新人教版八年级下册数学勾股定理教案
人教版初中数学八年级下册《勾股定理》教案
人教版初中数学八年级下册《勾股定理》教案一. 教材分析人教版初中数学八年级下册《勾股定理》是学生在学习了平面几何基本概念和性质、三角形的知识后,进一步研究直角三角形的一个重要性质。
本节课通过探究勾股定理,培养学生的逻辑思维能力和空间想象能力,为后续学习勾股定理的运用和解决实际问题打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念和性质,具备了一定的观察、操作、推理能力。
但勾股定理的证明较为抽象,需要学生能够克服困难,积极思考,理解并掌握证明过程。
三. 教学目标1.了解勾股定理的定义和证明过程。
2.能够运用勾股定理解决直角三角形的相关问题。
3.培养学生的逻辑思维能力和空间想象能力。
4.激发学生对数学的兴趣,培养合作探究的精神。
四. 教学重难点1.教学重点:勾股定理的定义和证明过程。
2.教学难点:勾股定理的证明过程和运用。
五. 教学方法采用问题驱动法、合作探究法、讲解法、实践操作法等,引导学生主动参与,积极思考,培养学生的创新精神和实践能力。
六. 教学准备1.教具:直角三角形、尺子、三角板、多媒体设备。
2.学具:学生用书、练习册、文具。
七. 教学过程1.导入(5分钟)教师通过展示古代数学家赵爽的《勾股定理图》,引导学生观察、思考,提出问题:“为什么说这是一个直角三角形?它的两条直角边的边长是多少?”2.呈现(10分钟)教师引导学生观察、操作,发现直角三角形中,两条直角边的平方和等于斜边的平方。
教师呈现勾股定理的表述:“在一个直角三角形中,斜边和直角边的平方和等于斜边的平方。
”3.操练(10分钟)教师学生进行小组合作,运用勾股定理计算直角三角形的边长。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)教师通过多媒体展示一系列直角三角形的问题,引导学生运用勾股定理解决问题。
学生独立思考,教师选取部分学生进行讲解。
5.拓展(10分钟)教师引导学生思考:“勾股定理在其他领域的应用有哪些?”学生分组讨论,分享自己的看法。
勾股定理 教学设计 2022—2023学年人教版数学八年级下册
《17.1勾股定理》教学设计一、内容和内容解析1.内容勾股定理的探究、证明及简单应用2.内容解析勾股定理的内容是:如果直角三角形的两条直角边长分别为,a b斜边长为c,那么222+=.它揭示了直角三角形三边之间的数量关系.在直角三角形中,已知任意两边长,a b c就可以求出第三边长.勾股定理常用来求解线段长度或距离问题.二、目标和目标分析1.教学目标(1)理解并掌握运用面积关系得到勾股定理的证明及其应用.(2)通过勾股定理证明的学习,培养学生学会从特殊到一般的探索和证明方法.(3)通过合作探究,感受古代数学的伟大成就和贡献,培养学生的民族自豪感.2.目标分析(1)学生通过观察直角三角形的三边为边长的正方形面积之间的关系,归纳并合理地用数学语言表示勾股定理的结论.(2)学生能运用勾股定理进行简单的计算,关键是通过直角三角形的两边长能求第三条边的长度.三、学生学情分析对于直角三角形,学生对角的关系已有学习,但对于边的数量关系了解不多。
新课标要求学生体验勾股定理的探索过程,会运用勾股定理解决简单问题。
教学中让学生直接发现“直角三角形两条直角边的平方和等于斜边的平方”有一定的难度,因此需要由浅入深地设置问题,先从等腰直角三角形入手,容易发现规律,再从特殊到一般,探究一般直角三角形是否满足规律。
其简单变形,而后过渡到其后的拓展练习,分层布置,有一定的梯度性,为学有余力的同学提供了展示才能的空间,体现了因材施教,符合新课标的要求.四、教学策略分析本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,倡导学生主动参与数学实践活动,让学生经历数学知识的形成与应用过程。
五、教学过程设计1.创设情景,引入新课展示2002年国际数学家大会会场的图片,指出会场上会徽图标。
提问: 你知道这个图案吗?有哪些基本图案组成?前面学习了三角形的有关知识,我们知道三角形有三个角和三个边。
人教版八年级数学下册第十七章勾股定理教案3全
人教版八年级数学下册教案第17章 勾股定理第1课时 直角三角形三边的关系教学目标知识与技能:体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法,掌握勾股定理并会用它解决身边与实际生活相关的数学问题;过程与方法:在学生经历观察、归纳、猜想、探索勾股定理过程中,发展合情推理能力,体会数形结合思想,并在探索过程中,发展学生的归纳、概括能力;情感态度与价值观:通过探索直角三角形的三边之间关系,培养学生积极参与、合作交流的意识,体验获得成功的喜悦,通过介绍勾股定理在中国古代的研究情况,提高学生民族自豪感,激发学生热爱祖国、奋发学习的热情。
教学分析重点:探索和验证勾股定理过程。
难点:通过面积计算探索勾股定理。
关键:关注性质的推导,主动探索,在实践中获得结论,并能正确地用语言表述性质。
教学方法及教学手段:采用探究发现式的教学方法,通过计算面积为学生设计一个数学实验的平台,结合多媒体课件的演示,培养学生动手实践能力和合作交流的意识。
教学过程:1.创设情境,导入课题多媒体演示勾股树图片,激发学生求知欲,成功导入本节课题。
2.自主探索,合作交流活动一:动脑想一想小明用一边长为cm 1的正方形纸片,沿对角线折叠,你知道折痕有多长吗?①这个问题你是怎样想的?请说出你的想法。
②若把折叠后的直角三角形纸片放在如图所示的格点图中(每个小正方形边长为cm 1),你能知道斜边的长吗?③观察图形,并填空:⑴正方形P 的面积为 2cm ,正方形Q 的面积为 2cm ,正方形R 的面积为 2cm 。
⑵你能发现图中正方形P 、Q 、R 的面积之间有什么关系?从中你发现了什么?活动二:动手做一做其它一般的直角三角形,是否也有类似的性质呢? (你打算用什么方法来研究?共同讨论方法后再确立研究方向)(图中每一小方格表示21cm )⑴正方形P 的面积为 2cm ,正方形Q 的面积为 2cm ,正方形R 的面积为 2cm 。
⑵正方形P 、Q 、R 的面积之间的关系是什么?⑶你会用直角三角形的边长表示正方形P 、Q 、R 的面积吗?你能发现直角三角形三边长度之间存在什么关系吗?与你的同伴进行交流。
人教版八年级数学下册17.1勾股定理优秀教学案例
2.自主探究:让学生通过观察、实验、推理等方法,发现并证明勾股定理。
3.合作交流:组织学生进行小组讨论,分享学习心得,培养合作精神。
4.巩固练习:设计有针对性的练习题,让学生在实践中掌握勾股定理。
5.课堂讨论:组织学生分享自己的解题心得,丰富数学思维。
3.引导学生认识数学在生活中的应用,提高他们运用数学解决实际问题的能力。
4.培养学生团队协作、沟通交流的能力,增强他们的社会责任感。
三、教学重点与难点
1.教学重点:勾股定理的定义及其证明方法,勾股定理在实际问题中的应用。
2.教学难点:勾股定理的推导过程,运用勾股定理解决复杂直角三角形问题。
四、教学过程
2.生活实例:展示一些生活中常见的直角三角形现象,如建筑物、家具等,让学生感受数学与生活的紧密联系,提高他们运用数学解决实际问题的意识。
3.提问引导:教师提问:“你们知道什么是勾股定理吗?”“勾股定理在我国古代是如何被发现的?”引发学生的思考和讨论。
(二)讲授新知
1.勾股定理的定义:引导学生通过观察、实验、推理等方法,发现并证明勾股定理。例如,可以让学生分组讨论,每组设计一个实验来验证勾股定理。
2.自主探究,培养能力:在讲授新知环节,我引导学生通过观察、实验、推理等方法,自主发现并证明勾股定理。这种自主探究的学习方式,培养了学生的数学思维能力,提高了他们的问题解决能力。
3.小组合作,增强合作精神:在学生小组讨论环节,我将学生分成若干小组,让他们选择一个证明方法进行讨论。这种小组合作的方式,既能够提高学生的团队合作能力,又能够促进学生之间的沟通交流。
1.激发学生兴趣:通过故事、图片等素材,引发学生对勾股定理的好奇心,激发他们学习数学的兴趣。
第十七章勾股定理(教案)-2024学年人教版八年级数学下册
3.勾股数及其性质
a.勾股数的定义
b.勾股数的特点
c.勾股数的应用
4.勾股定理在生活中的应用实例
a.建筑领域
b.艺术设计
c.自然科学等其他领域的应用
5.练习与拓展
a.勾股定理相关练习题
b.拓展勾股定理的相关知识,如勾股数在其他数学领域的应用等
c.创设实际情境,让学生运用勾股定理解决实际问题,提高学生的实际操作能力。
2.教学难点
a.勾股定理的数学证明:对于八年级学生来说,理解并掌握勾股定理的数学证明是难点。教师需要运用直观、生动的教学方法,如动画演示、实际操作等,帮助学生理解证明过程。
b.勾股定理在实际问题中的应用:学生在运用勾股定理解决实际问题时,往往会遇到难以确定直角三角形的情况,需要教师引导学生学会识别直角三角形,并正确应用勾股定理。
1.教学重点示例:
在讲解勾股定理的概念及其证明时,教师可以通过动画演示、实际操作等方式,引导学生观察直角三角形的特性,得出勾股定理的表述。并通过数学证明,让学生理解勾股定理的严谨性。
2.教学难点示例:
在解决实际问题中,教师可以给出以下例子:一根旗杆斜靠在墙上,旗杆与地面的夹角为30°,旗杆与墙面的距离为3米,求旗杆的长度。学生需要识别出这是一个直角三角形问题,并运用勾股定理求解。在这个过程中,教师需要引导学生正确识别直角三角形,并给出具体的解题步骤。
4.培养学生的数学建模素养,通过勾股定理在生活中的应用实例,引导学生发现生活中的数学规律,学会构建简单的数学模型。
5.培养学生的数学抽象与数学关联素养,使学生能够从具体问题中抽象出勾股定理的数学本质,理解数学知识之间的内在联系,提高数学知识的系统性和综合性。
三、教学难点与重点
八年级数学下册《勾股定理》教案、教学设计
3.精讲精练,突破难点
(1)教师针对勾股定理的证明方法进行详细讲解,引导学生理解并掌握。
(2)设计具有层次性的课堂练习,让学生在实际操作中巩固勾股定理的应用。
(3)针对学生在练习中遇到的问题,教师进行个别辅导,帮助他们突破难点。
2.各小组选取一位代表进行汇报,分享他们的讨论成果和心得体会。
3.组织学生互相提问、解答,共同探讨勾股定理的证明方法和应用技巧。
4.引导学生思考勾股定理在生活中的具体应用,鼓励他们举例说明。
5.对各小组的表现进行评价,鼓励积极参与、合作交流的学生。
(四)课堂练习,500字
在课堂练习环节,我会设计以下练习题:
五、作业布置
为了巩固学生对勾股定理的理解和应用,以及提高他们的数学思维能力,我设计了以下作业:
1.基础巩固题:完成课本第56页的练习题1、2、3,要求学生通过计算给定直角三角形的斜边长度,加强对勾股定理的直接应用。
2.实践应用题:选择一道生活中的实际问题,如测量学校旗杆的高度、计算三角形广告牌的面积等,运用勾股定理解决问题,并撰写解题报告。此题旨在培养学生将数学知识应用于实际情境的能力。
1.直角三角形的两条直角边和斜边之间有什么关系?
2.在直角三角形中,是否有一个规律可以计算斜边的长度?
3.你听说过勾股定理吗?它是什么意思?
(二)讲授新知,500字
在讲授新知环节,我会按照以下步骤进行:
1.回顾直角三角形的基本概念和性质,如直角、斜边、直角边等。
2.引导学生观察直角三角形中斜边与直角边之间的关系,发现斜边的平方等于两条直角边平方和的规律。
(2)引导学生进行自我反思,总结学习经验,提高自主学习能力。
人教版八年级数学下册17.1.2勾股定理的应用(教案)
关于学生小组讨论环节,我发现学生在讨论过程中能够提出自己的观点,并进行有效交流。但在引导与启发方面,我觉得自己还可以做得更好。未来,我将更多地运用开放性问题,激发学生的思考,帮助他们发现问题、分析问题和解决问题。
人教版八年级数学下册17.1.2勾股定理的应用(教案)
一、教学内容
人教版八年级数学下册17.1.2勾股定理的应用。本节课主要内容包括:
1.理解并掌握勾股定理的应用场景,如直角三角形中,了解斜边与两个直角边的关系。
2.学会运用勾股定理解决实际问题,如计算直角三角形的斜边长度、判断一个三角形是否为直角三角形等。
5.培养学生数学运算的核心素养,让学生熟练掌握勾股定理,并能灵活运用到各种计算和证明过程中,提高运算的准确性和速度。
三、教学难点与重点
1.教学重点
-核心内容:勾股定理及其在直角三角形中的应用。
-重点讲解:
-勾股定理的表述:直角三角形中,斜边的平方等于两个直角边的平方和。
-勾股定理的证明:通过几何图形或代数方法,证明勾股定理的正确性。
其次,理论讲解环节,我尽量用简洁明了的语言解释勾股定理的概念和证明过程。从学生的反应来看,大部分同学能够跟上我的讲解,但仍有少数同学在理解上存在困难。针对这个问题,我考虑在今后的教学中,可以通过增加互动提问环节,让学生在课堂上及时反馈疑问,以便我更好地关注到每个学生的学习情况。
在案例分析环节,我选取了建筑物直角三角形结构作为例子,旨在让学生了解勾股定理在实际问题中的应用。从学生的讨论来看,这个案例取得了较好的效果。但在今后的教学中,可以尝试引入更多类型的案例,让学生从不同角度理解勾股定理的应用。
人教版八年级数学下册17.1《勾股定理》教学设计
4.作业完成后,进行自我检查,确保答案正确。
2.勾股数的判断和应用,使学生能够灵活运用勾股数解决相关问题。
3.学生在解决实际问题时,能够将勾股定理与其他数学知识相结合,形成综合解决问题的能力。
教学设想:
1.创设情境,引入新课:通过讲述古希腊数学家毕达哥拉斯在朋友家发现勾股定理的故事,激发学生的学习兴趣,为新课的学习营造良好的氛围。
2.自主探究,合作交流:引导学生通过观察、分析、归纳等思维活动,发现勾股定理。在此基础上,组织学生进行小组讨论,分享各自的发现和证明方法,培养学生的合作意识和交流能力。
2.提问引导:请学生们思考直角三角形的特点,回顾已学的直角三角形相关知识,为新课的学习做好铺垫。
(二)讲授新知
1.勾股定理的概念及表述:
"勾股定理是关于直角三角形的一个基本定理,它描述了直角三角形三条边之间的关系。具体来说,直角三角形的两条直角边的平方和等于斜边的平方。"
2.勾股定理的证明:
a.利用具体的直角三角形进行演示,引导学生观察、思考、发现勾股定理。
8.融入数学文化,培养人文素养:在教学过程中,适时融入数学历史文化,让学生了解勾股定理在人类文明发展中的地位和作用,培养他们的人文素养。
四、教学内容与过程
(一)导入新课
1.情境引入:通过古希腊数学家毕达哥拉斯在朋友家发现勾股定理的故事,引发学生对勾股定理的好奇心,激发学习兴趣。
"同学们,你们听说过古希腊数学家毕达哥拉斯吗?今天我们要学习的勾股定理,就是他在一次偶然的机会中发现的。让我们一起走进这个故事,探寻勾股定理的奥秘吧!"
"有兴趣的同学可以研究一下勾股数在三角形中的应用,以及它与三角形类型之间的关系,这将有助于你们更深入地理解勾股定理。"
八年级数学《勾股定理》教案优秀10篇
八年级数学《勾股定理》教案优秀10篇年级数学《勾股定理》教案1[教学分析]勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。
它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活〞正是这章书所表达的主要思想。
教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比拟、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。
本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题的形式呈现了勾股定理。
关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。
之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题中的应用,使学生对勾股定理的作用有一定的认识。
[教学目标]一、知识与技能1、探索直角三角形三边关系,掌握勾股定理,开展几何思维。
2、应用勾股定理解决简单的实际问题3学会简单的合情推理与数学说理二、过程与方法引入两段中西关于勾股定理的史料,激发同学们的兴趣,引发同学们的思考。
通过动手操作探索与发现直角三角形三边关系,经历小组协作与讨论,进一步开展合作交流能力和数学表达能力,并感受勾股定理的应用知识。
三、情感与态度目标通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,学生亲自动手对勾股定理进行探索与验证,培养学生的合作交流意识和探索精神,以及自主学习的能力。
四、重点与难点1、探索和证明勾股定理2熟练运用勾股定理[教学过程]一、创设情景,揭示课题1、教师展示图片并介绍第一情景以中国最早的一部数学著作——《周髀算经》的开头为引,介绍周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔。
人教版八年级数学下册---《勾股定理的逆定理》教案设计
人教版八年级数学下册---《勾股定理的逆定理》教案设计新课一、证明勾股定理的逆定理1.请大家自行分析命题的题设、结论,画出图形,写出已知和求证并证明.已知:ABC∆的三边长分别,,a b c满足222a b c+=.求证:ABC∆是直角三角形.证明:画Rt'''A B C∆,使''B C a=,''A C b=,'90C∠=︒.2222''''''Rt ABCA B B C A C a b∆=+=+在中,222a b c+=,2''A B c c∴==.'''ABC A B C∴∆∆在和中,''''''AB c A BBC a B CAC b A C==⎧⎪==⎨⎪==⎩'''.ABC A B C∴∆≅∆'90.C C∴∠=∠=︒ABC∴∆是直角三角形.2.归纳定理(1)探讨新命题与勾股定理的关系命题和结论正好相反的两个命题叫做互逆命题.原命题:勾股定理如果直角三角形的两条直角边长分别,,a b斜边长为c,那么222a b c+=.逆命题:勾股定理逆定理如果三角形的三边长分别,,a b c满足222a b c+=,那么这个三角形为直角三角形.(2)勾股定理逆定理的作用——判定直角三角形的一个依据.引导学生证明勾股定理的逆定理,体会从猜想到证明的认识几何图形的过程,提升直观想象和推理的素养.引导学生从文字语言、图形语言、符号语言去认识勾股定理.例题二、应用例1 写出下列命题的逆命题,这些命题的逆命题成立吗?⑴内错角相等,两条直线平行;⑵对顶角相等.例1设计意图:理解原命题与逆命题的关系.(1)22a b += 2217c ==22a b ∴+=90C ∴∠=ABC ∴∆1,(n >∴221n n -+>211,n >-∴22a b n +=(22c n =+( a ∴∴∠例3 在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且14CF CD =.求证:90.AEF ∠=︒分析:根据勾股定理的逆定理,判断90AEF ∠=︒,只要证222AE EF AF +=即可.所以分别在直角ABE ECF ADF ∆∆∆、、中计算AE EF AF 、、的长度即可.解:四边形ABCD 是正方形, AB BC CD AD ∴===,90B C D ∴∠=∠=∠=︒.设=4AB BC CD AD k ===,11444CF CD k k ∴===., 43DF CD CF k k k ∴=-=-=.E 是BC 的中点,114222BE CE BC k k ∴====.在Rt ABE ECF ADF ∆∆∆、、中, 222222=(4)(2)20AE AB BE k k k +=+=, 222222=(2)5EF EC CF k k k +=+=,222222=(4)325AF AD DF k k k +=+=()222AE EF AF ∴+=.90.(AEF ∴∠=︒勾股定理逆定理)例3. 综合运用勾股定理及其逆定理解决问题,提升数学推理的素养. 总结1. 学到了哪些知识?(1)勾股定理的逆定理的做用判定直角三角形的一个依据 (2)逆命题于原命题的什么关系?命题和结论正好相反,原命题成立,它的逆命题可能成立也可能不成立.2. 学到了哪些知识?(1)如何得到勾股定理的特殊 一般 猜想 证明 (2)如何证明勾股定理的逆定理? 构造直角三角形总结本节课所学知识,领悟数学方法.1. 写出下列命题的逆命题,这些命题的逆命题成立吗? ⑴同旁内角互补,两条直线平行;⑵如果两个实数相等,那么它们的平方相等。
第十七章勾股定理(教案)2023-2024学年人教版数学八年级下册
6.增强学生的合作交流意识,通过小组讨论和合作解决问题,培养学生的团队协作能力和沟通技巧。
三、教学难点与重点
1.教学重点
-理解并掌握勾股定理的表述及其在直角三角形中的应用,即直角三角形两直角边的平方和等于斜边的平方。
b.通过实际案例和练习题,指导学生识别直角三角形的特征,强调在实际问题中如何定位直角三角形,并准确应用勾股定理。
c.对于勾股定理逆定理的理解,教师可以通过构造非直角三角形和直角三角形的对比,让学生通过观察和分析,总结出直角三角形的特性,从而掌握判断方法。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算直角三角形斜边长度的情况?”比如,测量旗杆的高度或者计算建筑物与地面的距离。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了勾股定理的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对勾股定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的表述及其计算方法。对于难点部分,如定理的证明,我会通过直观的图形演示和逐步的逻辑推理来帮助大家理解。
(三)实践活动(用时10分钟)
八年级数学《勾股定理》教案8篇
八年级数学《勾股定理》教案8篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如心得体会、工作报告、工作总结、工作计划、申请书、读后感、作文大全、合同范本、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as insights, work reports, work summaries, work plans, application forms, post reading reviews, essay summaries, contract templates, speech drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!八年级数学《勾股定理》教案8篇本文将为大家介绍八年级数学《勾股定理》教案8篇。
人教版八年级数学下册第17章《勾股定理》复习优秀教学案例
此外,我还注重引导学生关注数学与生活的联系,让学生认识到学习数学的意义和价值。在课堂总结环节,我组织学生进行交流分享,使他们在分享自己的学习心得和经验的同时,也能从他人的发言中获得启发,提高自己的数学素养。
3.关注学生的情感态度和价值观的培养,通过对学生的评价,引导学生树立正确的数学观念和价值观。
4.结合评价结果,及时调整教学策略和方法,为学生的个性化学习提供指导和支持。
四、教学内容与Байду номын сангаас程
(一)导入新课
1.利用多媒体展示一个房屋测量场景,提出实际问题:“如何测量房屋的对角线长度?”引导学生思考并回忆起勾股定理。
2.引导学生回顾已学的勾股定理内容,为新课的学习做好铺垫。
3.激发学生的学习兴趣,明确本节课的学习目标和内容。
(二)讲授新知
1.通过几何画板软件演示勾股定理的推导过程,让学生直观地理解勾股定理的含义。
2.讲解勾股定理的数学原理和证明方法,让学生理解并掌握勾股定理的推导过程。
3.结合实例,讲解勾股定理在实际问题中的应用,让学生感受勾股定理的实际意义和价值。
3.关注小组合作的过程,引导学生进行有效的沟通和协作,培养学生的倾听、表达和交流能力。
(四)反思与评价
1.在教学过程中,引导学生进行自我反思,让学生思考自己的学习目标、学习过程和学习结果,提高学生的自我认知和自我评价能力。
2.采用多元化的评价方式,如学生自评、同伴评价、教师评价等,全面、客观地评价学生的学习情况。
2.强调勾股定理在数学中的重要性和实际意义,激发学生对数学学科的兴趣和热爱。
2024年八年级数学《勾股定理》教案(通用篇)
2024年八年级数学《勾股定理》教案(通用篇)八年级数学《勾股定理》教案 1教学目标1、知识与技能目标学会观察图形,勇于探索图形间的关系,培养学生的空间观念.2、过程与方法(1)经历一般规律的探索过程,发展学生的抽象思维能力.(2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.3、情感态度与价值观(1)通过有趣的问题提高学习数学的兴趣.(2)在解决实际问题的过程中,体验数学学习的实用性.教学重点:探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.教学难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.教学准备:多媒体教学过程:第一环节:创设情境,引入新课(3分钟,学生观察、猜想)情景:如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的.蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?第二环节:合作探究(15分钟,学生分组合作探究)学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。
让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算.学生汇总了四种方案:(1)(2)(3)(4)学生很容易算出:情形(1)中A→B的路线长为:AA’+d,情形(2)中A→B的路线长为:AA’+πd/2所以情形(1)的路线比情形(2)要短.学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA’剪开圆柱得到矩形,前三种情形A→B是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)最短.如图:(1)中A→B的路线长为:AA’+d;(2)中A→B的路线长为:AA’+A’B>AB;(3)中A→B的路线长为:AO+OB>AB;(4)中A→B的路线长为:AB.得出结论:利用展开图中两点之间,线段最短解决问题.在这个环节中,可让学生沿母线剪开圆柱体,具体观察.接下来后提问:怎样计算AB?在Rt△AA′B中,利用勾股定理可得,若已知圆柱体高为12c,底面半径为3c,π取3,则.第三环节:做一做(7分钟,学生合作探究)教材23页李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,(1)你能替他想办法完成任务吗?(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD 长是50厘米,AD边垂直于AB边吗?为什么?(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?第四环节:巩固练习(10分钟,学生独立完成)1.甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6/h的速度向正东行走,1小时后乙出发,他以5/h的速度向正北行走.上午10:00,甲、乙两人相距多远?2.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离.3.有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5米,问这根铁棒有多长?第五环节课堂小结(3分钟,师生问答)内容:1、如何利用勾股定理及逆定理解决最短路程问题?第六环节:布置作业(2分钟,学生分别记录)内容:作业:1.课本习题1.5第1,2,3题.要求:A组(学优生):1、2、3B组(中等生):1、2C组(后三分之一生):1板书设计:教学反思:八年级数学《勾股定理》教案 21、勾股定理勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2.即直角三角形两直角的平方和等于斜边的平方.因此,在运用勾股定理计算三角形的边长时,要注意如下三点:(1)注意勾股定理的使用条件:只对直角三角形适用,而不适用于锐角三角形和钝角三角形;(2)注意分清斜边和直角边,避免盲目代入公式致错;(3)注意勾股定理公式的变形:在直角三角形中,已知任意两边,可求第三边长.即c2=a2+b2,a2=c2-b2,b2=c2-a2.2.学会用拼图法验证勾股定理拼图法验证勾股定理的基本思想是:借助于图形的面积来验证,依据是对图形经过割补、拼接后面积不变的原理.如,利用四个如图1所示的直角三角形三角形,拼出如图2所示的三个图形.请读者证明.如上图示,在图(1)中,利用图1边长为a,b,c的'四个直角三角形拼成的一个以c为边长的正方形,则图2(1)中的小正方形的边长为(b-a),面积为(b-a)2,四个直角三角形的面积为4×ab=2ab.由图(1)可知,大正方形的面积=四个直角三角形的面积+小正方形的的面积,即c2=(b-a)2+2ab,则a2+b2=c2问题得证.请同学们自己证明图(2)、(3).3.在数轴上表示无理数将在数轴上表示无理数的问题转化为化长为无理数的线段长问题.第一步:利用勾股定理拆分出哪两条线段长的平方和等于所画线段(斜边)长的平方,注意一般其中一条线段的长是整数;第二步:以数轴原点为直角三角形斜边的顶点,构造直角三角形;第三步:以数轴原点圆心,以斜边长为半径画弧,即可在数轴上找到表示该无理数的点.二、典例精析例1如果直角三角形的斜边与一条直角边的长分别是13cm和5cm,那么这个直角三角形的面积是cm2.分析:欲求直角三角形的面积,已知一直角三角形的斜边与一条直角边的长,则求得另一直角边的长即可.根据勾股定理公式的变形,可求得.解:由勾股定理,得132-52=144,所以另一条直角边的长为12.所以这个直角三角形的面积是×12×5=30(cm2).例2如图3(1),一只蚂蚁沿棱长为a的正方体表面从顶点A爬到顶点B,则它走过的最短路程为()A.B.C.3aD.分析:本题显然与例2属同种类型,思路相同.但正方体的各棱长相等,因此只有一种展开图.解:将正方体侧面展开八年级数学《勾股定理》教案 3重点、难点分析本节内容的重点是勾股定理的逆定理及其应用。
新人教版八年级下数学精品教案:第十七章 勾股定理
17.1 勾股定理第1课时 勾股定1.经历探索及验证勾股定理的过程,体会数形结合的思想;(重点)2.掌握勾股定理,并运用它解决简单的计算题;(重点)3.了解利用拼图验证勾股定理的方法.(难点)一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究探究点一:勾股定理【类型一】 直接运用勾股定理如图,在△ABC 中,∠ACB =90°,AB =13cm ,BC =5cm ,CD ⊥AB 于D ,求:(1)AC 的长;(2)S △ABC ;(3)CD 的长.解析:(1)由于在△ABC 中,∠ACB =90°,AB =13cm ,BC =5cm ,根据勾股定理即可求出AC 的长;(2)直接利用三角形的面积公式即可求出S △ABC ;(3)根据面积公式得到CD ·AB =BC ·AC 即可求出CD .解:(1)∵在△ABC 中,∠ACB =90°,AB =13cm ,BC =5cm ,∴AC =AB 2-BC 2=12cm ;(2)S △ABC =12CB ·AC =12×5×12=30(cm 2); (3)∵S △ABC =12AC ·BC =12CD ·AB ,∴CD =AC ·BC AB =6013cm. 方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.【类型二】 分类讨论思想在勾股定理中的应用在△ABC 中,AB =15,AC =13,BC 边上的高AD =12,试求△ABC 的周长.解析:本题应分△ABC 为锐角三角形和钝角三角形两种情况进行讨论.解:此题应分两种情况说明:(1)当△ABC 为锐角三角形时,如图①所示.在Rt △ABD 中,BD =AB 2-AD 2=152-122=9.在Rt △ACD 中,CD =AC 2-AD 2=132-122=5,∴BC =5+9=14,∴△ABC 的周长为15+13+14=42;(2)当△ABC 为钝角三角形时,如图②所示.在Rt △ABD 中,BD =AB 2-AD 2=152-122=9.在Rt △ACD 中,CD =AC 2-AD 2=132-122=5,∴BC =9-5=4,∴△ABC 的周长为15+13+4=32.∴当△ABC 为锐角三角形时,△ABC 的周长为42;当△ABC 为钝角三角形时,△ABC 的周长为32.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.【类型三】 勾股定理的证明探索与研究:方法1:如图:对任意的符合条件的直角三角形ABC 绕其顶点A 旋转90°得直角三角形AED ,所以∠BAE =90°,且四边形ACFD 是一个正方形,它的面积和四边形ABFE 的面积相等,而四边形ABFE 的面积等于Rt △BAE 和Rt △BFE 的面积之和.根据图示写出证明勾股定理的过程;方法2:如图:该图形是由任意的符合条件的两个全等的Rt △BEA 和Rt △ACD 拼成的,你能根据图示再写出一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE 面积等于Rt △BAE 和Rt △BFE 的面积之和进行解答;方法2:根据△ABC 和Rt △ACD 的面积之和等于Rt △ABD 和△BCD 的面积之和解答.解:方法1:S 正方形ACFD =S 四边形ABFE =S △BAE +S △BFE ,即b 2=12c 2+12(b +a )(b -a ),整理得2b 2=c 2+b 2-a 2,∴a 2+b 2=c 2;方法2:此图也可以看成Rt △BEA 绕其直角顶点E 顺时针旋转90°,再向下平移得到.∵S四边形ABCD =S △ABC +S △ACD ,S 四边形ABCD =S △ABD +S △BCD ,∴S △ABC +S △ACD =S △ABD +S △BCD ,即12b 2+12ab =12c 2+12a (b -a ),整理得b 2+ab =c 2+a (b -a ),b 2+ab =c 2+ab -a 2,∴a 2+b 2=c 2. 方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.探究点二:勾股定理与图形的面积如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别为2,5,1,2.则最大的正方形E 的面积是________.解析:根据勾股定理的几何意义,可得正方形A 、B 的面积和为S 1,正方形C 、D 的面积和为S 2,S 1+S 2=S 3,即S 3=2+5+1+2=10.故答案为10.方法总结:能够发现正方形A 、B 、C 、D 的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A 、B 、C 、D 的面积和即是最大正方形的面积.三、板书设计1.勾股定理如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.2.勾股定理的证明“赵爽弦图”、“刘徽青朱出入图”、“詹姆斯·加菲尔德拼图”、“毕达哥拉斯图”.3.勾股定理与图形的面积课堂教学中,要注意调动学生的积极性.让学生满怀激情地投入到学习中,提高课堂效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.第2课时 勾股定理的应用1.熟练运用勾股定理解决实际问题;(重点)2.掌握勾股定理的简单应用,探究最短距离问题.(难点)一、情境导入如图,在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B 处,恰好一只在A 处的蚂蚁捕捉到这一信息,于是它想从A 处爬向B 处,你们想一想,蚂蚁怎么走最近?二、合作探究探究点一:勾股定理的实际应用【类型一】 勾股定理在实际问题中的应用如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为13米,此人以0.5米每秒的速度收绳.问6秒后船向岸边移动了多少米(假设绳子始终是直的,结果保留根号)?解析:开始时,AC =5米,BC =13米,即可求得AB 的值,6秒后根据BC ,AC 长度即可求得AB 的值,然后解答即可.解:在Rt △ABC 中,BC =13米,AC =5米,则AB =BC 2-AC 2=12米.6秒后,B ′C =13-0.5×6=10米,则AB ′=B ′C 2-AC 2=53(米),则船向岸边移动的距离为(12-53)米.方法总结:本题直接考查勾股定理在实际生活中的运用,可建立合理的数学模型,将已知条件转化到同一直角三角形中求解.【类型二】 利用勾股定理解决方位角问题如图所示,在一次夏令营活动中,小明坐车从营地A 点出发,沿北偏东60°方向走了1003km 到达B 点,然后再沿北偏西30°方向走了100km 到达目的地C 点,求出A 、C 两点之间的距离.解析:根据所走的方向可判断出△ABC 是直角三角形,根据勾股定理可求出解.解:∵AD ∥BE ,∴∠ABE =∠DAB =60°.∵∠CBF =30°,∴∠ABC =180°-∠ABE -∠CBF =180°-60°-30°=90°.在Rt △ABC 中,AB =1003km ,BC =100km ,∴AC =AB 2+BC 2=(1003)2+1002=200(km),∴A 、C 两点之间的距离为200km.方法总结:先确定△ABC 是直角三角形,再根据各边长,用勾股定理可求出AC 的长.【类型三】 利用勾股定理解决立体图形最短距离问题如图,长方体的长BE =15cm ,宽AB =10cm ,高AD =20cm ,点M 在CH 上,且CM =5cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点M ,需要爬行的最短距离是多少?解:分两种情况比较最短距离:如图①所示,蚂蚁爬行最短路线为AM ,AM =102+(20+5)2=529(cm),如图②所示,蚂蚁爬行最短路线为AM ,AM =202+(10+5)2=25(cm).∵529>25,∴第二种短些,此时最短距离为25cm.答:需要爬行的最短距离是25cm.方法总结:因为长方体的展开图不止一种情况,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.不过要留意展开时的多种情况,虽然看似很多,但由于长方体的对面是相同的,所以归纳起来只需讨论三种情况:前面和右面展开,前面和上面展开,左面和上面展开,从而比较取其最小值即可.【类型四】 运用勾股定理解决折叠中的有关计算如图,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B ′处,点A 的对应点为A ′,且B ′C =3,则AM 的长是( )A .1.5B .2C .2.25D .2.5解析:连接BM ,MB ′.设AM =x ,在Rt △ABM 中,AB 2+AM 2=BM 2.在Rt △MDB ′中,MD 2+DB ′2.∵MB =MB ′,∴AB 2+AM 2=BM 2=B ′M 2=MD 2+DB ′2,即92+x 2=(9-x )2+(9-3)2,解得x=2,即AM =2.故选B.方法总结:解题的关键是设出适当的线段的长度为x ,然后用含有x 的式子表示其他线段,然后在直角三角形中利用勾股定理列方程解答.【类型五】 勾股定理与方程思想、数形结合思想的应用如图,在树上距地面10m的D处有两只猴子,它们同时发现地面上C处有一筐水果,一只猴子从D处向上爬到树顶A处,然后利用拉在A处的滑绳AC滑到C处,另一只猴子从D处先滑到地面B,再由B跑到C,已知两猴子所经过的路程都是15m,求树高AB.解析:在Rt△ABC中,∠B=90°,则满足AB2+BC2=AC2.设BC=a m,AC=b m,AD =x m,根据两只猴子经过的路程一样可列方程组,从而求出x的值,即可计算树高.解:在Rt△ABC中,∠B=90°,设BC=a m,AC=b m,AD=x m.∵两猴子所经过的路程都是15m,则10+a=x+b=15m.∴a=5,b=15-x.又∵在Rt△ABC中,由勾股定理得(10+x)2+a2=b2,∴(10+x)2+52=(15-x)2,解得x=2,即AD=2米.∴AB=AD+DB=2+10=12(米).答:树高AB为12米.方法总结:勾股定理表达式中有三个量,如果条件中只有一个己知量,通常需要巧设未知数,灵活地寻找题中的等量关系,然后利用勾股定理列方程求解.探究点二:勾股定理与数轴如图所示,数轴上点A所表示的数为a,则a的值是()A.5+1 B.-5+1C.5-1D. 5解析:先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A点的坐标.图中的直角三角形的两直角边为1和2,∴斜边长为12+22=5,∴-1到A的距离是 5.那么点A所表示的数为5-1.故选C.方法总结:本题考查的是勾股定理及两点间的距离公式,解答此题时要注意,确定点A 的位置,再根据A的位置来确定a的值.三、板书设计1.勾股定理的应用方位角问题;路程最短问题;折叠问题;数形结合思想.2.勾股定理与数轴本节课充分锻炼了学生动手操作能力、分类比较能力、讨论交流能力和空间想象能力,让学生充分体验到了数学思想的魅力和知识创新的乐趣,突现教学过程中的师生互动,使学生真正成为主动学习者.17.2 勾股定理的逆定理第1课时 勾股定理的逆定理1.能利用勾股定理的逆定理判定一个三角形是否为直角三角形;(重点)2.灵活运用勾股定理及其逆定理解决问题;(难点)3.理解原命题、逆命题、逆定理的概念及关系.(重点)一、情境导入古埃及人曾经用下面的方法画直角:将一根长绳打上等距离的13个结,然后用桩钉成一个三角形(如图),他们认为其中一个角便是直角.你知道这是什么道理吗?二、合作探究探究点一:勾股定理的逆定理【类型一】 判断三角形的形状如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .以上答案都不对解析:∵正方形小方格边长为1,∴BC =52+52=52,AC =32+32=32,AB =22+82=68.在△ABC 中,∵BC 2+AC 2=50+18=68,AB 2=68,∴BC 2+AC 2=AB 2,∴△ABC 是直角三角形.故选A.方法总结:要判断一个角是不是直角,可构造出三角形,然后求出三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【类型二】 利用勾股定理的逆定理证明垂直关系如图,已知在正方形ABCD 中,AE =EB ,AF=14AD .求证:CE ⊥EF .解析:根据题设提供的信息,可将需证明垂直关系的两条线段转化到同一直角三角形中,运用勾股定理的逆定理进行证明.证明:连接CF .设正方形的边长为4,∵四边形ABCD 为正方形,∴AB =BC =CD =DA=4.∵点E 为AB 中点,AF =14AD ,∴AE =BE =2,AF =1,DF =3.由勾股定理得EF 2=12+22=5,EC 2=22+42=20,FC 2=42+32=25.∵EF 2+EC 2=FC 2,∴△CFE 是直角三角形,且∠FEC =90°,即EF ⊥CE .方法总结:利用勾股定理的逆定理可以判断一个三角形是否为直角三角形,所以此定理也是判定垂直关系的一个主要的方法.【类型三】 勾股数判断下列几组数中,一定是勾股数的是( )A .1,2,3B .8,15,17C .7,14,15 D.35,45,1 解析:选项A 不是,因为2和3不是正整数;选项B 是,因为82+152=172,且8、15、17是正整数;选项C 不是,因为72+142≠152;选项D 不是,因为35与45不是正整数.故选B.方法总结:勾股数必须满足:①三个数必须是正整数,例如:2.5、6、6.5满足a 2+b 2=c 2,但是它们不是正整数,所以它们不是勾股数;②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.【类型四】 运用勾股定理的逆定理解决面积问题如图,在四边形ABCD 中,∠B =90°,AB =8,BC =6,CD =24,AD =26,求四边形ABCD 的面积.解析:连接AC ,根据已知条件可求出AC ,再运用勾股定理可证△ACD 为直角三角形,然后可分别求出两个直角三角形的面积,两者面积相加即为四边形ABCD 的面积.解:连接AC .∵∠B =90°,∴△ABC 为直角三角形,∴AC 2=AB 2+BC 2=82+62=102,∴AC =10.在△ACD 中,∵AC 2+CD 2=100+576=676,AD 2=262=676,∴AC 2+CD 2=AD 2,∴△ACD 为直角三角形,且∠ACD =90°.∴S 四边形ABCD =S △ABC +S △ACD =12×6×8+12×10×24=144.方法总结:将求四边形面积的问题可转化为求两个直角三角形面积和的问题,解题时要利用题目信息构造出直角三角形,如角度,三边长度等.探究点二:互逆命题与互逆定理写出下列各命题的逆命题,并判断其逆命题是真命题还是假命题.(1)两直线平行,同旁内角互补;(2)在同一平面内,垂直于同一条直线的两直线平行;(3)相等的角是内错角;(4)有一个角是60°的三角形是等边三角形.解析:求一个命题的逆命题时,分别找出各命题的题设和结论将其互换即可得原命题的逆命题.解:(1)同旁内角互补,两直线平行,真命题;(2)如果两条直线平行,那么这两条直线垂直于同一条直线(在同一平面内),真命题;(3)内错角相等,假命题;(4)等边三角形有一个角是60°,真命题.方法总结:判断一个命题是真命题需要进行逻辑推理,判断一个命题是假命题只需要举出反例即可.三、板书设计1.勾股定理的逆定理及勾股数如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.2.互逆命题与互逆定理在本课时教学过程中,应以师生共同探讨为主.激励学生回答问题,激发学生的求知欲.课堂上师生互动频繁,既保证课堂教学进度,又提高课堂学习效率.学生在探讨过程中也加深了对知识的理解和记忆.第2课时勾股定理的逆定理的应用1.进一步理解勾股定理的逆定理;(重点)2.灵活运用勾股定理及逆定理解决实际问题.(难点)一、情境导入某港口位于东西方向的海岸线上,“远望号”“海天号”两艘轮船同时离开港口,各自沿一固定的方向航行,“远望号”每小时航行16海里,“海天号”每小时航行12海里,它们离开港口1个半小时后相距30海里,如果知道“远望号”沿东北方向航行,能知道“海天号”沿哪个方向航行吗?二、合作探究探究点:勾股定理的逆定理的应用【类型一】运用勾股定理的逆定理求角度如图,已知点P是等边△ABC内一点,P A=3,PB=4,PC=5,求∠APB的度数.解析:将△BPC绕点B逆时针旋转60°得△BEA,连接EP,判断△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数.解:∵△ABC为等边三角形,∴BA=BC.可将△BPC绕点B逆时针旋转60°得△BEA,连EP,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°.在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+P A2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.方法总结:本题考查了等边三角形的判定与性质以及勾股定理的逆定理.解决问题的关键是根据题意构造△APE为直角三角形.【类型二】运用勾股定理的逆定理求边长在△ABC中,D为BC边上的点,AB=13,AD=12,CD=9,AC=15,求BD的长.解析:根据勾股定理的逆定理可判断出△ACD为直角三角形,即∠ADC=∠ADB=90°.在Rt△ABD中利用勾股定理可得出BD的长度.解:∵在△ADC中,AD=12,CD=9,AC=15,∴AC2=AD2+CD2,∴△ADC是直角三角形,∠ADC=∠ADB=90°,∴△ADB是直角三角形.在Rt△ADB中,∵AD=12,AB =13,∴BD=AB2-AD2=5,∴BD的长为5.方法总结:解题时可先通过勾股定理的逆定理证明一个三角形是直角三角形,然后再进行转化,最后求解,这种方法常用在解有公共直角或两直角互为邻补角的两个直角三角形的图形中.【类型三】勾股定理逆定理的实际应用如图,是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB=DC=8m,AD=BC=6m,AC=9m,请你运用所学知识帮他检验一下挖的是否合格?解析:把实际问题转化成数学问题来解决,运用直角三角形的判别条件,验证它是否为直角三角形.解:∵AB=DC=8m,AD=BC=6m,∴AB2+BC2=82+62=64+36=100.又∵AC2=92=81,∴AB2+BC2≠AC2,∴∠ABC≠90°,∴该农民挖的不合格.方法总结:解答此类问题,一般是根据已知的数据先运用勾股定理的逆定理判断一个三角形是否是直角三角形,然后再作进一步解答.【类型四】运用勾股定理的逆定理解决方位角问题第 11 页 共 11 页如图,南北向MN 为我国领海线,即MN 以西为我国领海,以东为公海,上午9时50分,我国反走私A 艇发现正东方有一走私艇以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B 密切注意.反走私艇A 和走私艇C 的距离是13海里,A 、B 两艇的距离是5海里;反走私艇B 测得距离C 艇12海里,若走私艇C 的速度不变,最早会在什么时候进入我国领海?解析:已知走私船的速度,求出走私船所走的路程即可得出走私船所用的时间,即可得出走私船何时能进入我国领海.解题的关键是得出走私船所走的路程,根据题意,CE 即为走私船所走的路程.由题意可知,△ABE 和△ABC 均为直角三角形,可分别解这两个直角三角形即可得出.解:设MN 与AC 相交于E ,则∠BEC =90°.∵AB 2+BC 2=52+122=132=AC 2,∴△ABC 为直角三角形,且∠ABC =90°.∵MN ⊥CE ,∴走私艇C 进入我国领海的最短距离是CE .由S △ABC =12AB ·BC =12AC ·BE ,得BE =6013海里.由CE 2+BE 2=122,得CE =14413海里,∴14413÷13=144169≈0.85(小时)=51(分钟),9时50分+51分=10时41分. 答:走私艇C 最早在10时41分进入我国领海.方法总结:用数学几何知识解决实际问题的关键是建立合适的数学模型,注意提炼题干中的有效信息,并转化成数学语言.三、板书设计1.利用勾股定理逆定理求角的度数2.利用勾股定理逆定理求线段的长3.利用勾股定理逆定理解决实际问题在本节课的教学活动中,尽量给学生充足的时间和空间,让学生以平等的身份参与到学习活动中去,教师要帮助、指导学生进行实践活动,这样既锻炼了学生的实践、观察能力,又在教学中渗透了人文和探究精神,体现了“数学源于生活、寓于生活、用于生活”的教育思想.。
人教版数学八年级下册17.1第1课时《 勾股定理》教案
人教版数学八年级下册17.1第1课时《勾股定理》教案一. 教材分析《勾股定理》是中学数学中的一个重要定理,它揭示了直角三角形三边之间的一种简单而美妙的关系。
人教版八年级下册第17.1节《勾股定理》主要介绍了勾股定理的证明和应用。
通过这一节的学习,学生可以加深对勾股定理的理解,提高解决几何问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了相似三角形的性质、全等三角形的判定和性质等基础知识。
但勾股定理的证明和应用需要学生具备较强的逻辑思维能力和空间想象能力。
因此,在教学过程中,教师需要关注学生的学习基础,针对不同学生进行有针对性的教学。
三. 教学目标1.理解勾股定理的证明过程,掌握勾股定理的内容。
2.能够运用勾股定理解决实际问题,提高解决问题的能力。
3.培养学生的逻辑思维能力和空间想象能力。
四. 教学重难点1.勾股定理的证明过程。
2.勾股定理在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活中的实例,引发学生对勾股定理的思考,激发学生的学习兴趣。
2.演示教学法:通过几何画板等软件,直观地展示勾股定理的证明过程。
3.问题驱动法:引导学生通过解决问题,深入理解勾股定理的内涵。
4.小组合作法:鼓励学生分组讨论,培养学生的团队协作能力。
六. 教学准备1.教学课件:制作勾股定理的课件,包括证明过程的动画演示。
2.几何画板:用于展示勾股定理的证明过程。
3.练习题:准备一些有关勾股定理的应用题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过展示一些生活中的实例,如篮球架、自行车等,引导学生思考这些实例中是否存在勾股定理的应用。
让学生感受到勾股定理在现实生活中的重要性。
2.呈现(10分钟)利用几何画板,演示勾股定理的证明过程。
首先,展示一个直角三角形,然后通过动态变化,引导学生发现直角三角形三边之间存在的关系。
最后,给出勾股定理的数学表达式。
3.操练(10分钟)让学生分组讨论,运用勾股定理解决一些实际问题。
新人教版-八年级下数学教案-第十八章--勾股定理
第十八章 勾股定理18.1 勾股定理一、教学目标1.让学生了解勾股定理,掌握勾股定理的内容,会用一定的方法证明勾股定理。
2.通过学习让学生培养在实际生活中善于发现问题并总结规律的意识和能力。
3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情和对数学的喜爱。
二、重点、难点1.重点:勾股定理的内容及证明。
2.难点:勾股定理的证明。
三、课堂引入介绍毕达哥拉斯(公元前572----前492年)古希腊著名的哲学家、数学家、天文学家。
相传有一次他在朋友家做客时,发现朋友家用砖铺成的地面中反映了A 、B 、C 三者面积之间的数量关系,进而发现直角三角形三边的某种数量关系.毕达哥拉斯用这个事实可以说明了最初的勾股定理,尤其是在两千多年前,是非常了不起的成就。
让学生画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。
以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。
再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。
你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。
对于任意的直角三角形也有这个特点吗?四、例习题分析“赵爽弦图”中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。
最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。
赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。
例已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。
求证:a 2+b 2=c 2。
分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。
人教版八年级下册第17章勾股定理教学设计
二、学情分析
八年级下册的学生已经具备了一定的数学基础,掌握了基本的几何知识和代数运算。在此基础上,他们对勾股定理的学习将更加深入地理解直角三角形的性质,并为后续学习相似三角形、解直角三角形等内容奠定基础。学生在这个阶段好奇心强,求知欲旺盛,但逻辑思维能力和空间想象能力仍需进一步培养。此外,部分学生可能在学习过程中对几何证明产生恐惧心理,需要教师关注并引导。因此,在教学勾股定理时,教师应关注以下几点:
5.着重培养学生的几何直观和空间想象能力,为后续学习打下坚实基础。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握勾股定理的概念及表述。
2.掌握勾股定理的证明方法,能运用定理解决实际问题。
3.培养学生的逻辑思维能力和空间想象能力。
(二)教学设想
1.教学导入:
-通过介绍勾股定理的历史背景,引发学生对勾股定理的好奇心,激发学习兴趣。
4.设计丰富的例题和练习,引导学生运用勾股定理解决实际问题,提高学生的应用能力和解题技巧。
(三)情感态度与价值观
1.培养学生对勾股定理的敬畏之心,认识到数学的简洁美和规律美,增强学生对数学的热爱。
2.引导学生体验探究过程,培养学生勇于探索、克服困难的精神,提高学生的自信心。
3.通过勾股定理在现实生活中的应用,使学生认识到数学与现实生活的紧密联系,培养学生的应用意识。
-利用多媒体展示直角三角形图像,让学生观察并思考直角三角形边长之间的关系。
2.新课导入:
-采用探究式教学法,引导学生通过观察、猜想、验证等步骤发现勾股定理。
-结合实际例题,让学生感受勾股定理在实际生活中的应用,培养学生的应用意识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版八年级下册数学第十七章 勾股定理教案勾股定理(一)一、教学目标1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2.培养在实际生活中发现问题总结规律的意识和能力。
3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。
二、教学重点、难点1.重点:勾股定理的内容及证明。
2.难点:勾股定理的证明。
三、课堂引入目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。
我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。
这个事实可以说明勾股定理的重大意义。
尤其是在两千年前,是非常了不起的成就。
让学生画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。
以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。
再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。
你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。
对于任意的直角三角形也有这个性质吗?命题1:如果直角三角形的两直角边分别为a 、b ,斜边为c ,那么 。
四、合作探究:方法1:已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。
求证:a 2+b 2=c 2。
分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。
⑵拼成如图所示,其等量关系为:4S △+S 小正=S 大正 AB4×21ab +(b -a )2=c 2,化简可证。
⑶发挥学生的想象能力拼出不同的图形,进行证明。
⑷ 勾股定理的证明方法,达300余种。
这个古老的精彩的证法,出自我国古代无名数学家之手。
激发学生的民族自豪感,和爱国情怀。
方法2:已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。
求证:a 2+b 2=c 2。
分析:左右两边的正方形边长相等,则两个正方形的面积相等。
左边S=4×21ab +c 2 右边S=(a+b )2 左边和右边面积相等,即4×21ab +c 2=(a+b )2 化简可证。
五、课堂小结六、作业 P28页习题第1题七、教学反思勾股定理(二)一、教学目标1.会用勾股定理进行简单的计算。
2.树立数形结合的思想、分类讨论思想。
二、重点、难点1.重点:勾股定理的简单计算。
2.难点:勾股定理的灵活运用。
三、课堂引入复习勾股定理的文字叙述;勾股定理的符号语言及变形。
学习勾股定理重在应用。
四、合作探究问题(1)在长方形ABCD 中AB 、BC 、AC 大小关系?(2)一个门框的尺寸如图1所示.①若有一块长3米,宽0.8米的薄木板,问怎样从门框通过? ②若薄木板长3米,宽1.5米呢?③若薄木板长3米,宽2.2米呢?为什么?bbbb a a 1mA例:如图2,一个3米长的梯子AB,斜着靠在竖直的墙AO上,这时AO的距离为2.5米.①求梯子的底端B距墙角O多少米?②如果梯的顶端A沿墙下滑0.5米至C.算一算,底端滑动的距离近似值(结果保留两位小数).O五、课堂小结六、作业 P28页习题第2、5题七、教学反思勾股定理(三)一、教学目标1.会用勾股定理解决较综合的问题。
2.树立数形结合的思想。
二、重点、难点1.重点:勾股定理的综合应用。
2.难点:勾股定理的综合应用。
三、课堂引入复习勾股定理的内容。
本节课探究勾股定理的综合应用。
四、合作探究:分析:利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论。
如图,已知OA=OB,(1)说出数轴上点A所表示的数。
图17.2-2(2)在数轴上作出8对应的点?变式训练:在数轴上画出表示22,13--的点。
五、课堂小结六、作业 P28页习题第6题七、教学反思勾股定理的逆定理(一)一、教学目标1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。
2.探究勾股定理的逆定理的证明方法。
3.理解原命题、逆命题、逆定理的概念及关系。
二、重点、难点1.重点:掌握勾股定理的逆定理及证明。
2.难点:勾股定理的逆定理的证明。
三、课堂引入创设情境:⑴怎样判定一个三角形是等腰三角形?⑵怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想。
四、合作交流:1、如图17.2-2,若△ABC 的三边长a 、b 、c 满足222c b a=+,试证明△ABC是直角三角形,请简要地写出证明过程.分析:⑴注意命题证明的格式,首先要根据题意画出图形,然后写已知求证。
⑵如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角。
⑶利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决。
⑷先做直角,再截取两直角边相等,利用勾股定理计算斜边A 1B 1=c ,则通过三边对应相等的两个三角形全等可证。
⑸先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法。
充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受。
证明略。
2、.此定理与勾股定理之间有怎样的关系? (1)什么叫互为逆命题。
(2)什么叫互为逆定理。
(3)任何一个命题都有 _____,但任何一个定理未必都有 __ 3.说出下列命题的逆命题。
这些命题的逆命题成立吗? (1) 两直线平行,内错角相等;(2) 如果两个实数相等,那么它们的绝对值相等; (3) 全等三角形的对应角相等;(4) 角的内部到角的两边距离相等的点在角的平分线上。
分析:⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用。
⑵理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假。
解略。
例1:判断由线段a 、b 、c 组成的三角形是不是直角三角形: (1)17,8,15===c b a ; (2)15,14,13===c b a . (3)25,24,7===c b a ; (4)5.2,2,5.1===c b a ;五、课堂小结六、作业 P34页习题第1题七、教学反思勾股定理的逆定理(二)一、教学目标1.灵活应用勾股定理及逆定理解决实际问题。
2.进一步加深性质定理与判定定理之间关系的认识。
二、重点、难点1.重点:灵活应用勾股定理及逆定理解决实际问题。
2.难点:灵活应用勾股定理及逆定理解决实际问题。
三、课堂引入创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法。
四、自学展示:已知:如图,四边形ABCD ,AD ∥BC ,AB=4,BC=6,CD=5,AD=3。
求:四边形ABCD 的面积。
归纳:求不规则图形的面积时,要把不规则图形分析:⑴作DE ∥AB ,连结BD ,则可以证明△ABD ≌△EDB (ASA );⑵DE=AB=4,BE=AD=3,EC=EB=3;⑶在△DEC 中,3、4、5勾股数,△DEC 为直角三角形,DE ⊥BC ;⑷利用梯形面积公式可解,或利用三角形的面积。
五、合作探究例2 “远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗? 分析:⑴了解方位角,及方位名词;⑵依题意画出图形;⑶依题意可得PR=12×1.5=18,PQ=16×1.5=24, QR=30; ⑷因为242+182=302,PQ 2+PR 2=QR 2,根据勾股定理 的逆定理,知∠QPR=90°; ⑸∠PRS=∠QPR-∠QPS=45°。
六、课堂小结让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。
七、作业 P34页习题第3题八、教学反思EABCD E勾股定理复习(一)教学目标1.理解勾股定理的内容,已知直角三角形的两边,会运用勾股定理求第三边.2.勾股定理的应用.3.会运用勾股定理的逆定理,判断直角三角形. 重点:掌握勾股定理及其逆定理.难点:理解勾股定理及其逆定理的应用. 一、复习回顾在本章中,我们探索了直角三角形的三边关系,并在此基础上得到了勾股定理,并学习了如何利用拼图验证勾股定理,介绍了勾股定理的用途;本章后半部分学习了勾股定理的逆定理以及它的应用.其知识结构如下:1.勾股定理:(1)直角三角形两直角边的______和等于_______的平方.就是说,对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有: 这就是勾股定理.(2)勾股定理揭示了直角三角形___之间的数量关系,是解决有关线段计算问题的重要依据.22222222,,b a c a c b b c a +=-=-=,2222,a c b b c a -=-=.勾股定理的探索与验证,一般采用“构造法”.通过构造几何图形,并计算图形面积得出一个等式,从而得出或验证勾股定理. 2.勾股定理逆定理“若三角形的两条边的平方和等于第三边的平方,则这个三角形为________.”这一命题是勾股定理的逆定理.它可以帮助我们判断三角形的形状.为根据边的关系解决角的有关问题提供了新的方法.定理的证明采用了构造法.利用已知三角形的边a,b,c(a 2+b 2=c 2),先构造一个直角边为a,b 的直角三角形,由勾股定理证明第三边为c,进而通过“SSS ”证明两个三角形全等,证明定理成立. 3.勾股定理的作用:(1)已知直角三角形的两边,求第三边;(2)在数轴上作出表示n (n 为正整数)的点.勾股定理的逆定理是用来判定一个三角形是否是直角三角形的.勾股定理的逆定理也可用来证明两直线是否垂直,勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理,它不仅可以判定三角形是否为直角三角形,还可以判定哪一个角是直角,从而产生了证明两直线互相垂直的新方法:利用勾股定理的逆定理,通过计算来证明,体现了数形结合的思想.(3)三角形的三边分别为a 、b 、c ,其中c 为最大边,若222c b a =+,则三角形是直角三角形;若222c b a >+,则三角形是锐角三角形;若2<+c b a 22,则三角形是钝角三角形.所以使用勾股定理的逆定理时首先要确定三角形的最大边. 二、合作交流:例1:如果一个直角三角形的两条边长分别是6cm 和8cm ,那么这个三角形的周长和面积分别是多少?例2:如图,在四边形ABCD 中,∠C=90°,AB=13,BC=4,CD=3,AD=12,求证:AD ⊥BD .例3:.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长例4:.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mABCD E四、学习检测:21EDCBA1.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .321,421,521 C .3,4,5 D .4,721,821 2.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A .1倍 B .2倍 C .3倍 D .4倍 3.直角三角形的两直角边分别为5cm ,12cm ,其中斜边上的高为( )A .6cmB .8.5cmC .1330cmD .1360cm4.在△ABC 中,三条边的长分别为a ,b ,c ,a =n 2-1,b =2n ,c =n 2+1(n >1,且n 为整数),这个三角形是直角三角形吗?若是,哪个角是直角5.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm ,另一只朝左挖,每分钟挖6cm ,10分钟之后两只小鼹鼠相距( )A .50cmB .100cmC .140cmD .80cm6.等腰△ABC 的面积为12cm 2,底上的高AD =3cm ,则它的周长为 . 7.等边△ABC 的高为3cm ,以AB 为边的正方形面积为 .8.一个三角形的三边的比为5∶12∶13,它的周长为60cm ,则它的面积是 。