,1,2}A x x AB =-≤≤∴=-,选A.【考点定位】集合的基本运算.2. 答案:C 解析:623456(1)(161520156)x x x x x x x x x +=++++++,所以含3x 项的系数为15.选C【考点定位】二项式定理.3. 答案:A 解析:1sin(21)sin 2()2y x x =+=+,所以只需把sin 2y x =的图象上所有的点向左平移12个单位.选A. 【考点定位】三角函数图象的变换.4. 答案:D 解析:110,0,0c d c d d c <<∴->->->->,又0,0,a b a b a b d c d c>>∴->->∴<.选D 【考点定位】不等式的基本性质.5. 答案:C解析:该程序执行以下运算:已知001x y x y ≥⎧⎪≥⎨⎪+≤⎩,求2S x y =+的最大值.作出001x y x y ≥⎧⎪≥⎨⎪+≤⎩表示的区域如图所示,由图可知,当10x y =⎧⎨=⎩时,2S x y =+最大,最大值为202S =+=.选C.【考点定位】线性规划6. 答案:B解析:最左端排甲,有5!120=种排法;最左端排乙,有44!96⨯=种排法,共有12096216+=种排法.选B.【考点定位】排列组合.7. 答案: D.解析:由题意得:25c ac bc ac bm c a c b a b ⋅⋅⋅⋅=⇒=⇒=⇒=⋅⋅,选D.【考点定位】向量的夹角及向量的坐标运算.8. 答案:B解析:设正方体的棱长为1,则11111,,A C A C A O OC ==,所以1111332122cos ,sin 3322AOC AOC +-∠==∠=⨯,11313cos AOC AOC +-∠==∠=.所以sin α的范围为3,选B. 【考点定位】空间直线与平面所成的角.9. 答案:C解析:对①,()ln(1)ln(1)()f x x x f x -=--+=-,成立;对②,左边的x 可以取任意值,而右边的(1,1)x ∈-,故不成立;对③,作出图易知③成立【考点定位】1、函数的奇偶性;2、对数运算;3、函数与不等式.10. 答案:B 解析:据题意得1(,0)4F ,设1122(,),(,)A x y B x y ,则221122,x y x y ==,221212122,2y y y y y y +==-或121y y =,因为,A B 位于x 轴两侧所以.所以122y y =-两面积之和为12211111224S x y x y y =-+⨯⨯111218y y y =++⨯112938y y =+≥. 【考点定位】1、抛物线;2、三角形的面积;3、重要不等式.二、填空题11. 答案:2i -. 解析:2222(1)21(1)(1)i i i i i i --==-++-. 【考点定位】复数的基本运算.12. 答案:1 解析:311()()421224f f =-=-⨯+=. 【考点定位】周期函数及分段函数.13. 答案:60解析:92AC =,46cos 67AB =,sin 37,60sin 30sin 37sin 30AB BC AB BC =∴=≈. 【考点定位】解三角形.14. 答案:解析:易得(0,0),(1,3)A B .设(,)P x y ,则消去m 得:2230x y x y +--=,所以点P 在以AB 为直径的圆上,PA PB ⊥,所以2||||||52AB PA PB ⨯≤=. 法二、因为两直线的斜率互为负倒数,所以PA PB ⊥,点P 的轨迹是以AB 为直径的圆.以下同法一.【考点定位】1、直线与圆;2、重要不等式.15. 答案:①③④解析:对①,若对任意的b R ∈,都a D ∃∈,使得()f a b =,则()f x 的值域必为R ;反之,()f x 的值域为R ,则对任意的b R ∈,都a D ∃∈,使得()f a b =.故正确.对②,比如函数()(11)f x x x =-<<属于B ,但是它既无最大值也无最小值.故错误. 对③正确,对④正确.【考点定位】命题判断。
2014年四川高考理科数学试卷(带详解)
14四川理第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合2{|20}A x x x =--…,集合B 为整数集,则A B = ( ) A.{1,0,1,2}- B.{2,1,0,1}-- C.{0,1} D.{1,0}-【测量目标】集合的基本运算(交集),一元二次不等式.【考查方式】综合考查一元二次不等式的求解和交集运算. 【难易程度】容易. 【参考答案】A【试题解析】由题意可知,集合{|12}A x x =-剟,其中的整数有-1,0,1,2,故A B ={-1,0,1,2},故选A.2.在6(1)x x +的展开式中,含3x 项的系数为( )A.30B.20C.15D.10 【测量目标】二项式定理.【考查方式】考查二项式定理的某项指数为定值时,此项的系数. 【难易程度】容易. 【参考答案】C【试题解析】6(1)x x +的展开式中3x 项的系数与6(1)x +的展开式中2x 项的系数相同,故其系数为26C 15=.故选C.3.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点( )A.向左平行移动12个单位长度 B.向右平行移动12个单位长度 C.向左平行移动1个单位长度 D.向右平行移动1个单位长度【测量目标】函数图像的变换.【考查方式】考查为了达到目标函数的图像,需要将原图像所做的变换.. 【难易程度】容易. 【参考答案】A【试题解析】因为1=sin(2+1)=sin22y x x ⎛⎫+ ⎪⎝⎭,所以为得到函数sin(21)y x =+的图像,只需要将sin 2y x =的图像向左平行移动12个单位长度,故选A.4.若0a b >>,0c d <<,则一定有( ) A.a b c d > B.a b c d < C.a b d c > D.a b d c< 【测量目标】分式不等式.【考查方式】由已知不等关系判断分式不等式是否成立. 【难易程度】容易. 【参考答案】D【试题解析】因为0c d <<,所以11<<0d c ,即11>>0d c --,与0a b >>对应相乘得,>>0a bd c--,所以<a bd c.故选D. 5.执行如图1所示的程序框图,如果输入的,x y ∈R ,则输出的S 的最大值为( ) A.0 B.1 C.2 D.3第5题图 SCL01【测量目标】程序框图,判断语句,选择语句,线性规划. 【考查方式】当输入值不确定时,求最大的输出值. 【难易程度】容易. 【参考答案】C【试题解析】题中程序输出的是在100x y x y +⎧⎪⎨⎪⎩………的条件下2S x y =+的最大值与1中较大的数.结合图像可得,当1x =,0y =时,2S x y =+取得最大值2,2>1,故选C.6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( ) A.192种 B.216种 C.240种 D.288种 【测量目标】排列组合.【考查方式】考查将特殊元素优先排列的排列组合思想. 【难易程度】容易. 【参考答案】B【试题解析】当甲在最左端时,有55A =120 (种)排法;当甲不在最左端时,乙必须在最左端,且甲也不在最右端,有114144A A A =424=96⨯ (种)排法,共计120+96=216(种)排法.故选B.7.平面向量a =(1,2), b =(4,2), c ma b =+ (m ∈R ),且c 与a 的夹角等于c 与b的夹角,则m =( )A.2-B.1-C.1D.2 【测量目标】向量的运算.【考查方式】通过中间参数夹角的公式将夹角联系在一起,解出未知数. 【难易程度】容易. 【参考答案】D【试题解析】c ma b =+ =(m +4,2m +2),由题意知a c b ca cb c,即221(4)2(22)12m m ++++ 224(4)2(22)42m m +++=+ ,即8205+8=2m m +,解得m =2,故选D. 8.如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点.设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是( ) A.3[,1]3 B.6[,1]3 C.622[,]33 D.22[,1]3第8题图SCL02【测量目标】直线与平面的夹角.【考查方式】考查分类讨论思想和三角函数. 【难易程度】容易. 【参考答案】B【试题解析】连接1A O ,OP 和1PA ,不难知1POA ∠就是直线OP 与平面1A BD 所成的角(或其补角)设正方体棱长为2,则1=6A O .(1)当P 点与C 点重合时,2PO =,123A P =,且66123c o s =3262α+-=-⨯⨯,此时1AOP α∠=为钝角26sin = 1cos 3αα-=;(2)当P 点与1C 点重合时,16PO AO ==,122A P =,且6681cos =3266α+-=⨯⨯,此时1AOP α∠=为锐角,222sin = 1cos 3αα-=;(3)在α从钝角到锐角逐渐变化的过程中,1CC 上一定存在一点P ,使得190A OP α∠︒==.又因为62233α<<,故sin α的取值范围是6,13⎡⎤⎢⎥⎣⎦,故选B. 9.已知()ln(1)ln(1)f x x x =+--,(1,1)x ∈-.现有下列命题:①()()f x f x -=-; ②22()2()1xf f x x =+;③|()|2||f x x ….其中的所有正确命题的序号是( ) A.①②③ B.②③ C.①③ D.①② 【测量目标】函数的奇偶性,对数函数.【考查方式】考查判断函数可能具有的某些性质的方法. 【难易程度】中等. 【参考答案】A【试题解析】()=ln(1)ln(1+)=f x x x ---1ln =1x x -+[]1ln =ln(1)ln(1)=()1xx x f x x +--+----,故①正确;当x ∈(-1,1)时,221+x x ∈(-1,1),且222222=ln 1+ln 11+1+1x x x f x x x ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭-=222221121ln =ln 21211xx x x x x x x +++++--+ =211ln =2ln 11x x x x ++⎛⎫⎪--⎝⎭()2[ln(1)ln(1)]2x x f x =+--=,故②正确;由①知,f (x )为奇函数,所以()f x 为偶函数,则只需判断当x ∈ [0,1)时,f (x )与2x 的大小关系即可.记g (x )=f (x )-2x ,01x <…,即()ln(1)ln(1)2g x x x x =+---,01x <…,22112()=+21+11x g x x x x '-=--,01x <….当0≤x <1时,()g x '≥0,即g (x )在[0,1)上为增函数,且g (0)=0,所以g (x )≥0,即f (x )-2x ≥0,x ∈[0,1),于是()2f x x …正确.综上可知,①②③都为真命题,故选A.10.已知F 是抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO △与AFO △面积之和的最小值是( )A.2B.3C.1728D.10 【测量目标】向量的运算,最小值问题.【考查方式】考察向量的数量积,点到直线距离等,围成图形的面积等. 【难易程度】中等. 【参考答案】B【试题解析】设直线AB 的方程为:x =ty +m ,点A (1x ,1y ),B (2x ,2y ),直线AB 与x 轴的交点为M (m ,0),由2x ty my x =+⎧⎨=⎩⇒2y -ty -m =0,根据韦达定理有1y •2y =-m ,∵OA •OB =2,∴1x •2x +1y •2y =2,从而()212y y ⋅+1y •2y −2=0,∵点A ,B 位于x 轴的两侧,∴1y •2y =-2,故m =2.不妨令点A 在x 轴上方,则1y >0,又F (14,0), ∴ABO S +AFO S =12×2×(1y −2y )+12×14×1y =198y +12y ≥119228y y ⋅=3.当且仅当198y =12y , 即1y =43时,取“=”号,∴△ABO 与△AFO 面积之和的最小值是3,故选B. 第II 卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.复数22i1i-=+ .【测量目标】含有分式的复数基本运算.【考查方式】考查带有分式的复数的分母实数化. 【难易程度】容易. 【参考答案】-2i 【试题解析】原式=2(22i)(1i)(1i)2i (1i)(1i)--=-=-+-12.设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈-时,242,10,(),01,x x f x x x ⎧-+-<=⎨<⎩……,则3()2f = . 【测量目标】分段函数和周期函数.【考查方式】给出分段函数的表示形式和某些性质,求在某点的函数值. 【难易程度】容易. 【参考答案】1【试题解析】由已知得,2311()()4()2 1.222f f =-=--+=13.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67 ,30 ,此时气球的高是46m ,则河流的宽度BC 约等于 m .(用四舍五入法将结果精确到个位.参考数据:sin 670.92≈ ,cos 670.39≈ ,sin 370.60≈ ,cos370.80≈ ,3 1.73≈)第13题图SCL03【测量目标】三角函数,正弦定理.【考查方式】考察对三角函数和正弦定理的应用以及利用公共边求解未知数. 【难易程度】容易. 【参考答案】60【试题解析】过A 点向地面作垂线,记垂足为D ,则在Rt ADB △中,ABD ∠=67°,AD =46 m ,∴46AB==50sin670.92AD =(m),在ABC △中,30ACB ∠︒=,673037BAC ∠︒︒︒=-=,AB =50 m ,由正弦定理得,sin37==60sin30AB BC(m),故河流的宽度BC 约为60 m.14.设m ∈R ,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是 .【测量目标】线段长度乘积的最值问题.【考查方式】考察了动直线的定点,两直线关系的判定以及均值不等式的应用. 【难易程度】中等. 【参考答案】5【试题解析】由题意可知,定点A (0,0),B (1,3),且两条直线互相垂直,则其交点P (x ,y )落在以AB 为直径的圆周上,所以22210PA PB AB +==,∴22||+|||PA||PB|=52PA PB …,当且仅当|PA PB =|时等号成立.15.以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[,]M M -.例如,当31()x x ϕ=,2()sin x x ϕ=时,1()x A ϕ∈,2()x B ϕ∈.现有如下命题:①设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“b R ∀∈,a D ∃∈,()f a b =”;②函数()f x B ∈的充要条件是()f x 有最大值和最小值;③若函数()f x ,()g x 的定义域相同,且()f x A ∈,()g x B ∈,则()()f x g x B +∉;④若函数2()ln(2)1xf x a x x =+++(2x >-,a ∈R )有最大值,则()f x B ∈.其中的真命题有 .(写出所有真命题的序号)【测量目标】充要条件,最值,定义域,复合函数,真假命题. 【考查方式】综合考查函数和简单逻辑用语. 【难易程度】中等. 【参考答案】①③④【试题解析】若()f x A ∈,则f (x )的值域为R ,于是,对任意的b ∈R ,一定存在a ∈D ,使得f (a )=b ,故①正确.取函数f (x )=x (-1<x <1),其值域为(-1,1),于是,存在M =1,使得f (x )的值域包含于[-M ,M ]=[-1,1],但此时f (x )没有最大值和最小值,故②错误.当f (x )∈A 时,由①可知,对任意的b ∈R ,存在a ∈D ,使得f (a )=b ,所以,当g (x )∈B 时,对于函数f (x )+g (x ),如果存在一个正数M ,使得f (x )+g (x )的值域包含于[-M ,M ],那么对于该区间外的某一个0b ∈R ,一定存在一个0a ∈D ,使得f (0a )=b -g (0a ),即f (0a )+g (0a )∈ [-M ,M ],故③正确.对于2()=ln(+2)++1xf x a x x (x >-2),当a >0或a<0时,函数f (x )都没有最大值.要使得函数f (x )有最大值,只有a =0,此时2()=+1xf x x (x >-2).易知f (x )∈11,22⎡⎤-⎢⎥⎣⎦,所以存在正数M =12,使得f (x )∈[-M ,M ],故④正确.三、解答题:本大题共6小题,共 75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知函数()sin(3)4f x x π=+.(1)求()f x 的单调递增区间;(2)若α是第二象限角,4()cos()cos 235f ααα=+π4,求cos sin αα-的值.【测量目标】正弦函数的性质,三角恒等变换.【考查方式】考查正弦型函数的性质,简单的三角恒等变换等基础知识,考察运算求解能力,考察分类与整合,化归与转化等数学思想. 【难易程度】中等.【试题解析】(1)由πππ2π32π242k x k -++剟⇒2ππ2ππ34312k k x -+剟,所以()f x 的单调递增区间为2ππ2ππ[,]34312k k -+(k ∈Z ).(2)由4π()cos()cos 2354f ααα=+⇒4πsin()cos()cos 2454αααπ+=+,因为πcos 2sin(2)sin[2()]24πααα=+=+ππ2sin()cos()44αα=++,所以2π8ππsin()cos ()sin()4544ααα+=++,又α是第二象限角,所以πsin()04α+=或2π5cos ()48α+=.①由πsin()04α+=⇒π3π2ππ2π44k k αα+=+⇒=+(k ∈Z ),所以33cos sin cos sin 244ππαα-=-=-;②由2π5π5cos ()cos()48422αα+=⇒+=-15(cos sin )222αα⇒-=-,所以5cos sin 2αα-=-;综上,cos sin 2αα-=-或5cos sin 2αα-=-. 17.一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得200-分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.【测量目标】排列组合,古典概型,分布列,用期望分析问题. 【考查方式】考查排列组合,古典概型,分布列的综合运用. 【难易程度】中等.【试题解析】(1)X 可能取值有-200,10,20,100,0033111(200)C ()(1)228P X =-=-=,1123113(10)C ()(1)228P X ==-=,2213113(20)C ()(1)228P X ==-=,3303111(100)C ()(1)228P X ==-=,故分布列为: X-2001020100P1838 38 18 (2)由(1)知:每盘游戏出现音乐的概率是33178888p =++=,则玩三盘游戏,至少有一盘出现音乐的概率是00313775111C ()(1)88512p =--=.(3)由(1)知,每盘游戏获得的分数为X 的数学期望是133110()(200)102010088888E X =-⨯+⨯+⨯+⨯=-分.这说明每盘游戏平均得分是负分,由概率统计的相关知识可知:许多人经过若干盘游戏后,与最初的分数相比,分数没有增加反而会减少.18.三棱锥A BCD -及其侧视图、俯视图如图所示.设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN NP ⊥. (1)证明:P 为线段BC 的中点; (2)求二面角A NP M --的余弦值.第18题图SCL04【测量目标】三视图,二面角的余弦值,证明题.【考查方式】考查了几何体的三视图,由三视图求出几何体尺寸,建立立体坐标系求二面角. 【难易程度】中等. 【试题解析】(1)由三棱锥A BCD -及其侧视图、俯视图可知,在三棱锥A BCD -中:平面ABD ⊥平面CBD ,2AB AD BD CD CB =====,设O 为BD 的中点,连接OA ,OC ,于是OA BD ⊥,OC BD ⊥ 所以BD ⊥平面OAC ⇒BD AC ⊥,因为M ,N 分别为线段AD ,AB 的中点,所以//MN BD ,又MN NP ⊥,故BD NP ⊥,假设P 不是线段BC 的中点,则直线NP 与直线AC 是平面ABC 内相交直线,从而BD ⊥平面ABC ,这与60DBC ∠= 矛盾,所以P 为线段BC 的中点.(2)以O为坐标原点,OB 、OC 、OA 分别为x 、y 、z 轴建立空间直角坐标系,则(0,0,3)A ,13(,0,)22M -,13(,0,)22N ,13(,,0)22P ,于是13(,0,)22AN =- ,33(0,,)22PN =- ,(1,0,0)MN = ,设平面ANP 和平面NPM 的法向量分别为111(,,)m x y z = 和222(,,)n x y z =,由00AN m PN m ⎧⋅=⎪⎨⋅=⎪⎩⇒11111302233022x z y z ⎧-=⎪⎪⎨⎪-+=⎪⎩,设11z =,则(3,1,1)m = ,由00MN n PN n ⎧⋅=⎪⎨⋅=⎪⎩ ⇒222033022x y z =⎧⎪⎨-+=⎪⎩,设21z =,则(0,1,1)n = , 210cos ,5||||52m n m n m n ⋅===⋅⋅,所以二面角A NP M --的余弦值105. 19.设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2xf x =的图象上(*n ∈N ).(1)若12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ; (2)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列{}n na b 的前n 项和n T .【测量目标】等数数列,导函数的应用,复合数列前n 项和的求解. 【考查方式】数列和函数综合考查. 【难易程度】较难.【试题解析】(1)点(,)n n a b 在函数()2xf x =的图象上,所以2n an b =,又等差数列{}n a 的公差为d ,所以1112222n n n n a a a d n a n b b ++-+===,因为点87(,4)a b 在函数()f x 的图象上,所以87842a b b ==,所以8724d b b ==2d ⇒=,又12a =-,所以221(1)232n n n S na d n n n n n -=+=-+-=-.(2)由()2()2ln 2x x f x f x '=⇒=,函数()f x 的图象在点22(,)a b 处的切线方程为222(2ln 2)()a y b x a -=-,所以切线在x 轴上的截距为21ln 2a -,从而2112ln 2ln 2a -=-,故22a =,从而n a n =,2n nb =,2n n n a nb =,231232222n n n T =++++ ,2341112322222n n n T +=++++ ,所以23411111112222222n n n n T +=+++++- 111211222n n n n n +++=--=-,故222n n n T +=-. 20.已知椭圆C :22221x y a b+=(0a b >>)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C 的标准方程;(2)设F 为椭圆C 的左焦点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q . (i)证明:OT 平分线段PQ (其中O 为坐标原点); (ii)当||||TF PQ 最小时,求点T 的坐标. 【测量目标】椭圆的方程,椭圆和直线的关系,均值不等式.【考查方式】考查数形结合思想,几何条件和代数关系的相互转化,曲线和直线联立求解的方法,均值不等式的应用. 【难易程度】较难.【试题解析】(1)依条件2222226324c a a b b a b c =⎧⎧=⎪⎪=⇒⎨⎨=⎪⎩⎪-==⎩,所以椭圆C 的标准方程为22162x y +=.(2)设(3,)T m -,11(,)P x y ,22(,)Q x y ,又设PQ 中点为00(,)N x y .(i)因为(2,0)F -,所以直线PQ 的方程为:2x my =-,22222(3)420162x my m y my x y =-⎧⎪⇒+--=⎨+=⎪⎩,所以222122122168(3)24(1)04323m m m m y y m y y m ⎧⎪∆=++=+>⎪⎪+=⎨+⎪-⎪=⎪+⎩,于是1202223y y m y m +==+, 20022262233m x my m m -=-=-=++,所以2262(,)33m N m m -++.因为3OT ON mk k =-=,所以O ,N ,T三点共线,即OT 平分线段PQ (其中O 为坐标原点).(ii)2||1TF m =+,22212224(1)||||113m PQ y y m m m +=-+=++, 所以222222||13||24(1)24(1)13TF m m PQ m m m m ++==++++,令21m x +=(1x …), 则2||2123()||32626TF x x PQ x x +==+…(当且仅当22x =时取“=”), 所以当||||TF PQ 最小时,22x =即1m =或1-,此时点T 的坐标为(3,1)-或(3,1)--.21.已知函数2()1x f x e ax bx =---,其中,a b ∈R , 2.71828e = 为自然对数的底数. (1)设()g x 是函数()f x 的导函数,求函数()g x 在区间[0,1]上的最小值; (2)若(1)0f =,函数()f x 在区间(0,1)内有零点,求a 的取值范围【测量目标】函数的导函数,极值,最值,函数的零点.【考查方式】考查函数的求导,单调区间的确定,分类讨论思想,数形结合思想的应用. 【难易程度】较难.【试题解析】(1)因为2()1xf x e ax bx =--- 所以()()2xg x f x e ax b '==-- 又()2xg x e a '=-,因为[0,1]x ∈,1xee 剟,所以:①若12a …,则21a …,()20xg x e a '=-…,所以函数()g x 在区间[0,1]上单增,min ()(0)1g x g b ==-;②若122ea <<,则12a e <<,于是当0ln(2)x a <<时()20x g x e a '=-<,当ln(2)1a x <<时()20x g x e a '=->,所以函数()g x 在区间[0,ln(2)]a 上单减,在区间[ln(2),1]a 上单增,min ()[ln(2)]22ln(2)g x g a a a a b ==--;③若2ea …,则2a e …,()20x g x e a '=-…,所以函数()g x 在区间[0,1]上单减,min ()(1)2g x g e a b ==--;综上:()g x 在区间[0,1]上的最小值为min 11,,21()22ln(2),222,,2b a e g x a a a b a e e a b a ⎧-⎪⎪⎪=--<<⎨⎪⎪--⎪⎩…….(2)由(1)0f =⇒10e a b ---=⇒1b e a =--,又(0)0f =,若函数()f x 在区间(0,1)内有零点,则函数()f x 在区间(0,1)内至少有三个单调区间,由(1)知当12a …或2ea …时,函数()g x 即()f x '在区间[0,1]上单调,不可能满足“函数()f x 在区间(0,1)内至少有三个单调区间”这一要求.若122ea <<,则min ()22ln(2)32ln(2)1g x a a ab a a a e =--=--+, 令3()ln 12h x x x x e =--+(1x e <<),则1()ln 2h x x '=-.由1()ln 02h x x x e '=->⇒<,所以()h x 在区间(1,)e 上单增,在区间(,)e e 上单减,max 3()()ln 1102h x h e e e e e e e ==--+=-+<即min ()0g x <恒成立,于是,函数()f x 在区间(0,1)内至少有三个单调区间⇔(0)20(1)10g e a g a =-+>⎧⎨=-+>⎩21a e a >-⎧⇒⎨<⎩,又122ea <<, 所以21e a -<<,综上,a 的取值范围为(2,1)e -.。
2014年普通高等学校招生全国统一考试数学卷(四川.理)含详解
绝密★启用前2014年普通高等学校招生全国统一考试(四川卷)数 学(理工类)本试卷分第一部分(选择题)和第二部分(非选择题)。
第一部分1至2页,第二部分3至4页,共4页.考生作答时,须将答案答在答题卡上及试题卷,草稿纸上答题无效,满分150分,考试时间120分钟。
考试结束后,将本试卷和答题卡一并交回. 参考公式:如果事件A 、B 互斥,那么 球的表面积公式 P(A+B) =P(A)+P(B) 24s R π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径 P(A·B)=P(A)·P(B) 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么243v R π=在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径n ()(1)(0,1,2,...)k k n kn P k C p p k n -=-= 第一部分(选择题 共60分)注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上。
2.本部分共12小题,每小题5分,共60分。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 1l [31.5,35.5) 12 [35.5.39.5) 7 [39.5,43.5) 3 根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是 (A)16 (B)13 (C)12 (D )23答案:B解析:从31.5到43.5共有22,所以221663P ==。
2、复数1i i-+=(A)2i - (B )12i (C )0 (D )2i 答案:A解析:12i i i i i-+=--=- 3、1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是(A)12l l ⊥,23l l ⊥13l l ⇒ (B )12l l ⊥,23l l ⇒13l l ⊥ (C)233l l l ⇒ 1l ,2l ,3l 共面 (D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面 答案:B解析:A 答案还有异面或者相交,C 、D 不一定 4、如图,正六边形ABCDEF 中,BA CD EF ++=(A)0 (B)BE (C)AD (D)CF答案D 解析:B AC ++=+5、5函数,()f x 在点0x x =处有定义是()f x 在点0x x =处连续的(A)充分而不必要的条件 (B)必要而不充分的条件 (C)充要条件 (D)既不充分也不必要的条件 答案:B解析:连续必定有定义,有定义不一定连续。
2014年普通高等学校招生全国统一考试(四川卷)_数学(理)
2014年普通高等学校招生全国统一考试(四川卷)数学(理工类)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(2014四川,理1)已知集合A ={x |x 2-x -2≤0},集合B 为整数集,则A ∩B =( ). A .{-1,0,1,2} B .{-2,-1,0,1} C .{0,1} D .{-1,0} 答案:A解析:∵A ={x |x 2-x -2≤0}={x |-1≤x ≤2}, ∴A ∩B =A ∩Z ={x |-1≤x ≤2}∩Z ={-1,0,1,2}.2.(2014四川,理2)在x (1+x )6的展开式中,含x 3项的系数为( ). A .30 B .20 C .15 D .10 答案:C解析:含x 3的项是由(1+x )6展开式中含x 2的项与x 相乘得到,又(1+x )6展开式中含x 2的项的系数为26C 15=,故含x 3项的系数是15.3.(2014四川,理3)为了得到函数y =sin(2x +1)的图象,只需把函数y =sin 2x 的图象上所有的点( ).A .向左平行移动12个单位长度 B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度 答案:A解析:∵y =sin(2x +1)=1sin 22x ⎛⎫+⎪⎝⎭, ∴需要把y =sin 2x 图象上所有的点向左平移12个单位长度即得到y =sin(2x +1)的图象. 4.(2014四川,理4)若a >b >0,c <d <0,则一定有( ).A .a b c d >B .a b c d <C .a b d c >D .a b d c<答案:D解析:∵c <d <0,∴-c >-d >0,∴110c d<<--. 即110d c>>--. 又∵a >b >0, ∴a b d c >--,∴a b d c<. 5.(2014四川,理5)执行如图的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为( ).A .0B .1C .2D .3 答案:C解析:先画出x ,y 满足的约束条件0,0,1,x y x y ≥⎧⎪≥⎨⎪+≤⎩对应的可行域如图中阴影部分:移动直线l 0:y =-2x .当直线经过点A (1,0)时,y =-2x +S 中截距S 最大,此时S max =2×1+0=2. 再与x ≥0,y ≥0,x +y ≤1不成立时S =1进行比较,可得S max =2.6.(2014四川,理6)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( ).A .192种B .216种C .240种D .288种 答案:B解析:(1)当最左端排甲的时候,排法的种数为55A ;(2)当最左端排乙的时候,排法种数为1444C A . 因此不同的排法的种数为514544A +C A =120+96=216.7.(2014四川,理7)平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =( ).A .-2B .-1C .1D .2 答案:D解析:∵a =(1,2),b =(4,2),∴c =m (1,2)+(4,2)=(m +4,2m +2). 又∵c 与a 的夹角等于c 与b 的夹角, ∴cos 〈c ,a 〉=cos 〈c ,b 〉.∴·||||||||⋅=c a c bc a c b .=解得m =2.8.(2014四川,理8)如图,在正方体ABCD -A 1B 1C 1D 1中,点O 为线段BD 的中点.设点P 在线段CC 1上,直线OP 与平面A 1BD 所成的角为α,则sin α的取值范围是( ).A .⎤⎥⎣⎦ B.⎤⎥⎣⎦ C .⎣⎦ D .⎤⎥⎣⎦答案:B解析:以D 为坐标原点,DA ,DC ,DD 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示.不妨设DC =DA =DD 1=1,则D (0,0,0),B (1,1,0),A 1(1,0,1),11,,022O ⎛⎫ ⎪⎝⎭,并设点P (0,1,t )且0≤t ≤1.则11,,22OP t ⎛⎫=- ⎪⎝⎭,1(1,01)A D =--,,1(0,1,1)A B =-. 设平面A 1BD 的法向量为n =(x 0,y 0,z 0),则有110,0,A D A B ⎧⋅=⎪⎨⋅=⎪⎩n n 即00000,0,x z yz --=⎧⎨-=⎩取x 0=1,y 0=-1,z 0=-1,∴n =(1,-1,-1). ∴sin α=|cos 〈OP ,n 〉|(0≤t ≤1),∴22221sin 13()2t t t α++=+,0≤t ≤1.令()222113()2t t f t t ++=+,0≤t ≤1.则()2222221(21)(1)113()3()22t t t t f t t t +--+'==--++, 可知当10,2t ⎡⎫∈⎪⎢⎣⎭时,f ′(t )>0;当1,12t ⎡⎤∈⎢⎥⎣⎦时,f ′(t )≤0.又∵()203f =,1()12f =,()819f =,∴()max 1()12f t f ==,()min 2(0)3f t f ==.∴sin α的最大值为1∴sin α的取值范围为⎤⎥⎣⎦. 9.(2014四川,理9)已知f (x )=ln(1+x )-ln(1-x ),x ∈(-1,1).现有下列命题:①f (-x )=-f (x );②222()1x f f x x ⎛⎫=⎪+⎝⎭;③|f (x )|≥2|x |. 其中的所有正确命题的序号是( ).A .①②③B .②③C .①③D .①② 答案:A解析:对于①,∵f (x )=ln(1+x )-ln(1-x )=1ln1xx+-,()11()lnln 11x xf x f x x x-+-==--+-,又x ∈(-1,1), ∴f (-x )=-f (x ),故命题①正确; 对于②,222222ln 1ln 1111x x x f x x x ⎛⎫⎛⎫⎛⎫=+--⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭=22222(1)(1)11ln ln ln 2ln 2()1111x x x x f x x x x x +-++⎛⎫-=== ⎪++--⎝⎭, 故命题②正确;对于③,由于f (x )和2x 均为奇函数,不妨仅研究x ∈[0,1)时的情形,此时1|()|ln 1xf x x+=-,2|x |=2x =ln e 2x .令()21e 1x x x x ϕ+=--,则()2212e 1x x x ϕ⎡⎤'=-⎢⎥(-)⎣⎦,令φ′(x )=0,得x =0,且当x ∈[0,1)时,φ′(x )>0,因此φ(x )在[0,1)上为增函数,∴φ(x )≥φ(0)=0,即21e 1x xx+≥-在x ∈[0,1)上恒成立,故1ln 21xx x+≥-也成立; 同理根据对称性可知对x ∈(-1,1)均有1|ln ||2|1xx x+≥-,即|f (x )|≥2|x |成立,③为真命题. 综上可知,正确命题的序号为①②③.10.(2014四川,理10)已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( ).A .2B .3C .8D 答案:B解析:设AB 所在直线方程为x =my +t .由2,,x my t y x =+⎧⎨=⎩消去x ,得y 2-my -t =0.设211(,)A y y ,222(,)B y y (不妨令y 1>0,y 2<0), 故2212y y m +=,y 1y 2=-t . 而2212122OA OB y y y y ⋅=+=. 解得y 1y 2=-2或y 1y 2=1(舍去). 所以-t =-2,即t =2.所以直线AB 过定点M (2,0).而S △ABO =S △AMO +S △BMO =12|OM ||y 1-y 2|=y 1-y 2, 1111111||2248AFO S OF y y y ∆=⨯=⨯=,故S △ABO +S △AFO =y 1-y 2+118y =198y -y 2.由121299()388y y y y -=≥=+-, 得S △ABO +S △AFO 的最小值为3,故选B.第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分. 11.(2014四川,理11)复数22i1i-+=__________. 答案:-2i 解析:22i (22i)(1i)224i2i 1i (1i)(1i)2-----===-++-. 12.(2014四川,理12)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=242,10,,01,x x x x ⎧-+-≤<⎨≤<⎩则32f ⎛⎫⎪⎝⎭=__________. 答案:1解析:∵f (x )的周期为2,∴3312222f f f ⎛⎫⎛⎫⎛⎫=-=- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,又∵1[1,0)2-∈-,∴21142122f ⎛⎫⎛⎫-=-⨯-+= ⎪ ⎪⎝⎭⎝⎭.即312f ⎛⎫= ⎪⎝⎭.13.(2014四川,理13)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67°,30°,此时气球的高是46 m ,则河流的宽度BC 约等于__________m .(用四舍五入法将结果精确到个位.参考数据:sin 67°≈0.92,cos 67°≈0.39,sin 37°≈0.60,cos 37°≈0.80,1.73)答案:60解析:如图所示,过A 作AD ⊥CB 且交CB 的延长线于D .在Rt △ADC 中,由AD =46 m ,∠ACB =30°得AC =92 m. 在△ABC 中,∠BAC =67°-30°=37°,∠ABC =180°-67°=113°,AC =92 m ,由正弦定理sin sin AC BC ABC BAC =∠∠,得92sin113sin37BC =︒︒,即92sin67sin37BC=︒︒,解得92sin3760m sin67BC ︒≈≈︒.14.(2014四川,理14)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是__________.答案:5解析:由题意可知点A 为(0,0),点B 为(1,3).又∵直线x +my =0的斜率11k m=-,直线mx -y -m +3=0的斜率k 2=m ,∴k 1k 2=-1.∴两条动直线互相垂直.又∵圆的性质可知,动点P (x ,y )的轨迹是圆,∴圆的直径为AB ==∴222||||||=52PA PB AB PA PB +⋅≤=.当且仅当|P A |=|PB |∴|P A |·|PB |的最大值是5.15.(2014四川,理15)以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”; ②函数f (x )∈B 的充要条件是f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∉B ;④若函数f (x )=a ln(x +2)+21xx +(x >-2,a ∈R )有最大值,则f (x )∈B . 其中的真命题有__________.(写出所有真命题的序号) 答案:①③④解析:对于①,“f (x )∈A ”说明f (x )的值域为R ,显然能推出“∀b ∈R ,∃a ∈D ,f (a )=b ”,反之对满足“∀b ∈R ,∃a ∈D ,f (a )=b ”的函数其值域也必为R .所以①为真命题;对于②,“函数f (x )∈B ”“f (x )有最大值和最小值”.如函数()21xf x x =+的值域为(0,1]⊆[-1,1],但()21xf x x=+无最小值.但“f (x )有最大值和最小值”⇒“f (x )∈B ”. 综上知②为假命题;对于③,因为f (x )∈A ,所以f (x )的值域为R .因为g (x )∈B ,所以存在正数M 使得-M ≤g (x )≤M , 所以f (x )+g (x )的值域为R ∪[-M ,M ]=R . 所以f (x )+g (x )∉B .因此③为真命题;对于④,易证当x >-2时,211,122x x ⎡⎤∈-⎢⎥+⎣⎦,要使f (x )=a ln(x +2)+21x x +(x >-2,a ∈R )有最大值,则a 必为0.此时()21xf x B x =∈+,故命题④为真. 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)(2014四川,理16)已知函数()πsin 34f x x ⎛⎫+ ⎪⎝⎭=. (1)求f (x )的单调递增区间;(2)若α是第二象限角,4πcos cos 2354f ααα⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭,求cos α-sin α的值.分析:在第(1)问,通过整体思想,将π34x +看作一个整体,借助y =sin x 的单调递增区间,解不等式求出x 的范围得到f (x )的单调递增区间,要注意k ∈Z 不要漏掉;在第(2)问,利用已知条件求出3f α⎛⎫⎪⎝⎭,然后利用和角公式展开整理,得到关于sin α+cos α与cos α-sin α的方程,再对sin α+cos α与0的关系进行讨论,得到cos α-sin α的值.解:(1)因为函数y =sin x 的单调递增区间为ππ2π,2π22k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z ,由πππ2π32π242k x k -+≤+≤+,k ∈Z ,得π2ππ2π43123k k x -+≤≤+,k ∈Z .所以,函数f (x )的单调递增区间为π2ππ2π,43123k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z . (2)由已知,有π4πsin cos 454αα⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭(cos 2α-sin 2α),所以22ππ4ππsin cos cos sin (cos cos sin sin )(cos sin )44544αααααα+=--,即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α是第二象限角,知α=3π4+2k π,k ∈Z .此时,cos α-sin α=当sin α+cos α≠0时,有(cos α-sin α)2=54.由α是第二象限角,知cos α-sin α<0,此时cos α-sin α=-综上所述,cos α-sin α=17.(本小题满分12分)(2014四川,理17)一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立. (1)设每盘游戏获得的分数为X ,求X 的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.分析:对于第(1)问,通过已知条件,得到X 所有可能取值,然后借助独立重复试验概率公式分别计算每一个值所对应的概率,再结合所求结果写出X 的分布列;对于第(2)问,充分利用第(1)问的分布列,结合对立事件的概率求出“没有出现音乐”的概率,然后利用互斥事件概率公式求出至少有一盘出现音乐的概率;对于第(3)问,利用第(1)问的分布列,借助数学期望公式求出数学期望,然后作出相应判断.解:(1)X 可能的取值为:10,20,100,-200.根据题意,有1213113(10)C 1228P X ⎛⎫⎛⎫=⨯⨯-= ⎪ ⎪⎝⎭⎝⎭=,2123113(20)C 1228P X ⎛⎫⎛⎫=⨯⨯-= ⎪ ⎪⎝⎭⎝⎭=, 333111(100)C 1228P X ⎛⎫⎛⎫=⨯⨯-= ⎪ ⎪⎝⎭⎝⎭=,0303111(200)C 1228P X ⎛⎫⎛⎫=⨯⨯-= ⎪ ⎪⎝⎭⎝⎭=. 所以X 的分布列为(2)设“第i i 1)=P (A 2)=P (A 3)=P (X =-200)=18. 所以,“三盘游戏中至少有一次出现音乐”的概率为()31231151111()18512512P A A A =-=-=-.因此,玩三盘游戏至少有一盘出现音乐的概率是511512. (3)X 的数学期望为EX =10×38+20×38+100×18-200×18=54-.这表明,获得分数X 的均值为负,因此,多次游戏之后分数减少的可能性更大. 18.(本小题满分12分)(2014四川,理18)三棱锥A -BCD 及其侧视图、俯视图如图所示.设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN ⊥NP .(1)证明:P是线段BC的中点;(2)求二面角A-NP-M的余弦值.分析:在第(1)问中,利用三视图,得到△ABD,△BCD为正三角形,然后取BD中点O,连接AO,CO,得到线线垂直,从而得到BD⊥平面AOC,再取BO的中点H,利用垂直关系得到BD⊥HP,最后利用中位线的性质得到P为BC中点;在第(2)问中,若利用几何法,需作二面角的平面角,由已知MN与二面角的棱NP垂直且MN⊂平面MNP,故只需过点N 在平面ANP内作与NP垂直的直线即可,由(1)知NP∥AC,故可过N作NQ⊥AC于点Q,连接MQ,则∠MNQ为二面角的平面角.然后利用解三角形相关知识求解即可.若利用空间向量,应建立空间直角坐标系,然后利用线面关系,求出相应点的坐标,从而求出两个半平面的法向量,再利用两个法向量的夹角求出二面角的余弦值.(1)证明:如图,取BD中点O,连接AO,CO.由侧视图及俯视图知,△ABD,△BCD为正三角形,因此AO⊥BD,OC⊥BD.因为AO,OC⊂平面AOC,且AO∩OC=O,所以BD⊥平面AOC.又因为AC⊂平面AOC,所以BD⊥AC.取BO的中点H,连接NH,PH.又M,N分别为线段AD,AB的中点,所以NH∥AO,MN∥BD.因为AO⊥BD,所以NH⊥BD.因为MN⊥NP,所以NP⊥BD.因为NH,NP⊂平面NHP,且NH∩NP=N,所以BD⊥平面NHP.又因为HP⊂平面NHP,所以BD⊥HP.又OC⊥BD,HP⊂平面BCD,OC⊂平面BCD,所以HP∥OC.因为H为BO中点,故P为BC中点.(2)解法一:如图,作NQ⊥AC于Q,连接MQ.由(1)知,NP∥AC,所以NQ ⊥NP .因为MN ⊥NP ,所以∠MNQ 为二面角A -NP -M 的一个平面角. 由(1)知,△ABD ,△BCD 为边长为2的正三角形,所以AO =OC由俯视图可知,AO ⊥平面BCD .因为OC ⊂平面BCD ,所以AO ⊥OC ,因此在等腰Rt △AOC中,AC =. 作BR ⊥AC 于R ,在△ABC 中,AB =BC ,所以BR ==. 因为在平面ABC 内,NQ ⊥AC ,BR ⊥AC ,所以NQ ∥BR .又因为N 为AB 的中点,所以Q 为AR 的中点,因此2BR NQ ==.同理,可得MQ =所以在等腰△MNQ中,24cos MN BDMNQ NQ NQ ∠===故二面角A -NP -M解法二:由俯视图及(1)可知,AO ⊥平面BCD .因为OC ,OB ⊂平面BCD ,所以AO ⊥OC ,AO ⊥OB . 又OC ⊥OB ,所以直线OA ,OB ,OC 两两垂直.如图,以O 为坐标原点,以OB ,OC ,OA 的方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系O -xyz.则A (0,0,B (1,0,0),C (00),D (-1,0,0). 因为M ,N 分别为线段AD ,AB 的中点, 又由(1)知,P 为线段BC 的中点,所以1,0,22M ⎛- ⎝⎭,1,0,22N ⎛ ⎝⎭,1,22P ⎛⎫ ⎪ ⎪⎝⎭.于是(1,0,AB =,(BC =-,(1,0,0)MN =,NP =. 设平面ABC 的一个法向量n 1=(x 1,y 1,z 1),则11,,AB BC ⎧⊥⎪⎨⊥⎪⎩n n即110,0,AB BC ⎧⊥=⎪⎨⊥=⎪⎩n n有111111(,,)(1,0,0,(,,)(0,x y z x y z ⎧⋅=⎪⎨⋅-=⎪⎩从而11110,0.x x ⎧=⎪⎨-=⎪⎩取z 1=1,则1x y 1=1,所以n 1=1,1).设平面MNP 的一个法向量n 2=(x 2,y 2,z 2),则22,,MN NP ⎧⊥⎪⎨⊥⎪⎩n n 即220,0,MN NP ⎧⊥=⎪⎨⊥=⎪⎩n n有222222(,,)(1,0,0)0,(,,)0,22x y z x y z ⋅=⎧⎪⎨⋅=⎪⎩从而2220,0.22x y z =⎧-=⎪⎩ 取z 2=1,所以n 2=(0,1,1).设二面角A -NP -M 的大小为θ,则1212cos ||||5θ⋅===n n n n . 故二面角A -NP -M19.(本小题满分12分)(2014四川,理19)设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为12ln 2-,求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和T n .分析:在第(1)问中,利用已知条件(a 8,4b 7)在f (x )的图象上,得到关于a 8,a 7的方程,然后结合(a 7,b 7)在f (x )的图象上,求出公差d ,再利用等差数列前n 项和公式求出数列{a n }的前n 项和S n ;在第(2)问中,充分利用已知条件求出切线方程,得到a 2,然后利用a 1=1,求出公差d ,从而得到a n ,b n ,再利用乘公比错位加减法求出T n .解:(1)由已知,b 7=2a 7,b 8=2a 8=4b 7,有2a 8=4×2a 7=2a 7+2.解得d =a 8-a 7=2.所以,S n =na 1+12n n d (-)=-2n +n (n -1)=n 2-3n . (2)函数f (x )=2x 在(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2),它在x 轴上的截距为21ln 2a -.由题意,2112ln 2ln 2a -=-, 解得a 2=2.所以,d =a 2-a 1=1.从而a n =n ,b n =2n . 所以231123122222n n n n n T --=+++++, 2112321222n n n T -=++++. 因此,12111111222122222222n n n n n n n nn n n T T +-----=++++-=--=. 所以,1222n n nn T +--=. 20.(本小题满分13分)(2014四川,理20)已知椭圆C :22221x y a b +=(a >b >0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C 的标准方程.(2)设F 为椭圆C 的左焦点,T 为直线x =-3上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .①证明:OT 平分线段PQ (其中O 为坐标原点);②当||||TF PQ 最小时,求点T 的坐标. 分析:在第(1)问中,利用已知条件,借助a ,b ,c 的几何意义,列出关于a ,b ,c 的方程组,求出a2,b 2,然后写出椭圆的标准方程;在第(2)问①中,设出T 点坐标,充分利用所给条件,表示出PQ 的方程,然后设出P ,Q 两点坐标,联立曲线方程得到关于y 的一元二次方程,再利用根与系数的关系表示出PQ 的中点坐标,最后利用斜率得出要证结论;在②中,利用①的结论,分别表示出|TF |,|PQ |,然后借助基本不等式得到||||TF PQ 的最小值并求出T 点坐标.(1)解:由已知可得2,24,b c ===⎪⎩解得a 2=6,b 2=2,所以椭圆C 的标准方程是22162x y +=. (2)①证明:由(1)可得,F 的坐标是(-2,0),设T 点的坐标为(-3,m ).则直线TF 的斜率032TF m k m -==---(-). 当m ≠0时,直线PQ 的斜率1PQ k m =.直线PQ 的方程是x =my -2. 当m =0时,直线PQ 的方程是x =-2,也符合x =my -2的形式.设P (x 1,y 1),Q (x 2,y 2),将直线PQ 的方程与椭圆C 的方程联立,得222,1.62x my x y =-⎧⎪⎨+=⎪⎩ 消去x ,得(m 2+3)y 2-4my -2=0,其判别式Δ=16m 2+8(m 2+3)>0. 所以12243m y y m =++,12223y y m -=+, x 1+x 2=m (y 1+y 2)-4=2123m -+. 所以PQ 的中点M 的坐标为2262,33m m m -⎛⎫ ⎪++⎝⎭. 所以直线OM 的斜率3OM m k =-, 又直线OT 的斜率3OT m k =-,所以点M 在直线OT 上, 因此OT 平分线段PQ .②解:由①可得,TF =PQ =221)3m m +=+.所以||||TF PQ ==≥=. 当且仅当22411m m =++,即m =±1时,等号成立,此时||||TF PQ 取得最小值. 所以当||||TF PQ 最小时,T 点的坐标是(-3,1)或(-3,-1). 21.(本小题满分14分)(2014四川,理21)已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值;(2)若f (1)=0,函数f (x )在区间(0,1)内有零点,求a 的取值范围.分析:在第(1)问中,利用已知条件求出g (x ),然后借助导数g ′(x )求最值,在求解过程中需根据参数a 的取值范围进行讨论,再利用g (x )在区间上的单调性求出g (x )的最值;在第(2)问中,充分利用f (x )在(0,1)内有零点这一条件,借助第(1)问的结论根据参数a 的范围,结合区间端点处函数值的符号来判断在区间内是否存在零点,从而得到a 的取值范围.解:(1)由f (x )=e x -ax 2-bx -1,有g (x )=f ′(x )=e x -2ax -b .所以g ′(x )=e x -2a .因此,当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ]. 当12a ≤时,g ′(x )≥0,所以g (x )在[0,1]上单调递增, 因此g (x )在[0,1]上的最小值是g (0)=1-b ; 当e 2a ≥时,g ′(x )≤0,所以g (x )在[0,1]上单调递减, 因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当1e 22a <<时,令g ′(x )=0,得x =ln(2a )∈(0,1). 所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增.于是,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2a ln(2a)-b.综上所述,当12a≤时,g(x)在[0,1]上的最小值是g(0)=1-b;当1e22a<<时,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2a ln(2a)-b;当e2a≥时,g(x)在[0,1]上的最小值是g(1)=e-2a-b.(2)设x0为f(x)在区间(0,1)内的一个零点,则由f(0)=f(x0)=0可知,f(x)在区间(0,x0)上不可能单调递增,也不可能单调递减.则g(x)不可能恒为正,也不可能恒为负.故g(x)在区间(0,x0)内存在零点x1.同理g(x)在区间(x0,1)内存在零点x2.所以g(x)在区间(0,1)内至少有两个零点.由(1)知,当12a≤时,g(x)在[0,1]上单调递增,故g(x)在(0,1)内至多有一个零点.当e2a≥时,g(x)在[0,1]上单调递减,故g(x)在(0,1)内至多有一个零点.所以1e 22a<<.此时g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增.因此x1∈(0,ln(2a)],x2∈(ln(2a),1),必有g(0)=1-b>0,g(1)=e-2a-b>0.由f(1)=0有a+b=e-1<2,有g(0)=1-b=a-e+2>0,g(1)=e-2a-b=1-a>0. 解得e-2<a<1.当e-2<a<1时,g(x)在区间[0,1]内有最小值g(ln(2a)).若g(ln(2a))≥0,则g(x)≥0(x∈[0,1]),从而f(x)在区间[0,1]单调递增,这与f(0)=f(1)=0矛盾,所以g(ln(2a))<0.又g(0)=a-e+2>0,g(1)=1-a>0,故此时g(x)在(0,ln(2a))和(ln(2a),1)内各只有一个零点x1和x2.由此可知f(x)在[0,x1]上单调递增,在(x1,x2)上单调递减,在[x2,1]上单调递增.所以f(x1)>f(0)=0,f(x2)<f(1)=0,故f(x)在(x1,x2)内有零点.综上可知,a的取值范围是(e-2,1).。
最新四川高考数学试卷(理科)(含答案解析)
2014年四川省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.263个单位长度向右平行移动.><C>D.<5.(5分)(2014•四川)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()7.(5分)(2014•四川)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,8.(5分)(2014•四川)如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是(),[[,[9.(5分)(2014•四川)已知f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1).现有下列命题:①f(﹣x)=﹣f(x);②f()=2f(x)③|f(x)|≥2|x|10.(5分)(2014•四川)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其D.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)(2014•四川)复数=_________.12.(5分)(2014•四川)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()=_________.13.(5分)(2014•四川)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46m,则河流的宽度BC约等于_________m.(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)14.(5分)(2014•四川)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB|的最大值是_________.15.(5分)(2014•四川)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有_________.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2014•四川)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.17.(12分)(2014•四川)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.18.(12分)(2014•四川)三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A﹣NP﹣M的余弦值.19.(12分)(2014•四川)设等差数列{a n}的公差为d,点(a n,b n)在函数f(x)=2x的图象上(n∈N*).(1)若a1=﹣2,点(a8,4b7)在函数f(x)的图象上,求数列{a n}的前n项和S n;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{}的前n项和T n.20.(13分)(2014•四川)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.21.(14分)(2014•四川)已知函数f(x)=e x﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.2014年四川省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.263个单位长度向右平行移动))的图象上所有的点向左平行移动4.(5分)(2014•四川)若a>b>0,c<d<0,则一定有().><C>D.<,=,5.(5分)(2014•四川)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()内,目标还是内,目标还是=120种,最左端只排乙,最右端不能排甲,有7.(5分)(2014•四川)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,的坐标,再根据与的夹角等于与的夹角,代入夹角公式,构造关于解:∵向量,=m+=与的夹角等于与==8.(5分)(2014•四川)如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点O 为线段BD 的中点,设点P 在线段CC 1上,直线OP 与平面A 1BD 所成的角为α,则sin α的取值范围是( ),[[,[的取值范围是∪∪中,==的取值范围是9.(5分)(2014•四川)已知f (x )=ln (1+x )﹣ln (1﹣x ),x ∈(﹣1,1).现有下列命题:①f (﹣x )=﹣f (x ); ②f ()=2f (x )③|f (x )|≥2|x|)1+)(())+﹣10.(5分)(2014•四川)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其D.再利用韦达定理及=2•,从而当且仅当,即二、填空题:本大题共5小题,每小题5分,共25分11.(5分)(2014•四川)复数=﹣2i.解:复数==12.(5分)(2014•四川)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()=1.)的值转化成求(=113.(5分)(2014•四川)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46m,则河流的宽度BC约等于60m.(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)=46≈=14.(5分)(2014•四川)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB|的最大值是5.15.(5分)(2014•四川)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有①③④.(写出所有真命题的序号)时,时,→,时,,∴,即时,,∴,即三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2014•四川)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.≤3x+,)))cos+)=).再由)≤3x+,﹣≤+,故函数的增区间为[﹣+](+)cos))cos)=cos sin=..或﹣.17.(12分)(2014•四川)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.,====+,.×+10×××﹣=18.(12分)(2014•四川)三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A﹣NP﹣M的余弦值.)((,,,和,设,设cos==的余弦值19.(12分)(2014•四川)设等差数列{a n}的公差为d,点(a n,b n)在函数f(x)=2x的图象上(n∈N*).(1)若a1=﹣2,点(a8,4b7)在函数f(x)的图象上,求数列{a n}的前n项和S n;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{}的前n项和T n.的图象上,可得数列的通项公式可得)的图象上,可得,进而得到=2=2n+)处的切线方程为x=++=1++,=1+﹣20.(13分)(2014•四川)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.利用两点间距离公式及弦长公式将表示出来,由)依题意有的标准方程为+,从而,=,,则21.(14分)(2014•四川)已知函数f(x)=e x﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.时,则上的最小值为或时,函数<)上单调递增,在区间(,+⇔⇒参与本试卷答题和审题的老师有:任老师;王老师;孙佑中;刘长柏;qiss;尹伟云;翔宇老师;szjzl;caoqz;清风慕竹;静定禅心;maths(排名不分先后)菁优网2014年6月24日。
2014年四川高考理科数学试题及标准答案(word版)
2014年四川数学高考试题一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂=A.{1,0,1,2}- B .{2,1,0,1}-- C .{0,1} D .{1,0}-2.在6(1)x x +的展开式中,含3x 项的系数为A.30 B.20 C.15 D.103.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度 D.向右平行移动1个单位长度4.若0a b >>,0x d <<,则一定有A.a b c d > B .a b c d < C.a b d c > D .a b d c< 5.执行如图1所示的程序框图,如果输入的[2,2]t ∈-,则输出的S 的最大值为A .0B .1 C.2 D .36.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能拍甲,则不同的排法共有A.192种 B .216种 C.240种 D .288种7.平面向量(1,2)a =,(4,2)b =,c ma b =+(m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m = A.2- B .1- C.1 D.28.如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点。
设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是A .3[,1]3 B.6[,1]3 C.622[,]33 D .22[,1]39.已知()ln(1)ln(1)f x x x =+--,(1,1)x ∈-。
现有下列命题:①()()f x f x -=-;②22()2()1x f f x x =+;③|()|2||f x x ≥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年四川高考理科数学试题及参考答案一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂=A .{1,0,1,2}-B .{2,1,0,1}--C .{0,1}D .{1,0}- 2.在6(1)x x +的展开式中,含3x 项的系数为A .30B .20C .15D .103.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点A .向左平行移动12个单位长度 B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度 4.若0a b >>,0c d <<,则一定有A .a b c d > B .a bc d < C .a b d c > D .a b d c<5.执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为A .0B .1C .2D .3 6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有A .192种B .216种C .240种D .288种7.平面向量(1,2)a =,(4,2)b =,c ma b =+(m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =A .2-B .1-C .1D .28.如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点。
设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是A .B .C .D . 9.已知()ln(1)ln(1)f x x x =+--,(1,1)x ∈-。
现有下列命题:①()()f x f x -=-;②22()2()1xf f x x =+;③|()|2||f x x ≥。
其中的所有正确命题的序号是A .①②③B .②③C .①③D .①②10.已知F 是抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是A .2B .3CD 二.填空题:本大题共5小题,每小题5分,共25分。
11.复数221ii-=+ 。
12.设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈-时,242,10,(),01,x x f x x x ⎧-+-≤<=⎨≤<⎩,则3()2f = 。
13.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67,30,此时气球的高是46m ,则河流的宽度BC 约等于 m 。
(用四舍五入法将结果精确到个位。
参考数据:sin 670.92≈,cos 670.39≈,sin 370.60≈,cos370.80≈ 1.73≈)14.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是 。
15.以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[,]M M -。
例如,当31()x x ϕ=,2()sin x x ϕ=时,1()x A ϕ∈,2()x B ϕ∈。
现有如下命题:①设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“b R ∀∈,a D ∃∈,()f a b =”; ②函数()f x B ∈的充要条件是()f x 有最大值和最小值;③若函数()f x ,()g x 的定义域相同,且()f x A ∈,()g x B ∈,则()()f x g x B +∉; ④若函数2()ln(2)1xf x a x x =+++(2x >-,a R ∈)有最大值,则()f x B ∈。
其中的真命题有 。
(写出所有真命题的序号)三.解答题:本大题共6小题,共 75分。
解答须写出文字说明,证明过程或演算步骤。
16.已知函数()sin(3)4f x x π=+。
(1)求()f x 的单调递增区间; (2)若α是第二象限角,4()cos()cos 2354f απαα=+,求cos sin αα-的值。
17.一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得200-分)。
设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立。
(1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了。
请运用概率统计的相关知识分析分数减少的原因。
18.三棱锥A BCD -及其侧视图、俯视图如图所示。
设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN NP ⊥。
(1)证明:P 为线段BC 的中点; (2)求二面角A NP M --的余弦值。
19.设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2xf x =的图象上(*n N ∈)。
(1)若12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ; (2)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列{}nna b 的前n 项和n T 。
20.已知椭圆C :22221x y a b+=(0a b >>)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形。
(1)求椭圆C 的标准方程;(2)设F 为椭圆C 的左焦点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q 。
(i )证明:OT 平分线段PQ (其中O 为坐标原点); (ii )当||||TF PQ 最小时,求点T 的坐标。
21.已知函数2()1xf x e ax bx =---,其中,a b R ∈, 2.71828e =为自然对数的底数。
(1)设()g x 是函数()f x 的导函数,求函数()g x 在区间[0,1]上的最小值; (2)若(1)0f =,函数()f x 在区间(0,1)内有零点,求a 的取值范围参考答案三.解答题:本大题共6小题,共 75分。
解答须写出文字说明,证明过程或演算步骤。
16.解:(1)由232242k x k πππππ-≤+≤+⇒2234312k k x ππππ-≤≤+ 所以()f x 的单调递增区间为22[,]34312k k ππππ-+(k Z ∈)(2)由4()cos()cos 2354f απαα=+⇒4sin()cos()cos 2454ππααα+=+因为cos 2sin(2)sin[2()]2sin()cos()2444ππππααααα=+=+=++所以28sin()cos ()sin()4544πππααα+=++ 又α是第二象限角,所以sin()04πα+=或25cos ()48πα+= ①由3sin()022444k k πππααππαπ+=⇒+=+⇒=+(k Z ∈)所以33cos sin cos sin 44ππαα-=-=②由25cos ()cos()sin )484ππαααα+=⇒+=⇒-=所以cos sin αα-=综上,cos sin αα-=或cos sin αα-= 17.解:(1)X 可能取值有200-,10,20,1000033111(200)()(1)228P X C =-=-=,1123113(10)()(1)228P X C ==-=,2213113(20)()(1)228P X C ==-=,3303111(100)()(1)228P X C ==-=故分布列为(2)由(1)知:每盘游戏出现音乐的概率是33178888p =++= 则玩三盘游戏,至少有一盘出现音乐的概率是00313775111()(1)88512p C =--=(3)由(1)知,每盘游戏获得的分数为X 的数学期望是133110()(200)102010088888E X =-⨯+⨯+⨯+⨯=-分这说明每盘游戏平均得分是负分,由概率统计的相关知识可知:许多人经过若干盘游戏后,与最初的分数相比,分数没有增加反而会减少。
18.解:(1)由三棱锥A BCD -及其侧视图、俯视图可知,在三棱锥A BCD -中:平面ABD ⊥平面CBD ,2AB AD BD CD CB ===== 设O 为BD 的中点,连接OA ,OC于是OA BD ⊥,OC BD ⊥ 所以BD ⊥平面OAC ⇒BD AC ⊥因为M ,N 分别为线段AD ,AB 的中点,所以//MN BD ,又MN NP ⊥,故BD NP ⊥假设P 不是线段BC 的中点,则直线NP 与直线AC 是平面ABC 内相交直线 从而BD ⊥平面ABC ,这与60DBC ∠=矛盾 所以P 为线段BC 的中点(2)以O 为坐标原点,OB 、OC 、OA 分别为x 、y 、z 轴建立空间直角坐标系,则A,1(2M -,1(2N,1(2P于是1(,0,2AN =,(0,PN =,(1,0,0)MN = 设平面ANP 和平面NPM 的法向量分别为111(,,)m x y z =和222(,,)n x y z =由00AN m PN m ⎧⋅=⎪⎨⋅=⎪⎩⇒11111020x z y z ⎧-=⎪⎪⎨⎪+=⎪⎩,设11z =,则(3,1,1)m =由00MN n PN n ⎧⋅=⎪⎨⋅=⎪⎩⇒22200x y z =⎧⎪⎨+=⎪⎩,设21z =,则(0,1,1)n =cos ,||||5m n mn m n ⋅===⋅⋅ 所以二面角A NP M --19.解:(1)点(,)n n a b 在函数()2xf x =的图象上,所以2n an b =,又等差数列{}n a 的公差为d所以1112222n n n n a a a d n a n b b ++-+===因为点87(,4)a b 在函数()f x 的图象上,所以87842a b b ==,所以8724d b b ==2d ⇒= 又12a =-,所以221(1)232n n n S na d n n n n n -=+=-+-=- (2)由()2()2ln 2xxf x f x '=⇒=函数()f x 的图象在点22(,)a b 处的切线方程为222(2ln 2)()a y b x a -=- 所以切线在x 轴上的截距为21ln 2a -,从而2112ln 2ln 2a -=-,故22a = 从而n a n =,2n nb =,2n n n a n b = 231232222n n n T =++++ 2341112322222n n n T +=++++ 所以23411111112222222n n n n T +=+++++-111211222n n n n n +++=--=-故222n n n T +=-20.解:(1)依条件222222624c a a b a b c =⎧⎧=⎪⎪=⇒⎨⎨=⎪⎩⎪-==⎩所以椭圆C 的标准方程为22162x y += (2)设(3,)T m -,11(,)P x y ,22(,)Q x y ,又设PQ 中点为00(,)N x y(i )因为(2,0)F -,所以直线PQ 的方程为:2x my =-22222(3)420162x my m y my x y =-⎧⎪⇒+--=⎨+=⎪⎩ 所以222122122168(3)24(1)04323m m m m y y m y y m ⎧⎪∆=++=+>⎪⎪+=⎨+⎪-⎪=⎪+⎩于是1202223y y m y m +==+,20022262233m x my m m -=-=-=++ 所以2262(,)33m N m m -++。