概率论与数理统计及其应用(第二版)第一章习题参考答案

合集下载

概率论与数理统计第二版课后答案

概率论与数理统计第二版课后答案

概率论与数理统计第二版课后答案第一章:概率论的基本概念与性质1.1 概率的定义及其性质1.概率的定义:概率是对随机事件发生的可能性大小的度量。

在概率论中,我们将事件A的概率记为P(A),其中P(A)的值介于0和1之间。

2.概率的基本性质:–非负性:对于任何事件A,其概率满足P(A) ≥ 0。

–规范性:对于样本空间Ω中的全部事件,其概率之和为1,即P(Ω) = 1。

–可列可加性:对于互不相容的事件序列{Ai}(即Ai∩Aj = ∅,i ≠ j),有P(A1∪A2∪…) = P(A1) + P(A2) + …。

1.2 随机事件与随机变量1.随机事件:随机事件是指在一次试验中所发生的某种结果。

–基本事件:对于只包含一个样本点的事件,称为基本事件。

–复合事件:由一个或多个基本事件组成的事件称为复合事件。

2.随机变量:随机变量是将样本空间Ω上的每个样本点赋予一个实数的函数。

随机变量可以分为两种类型:–离散型随机变量:其取值只可能是有限个或可列无穷个实数。

–连续型随机变量:其取值在某个区间内的任意一个值。

1.3 事件的关系与运算1.事件的关系:事件A包含于事件B(记作A ⊆ B)指的是事件B发生时,事件A一定发生。

如果A ⊆ B且B ⊆ A,则A与B相等(记作A = B)。

–互不相容事件:指的是两个事件不能同时发生,即A∩B = ∅。

2.事件的运算:对于两个事件A和B,有以下几种运算:–并:事件A和事件B至少有一个发生,记作A∪B。

–交:事件A和事件B同时发生,记作A∩B。

–差:事件A发生而事件B不发生,记作A-B。

第二章:条件概率与独立性2.1 条件概率与乘法定理1.条件概率:在事件B发生的条件下,事件A发生的概率称为事件A在事件B发生的条件下的条件概率,记作P(A|B)。

–条件概率的计算公式:P(A|B) = P(A∩B) / P(B)。

2.乘法定理:对于任意两个事件A和B,有P(A∩B) = P(A|B) * P(B) =P(B|A) * P(A)。

概率论与数理统计(茆诗松)第二版第一章习题参考答案

概率论与数理统计(茆诗松)第二版第一章习题参考答案

第一章 随机事件与概率习题1.11. 写出下列随机试验的样本空间:(1)抛三枚硬币; (2)抛三颗骰子;(3)连续抛一枚硬币,直至出现正面为止;(4)口袋中有黑、白、红球各一个,从中任取两个球,先从中取出一个,放回后再取出一个; (5)口袋中有黑、白、红球各一个,从中任取两个球,先从中取出一个,不放回后再取出一个. 解:(1)Ω = {(0, 0, 0),(0, 0, 1),(0, 1, 0),(1, 0, 0),(0, 1, 1),(1, 0, 1),(1, 1, 1),(1, 1, 1)},其中出现正面记为1,出现反面记为0; (2)Ω = {(x 1 , x 2 , x 3):x 1 , x 2 , x 3 = 1, 2, 3, 4, 5, 6};(3)Ω = {(1),(0, 1),(0, 0, 1),(0, 0, 0, 1),…,(0, 0, …, 0, 1),…},其中出现正面记为1,出现反面记为0;(4)Ω = {BB ,BW ,BR ,WW ,WB ,WR ,RR ,RB ,RW},其中黑球记为B ,白球记为W ,红球记为R ; (5)Ω = {BW ,BR ,WB ,WR ,RB ,RW},其中黑球记为B ,白球记为W ,红球记为R .2. 先抛一枚硬币,若出现正面(记为Z ),则再掷一颗骰子,试验停止;若出现反面(记为F ),则再抛一枚硬币,试验停止.那么该试验的样本空间Ω是什么? 解:Ω = {Z1,Z2,Z3,Z4,Z5,Z6,FZ ,FF}. 3. 设A , B , C 为三事件,试表示下列事件:(1)A , B , C 都发生或都不发生; (2)A , B , C 中不多于一个发生; (3)A , B , C 中不多于两个发生; (4)A , B , C 中至少有两个发生. 解:(1)C B A ABC U ;(2)C B A C B A C B A C B A U U U ;(3)ABC 或C B A C B A C B A C B A BC A C B A C AB U U U U U U ; (4)ABC BC A C B A C AB U U U . 4. 指出下列事件等式成立的条件:(1)A ∪B = A ; (2)AB = A . 解:(1)当A ⊃ B 时,A ∪B = A ;(2)当A ⊂ B 时,AB = A .5. 设X 为随机变量,其样本空间为Ω = {0 ≤ X ≤ 2},记事件A = {0.5 < X ≤ 1},B = {0.25 ≤ X < 1.5},写出下列各事件:(1)B A ; (2)B A U ;(3)AB ; (4)B A U .解:(1)}5.11{}5.025.0{<<≤≤=X X B A U ;(2)Ω=≤≤=}20{X B A U ;(3)A X X AB =≤<≤≤=}21{}5.00{U ; (4)B X X B A =≤≤<≤=}25.1{}25.00{U U .6. 检查三件产品,只区分每件产品是合格品(记为0)与不合格品(记为1),设X 为三件产品中的不合格品数,指出下列事件所含的样本点:A =“X = 1”,B =“X > 2”,C =“X = 0”,D =“X = 4”.解:A = {(1, 0, 0),(0, 1, 0),(0, 0, 1)},B = {(1, 1, 1)},C = {(0, 0, 0)},D = ∅. 7. 试问下列命题是否成立?(1)A − (B − C ) = (A − B )∪C ;(2)若AB = ∅且C ⊂ A ,则BC = ∅; (3)(A ∪B ) − B = A ; (4)(A − B )∪B = A .解:(1)不成立,C B A AC B A AC B A C B A C B A C B A C B A U U U U )()()()(−≠−====−=−−;(2)成立,因C ⊂ A ,有BC ⊂ AB = ∅,故BC = ∅;(3)不成立,因A B A B A B B B A B B A B B A ≠−====−U U U )()(; (4)不成立,因A B A B B B A B B A B B A ≠===−U U U U U ))(()(. 8. 若事件ABC = ∅,是否一定有AB = ∅?解:不能得出此结论,如当C = ∅时,无论AB 为任何事件,都有ABC = ∅. 9. 请叙述下列事件的对立事件:(1)A =“掷两枚硬币,皆为正面”; (2)B =“射击三次,皆命中目标”;(3)C =“加工四个零件,至少有一个合格品”. 解:(1)=A “掷两枚硬币,至少有一个反面”;(2)=B “射击三次,至少有一次没有命中目标”; (3)=C “加工四个零件,皆为不合格品”. 10.证明下列事件的运算公式:(1)B A AB A U =; (2)B A A B A U U =.证:(1)A A B B A B A AB =Ω==)(U U ;(2)B A B A B A A A B A A U U U U U =Ω==)())((. 11.设F 为一事件域,若A n ∈F ,n = 1, 2, …,试证:(1)∅ ∈F ;(2)有限并∈=U ni i A 1F ,n ≥ 1;(3)有限交∈=I ni i A 1F ,n ≥ 1;(4)可列交∈+∞=I 1i i A F ;(5)差运算A 1 − A 2 ∈ F .证:(1)由事件域定义条件1,知 Ω ∈F ,再由定义条件2,可得∅∈Ω=F ;(2)在定义条件3中,取A n + 1 = A n + 2 = … = ∅,可得∈=∞==U U 11i i ni i A A F ;(3)由定义条件2,知∈n A A A ,,,21L F ,根据(2)小题结论,可得∈=U ni i A 1F ,再由定义条件2,知∈=U ni i A 1F ,即∈=I ni i A 1F ;(4)由定义条件2,知∈L L ,,,,21n A A A F ,根据定义条件3,可得∈∞=U 1i i A F ,再由定义条件2,知∈∞=U 1i i A F ,即∈∞=I 1i i A F ;(5)由定义条件2,知∈2A F ,根据(3)小题结论,可得∈21A A F ,即A 1 − A 2 ∈ F .习题1.21. 对于组合数⎟⎟⎠⎞⎜⎜⎝⎛r n ,证明:(1)⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛r n n r n ; (2)⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−−=⎟⎟⎠⎞⎜⎜⎝⎛r n r n r n 111; (3)nn n n n 210=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛L ; (4)12221−⋅=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n n L ;(5)⎟⎟⎠⎞⎜⎜⎝⎛+=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛n b a b n a n b a n b a 0110L ,n = min{a , b }; (6)⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n 210222L . 证:(1)⎟⎟⎠⎞⎜⎜⎝⎛=−=−−−=⎟⎟⎠⎞⎜⎜⎝⎛−r n r r n n r n n r n n r n n !)!(!)]!([)!(!; (2)⎟⎟⎠⎞⎜⎜⎝⎛=−=−+−−=−−−+−−−=⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−−r n r n r n r n r r n r n r n r n r n r n r n r n )!(!!)]([)!(!)!1()!1(!)!1()!()!1()!1(111; (3)由二项式展开定理nn n n y n n y x n x n y x ⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=+−L 110)(,令x = y = 1,得 nn n n n 210=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛L ; (4)当1 ≤ r ≤ n 时,⎟⎟⎠⎞⎜⎜⎝⎛−−=−⋅−−=−⋅−=−⋅=⎟⎟⎠⎞⎜⎜⎝⎛11)!()!1()!1()!()!1(!)!(!!r n n r n r n n r n r n r n r n rr n r , 故12111101221−⋅=⎟⎟⎠⎞⎜⎜⎝⎛−−++⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n n n n n n n n n L L ; (5)因a ax a a x a a x ⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=+L 10)1(,b b x b b x b b x ⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=+L 10)1(, 两式相乘,其中x n 的系数为⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛0110b n a n b a n b a L ,另一方面ba b a b a x a b a x b a b a x x x ++⎟⎟⎠⎞⎜⎜⎝⎛+++⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+=+=++L 10)1()1()1(,其中x n 的系数为⎟⎟⎠⎞⎜⎜⎝⎛+n b a ,即⎟⎟⎠⎞⎜⎜⎝⎛+=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛n b a b n a n b a n b a 0110L ; (6)在(5)小题结论中,取a = b = n ,有⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n n n n n n 20110L , 再由(1)小题结论,知⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛r n n r n ,即⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n 210222L . 2. 抛三枚硬币,求至少出现一个正面的概率.解:样本点总数n = 23 = 8,事件“至少出现一个正面”的对立事件为“三个都是反面”,其所含样本点个数为1, 即事件“至少出现一个正面”所含样本点个数为k = 8 − 1 = 7,故所求概率为87)(=A P . 3. 任取两个正整数,求它们的和为偶数的概率. 解:将所有正整数看作两个类“偶数”、“奇数”,样本点总数n = 22 = 4,事件“两个都是偶数”所含样本点个数为1,事件“两个都是奇数”所含样本点个数也为1, 即事件A =“它们的和为偶数”所含样本点个数k = 2,故所求概率为2142)(==A P .4. 掷两枚骰子,求下列事件的概率:(1)点数之和为6; (2)点数之和不超过6; (3)至少有一个6点. 解:样本点总数n = 62 = 36.(1)事件A 1 =“点数之和为6”的样本点有 (1, 5), (2, 4), (3, 3), (4, 2), (5, 1),即个数k 1 = 5,故所求概率为365)(1=A P ;(2)事件A 2 =“点数之和不超过6”的样本点有(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (5, 1), 即个数k 2 = 15,故所求概率为1253615)(2==A P ;(3)事件A 3 =“至少有一个6点”的样本点有(1, 6), (6, 1), (2, 6), (6, 2), (3, 6), (6, 3), (4, 6), (6, 4), (5, 6), (6, 5), (6, 6), 即个数k 3 = 11,故所求概率为3611)(3=A P .5. 考虑一元二次方程x 2 + Bx + C = 0,其中B , C 分别是将一颗骰子接连掷两次先后出现的点数,求该方程有实根的概率p 和有重根的概率q . 解:样本点总数n = 62 = 36,事件A 1 =“该方程有实根”,即B 2 − 4C ≥ 0,样本点有(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3), (4, 4), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6),即个数k 1 = 19,故36191==n k p . 事件A 2 =“该方程有重根”,即B 2 − 4C = 0,样本点有(2, 1),(4, 4),即个数k 2 = 2,故1813622===n k q .6. 从一副52张的扑克牌中任取4张,求下列事件的概率:(1)全是黑桃; (2)同花;(3)没有两张同一花色; (4)同色.解:样本点总数270725123449505152452=××××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,(1)事件A 1 =“全是黑桃”所含样本点个数7151234101112134131=××××××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为0026.0270725715)(1==A P ;(2)事件A 2 =“同花”所含样本点个数2860123410111213441342=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛×=k , 故所求概率为0106.02707252860)(2==A P ;(3)事件A 3 =“没有两张同一花色”所含样本点个数k 3 = 13 × 13 × 13 × 13 = 28561,故所求概率为1055.027072528561)(3==A P ;(4)事件A 4 =“同色”所含样本点个数29900123423242526242624=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛×=k , 故所求概率为1104.027072529900)(4==A P .7. 设9件产品中有2件不合格品.从中不返回地任取2个,求取出的2个中全是合格品、仅有一个合格品和没有合格品的概率各为多少?解:样本点总数36128929=××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,事件A 1 =“全是合格品”所含样本点个数211267271=××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为1273621)(1==A P ; 事件A 2 =“仅有一个合格品”所含样本点个数142712171=×=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为1873614)(2==A P ;事件A 3 =“没有合格品”所含样本点个数1223=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为361)(3=A P . 8. 口袋中有7个白球、3个黑球,从中任取两个,求取到的两个球颜色相同的概率.解:样本点总数4512910210=××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,事件A =“两个球颜色相同”所含样本点个数24122312672327=××+××=⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为1584524)(==A P . 9. 甲口袋有5个白球、3个黑球,乙口袋有4个白球、6个黑球.从两个口袋中各任取一球,求取到的两个球颜色相同的概率. 解:样本点总数n = 8 × 10 = 80,事件A =“两个球颜色相同”所含样本点个数k = 5 × 4 + 3 × 6 = 38,故所求概率为40198038)(==A P . 10.从n 个数1, 2, …, n 中任取2个,问其中一个小于k (1 < k < n ),另一个大于k 的概率是多少?解:样本点总数)1(212−=⎟⎟⎠⎞⎜⎜⎝⎛=n n n N ,事件A = “其中一个小于k ,另一个大于k ”所含样本点个数K = (k − 1)(n − k ), 故所求概率为)1())(1(2)(−−−=n n k n k A P .11.口袋中有10个球,分别标有号码1到10,现从中不返回地任取4个,记下取出球的号码,试求:(1)最小号码为5的概率; (2)最大号码为5的概率.解:样本点总数210123478910410=××××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,(1)事件A 1 =“最小号码为5”所含样本点个数10123345351=××××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为21121010)(1==A P ; (2)事件A 2 =“最大号码为5”所含样本点个数4123234342=××××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为10522104)(2==A P . 12.掷三颗骰子,求以下事件的概率:(1)所得的最大点数小于等于5; (2)所得的最大点数等于5. 解:样本点总数n = 63 = 216,(1)事件A 1 =“所得的最大点数小于等于5”所含样本点个数k 1 = 53 = 125,故所求概率为216125)(1=A P ; (2)事件A 2 =“所得的最大点数等于5”所含样本点个数k 2 = 53 − 43 = 61,故所求概率为21661)(2=A P .13.把10本书任意地放在书架上,求其中指定的四本书放在一起的概率. 解:样本点总数n = 10!,事件A =“其中指定的四本书放在一起”所含样本点个数k = 4! × 7!,故所求概率为30189101234!10!7!4)(=×××××=×=A P . 14.n 个人随机地围一圆桌而坐,求甲乙两人相邻而坐的概率. 解:样本点总数N = (n − 1)!,事件A =“甲乙两人相邻而坐”所含样本点个数k = 2! × (n − 2)!,故所求概率为12)!1()!2(!2)(−=−−×=n n n A P . 15.同时掷5枚骰子,试证明:(1)P {每枚都不一样} = 0.0926; (2)P {一对} = 0.4630; (3)P {两对} = 0.2315;(4)P {三枚一样} = 0.1543(此题有误); (5)P {四枚一样} = 0.0193; (6)P {五枚一样} = 0.0008. 解:样本点总数n = 65 = 7776,(1)事件“每枚都不一样”所含样本点个数72023456561=××××==A k ,故P {每枚都不一样}0926.07776720==; (2)事件“一对”所含样本点个数3600345124563525162=××××××=⋅⋅=A C A k , 故P {一对}4630.077763600==; (3)事件“两对”所含样本点个数18004122312451256142325263=×××××××××=⋅⋅⋅=A C C C k , 故P {两对}2315.077761800==; (4)事件“三枚一样”所含样本点个数15005123345652235164=××××××=⋅⋅=C A k ,故P {三枚一样}1929.077761500==; 事件“三枚一样且另两枚不一样”所含样本点个数12004512334562535164=×××××××=⋅⋅=A C A k ,故P {三枚一样且另两枚不一样}1543.077761200==; (5)事件“四枚一样”所含样本点个数15051234234561545165=××××××××=⋅⋅=A C A k ,故P {四枚一样}0193.07776150==; (6)事件“五枚一样”所含样本点个数6161555166=×=⋅⋅=A C A k ,故P {五枚一样}0008.077766==. 16.一个人把六根草紧握在手中,仅露出它们的头和尾.然后随机地把六个头两两相接,六个尾也两两相接.求放开手后六根草恰巧连成一个环的概率.解:在同一种六个头两两相接情况下,只需考虑六个尾两两相接的样本点总数n = 5 × 3 = 15,事件A =“放开手后六根草恰巧连成一个环”所含样本点个数k = 4 × 2 = 8,故所求概率为158)(=A P .17.把n 个“0”与n 个“1”随机地排列,求没有两个“1”连在一起的概率.解:样本点总数!!)!2(2n n n n n N ⋅=⎟⎟⎠⎞⎜⎜⎝⎛=,事件A =“没有两个‘1’连在一起”所含样本点个数11+=⎟⎟⎠⎞⎜⎜⎝⎛+=n n n k ,故所求概率为)!2()!1(!)(n n n A P +⋅=.18.设10件产品中有2件不合格品,从中任取4件,设其中不合格品数为X ,求X 的概率分布.解:样本点总数210123478910410=××××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,事件X = 0所含样本点个数7011234567802480=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为3121070}0{===X P ; 事件X = 1所含样本点个数112212367812381=×××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为158210112}1{===X P ; 事件X = 2所含样本点个数281127822282=×××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为15221028}2{===X P . 19.n 个男孩,m 个女孩(m ≤ n + 1)随机地排成一排,试求任意两个女孩都不相邻的概率.解:样本点总数!!)!(m n m n n m n N ⋅+=⎟⎟⎠⎞⎜⎜⎝⎛+=,事件A =“任意两个女孩都不相邻”所含样本点个数)!1(!)!1(1m n m n m n k −+⋅+=⎟⎟⎠⎞⎜⎜⎝⎛+=, 故所求概率为)2()1)(()2()1()!1()!()!1(!)(+−++−+−=−+⋅++⋅=n m n m n m n n n m n m n n n A P L L .20.将3个球随机放入4个杯子中去,求杯子中球的最大个数X 的概率分布. 解:样本点总数n = 43 = 64,事件X = 1所含样本点个数24234341=××==A k ,故所求概率为836424}1{===X P ; 事件X = 2所含样本点个数363341323142=××==A C A k ,故所求概率为1696436}2{===X P ; 事件X = 3所含样本点个数4143==A k ,故所求概率为161644}3{===X P . 21.将12只球随意地放入3个盒子中,试求第一个盒子中有3只球的概率. 解:样本点总数n = 312 = 531441,事件A =“第一个盒子中有3只球”所含样本点个数11264051212310111223129=×××××=×⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为2120.0531441112640)(==A P .22.将n 个完全相同的球(这时也称球是不可辨的)随机地放入N 个盒子中,试求:(1)某个指定的盒子中恰好有k 个球的概率; (2)恰好有m 个空盒的概率;(3)某指定的m 个盒子中恰好有j 个球的概率.解:样本点总数为N 取n 次的重复组合,即)!1(!)!1(1−⋅−+=⎟⎟⎠⎞⎜⎜⎝⎛−+=N n n N n n N M , (1)事件A 1 =“某个指定的盒子中恰好有k 个球”所含样本点个数为N − 1取n − k 次的重复组合,即)!2()!()!2(21)(11−⋅−−−+=⎟⎟⎠⎞⎜⎜⎝⎛−−−+=⎟⎟⎠⎞⎜⎜⎝⎛−−−+−=N k n k n N k n k n N k n k n N K , 故所求概率为)1()2)(1()1()1()1()!2()!()!1()!1(!)!2()(1−−+−+−+−⋅+−−=−⋅−⋅−+−⋅⋅−−+=k n N n N n N N k n n n N k n n N N n k n N A P L L ;(2)事件A 2 =“恰好有m 个空盒”所含样本点个数可分两步考虑:首先N 选m 次的组合,选出m 个空盒,而其余N − m 个盒中每一个都分别至少有一个球, 其次剩下的n − (N − m )个球任意放入这N − m 个盒中,即N − m 取n − (N − m )次的重复组合,则)!1()!()!(!)!1(!)(12−−⋅−+⋅−⋅−⋅=⎟⎟⎠⎞⎜⎜⎝⎛−−−⎟⎟⎠⎞⎜⎜⎝⎛=m N N m n m N m n N m N n n m N K ,故所求概率为)!1()!1()!()!(!)!1(!)!1(!)(2−+⋅−−⋅−+⋅−⋅−⋅⋅−⋅=n N m N N m n m N m N n n N A P ;(3)事件A 3 =“某指定的m 个盒子中恰好有j 个球”所含样本点个数为m 取j 次的重复组合乘以N − m 取n − j 次的重复组合,则)!1()!()!1(!)!1()!1(1)()(13−−⋅−⋅−⋅−−−+⋅−+=⎟⎟⎠⎞⎜⎜⎝⎛−−−+−⎟⎟⎠⎞⎜⎜⎝⎛−+=m N j n m j j m n N j m j n j n m N j j m K , 故所求概率为)!1()!1()!()!1(!)!1(!)!1()!1()(3−+⋅−−⋅−⋅−⋅−⋅⋅−−−+⋅−+=n N m N j n m j N n j m n N j m A P .23.在区间(0, 1)中随机地取两个数,求事件“两数之和小于7/5”的概率.解:设这两个数分别为x 和y ,有Ω = {(x , y ) | 0 < x < 1, 0 < y < 1},得m (Ω) = 1,事件A =“两数之和小于7/5”,有A = {(x , y ) | 0 < x +y < 7/5}, 得504153211)(2=⎟⎠⎞⎜⎝⎛×−=A m , 故所求概率为5041)()()(=Ω=m A m A P . 24.甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内到达的时间是等可能的.如果甲船的停泊时间是一小时,乙船的停泊时间是两小时,求它们中任何一艘都不需要等候码头空出的概率是多少?解:设甲乙两艘轮船到达码头的时间分别为x 和y 小时,有Ω = {(x , y ) | 0 ≤ x ≤ 24, 0 ≤ y ≤ 24},得m (Ω) = 242 = 576, 事件A =“它们中任何一艘都不需要等候码头空出”, 若甲先到,有x + 1 ≤ y ≤ 24;若乙先到,有y + 2 ≤ x ≤ 24;即A = {(x , y ) | 0 ≤ x ≤ 24, 0 ≤ y ≤ 24, x + 1 ≤ y ≤ 24或y + 2 ≤ x ≤ 24},得2101322212321)(22=×+×=A m , 故所求概率为11521013)()()(=Ω=m A m A P . 25.在平面上画有间隔为d 的等距平行线,向平面任意投掷一个边长为a , b , c (均小于d )的三角形,求三角形与平行线相交的概率.解:不妨设a ≥ b ≥ c ,三角形的三个顶点分别为A , B , C ,其对边分别为a , b , c ,相应三个角也记为A , B , C ,设O 为BC 的中点,点O 与最近的一条平行线的距离为x , 从点O 向三角形外作与平行线平行的射线OD , 若B , C 中点C 更靠近某条平行线,则记α = ∠COD ,否则记α = −∠BOD , 有π}π,20|),{(<<−≤≤=Ωααdx x ,得m (Ω) = π d ,事件E =“三角形与平行线相交”,当α ≥ 0时,如果C ≤ α < π,事件E 就是OC 与平行线相交; 如果0 ≤ α < C ,事件E 就是OC 或AC 与平行线相交; 当α < 0时,如果−π < α ≤ −B ,事件E 就是OB 与平行线相交;如果−B < α < 0,事件E 就是OB 或AB 与平行线相交.记}sin 2,|),{(1αααax C x E ≤≥=, )}sin(sin 2,0|),{(2αααα−+≤<≤=C b ax C x E ,}sin 2,|),{(3αααax B x E −≤−≤=,)}sin(sin 2,0|),{(4αααα++−≤<<−=B c ax B x E ,有E = E 1∪E 2∪E 3∪E 4,得∫∫−−−⎥⎦⎤⎢⎣⎡++−+⎟⎠⎞⎜⎝⎛−=0π)sin(sin 2sin 2)(BB d B c a d a E m ααααα∫∫+⎥⎦⎤⎢⎣⎡−++π0sin 2)sin(sin 2C C d a d C b a ααααα∫∫∫∫+−++++⎟⎠⎞⎜⎝⎛−=−−π0000πsin 2)sin()sin(sin 2ααααααααd a d C b d B c d a C B π0000πcos 2)cos()cos(cos 2ααααa C b B c aCB −−++−=−− 22cos cos 22a a C b b c B c a a +⎟⎠⎞⎜⎝⎛−−−++−⎟⎠⎞⎜⎝⎛−−=c b a a a c b a abc b a b ac b c a c c b a ++=−++=−+⋅−−+⋅−++=2222222222222,故所求概率为dcb a m E m E P π)()()(++=Ω=. 方法二:设事件A , B , C 分别表示“边长为a , b , c 三条边与平行线相交”,事件E 表示“三角形与平行线相交”, 由于三角形与平行线相交时,将至少有两条边与平行线相交,即E = AB ∪AC ∪BC ,则由三个事件的加法公式得P (E ) = P (AB ) + P (AC ) + P (BC ) − 2 P (ABC ), 因ABC 表示“三条边都与平行线相交”,有P (ABC ) = 0, 则P (E ) = P (AB ) + P (AC ) + P (BC ),另一方面,由于三角形与平行线相交时,将至少有两条边与平行线相交, 有A = AB ∪AC ,B = AB ∪BC ,C = AC ∪BC ,则P (A ) = P (AB ) + P (AC ) − P (ABC ) = P (AB ) + P (AC ), P (B ) = P (AC ) + P (BC ),P (C ) = P (AC ) + P (BC ),可得P (A ) + P (B ) + P (C ) = [P (AB ) + P (AC )] + [P (AC ) + P (BC )] + [P (AC ) + P (BC )]= 2[P (AB ) + P (AC ) + P (BC )],根据蒲丰投针问题知d a A P π2)(=,d b B P π2)(=,dc C P π2)(=, 故dcb a C P B P A P BC P AC P AB P E P π)]()()([21)()()()(++=++=++=.26.在半径为R 的圆内画平行弦,如果这些弦与垂直于弦的直径的交点在该直径上的位置是等可能的,即交点在直径上一个区间内的可能性与这区间的长度成比例,求任意画弦的长度大于R 的概率.1A解:设弦与垂直于弦的直径的交点与圆心的距离为x ,有Ω = {x | 0 ≤ x < R },得m (Ω) = R ,事件A =“弦的长度大于R ”,有2222⎟⎠⎞⎜⎝⎛>−R x R ,2243R x <,即}230|{R x x A <≤=,得R A m 23)(=,故所求概率为23)()()(=Ω=m A m A P . 27.设一个质点落在xOy 平面上由x 轴、y 轴及直线x + y = 1所围成的三角形内,而落在这三角形内各点处的可能性相等,即落在这三角形内任何区域上的概率与区域的面积成正比,试求此质点还满足y < 2x 的概率是多少?解:Ω = {(x , y ) | 0 < x < 1, 0 < y < 1, 0 < x + y < 1},得21)(=Ωm , 事件A =“满足y < 2x ”,有A = {(x , y ) | 0 < y < 1, y /2 ≤ x ≤ 1 − y },得3132121)(=××=A m , 故所求概率为32)()()(=Ω=m A m A P . 28.设a > 0,有任意两数x , y ,且0 < x < a ,0 < y < a ,试求xy < a 2/4的概率. 解:Ω = {(x , y ) | 0 ≤ x ≤ a , 0 ≤ y ≤ a },得m (Ω) = a 2,事件A =“xy < a 2/4”,有A = {(x , y ) | 0 ≤ x ≤ a , 0 ≤ y ≤ a , xy < a 2/4},即4ln 44ln 44)(22422422a a x a ax a dx x a a a A m aa aa +=⎟⎟⎠⎞⎜⎜⎝⎛−−=⎟⎟⎠⎞⎜⎜⎝⎛−−=∫, 故所求概率为5966.04ln 4141)()()(=+=Ω=m A m A P . 29.用主观方法确定:大学生中戴眼镜的概率是多少? (自己通过调查,作出主观判断)30.用主观方法确定:学生中考试作弊的概率是多少? (自己通过调查,作出主观判断)x习题1.31. 设事件A 和B 互不相容,且P (A ) = 0.3,P (B ) = 0.5,求以下事件的概率:(1)A 与B 中至少有一个发生; (2)A 和B 都发生; (3)A 发生但B 不发生. 解:(1)P (A ∪B ) = P (A ) + P (B ) = 0.3 + 0.5 = 0.8;(2)P (AB ) = 0;(3)P (A − B ) = P (A ) = 0.3.2. 设P (AB ) = 0,则下列说法哪些是正确的?(1)A 和B 不相容; (2)A 和B 相容;(3)AB 是不可能事件;(4)AB 不一定是不可能事件; (5)P (A ) = 0或P (B ) = 0; (6)P (A − B ) = P (A ). 解:(1)错误,当P (AB ) = 0时,A 和B 可能相容也可能不相容;(2)错误,当P (AB ) = 0时,A 和B 可能相容也可能不相容;(3)错误,当P (AB ) = 0时,A 和B 可能相容也可能不相容,即AB 不一定是不可能事件; (4)正确,当P (AB ) = 0时,A 和B 可能相容也可能不相容,即AB 不一定是不可能事件; (5)错误,当P (A ) > 0,P (B ) > 0时,只要A 和B 不相容,就有P (AB ) = 0; (6)正确,P (A − B ) = P (A ) − P (AB ) = P (A ).3. 一批产品分一、二、三级,其中一级品是二级品的三倍,三级品是二级品的一半,从这批产品中随机地抽取一个,试求取到二级品的概率. 解:设A , B , C 分别表示“取到一、二、三级品”,有P (A ) + P (B ) + P (C ) = 1,P (A ) = 3P (B ),)(21)(B P C P =, 则1)(29)(21)()(3==++B P B P B P B P ,即92)(=B P , 故取到二级品的概率92)(=B P .4. 从0, 1, 2, …, 9等十个数字中任意选出三个不同的数字,试求下列事件的概率:(1)A 1 = {三个数字中不含0和5}; (2)A 2 = {三个数字中不含0或5}; (3)A 3 = {三个数字中含0但不含5}.解:样本点总数1201238910310=××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,(1)事件A 1所含样本点个数56123678381=××××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故15712056)(1==A P ; (2)事件=2A “三个数字中含0和5”所含样本点个数8182=⎟⎟⎠⎞⎜⎜⎝⎛=A k ,故1514120112)(1)(22==−=A P A P ; (3)事件A 3所含样本点个数281278283=××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故30712028)(3==A P .5. 某城市中共发行3种报纸A , B , C .在这城市的居民中有45%订阅A 报、35%订阅B 报、25%订阅C 报,10%同时订阅A 报B 报、8%同时订阅A 报C 报、5%同时订阅B 报C 报、3%同时订阅A , B , C 报.求以下事件的概率: (1)只订阅A 报;(2)只订阅一种报纸的; (3)至少订阅一种报纸的; (4)不订阅任何一种报纸的.解:设A , B , C 分别表示“订阅报纸A , B , C ”,则P (A ) = 0.45,P (B ) = 0.35,P (C ) = 0.30,P (AB ) = 0.10,P (AC ) = 0.08,P (BC ) = 0.05,P (ABC ) = 0.03,(1))()()()()()())(()(ABC P AC P AB P A P AC AB P A P C B A P C B A P +−−=−=−=U U= 0.45 − 0.10 − 0.08 + 0.03 = 0.30;(2))()()()(B A P C B A P C B A P C B A C B A C B A P ++=U U ,因)()()()()()())(()(ABC P BC P AB P B P BC AB P B P C A B P C B A P +−−=−=−=U U= 0.35 − 0.10 − 0.05 + 0.03 = 0.23,)()()()()()())(()(ABC P BC P AC P C P BC AC P C P B A C P C B A P +−−=−=−=U U= 0.30 − 0.08 − 0.05 + 0.03 = 0.20,故73.020.023.030.0)()()()(=++=++=C B A P C B A P C B A P C B A C B A C B A P U U ; (3)P (A ∪B ∪C ) = P (A ) + P (B ) + P (C ) − P (AB ) − P (AC ) − P (BC ) + P (ABC )= 0.45 + 0.35 + 0.30 − 0.10 − 0.08 − 0.05 + 0.03 = 0.90;(4)10.090.01)(1(=−=−=C B A P C B A P U U .6. 某工厂一个班组共有男工9人、女工5人,现要选出3个代表,问选的3个代表中至少有1个女工的概率是多少?解:样本点总数364123121314314=××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,事件=A “选的3个代表中没有女工”所含样本点个数8412378939=××××=⎟⎟⎠⎞⎜⎜⎝⎛=A k ,故所求概率为1310364280364841)(1)(==−=−=A P A P . 7. 一赌徒认为掷一颗骰子4次至少出现一次6点与掷两颗骰子24次至少出现一次双6点的机会是相等的,你认为如何? 解:“掷一颗骰子4次”的样本点总数n 1 = 64 = 1296,事件=1A “没有出现6点”所含样本点个数为625541==A k ,则5177.0129667112966251)(1)(11==−=−=A P A P ; “掷两颗骰子24次”的样本点总数n 2 = (62 )24 = 36 24,事件=2A “没有出现双6点”所含样本点个数为2424235)16(2=−=A k ,则4914.036353636351)(1)(242424242422=−=−=−=A P A P ;故掷一颗骰子4次至少出现一次6点的机会比掷两颗骰子24次至少出现一次双6点的机会更大. 8. 从数字1, 2, …, 9中可重复地任取n 次,求n 次所取数字的乘积能被10整除的概率. 解:样本点总数N = 9 n ,因事件A =“n 次所取数字的乘积能被10整除”就是“至少取到一次数字5并且至少取到一次偶数”, 则事件=A “没有取到数字5或没有取到偶数”, 设事件B =“没有取到数字5”,C =“没有取到偶数”,则事件B 所含样本点个数为K B = 8 n ,事件C 所含样本点个数为K C = 5 n , 且事件BC =“没有取到数字5和偶数”所含样本点个数为K BC = 4 n ,故nnn n n n n n n n n BC P C P B P C B P A P A P 945899495981)()()(1)(1)(1)(+−−=+−−=+−−=−=−=U . 9. 口袋中有n − 1个黑球和1个白球,每次从口袋中随机地摸出一球,并换入一只黑球.问第k 次摸球时,摸到黑球的概率是多少? 解:样本点总数N = n k ,事件=A “第k 次摸球时摸到白球”,此时前n − 1次摸球时都必须是摸到黑球, 则A 中所含样本点个数1)1(−−=k A n K ,故所求概率为kk nn A P A P 1)1(1)(1)(−−−=−=. 10.若P(A ) = 1,证明:对任一事件B ,有P (AB ) = P (B ).证:因P (A ) = 1,且A B A ⊂,有0)(1)()(=−=≤A P A P B A P ,则0)()()()(=−=−=AB P B P A B P A P ,故P (AB ) = P (B ).11.掷2n + 1次硬币,求出现的正面数多于反面数的概率. 解:设A =“出现的正面数多于反面数”,因掷奇数次硬币,出现的正面数与反面数不可能相等,事件=A “出现的反面数多于正面数”,由于掷一枚硬币出现正面与出现反面的可能性相同,则“出现的正面数多于反面数”与“出现的反面数多于正面数” 的可能性相同, 可得)()(A P A P =,又1()(=+A P A P ,故P (A ) = 0.5.12.有三个人,每个人都以同样的概率1/5被分配到5个房间中的任一间中,试求:(1)三个人都分配到同一个房间的概率; (2)三个人分配到不同房间的概率. 解:样本点总数n = 53 = 125,(1)事件A 1 =“三个人都分配到同一个房间”所含样本点个数为k 1 = 5,故所求概率为2511255)(1==A P ; (2)事件A 2 =“三个人分配到不同房间”所含样本点个数为60345352=××==A k ,故所求概率为251212560)(2==A P . 13.一间宿舍住有5位同学,求他们之中至少有2个人生日在同一个月份的概率.解:首先假设一个人的生日在每一个月份的可能性相同,样本点总数n = 125,事件=A “每个人生日都在不同月份”所含样本点个数为512A k A =,故所求概率为6181.014489121)(1)(5512==−=−=A A P A P . 14.某班n 个战士各有1支归个人保管使用的枪,这些枪的外形完全一样,在一次夜间紧急集合中,每人随机地取了1支枪,求至少有1人拿到自己的枪的概率.解:设A i =“第i 个战士拿到自己的枪”,n i ,,2,1L =,有==i ni A 1U “至少有1人拿到自己的枪”,因)()1()()()()(2111111n n nk j i kjinj i jini i i ni A A A P A A A P A A P A P A P L L U ⋅−+++−=−≤<<≤≤<≤==∑∑∑,且n n n A P i 1!)!1()(=−=,)1(1!)!2()(−=−=n n n n A A P j i ,)2)(1(1)(−−=n n n A A A P k j i ,……, 故!)1(!31!211!1)1()2)(1(1)1(11)(11321n n C n n n C n n C n n A P n nn n n n i ni −−=−+−+−=⋅−+−−−⋅+−⋅−×=L L U . 15.设A , B 是两事件,且P (A ) = 0.6,P (B ) = 0.8,问: (1)在什么条件下P (AB )取到最大值,最大值是多少? (2)在什么条件下P (AB )取到最小值,最小值是多少? 解:(1)因P (AB ) ≤ min{P (A ), P (B )} = P (A ) = 0.6,故当P (AB ) = P (A ) 时,P (AB )取到最大值0.6;(2)因P (AB ) = P (A ) + P (B ) − P (A ∪B ) ≥ P (A ) + P (B ) − 1 = 0.4,故当P (A ∪B ) = 1时,P (AB )取到最小值0.4. 注:若A ⊂ B ,有AB = A ,可得P (AB ) = P (A ),但不能反过来,由P (AB ) = P (A ),得出A ⊂ B ;若A ∪B = Ω,可得P (A ∪B ) = 1,但不能反过来,由P (A ∪B ) = 1,得出A ∪B = Ω. 16.已知事件A , B 满足)()(B A P AB P I =,记P (A ) = p ,试求P (B ).解:因)()()(1)(1)()()(AB P B P A P B A P B A P B A P AB P +−−=−===U U I ,有1 − P (A ) − P (B ) = 0,故P (B ) = 1 − P (A ) = 1 − p .17.已知P (A ) = 0.7,P (A − B ) = 0.4,试求)(AB P .解:因P (A − B ) = P (A ) − P (AB ),有P (AB ) = P (A ) − P (A − B ) = 0.7 − 0.4 = 0.3,故7.0)(1(=−=AB P AB P . 18.设P (A ) = 0.6,P (B ) = 0.4,试证)()(B A P AB P I =.证:)()(4.06.01)()()(1)(1)()(AB P AB P AB P B P A P B A P B A P B A P =+−−=+−−=−==U U I . 19.对任意的事件A , B , C ,证明:(1)P (AB ) + P (AC ) − P (BC ) ≤ P (A );(2)P (AB ) + P (AC ) + P (BC ) ≥ P (A ) + P (B ) + P (C ) − 1. 证:(1)因P (AB ∪AC ) = P (AB ) + P (AC ) − P (ABC ),且 (AB ∪AC ) ⊂ A ,ABC ⊂ BC ,有P (AB ∪AC ) ≤ P (A ),P (ABC ) ≤ P (BC ),故P (AB ) + P (AC ) − P (BC ) = P (AB ∪AC ) + P (ABC ) − P (BC ) ≤ P (AB ∪AC ) ≤ P (A ). (2)因P (A ∪B ∪C ) = P (A ) + P (B ) + P (C ) − P (AB ) − P (AC ) − P (BC ) + P (ABC ),故P (AB ) + P (AC ) + P (BC ) = P (A ) + P (B ) + P (C ) + P (ABC ) − P (A ∪B ∪C )≥ P (A ) + P (B ) + P (C ) + P (ABC ) − 1 ≥ P (A ) + P (B ) + P (C ) − 1.20.设A , B , C 为三个事件,且P (A ) = a ,P (B ) = 2a ,P (C ) = 3a ,P (AB ) = P (AC ) = P (BC ) = b ,证明:a ≤ 1/4,b ≤ 1/4.证:因P (B ∪C ) = P (B ) + P (C ) − P (BC ) = 5a − b ,且a = P (A ) ≥ P (AB ) = b ,则P (B ∪C ) = 5a − b ≥ 4a ,即4a ≤ 1,故a ≤ 1/4且b ≤ a ≤ 1/4.21.设事件A , B , C 的概率都是1/2,且)()(C B A P ABC P I I =,证明:2 P (ABC ) = P (AB ) + P (AC ) + P (BC ) − 1/2.证:因)(1)()()(C B A P C B A P C B A P ABC P U U U U I I −==== 1 − P (A ) − P (B ) − P (C ) + P (AB ) + P (AC ) + P (BC ) − P (ABC ),故2 P (ABC ) = P (AB ) + P (AC ) + P (BC ) + 1 − P (A ) − P (B ) − P (C ) = P (AB ) + P (AC ) + P (BC ) − 1/2. 22.证明:(1)P (AB ) ≥ P (A ) + P (B ) − 1;(2)P (A 1 A 2 …A n ) ≥ P (A 1) + P (A 2) + … + P (A n ) − (n − 1). 证:(1)因P (A ∪B ) = P (A ) + P (B ) − P (AB ),故P (AB ) = P (A ) + P (B ) − P (A ∪B ) ≥ P (A ) + P (B ) − 1;(2)用数学归纳法证明,当n = 2时,由(1)小题知结论成立,设当n = k 时,结论成立,即P (A 1 A 2 …A k ) ≥ P (A 1) + P (A 2) + … + P (A k ) − (k − 1), 则P (A 1 A 2 …A k A k + 1) ≥ P (A 1 A 2 …A k ) + P (A k + 1) − 1≥ P (A 1) + P (A 2) + … + P (A k ) − (k − 1) + P (A k + 1) − 1 = P (A 1) + P (A 2) + … + P (A k ) + P (A k + 1) − k ,即当n = k + 1时,结论成立,故由数学归纳法知P (A 1 A 2 …A n ) ≥ P (A 1) + P (A 2) + … + P (A n ) − (n − 1). 23.证明:41|)()()(|≤−B P A P AB P . 证:因)()()](1)[()]()()[()()()()(A P A P A P AB P B A P AB P A P AB P B P A P AB P −−=+−=−,且0 ≤ P (AB )[1 − P (A )] ≤ P (A )[1 − P (A )],)](1)[(()()()(0A P A P A P A P B A P A P −=≤≤, 故)}()()],(1)[(max{|)()()](1)[(||)()()(|A P A P A P AB P B A P A P A P AB P B P A P AB P −≤−−=−4121)(41)]([)()](1)[(22≤⎥⎦⎤⎢⎣⎡−−=−=−≤A P A P A P A P A P .习题1.41. 某班级学生的考试成绩数学不及格的占15%,语文不及格的占5%,这两门课都不及格的占3%.(1)已知一学生数学不及格,他语文也不及格的概率是多少? (2)已知一学生语文不及格,他数学也不及格的概率是多少? 解:设A =“数学不及格”,B =“语文不及格”,有P (A ) = 0.15,P (B ) = 0.05,P (AB ) = 0.03,(1)所求概率为2.015.003.0)()()|(===A P AB P A B P ; (2)所求概率为6.005.003.0)()()|(===B P AB P B A P . 2. 设一批产品中一、二、三等品各占60%, 35%, 5%.从中任意取出一件,结果不是三等品,求取到的是一等品的概率.解:设A , B , C 分别表示“取出一、二、三等品”,有P (A ) = 0.6,P (B ) = 0.35,P (C ) = 0.05,故所求概率为191205.016.0)(1)()()()|(=−=−==C P A P C P C A P C A P . 3. 掷两颗骰子,以A 记事件“两颗点数之和为10”,以B 记事件“第一颗点数小于第二颗点数”,试求条件概率P (A | B ) 和P (B | A ). 解:样本点总数n = 6 2 = 36,则事件A 中的样本点有 (4, 6), (5, 5), (6, 4),即个数k A = 3,有363)(=A P , 事件B 中所含样本点个数k B = 5 + 4 + 3 + 2 + 1 + 0 = 15,有3615)(=B P ,事件AB 中的样本点有 (4, 6),即个数k C = 1,有361)(=AB P ,故1513615361)()()|(===B P AB P B A P ,31363361)()()|(===A P AB P A B P .4. 以某种动物由出生活到10岁的概率为0.8,而活到15岁的概率为0.5,问现年为10岁的这种动物能活到15岁的概率是多少?解:设A , B 分别表示“这种动物能活到10岁, 15岁”,有P (A ) = 0.8,P (B ) = 0.5,故所求概率为858.05.0)()()()()|(====A P B P A P AB P A B P .5. 设10件产品中有4件不合格品,从中任取两件,已知其中一件是不合格品,求另一件也是不合格品的概率.解:设A =“其中一件是不合格品”,B =“两件都是不合格品”,有AB = B ,样本点总数45210=⎟⎟⎠⎞⎜⎜⎝⎛=n , 事件A 中所含样本点个数30624241614=+=⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=A k ,得4530)(=A P , 事件AB = B 中所含样本点个数624=⎟⎟⎠⎞⎜⎜⎝⎛=B k ,得456)()(==B P AB P ,故所求概率为2.04530456)()()|(===A P AB P A B P . 6. 设n 件产品中有m 件不合格品,从中任取两件,已知两件中有一件是合格品,求另一件也是合格品的概率.解:设A =“两件中至少有一件是合格品”,B =“两件都是合格品”,有AB = B ,样本点总数2)1(2−=⎟⎟⎠⎞⎜⎜⎝⎛=n n n N , 事件A 中所含样本点个数2)1)((2)1)(()(211−+−=−−−+−=⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛=m n m n m n m n m n m m n m n m k A , 得)1()1)(()(−−+−=n n m n m n A P ,事件AB = B 中所含样本点个数2)1)((2−−−=⎟⎟⎠⎞⎜⎜⎝⎛−=m n m n m n k B , 得)1()1)(()()(−−−−==n n m n m n B P AB P ,故所求概率为11)1()1)(()1()1)(()()()|(−+−−=−−+−−−−−==m n m n n n m n m n n n m n m n A P AB P A B P . 7. 掷一颗骰子两次,以x , y 分别表示先后掷出的点数,记A = {x + y < 10},B = {x > y },求P (B | A ),P (A | B ). 解:样本点总数n = 6 2 = 36,则事件A 中所含样本点个数k A = 6 + 6 + 6 + 5 + 4 + 3 = 30,有3630)(=A P , 事件B 中所含样本点个数k B = 0 + 1 + 2 + 3 + 4 + 5 = 15,有3615)(=B P ,事件AB 中所含样本点个数k AB = 0 + 1 + 2 + 3 + 4 + 3 = 13,有3613)(=AB P ,故301336303613)()()|(===A P AB P A B P ,151336153613)()()|(===B P AB P B A P .8. 已知P (A ) = 1/3,P (B | A ) = 1/4,P (A | B ) = 1/6,求P (A ∪B ).解:因1214131)|()()(=×==A B P A P AB P ,2161121)|()()(===B A P AB P B P , 故431212131)()()()(=−+=−+=AB P B P A P B A P U . 9. 已知3.0)(=A P ,P (B ) = 0.4,5.0(=B A P ,求)|(B A B P U . 解:因2.05.03.01)()(1)()()(=−−=−−=−=B A P A P B A P A P AB P ,且8.05.04.013.01()(1)(1)()()()(=−−+−=−−+−=−+=B A P B P A P B A P B P A P B A P U , 故25.08.02.0)()()())(()|(====B A P AB P B A P B A B P B A B P U U U U . 10.设A , B 为两事件,P (A ) = P (B ) = 1/3,P (A | B ) = 1/6,求|(B A P . 解:因1816131)|()()(=×==B A P B P AB P ,有18111813131)()()()(=−+=−+=AB P B P A P B A P U , 则18718111)(1)()(=−=−==B A P B A P B A P U U ,且32311)(1)(=−=−=B P B P , 故12732187)()()|(===B P B A P B A P . 11.口袋中有1个白球,1个黑球.从中任取1个,若取出白球,则试验停止;若取出黑球,则把取出的黑球放回的同时,再加入1个黑球,如此下去,直到取出的是白球为止,试求下列事件的概率.(1)取到第n 次,试验没有结束;(2)取到第n 次,试验恰好结束.解:设A k =“第k 次取出的是黑球”,k = 1, 2, ……(1)所求概率为P (A 1A 2…A n − 1A n ) = P (A 1A 2…A n − 1)P (A n | A 1A 2…A n − 1)1113221)|()|()(121121+=+×××==−n n n A A A A P A A P A P n n L L L ; (2)所求概率为)|()()(121121121−−−=n n n n n A A A A P A A A P A A A A P L L L)1(1113221)|()|()(121121+=+×××==−n n n A A A A P A A P A P n n L L L . 12.一盒晶体管有8只合格品,2只不合格品.从中不返回地一只一只取出,试求第二次取出的是合格品的概率.解:设A 1, A 2分别表示“第一次取出的是合格品、不合格品”,B 表示“第二次取出的是合格品”, 故所求概率为8.090729810297108)|()()|()()(2211==×+×=+=A B P A P A B P A P B P . 13.甲口袋有a 个白球、b 个黑球,乙口袋有n 个白球、m 个黑球.(1)从甲口袋任取1个球放入乙口袋,然后再从乙口袋任取1个球.试求最后从乙口袋取出的是白球的概率;(2)从甲口袋任取2个球放入乙口袋,然后再从乙口袋任取1个球.试求最后从乙口袋取出的是白球的概率.解:(1)设A 0 , A 1分别表示“从甲口袋取出的是白球、黑球”,B 表示“从乙口袋取出的是白球”,故所求概率为P (B ) = P (A 0)P (B | A 0) + P (A 1)P (B | A 1) )1)(()1(111+++++=++×+++++×+=n m b a bn n a m n n b a b m n n b a a ; (2)设A 0 , A 1 , A 2分别表示“从甲口袋取出的是2个白球、1个白球1个黑球、2个黑球”,B 表示“从乙口袋取出的是白球”,故所求概率为P (B ) = P (A 0)P (B | A 0) + P (A 1)P (B | A 1) + P (A 2)P (B | A 2)。

概率论与数理统计(茆诗松)第二版第一章课后习题1.1-1.3参考答案

概率论与数理统计(茆诗松)第二版第一章课后习题1.1-1.3参考答案
i =1 i =1 n ∞
(3)由定义条件 2,知 A1 ,A2 , L , An ∈ F ,根据(2)小题结论,可得 U Ai ∈ F ,
i =1
n
再由定义条件 2,知 U Ai ∈ F ,即 I Ai ∈ F ;
i =1 i =1
n
n
(4)由定义条件 2,知 A1 , A2 , L , An , L ∈ F ,根据定义条件 3,可得 U Ai ∈ F ,
n n −1 n (3)由二项式展开定理 ( x + y ) n = ⎜ ⎜0⎟ ⎟x + ⎜ ⎜1⎟ ⎟x y + L + ⎜ ⎜n⎟ ⎟ y ,令 x = y = 1,得 ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛n⎞ ⎛n⎞ ⎛n⎞ n ⎜ ⎜0⎟ ⎟+⎜ ⎜1⎟ ⎟ +L+ ⎜ ⎜n⎟ ⎟=2 ; ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ n − 1⎞ ⎛ n − 1⎞ ⎛n⎞ (n − 1)! (n − 1)! (n − 1)! n! ⎟ ⎟ ⎟ [ r + (n − r )] = +⎜ = + = =⎜ ⎟ ⎜ ⎟ ⎟; r!(n − r )! ⎜ ⎝ r − 1⎠ ⎝ r ⎠ (r − 1)!(n − r )! r!(n − 1 − r )! r!( n − r )! ⎝r⎠ ⎛n⎞ ⎛ n⎞ ⎛n⎞
2
Ω A
B C (A − B )∪C

证: (1) AB U AB = A( B U B ) = AΩ = A ; (2) A U A B = ( A U A )( A U B ) = Ω( A U B ) = A U B . 11.设 F 为一事件域,若 An ∈F ,n = 1, 2, …,试证: (1)∅ ∈F ; (2)有限并 U Ai ∈ F ,n ≥ 1;

概率论与数理统计习题解答(第二版)李书刚编,科学出版社

概率论与数理统计习题解答(第二版)李书刚编,科学出版社

概率论与数理统计习题解答〔第二版〕李书刚编,科学出版社概率论与数理统计习题参考答案〔仅供参考〕第一章第1页 (共79页)第一章随机事件及其概率1. 写出以下随机试验的样本空间:〔1〕同时掷两颗骰子,记录两颗骰子的点数之和;〔2〕在单位圆内任意一点,记录它的坐标;〔3〕10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数;〔4〕测量一汽车通过给定点的速度. 解所求的样本空间如下〔1〕S= {2,3,4,5,6,7,8,9,10,11,12} 〔2〕S= {(x, y)| x2+y20} 2. 设A、B、C为三个事件,用A、B、C的运算关系表示以下事件:〔1〕A发生,B和C不发生;〔2〕A与B都发生,而C不发生;〔3〕A、B、C都发生;〔4〕A、B、C都不发生;〔5〕A、B、C不都发生;〔6〕A、B、C至少有一个发生;〔7〕A、B、C不多于一个发生;〔8〕A、B、C至少有两个发生. 解所求的事件表示如下(1A)BC)BC (5A(7A)B(8A)B(2A)BC(6A)(3A)BC(4A)BCBACCACBCBC3.在某小学的学生中任选一名,假设事件A表示被选学生是男生,事件B表示该生是三年级学生,事件C表示该学生是运发动,那么〔1〕事件AB 表示什么?〔2〕在什么条件下ABC=C成立?〔3〕在什么条件下关系式C?B是正确的?〔4〕在什么条件下A?B成立?解所求的事件表示如下〔1〕事件AB表示该生是三年级男生,但不是运发动.概率论与数理统计习题参考答案〔仅供参考〕第一章第2页 (共79页) 〔2〕当全校运发动都是三年级男生时,ABC=C成立.〔3〕当全校运发动都是三年级学生时,关系式C?B是正确的.〔4〕当全校女生都在三年级,并且三年级学生都是女生时,A?B成立. 4.设P(A)=0.7,P(A-B)=0.3,试求P(AB) 解由于 A?B = A – AB, P(A)=0.7 所以P(A?B) = P(A?AB) = P(A)??P(AB) = 0.3,所以 P(AB)=0.4, 故P(AB)= 1?0.4 = 0.6.485. 对事件A、B和C,P(A) = P(B)=P(C)=1 ,P(AB) = P(CB) = 0, P(AC)=1 求A、B、C中至少有一个发生的概率. 解由于ABC?AB,P(AB)?0,故P(ABC) = 0那么P(A+B+C) = P(A)+P(B)+P(C) –P(AB) –P(BC) –P(AC)+P(ABC)11115????0?0??0? 444886. 设盒中有α只红球和b只白球,现从中随机地取出两只球,试求以下事件的概率: A={两球颜色相同}, B={两球颜色不同}.解由题意,根本领件总数为Aa2?b,有利于A的事件数为Aa2?Ab2,有利于B 的事件数为111111AaAb?AbAa?2AaAb, 那么2Aa?Ab2P(A)?2Aa?b12AaAP(B)?2bAa?b17. 假设10件产品中有件正品,3件次品,〔1〕不放回地每次从中任取一件,共取三次,求取到三件次品的概率;〔2〕每次从中任取一件,有放回地取三次,求取到三次次品的概率. 解〔1〕设A={取得三件次品} 那么33C3A316P(A)?3?或者P(A)?3?C10120A10720.〔2〕设B={取到三个次品}, 那么3327P(A)?3?101000.8. 某旅行社100名导游中有43人会讲英语,35人会讲日语,32人会讲日语和英语,9人会讲法语、英语和日语,且每人至少会讲英、日、法三种语言中的一种,求:〔1〕此人会讲英语和日语,但不会讲法语的概率;〔2〕此人只会讲法语的概率.解设 A={此人会讲英语}, B={此人会讲日语}, C={此人会讲法语} 根据题意, 可得(1) P(ABC)?P(AB)?P(ABC)?32?9?23100100100 (2)P(ABC)?P(AB)?P(ABC)?P(A?B)?0?1?P(A?B)?1?P(A)?P(B)?P(AB)9. 罐中有12颗围棋子,其中8颗白子4颗黑子,假设从中任取3颗,求:概率论与数理统计习题参考答案〔仅供参考〕第一章第3页 (共79页) 〔1〕取到的都是白子的概率;〔2〕取到两颗白子,一颗黑子的概率;〔3〕取到三颗棋子中至少有一颗黑子的概率;〔4〕取到三颗棋子颜色相同的概率. 解(1) 设A={取到的都是白子} 那么3C814P(A)?3??0.255.C1255(2) 设B={取到两颗白子, 一颗黑子}1C82C4P(B)?3?0.509.C12(3) 设C={取三颗子中至少的一颗黑子} P(C)?1?P(A)?0.745.(4) 设D={取到三颗子颜色相同}33C8?C4P(D)??0.273. 3C1210. 〔1〕500人中,至少有一个的生日是7月1日的概率是多少(1年按365日计算)?〔2〕6个人中,恰好有个人的生日在同一个月的概率是多少?解(1) 设A = {至少有一个人生日在7月1日}, 那么364500P(A)?1?P(A)?1??0.746 5003651C64?C12?112P(B)??0.0073 612 (2)设所求的概率为P(B)11. 将C,C,E,E,I,N,S 7个字母随意排成一行,试求恰好排成SCIENCE 的概率p. 解由于两个C,两个E共有A22A22种排法,而根本领件总数为A77,因此有12. 从5副不同的手套中任取款4只,求这4只都不配对的概率. 解要4只都不配对,我们先取出4双,再从每一双中任取一只,共有C54A={4只手套都不配对},那么有C54?2480 P(A)?4?210C10?24中取法.22A2Ap?72?0.000794A7设13. 一实习生用一台机器接连独立地制造三只同种零件,第i只零件是不合格的概率为pi?1 1?i,i=1,2,3,假设以x表示零件中合格品的个数,那么P(x=2)为多少?1 1?i解设Ai = {第i个零件不合格},i=1,2,3, 那么P(Ai)?pi?所以P(Ai)?1?pi?i 1?iP(x?2)?P(A1A2A3)?P(A1A2A3)?P(A1A2A3)由于零件制造相互独立,有:P(A1A2A3)?P(A1)P(A2)P(A3),P(A1A2A3)?P(A1)P(A2)P(A3)P(A1A2A3)?P(A1)P(A2)P(A3)概率论与数理统计习题参考答案〔仅供参考〕第一章第4页 (共79页) 14. 假设目标出现在射程之内的概率为0.7,这时射击命中目标的概率为0.6,试求两次独立射击至少有一次命中目标的概率p.解设A={目标出现在射程内},B={射击击中目标},Bi ={第i次击中目标}, i=1,2.那么 P(A)=0.7, P(Bi|A)=0.6 另外 B=B1+B2,由全概率公式P(B)?P(AB)?P(AB)?P(AB)?P(A)P(B|A) ?P(A)P((B1?B2)|A)另外, 由于两次射击是独立的, 故P(B1B2|A)= P(B1|A) P(B2|A) = 0.36 由加法公式P((B1+B2)|A)= P(B1|A)+ P(B2|A)-P(B1B2|A)=0.6+0.6-0.36=0.84 因此×0.84 = 0.58815. 设某种产品50件为一批,如果每批产品中没有次品的概率为0.35,有1,2,3,4件次品的概率分别为0.25, 0.2, 0.18, 0.02,今从某批产品中抽取10件,检查出一件次品,求该批产品中次品不超过两件的概率.解设Ai ={一批产品中有i件次品},i=0, 1, 2, 3, 4, B={任取10件检查出一件次品}, C={产品中次品不超两件}, 由题意P(B|A0)?019C1C491P(B|A1)??10C50519C2C4816P(B|A2)??10C504919C3C4739P(B |A3)??10C509819C4C46988P(B|A1)??10C502303由于 A0, A1, A2, A3, A4构成了一个完备的事件组, 由全概率公式P(B)??P(Ai)P(B|Ai)?0.196i?04由Bayes公式P(A0)P(B|A0)?0P(B)P(A1)P(B|A1)P(A1|B)??0.255P(B)P(A2)P(B|A2)P(A2|B)??0.333P(B)P(A0|B)?故P(C)??P(Ai|B)?0.588i?0216. 由以往记录的数据分析,某船只运输某种物品损坏2%,10%和90%的概率分别为0.8,概率论与数理统计习题参考答案〔仅供参考〕第一章第5页 (共79页) 0.15,0.05,现在从中随机地取三件,发现三件全是好的,试分析这批物品的损坏率是多少〔这里设物品件数很多,取出一件后不影响下一件的概率〕.解设B={三件都是好的},A1={损坏2%}, A2={损坏10%}, A1={损坏90%},那么A1, A2, A3是两两互斥, 且A1+ A2 +A3=Ω, P(A1)=0.8, P(A2)=0.15,P(A2)=0.05. 因此有 P(B| A1) = 0.983, P(B| A2) = 0.903, P(B| A3) = 0.13, 由全概率公式P(B)??P(Ai)P(B|Ai)i?13?0.8?0.983?0.15?0.903?0.05?0.103?0.8624由Bayes公式, 这批货物的损坏率为2%, 10%, 90%的概率分别为P(Ai)P(B|Ai)0.8?0.983P(A1|B)???0.8731P(B)0.8624P(Ai)P(B|Ai)0.15?0.903 P(A2|B)???0.1268P(B)0.8624P(Ai)P(B|Ai)0.05?0.103P(A3|B)???0.0001P(B)0 .8624由于P( A1|B) 远大于P( A3|B), P( A2|B), 因此可以认为这批货物的损坏率为0.2.17. 验收成箱包装的玻璃器皿,每箱24只装,统计资料说明,每箱最多有两只残次品,且含0,1和2件残次品的箱各占80%,15%和5%,现在随意抽取一箱,随意检查其中4只;假设未发现残次品,那么通过验收,否那么要逐一检验并更换残次品,试求:〔1〕一次通过验收的概率α;〔2〕通过验收的箱中确定无残次品的概率β. 解设Hi={箱中实际有的次品数},P(A|H0)?1,4C235P(A|H1)?4?,C2464C2295P(A|H2)?4?C24138i?0,1,2, A={通过验收}那么 P(H0)=0.8, P(H1)=0.15, P(H2)=0.05, 那么有:(1)由全概率公式??P(A)??P(Hi)P(A|Hi)?0.962i?0(2)由Bayes公式得??P(Hi|A)?P(H0)P(A|H0)0.8?1??0.83P(A)0.9618. 一建筑物内装有5台同类型的空调设备,调查说明,在任一时刻,每台设备被使用的概率为0.1,问在同一时刻〔1〕恰有两台设备被使用的概率是多少?〔2〕至少有三台设备被使用的概率是多少?解设5台设备在同一时刻是否工作是相互独立的, 因此此题可以看作是5重伯努利试验. 由题意,有p=0.1, q=1?p=0.9, 故。

王明慈 概率论与数理统计 第二版 习题解答 习题一

王明慈 概率论与数理统计 第二版 习题解答 习题一

P( A A ∪ B ) =
___
P[ A ∩ ( A ∪ B ] P( A ∪ B )
___
___
=
P( A ∪ A B )
___
___
=
P( A)
___
16 盒中里有 10 个电子元件,其中有 7 个正品,3 个次品,从中每次抽取一个,不放 回地连续抽取四次,求第一,第二次取得次品且第三第四次取得正品的概率。
P( A ∪ B ∪ C ) = P( A) + P( B) + P(C ) − P ( AB ) − P ( AC ) − P (BC ) + P ( ABC )
=1 −
1 3 = 。 4 4
答 案
3
w.
5 一批产品共有 200 件,期中有 6 件废品,求: (1)任取 3 件产品恰有 1 件是废品的概率; (2)任取 3 件产品没有废品的概率; (3)任取 3 件产品中废品不少于 2 件的概率。
第一章 1 写出下列随机试验的样本空间及各个事件中的样本点。 (1)同时掷三枚塞子,记录三枚塞子的点数之和, A − “点数之和大于 10”, B − “点数之和小于 15”。 解:三枚塞子掷得的点数最小为 3,最大为 18,并且可以组成这中间的连续自然数。 所以样本空间及各事件可表示为:
Ω = {3, 4, 56 , ⋯16 17 ,18} , , A = {11,12,13,14,15,16,17,18}, B = {3, 4,5, 6 ⋯12,13,14}.
ww
w.
所以 P ( B A) =
14 某人忘记电话号码的最后一个数字,因而他随意地拨最后一个号码,求他拨号不超 过两次而接通的概率。 解:设 Ai 表示第 i 次拨通。则根据题意有

概率论与数理统计教程第二版课后答案

概率论与数理统计教程第二版课后答案

概率论与数理统计教程第二版课后答案概率论与数理统计教程第二版是一本广泛使用的教材,主要介绍概率论和数理统计的基本概念、理论和方法。

它包含了大量的练习题,帮助学生巩固知识和提升技能。

本文将为教程中的一些课后题提供答案,以帮助学生对自己的学习进行反思和检验。

第一章:概率论的基本概念1. 在骰子的所有可能结果中,出现奇数的概率是多少?答案:在骰子的所有可能结果中,出现奇数的结果有1、3和5,共有3个结果。

骰子的总共可能结果为6。

因此,出现奇数的概率为3/6,即1/2。

第二章:随机变量及其分布1. 设随机变量X的分布函数为F(x) = (0, x<0; 1-x^2, 0≤x<1; 1, x≥1),求X的密度函数。

答案:对于连续型随机变量,其密度函数是分布函数的导数。

因此,求导得到密度函数:f(x) = dF(x)/dx = 2x,其中0≤x<1。

第三章:数理统计的基本概念1. 在对一个正态总体的均值进行统计推断时,样本均值和样本方差是哪两个常用的统计量?答案:在对正态总体的均值进行统计推断时,常用的两个统计量是样本均值和样本方差。

第四章:参数估计方法1. 在极大似然估计中,参数的估计值是否总能满足无偏性?答案:在极大似然估计中,参数的估计值不一定满足无偏性。

极大似然估计是一种一致性估计方法,即当样本容量趋于无穷大时,估计值趋于真实参数的概率为1。

但并不保证估计值在有限样本容量时的无偏性。

第五章:假设检验1. 什么是拒绝域,如何确定拒绝域?答案:拒绝域是在假设检验中,根据样本观测值的取值范围来决定是否拒绝原假设。

确定拒绝域需要设置显著性水平,即拒绝原假设的概率。

一般使用临界值法或p值法来确定拒绝域。

第六章:方差分析与回归分析1. 请解释何为因变量和自变量?答案:在回归分析中,因变量是需要被解释或预测的变量,也称为被解释变量。

而自变量是用来解释或预测因变量的变量,也称为解释变量。

这只是教程中一小部分题目的答案,通过解答这些题目,可以帮助学生更好地理解概率论和数理统计的概念、方法和应用。

概率论与数理统计及其应用第二版课后问题详解

概率论与数理统计及其应用第二版课后问题详解

第1章 随机变量及其概率1,写出下列试验的样本空间:(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。

(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。

(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。

解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。

2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。

解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=⨯⨯,所以所求得概率为72.0900648=4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。

(1)求该数是奇数的概率;(2)求该数大于330的概率。

解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=⨯⨯个。

概率论与数理统计第二版课后习题答案

概率论与数理统计第二版课后习题答案

概率论与数理统计第二版课后习题答案概率论与数理统计是一门重要的数学学科,广泛应用于各个领域。

而课后习题是学习这门学科的重要环节,通过解答习题可以巩固所学知识,提高问题解决能力。

本文将为大家提供《概率论与数理统计第二版》课后习题的答案,希望对大家的学习有所帮助。

第一章:概率论的基本概念1. 事件A、B相互独立,且P(A)=0.3,P(B)=0.4,求P(A∪B)。

解答:由于A、B相互独立,所以P(A∩B)=P(A)×P(B)=0.3×0.4=0.12。

根据概率的加法公式,P(A∪B)=P(A)+P(B)-P(A∩B)=0.3+0.4-0.12=0.58。

2. 设A、B为两个事件,且P(A)=0.6,P(B)=0.7,若P(A∩B)=0.3,求事件“既不发生A也不发生B”的概率。

解答:事件“既不发生A也不发生B”可以表示为A和B的补集的交集,即A'∩B'。

根据概率的补集公式,P(A')=1-P(A)=0.4,P(B')=1-P(B)=0.3。

由于A、B相互独立,所以P(A'∩B')=P(A')×P(B')=0.4×0.3=0.12。

第二章:离散型随机变量及其分布律1. 设随机变量X的分布律为:P(X=k)=C(10,k)×(0.3)^k×(0.7)^(10-k),其中C(10,k)表示10中取k的组合数。

求P(X≥6)。

解答:P(X≥6)=1-P(X<6)=1-[P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)]=1-[C(10,0)×(0.3)^0×(0.7)^10+C(10,1)×(0.3)^1×(0.7)^9+C(10,2)×(0.3)^2×(0.7)^8+ C(10,3)×(0.3)^3×(0.7)^7+C(10,4)×(0.3)^4×(0.7)^6+C(10,5)×(0.3)^5×(0.7)^5]=1 -[1×1×(0.7)^10+10×0.3×(0.7)^9+45×0.09×(0.7)^8+120×0.027×(0.7)^7+210×0. 0081×(0.7)^6+252×0.00243×(0.7)^5]=1-0.0282≈0.9718。

概率论与数理统计 第二版 齐民友 第一章课后习题答案

概率论与数理统计 第二版 齐民友 第一章课后习题答案

第 1 章习题解案
总 9 页第 2 页
所以 P{( A ∪ B )( A ∪ B )( A ∪ B )( A ∪ B )} = P(∅) = 0 9、0.9+0.75-0.7=0.95 %%% 3-9 由概率性质计算
10、七个字母任意排有 7!种排法,且每一排法的可能性相同,这是一个古典概型问题, 而排成 SCIENCE 有 1× 2 × 1× 2 × 1 × 1 × 1 = 4 种排法,故所求概率为
4 4 4
13、古典概型, 5 副中任取 4 只, 共有 C10 中取法, 不配对的情况有 C5 × 2 为
种, 故概率
5 × 24 8 = 4 C10 21
14、 1 −
5 C95 = 0.23 5 C100
15、首先所有的球共有 ( r + b)! 种排法, 没有两个红球相邻的排法可以是先把所有的黑球 排成一列 , 共 b ! 种排法 , 再来排红球 , 红球不相邻则有 b + 1 位置来排 r 个红球 , 故共有
1 1 ,从而得 P ( A ) = ,故 9 3 2 . 3
P ( A ) = 1− P ( A ) =
33、依题意, 有 (1) P(A1 ∪ (2) P((A1 A2
∪ An )=1-P(A1 An ) ∪ ∪ (A1 A2
An )=1-(1 − p1 ) An ))=P(A1 A2
(1 − pn ) . An ) +
2 2 = ≈ 5.025 , 1 − 0.602 1 − 0.398
方法一 设 A 表示第一次取到不合格品, B 表示第二次取到不合格品,所求概率是
P ( AB | A ∪ B ) ,按条件概率的定义有
P ( AB | A ∪ B ) =

概率论与数理统计及其应用第二版课后答案汇编

概率论与数理统计及其应用第二版课后答案汇编

第1章 随机变量及其概率1,写出下列试验的样本空间:(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。

(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。

(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。

解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。

2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。

解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=⨯⨯,所以所求得概率为72.0900648=4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。

(1)求该数是奇数的概率;(2)求该数大于330的概率。

解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=⨯⨯个。

概率论与数理统计(茆诗松)第二版第一章课后习题1.5参考答案

概率论与数理统计(茆诗松)第二版第一章课后习题1.5参考答案

习题1.51. 三人独立地破译一个密码,他们能单独译出的概率分别为1/5, 1/3, 1/4,求此密码被译出的概率. 解:设A , B , C 分别表示“第一、第二、第三人能单独译出”,有A , B , C 相互独立,即C B A ,,相互独立, 故所求概率为535214332541)()()(1)(1)(=−=××−=−=−=C P B P A P C B A P C B A P U U . 2. 有甲乙两批种子,发芽率分别为0.8和0.9,在两批种子中各任取一粒,求:(1)两粒种子都能发芽的概率;(2)至少有一粒种子能发芽的概率;(3)恰好有一粒种子能发芽的概率.解:设A , B 分别表示“甲批、乙批的种子能发芽”,有A , B 相互独立,(1)所求概率为P (AB ) = P (A ) P (B ) = 0.8 × 0.9 = 0.72;(2)所求概率为P (A ∪B ) = P (A ) + P (B ) − P (AB ) = 0.8 + 0.9 − 0.72 = 0.98;(3)所求概率为P (A ∪B − AB ) = P (A ∪B ) − P (AB ) = 0.98 − 0.72 = 0.26.3. 甲、乙两人独立地对同一目标射击一次,其命中率分别为0.8和0.7,现已知目标被击中,求它是甲射中的概率.解:设A , B 分别表示“甲、乙射击命中目标”,有A , B 相互独立, 故所求概率为)()()()()()()()()()()()|(B P A P B P A P A P AB P B P A P A P B A P A P B A A P −+=−+==U U 8511.0474094.08.07.08.07.08.08.0===×−+=. 4. 设电路由A , B , C 三个元件组成,若元件A , B , C 发生故障的概率分别是0.3, 0.2, 0.2,且各元件独立工作,试在以下情况下,求此电路发生故障的概率:(1)A , B , C 三个元件串联;(2)A , B , C 三个元件并联;(3)元件A 与两个并联的元件B 及C 串联而成.解:设A , B , C 分别表示“元件A , B , C 发生故障”,有A , B , C 相互独立, (1)所求概率为552.08.08.07.01()((1)(1)(=××−=−=−=P P P P C B A P U U ;(2)所求概率为P (ABC ) = P (A ) P (B ) P (C ) = 0.3 × 0.2 × 0.2 = 0.012;(3)所求概率为P (A ∪BC ) = P (A ) + P (BC ) − P (ABC ) = P (A ) + P (B ) P (C ) − P (A ) P (B ) P (C )= 0.3 + 0.2 × 0.2 − 0.3 × 0.2 × 0.2 = 0.328.5. 在一小时内甲、乙、丙三台机床需维修的概率分别是0.9、0.8和0.85,求一小时内(1)没有一台机床需要维修的概率;(2)至少有一台机床不需要维修的概率;(3)至多只有一台机床需要维修的概率.解:设A , B , C 分别表示“甲、乙、丙三台机床不需要维修”,有A , B , C 相互独立,(1)所求概率为P (ABC ) = P (A ) P (B ) P (C ) = 0.1 × 0.2 × 0.15 = 0.003;(2)所求概率为388.085.08.09.01()()(1)(1)(=××−=−=−=C P B P A P C B A P C B A P U U ;(3)所求概率为)()()()()(BC A P C B A P C AB P ABC P BC A C B A C AB ABC P +++=U U U)()()()()()()()()()()()(C P B P A P C P B P A P C P B P A P C P B P A P +++== 0.1 × 0.2 × 0.15 + 0.1 × 0.2 × 0.85 + 0.1 × 0.8 × 0.15 + 0.9 × 0.2 × 0.15 = 0.059.6. 设A 1 , A 2 , A 3相互独立,且P (A i ) = 2/3,i = 1, 2, 3.试求A 1 , A 2 , A 3中(1)至少出现一个的概率;(2)恰好出现一个的概率;(3)最多出现一个的概率.解:(1)所求概率为27263131311)()()(1)(1)(321321321=××−=−=−=A P A P A P A A A P A A A P U U ; (2)所求概率为)(321321321A A A A A A A A A P U U)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=92323131313231313132=××+××+××=; (3)所求概率为)(321321321321A A A A A A A A A A A A P U U U)()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P +++=277313131323131313231313132=××+××+××+××=. 7. 若事件A 与B 相互独立且互不相容,试求min{P (A ), P (B )}.解:因事件A 与B 相互独立且互不相容,有P (AB ) = P (A ) P (B ) 且AB = ∅,即P (AB ) = 0,则P (A ) P (B ) = 0,即P (A ) = 0或P (B ) = 0,故min{P (A ), P (B )} = 0.8. 假设P (A ) = 0.4,P (A ∪B ) = 0.9,在以下情况下求P (B ):(1)A , B 不相容;(2)A , B 独立;(3)A ⊂ B .解:(1)因A , B 不相容,有P (A ∪B ) = P (A ) + P (B ),故P (B ) = P (A ∪B ) − P (A ) = 0.9 − 0.4 = 0.5;(2)因A , B 独立,有P (A ∪B ) = P (A ) + P (B ) − P (AB ) = P (A ) + P (B ) − P (A ) P (B ), 故8333.06.05.04.014.09.0)(1)()()(==−−=−−=A P A P B A P B P U ; (3)因A ⊂ B ,有P (B ) = P (A ∪B ) = 0.9.9. 设A , B , C 两两独立,且ABC = ∅.(1)如果P (A ) = P (B ) = P (C ) = x ,试求x 的最大值;(2)如果P (A ) = P (B ) = P (C ) < 1/2,且P (A ∪B ∪C ) = 9/16,求P (A ).解:(1)因ABC = ∅,有P (AB ∪AC ) = P (AB ) + P (AC ) − P (ABC ) = P (A ) P (B ) + P (A ) P (C ) = 2 x 2,则2 x 2 = P (AB ∪AC ) ≤ P (A ) = x ,得x ≤ 0.5, 另一方面,x 可以取到0.5,若取P (A ) = P (B ) = 0.5,P (AB ) = 0.25,B A B A C U =, 则5.0)()()()()()()()(=−+−=+==AB P B P AB P A P B P A P A P C P U ,且P (AB ) = 0.25 = P (A ) P (B ),A , B 独立,)()(25.0)()()()(C P A P AB P A P B A P AC P ==−==,有A , C 独立,)()(25.0)()()()(C P B P AB P B P A P BC P ==−==,有B , C 独立,即P (A ) = P (B ) = P (C ) = 0.5,A , B , C 两两独立,且ABC = ∅,得x 可以取到0.5,故x 的最大值等于0.5;注:掷两次硬币,设A 表示“第一次出现正面”,B 表示“第二次出现正面”,C 表示“恰好出现一次正面”,有P (A ) = P (B ) = P (C ) = 0.5,ABC = ∅,且AB 表示“两次都出现正面”,P (AB ) = 0.25 = P (A )P (B ),有A , B 独立;AC 表示“第一次出现正面,第二次反面”,P (AC ) = 0.25 = P (A )P (C ),有A , C 独立;BC 表示“第一次出现反面,第二次正面”,P (BC ) = 0.25 = P (B )P (C ),有B , C 独立.(2)设P (A ) = P (B ) = P (C ) = x ,有21<x , 因P (A ∪B ∪C ) = P (A ) + P (B ) + P (C ) − P (AB ) − P (AC ) − P (BC ) + P (ABC )= P (A ) + P (B ) + P (C ) − P (A ) P (B ) − P (A ) P (C ) − P (B ) P (C ) = 3x − 3x 2, 则233169x x −=,即0)43)(41(1632=−−=+−x x x x ,得41=x 或43=x ,但21<x , 故41=x . 10.事件A , B 独立,两个事件仅A 发生的概率或仅B 发生的概率都是1/4,求P (A ) 及P (B ).解:因A , B 独立,且41)()(==B A P B A P ,有)()](1[)()()](1)[()()(B P A P B P A P B P A P B P A P −==−=, 则P (A ) = P (B ),得41)](1)[(=−A P A P ,即0]21)([41)()]([22=−=+−A P A P A P , 故21)(=A P ,21)(=B P . 11.一实习生用同一台机器接连独立地制造3个同种零件,第i 个零件是不合格品的概率为p i = 1/(i + 1),i = 1, 2, 3,以X 表示3个零件中合格品的个数,求P {X ≤ 2}.解:设A i 表示“第i 个零件是不合格品”,i = 1, 2, 3,有A 1 , A 2 , A 3相互独立, 故)1)(1)(1(1)()()(1)(1}3{1}2{321321321p p p A P A P A P A A A P X P X P −−−−=−=−==−=≤434332211=××−=. 12.每门高射炮击中飞机的概率为0.3,独立同时射击时,要以99%的把握击中飞机,需要几门高射炮? 解:设X n 表示n 门高射炮击中飞机的次数,且每门高射炮击中飞机的概率为p = 0.3,则至少命中一次的概率为P {X n ≥ 1} = 1 − P {X n = 0} = 1 − (1 − p ) n = 1 − 0.7 n ≥ 0.99,即0.7 n ≤ 0.01, 故9114.127.0ln 01.0ln =≥n ,即需要13门高射炮就能以99%的把握击中飞机. 13.投掷一枚骰子,问需要投掷多少次,才能保证至少有一次出现点数为6的概率大于1/2?解:设X n 表示投掷n 次骰子出现点数为6的次数,且每次投掷骰子出现点数为6的概率p = 1/6,则至少有一次出现点数为6的概率为P {X n ≥ 1} = 1 − P {X n = 0} = 1 − (5/6) n ≥ 1/2,即(5/6) n ≤ 1/2, 故8018.3)6/5ln()2/1ln(=≥n ,即需要投掷4次,才能保证至少有一次出现点数为6的概率大于1/2. 14.一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80/81,试求该射手进行一次射击的命中率.解:设X 表示该射手四次射击的命中次数,且射手进行一次射击的命中率为p , 则至少命中一次的概率为8180)1(1}0{1}1{4=−−==−=≥p X P X P ,即811)1(4=−p , 故射手进行一次射击的命中率为32=p . 15.每次射击命中率为0.2,试求:射击多少次才能使至少击中一次的概率不小于0.9?解:设X n 表示n 次射击的命中次数,且每次射击命中率为p = 0.2,则至少命中一次的概率为P {X n ≥ 1} = 1 − P {X n = 0} = 1 − (1 − p ) n = 1 − 0.8 n ≥ 0.9,即0.8 n ≤ 0.1, 故3189.108.0ln 1.0ln =≥n ,即射击至少11次才能使至少击中一次的概率不小于0.9. 16.设猎人在猎物100米处对猎物打第一枪,命中猎物的概率为0.5.若第一枪未命中,则猎人继续打第二枪,此时猎物与猎人已相距150米.若第二枪仍未命中,则猎人继续打第三枪,此时猎物与猎人已相距200米.若第三枪仍未命中,则猎物逃逸.假如该猎人命中猎物的概率与距离成反比,试求该猎物被击中的概率.解:设A i 表示“第i 枪命中猎物”,i = 1, 2, 3,有A 1 , A 2 , A 3相互独立,则P (A 1) = 0.5,31)(150100)(12==A P A P ,41)(200100)(13==A P A P , 故所求概率为)()()()(321211321211A A A P A A P A P A A A A A A P ++=U U43129413221312121)()()()()()(321211==××+×+=++=A P A P A P A P A P A P . 17.某血库急需AB 型血,要从身体合格的献血者中获得,根据经验,每百名身体合格的献血者中只有2名是AB 型血的;(1)求在20名身体合格的献血者中至少有一人是AB 型血的概率;(2)若要以95%的把握至少能获得一份AB 型血,需要多少位身体合格的献血者.解:设X n 表示n 名身体合格的献血者中AB 型血的人数,且每名献血者是AB 型血的概率为p = 0.02,(1)P {X 20 ≥ 1} = 1 − P {X 20 = 0} = 1 − (1 − p )20 = 1 − 0.9820 = 0.3324;(2)因P {X n ≥ 1} = 1 − P {X n = 0} = 1 − (1 − p ) n = 1 − 0.98 n ≥ 0.95,即0.98 n ≤ 0.05, 故2837.14898.0ln 05.0ln =≥n ,即需要149位献血者才能以95%的把握至少能获得一份AB 型血. 18.一个人的血型为A , B , AB , O 型的概率分别为0.37, 0.21, 0.08, 0.34.现任意挑选四个人,试求:(1)此四人的血型全不相同的概率;(2)此四人的血型全部相同的概率.解:(1)所求概率为P (A 1) = 4! × 0.37 × 0.21 × 0.08 × 0.34 = 0.0507;(2)所求概率为P (A 2) = 0.374 + 0.214 + 0.084 + 0.344 = 0.0341.19.甲、乙两选手进行乒乓球单打比赛,已知在每局中甲胜的概率为0.6,乙胜的概率为0.4.比赛可采用三局两胜制或五局三胜制,问哪一种比赛制度对甲更有利?解:三局两胜制,甲2∶0胜乙的概率为0.6 2 = 0.36,甲2∶1胜乙的概率为2 × 0.6 2 × 0.4 = 0.288,则三局两胜制时,甲获胜的概率为P (A 1) = 0.36 + 0.288 = 0.648;五局三胜制,甲3∶0胜乙的概率为0.6 3 = 0.216,甲3∶1胜乙的概率为3 × 0.63 × 0.4 = 0.2592, 且甲3∶2胜乙的概率为20736.04.06.02423=××⎟⎟⎠⎞⎜⎜⎝⎛,则五局三胜制时,甲获胜的概率为P (A 2) = 0.216 + 0.2592 + 0.20736 = 0.68256;故P (A 1) < P (A 2),五局三胜制时对甲更有利.20.甲、乙、丙三人进行比赛,规定每局两个人比赛,胜者与第三人比赛,依次循环,直至有一人连胜两场为止,此人即为冠军.而每次比赛双方取胜的概率都是1/2,现假定甲、乙两人先比,试求各人得冠军的概率.解:设每局比赛中,甲胜乙、乙胜甲、甲胜丙、丙胜甲、乙胜丙、丙胜乙分别记为A b , B a , A c , C a , B c , C b ,则甲得冠军的情况有两类:① A b A c ,A b C a B c A b A c ,A b C a B c A b C a B c A b A c ,……,(A b C a B c )k A b A c ,……,② B a C b A c A b ,B a C b A c B a C b A c A b ,B a C b A c B a C b A c B a C b A c A b ,……,(B a C b A c )k A b ,……,故甲得冠军的概率为P (A ) = (0.5 2 + 0.5 5 + 0.5 8 + ……) + (0.5 4 + 0.5 7 + 0.5 10 + ……)145141725.015.05.015.03432=+=−+−=; 由对称性知乙得冠军的概率145)()(==A P B P ; 而丙得冠军的情况也有两类:① A b C a C b ,A b C a B c A b C a C b ,A b C a B c A b C a B c A b C a C b ,……,(A b C a B c )k A b C a C b ,……,② B a C b C a ,B a C b A c B a C b C a ,B a C b A c B a C b A c B a C b C a ,……,(B a C b A c )k B a C b C a ,……,故丙得冠军的概率为P (C ) = (0.5 3 + 0.5 6 + 0.5 9 + ……) + (0.5 3 + 0.5 6 + 0.5 9 + ……)725.015.0233=−×=. 21.甲、乙两个赌徒在每一局获胜的概率都是1/2.两人约定谁先赢得一定的局数就获得全部赌本.但赌博在中途被打断了,请问在以下各种情况下,应如何合理分配赌本:(1)甲、乙两个赌徒都各需赢k 局才能获胜;(2)甲赌徒还需赢2局才能获胜,乙赌徒还需赢3局才能获胜;(3)甲赌徒还需赢n 局才能获胜,乙赌徒还需赢m 局才能获胜.解:记每一局中甲赢的概率为p = 0.5,假设赌博继续下去,按甲、乙最终获胜的概率分配赌本,(1)由对称性知,甲、乙获胜的概率相等,则P (A 1) = P (B 1) = 0.5,故甲、乙应各得赌本的一半;(2)因甲获胜的概率为P (A 2) = p 2 + 2 (1 − p ) p 2 + 3 (1 − p ) 2 p 2 = 0.5 2 + 2 × 0.5 3 + 3 × 0.5 4 = 0.6875,则乙获胜的概率P (B 2) = 1 − P (A 2) = 0.3125,故甲应得赌本的68.75%,乙应得赌本的31.25%;(3)因甲获胜的概率为n m n n np p m m n p p n p p n p A P 123)1(12)1(21)1(1)(−−⎟⎟⎠⎞⎜⎜⎝⎛−−+++−⎟⎟⎠⎞⎜⎜⎝⎛++−⎟⎟⎠⎞⎜⎜⎝⎛+=L 1215.0125.0215.015.0−+++⎟⎟⎠⎞⎜⎜⎝⎛−−+++⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+=m n n n n m m n n n L , 则乙获胜的概率为P (B 3) = 1 − P (A 3)⎥⎦⎤⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−+++⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+−=−+++1215.0125.0215.015.01m n n n n m m n n n L , 故甲应得赌本的1215.0125.0215.015.0−+++⎟⎟⎠⎞⎜⎜⎝⎛−−+++⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+m n n n n m m n n n L , 乙应得赌本的⎥⎦⎤⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−+++⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+−−+++1215.0125.0215.015.01m n n n n m m n n n L . 注:也可假设无论结果如何,都要进行n + m 局比赛,甲获胜的条件是前n + m − 1局比赛中,甲至少赢得n 局比赛,故甲获胜的概率为1211311)1(11)1(1)(−+−+−⎟⎟⎠⎞⎜⎜⎝⎛−+−+++−⎟⎟⎠⎞⎜⎜⎝⎛+−++−⎟⎟⎠⎞⎜⎜⎝⎛−+=m n m n m n p m n m n p p n m n p p n m n A P L 15.011111−+⎥⎦⎤⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−+−+++⎟⎟⎠⎞⎜⎜⎝⎛+−++⎟⎟⎠⎞⎜⎜⎝⎛−+=m n m n m n n m n n m n L . 22.一辆重型货车去边远山区送货.修理工告诉司机,由于车上六个轮胎都是旧的,前面两个轮胎损坏的概率都是0.1,后面四个轮胎损坏的概率都是0.2.你能告诉司机,此车在途中因轮胎损坏而发生故障的概率是多少吗?解:设X 与Y 分别表示在途中损坏的前胎个数与后胎个数,A 与B 分别表示至少有一个前胎与后胎损坏,且每个前胎损坏的概率为p 1 = 0.1,每个后胎损坏的概率为p 2 = 0.2,A 与B 相互独立,则P (A ) = P {X ≥ 1} = 1 − P {X = 0} = 1 − (1 − p 1)2 = 1 − 0.92 = 0.19,P (B ) = P {Y ≥ 1} = 1 − P {Y = 0} = 1 − (1 − p 2)4 = 1 − 0.84 = 0.5904,故P (A ∪B ) = P (A ) + P (B ) − P (AB ) = 0.19 + 0.5904 − 0.19 × 0.5904 = 0.6682.23.设0 < P (B ) < 1,试证事件A 与B 独立的充要条件是)|()|(B A P B A P =.证:必要性,若事件A 与B 独立, 则)()()()()()()|(A P B P B P A P B P AB P B A P ===,)(()()(()()|(A P P B P A P P B A P B A P === 故)|()|(B A P B A P =; 充分性,若)|()|(B A P B A P =,有)(1)()()()()()(B P AB P A P P B A P B P AB P −−==, 则P (AB )[1 − P (B )] = P (B )[P (A ) − P (AB )],即P (AB ) − P (AB )P (B ) = P (A )P (B ) − P (B )P (AB ),故P (AB ) = P (A ) P (B ),即事件A 与B 独立.24.设0 < P (A ) < 1,0 < P (B ) < 1,1)|()|(=+B A P B A P ,试证A 与B 独立. 证:因)(1)(1)()(()()()()|()|(B P B A P B P AB P P B A P B P AB P B A P B A P −−+=+=+U , )(1)()()(1)()(B P AB P B P A P B P AB P −+−−+= )](1)[()]()()(1)[()](1)[(B P B P AB P B P A P B P B P AB P −+−−+−= )](1)[()()()]([)()()()()()(2B P B P B P AB P B P B P A P B P B P AB P AB P −+−−+−= 1)](1)[()()()()](1)[()]([)()()()(2+−−=−−+−=B P B P B P A P AB P B P B P B P B P B P A P AB P , 且1|()|(=+B A P B A P , 则0)](1)[()()()(=−−B P B P B P A P AB P , 故P (AB ) = P (A ) P (B ),即事件A 与B 独立.25.若P (A ) > 0,P (B ) > 0,如果A , B 相互独立,试证A , B 相容.证:因A , B 相互独立,有P (AB ) = P (A ) P (B ) > 0,故AB ≠ ∅,即A , B 相容.。

概率论与数理统计及其应用第二版课后答案

概率论与数理统计及其应用第二版课后答案

the area under development envir onme nt. All admini strative law enforcement de partments to a ppoint a full -time pers onnel stati one d in areas dedi cated to coordinati ng and solving pr oblems a ss ociated with busi nesse s in thi s se ctor. When ther e are substantial i ssue s, se ctor lea ders arrange d to personal ly intervene, in -per son, in-pers on push tangi ble area buil ding a gree n light, easy li ne. To further reduce a nd standardi ze administrative examination a nd a ppr oval items, simplify examinati on and approval li nks, impr ove efficiency; accor ding to t he ...
3,在 100,101,…,999 这 900 个 3 位数中,任取一个 3 位数,求 不包含数字 1 个概率。
streamlining. Four are sta ndar d visits, except as re quire d to participate in traini ng, no ot her a ctivity. Five i s to impr ove new s reporting, for propaganda work stri ctly accor ding to t he regul ations. Six is stri ctly your prese ntation publis hed strictly accor ding to t he reg ulations.

概率论与数理统计及其应用第二版课后答案

概率论与数理统计及其应用第二版课后答案

第1章 随机变量及其概率1,写出下列试验的样本空间:(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。

(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。

(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。

解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。

2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。

解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=⨯⨯,所以所求得概率为72.0900648=4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。

(1)求该数是奇数的概率;(2)求该数大于330的概率。

解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=⨯⨯个。

概率论与数理统计(茆诗松)第二版第一章习题参考答案

概率论与数理统计(茆诗松)第二版第一章习题参考答案

第一章 随机事件与概率习题1.11. 写出下列随机试验的样本空间:(1)抛三枚硬币; (2)抛三颗骰子;(3)连续抛一枚硬币,直至出现正面为止;(4)口袋中有黑、白、红球各一个,从中任取两个球,先从中取出一个,放回后再取出一个; (5)口袋中有黑、白、红球各一个,从中任取两个球,先从中取出一个,不放回后再取出一个. 解:(1)Ω = {(0, 0, 0),(0, 0, 1),(0, 1, 0),(1, 0, 0),(0, 1, 1),(1, 0, 1),(1, 1, 1),(1, 1, 1)},其中出现正面记为1,出现反面记为0; (2)Ω = {(x 1 , x 2 , x 3):x 1 , x 2 , x 3 = 1, 2, 3, 4, 5, 6};(3)Ω = {(1),(0, 1),(0, 0, 1),(0, 0, 0, 1),…,(0, 0, …, 0, 1),…},其中出现正面记为1,出现反面记为0;(4)Ω = {BB ,BW ,BR ,WW ,WB ,WR ,RR ,RB ,RW},其中黑球记为B ,白球记为W ,红球记为R ; (5)Ω = {BW ,BR ,WB ,WR ,RB ,RW},其中黑球记为B ,白球记为W ,红球记为R .2. 先抛一枚硬币,若出现正面(记为Z ),则再掷一颗骰子,试验停止;若出现反面(记为F ),则再抛一枚硬币,试验停止.那么该试验的样本空间Ω是什么? 解:Ω = {Z1,Z2,Z3,Z4,Z5,Z6,FZ ,FF}. 3. 设A , B , C 为三事件,试表示下列事件:(1)A , B , C 都发生或都不发生; (2)A , B , C 中不多于一个发生; (3)A , B , C 中不多于两个发生; (4)A , B , C 中至少有两个发生. 解:(1)C B A ABC U ;(2)C B A C B A C B A C B A U U U ;(3)ABC 或C B A C B A C B A C B A BC A C B A C AB U U U U U U ; (4)ABC BC A C B A C AB U U U . 4. 指出下列事件等式成立的条件:(1)A ∪B = A ; (2)AB = A . 解:(1)当A ⊃ B 时,A ∪B = A ;(2)当A ⊂ B 时,AB = A .5. 设X 为随机变量,其样本空间为Ω = {0 ≤ X ≤ 2},记事件A = {0.5 < X ≤ 1},B = {0.25 ≤ X < 1.5},写出下列各事件:(1)B A ; (2)B A U ;(3)AB ; (4)B A U .解:(1)}5.11{}5.025.0{<<≤≤=X X B A U ;(2)Ω=≤≤=}20{X B A U ;(3)A X X AB =≤<≤≤=}21{}5.00{U ; (4)B X X B A =≤≤<≤=}25.1{}25.00{U U .6. 检查三件产品,只区分每件产品是合格品(记为0)与不合格品(记为1),设X 为三件产品中的不合格品数,指出下列事件所含的样本点:A =“X = 1”,B =“X > 2”,C =“X = 0”,D =“X = 4”.解:A = {(1, 0, 0),(0, 1, 0),(0, 0, 1)},B = {(1, 1, 1)},C = {(0, 0, 0)},D = ∅. 7. 试问下列命题是否成立?(1)A − (B − C ) = (A − B )∪C ;(2)若AB = ∅且C ⊂ A ,则BC = ∅; (3)(A ∪B ) − B = A ; (4)(A − B )∪B = A .解:(1)不成立,C B A AC B A AC B A C B A C B A C B A C B A U U U U )()()()(−≠−====−=−−;(2)成立,因C ⊂ A ,有BC ⊂ AB = ∅,故BC = ∅;(3)不成立,因A B A B A B B B A B B A B B A ≠−====−U U U )()(; (4)不成立,因A B A B B B A B B A B B A ≠===−U U U U U ))(()(. 8. 若事件ABC = ∅,是否一定有AB = ∅?解:不能得出此结论,如当C = ∅时,无论AB 为任何事件,都有ABC = ∅. 9. 请叙述下列事件的对立事件:(1)A =“掷两枚硬币,皆为正面”; (2)B =“射击三次,皆命中目标”;(3)C =“加工四个零件,至少有一个合格品”. 解:(1)=A “掷两枚硬币,至少有一个反面”;(2)=B “射击三次,至少有一次没有命中目标”; (3)=C “加工四个零件,皆为不合格品”. 10.证明下列事件的运算公式:(1)B A AB A U =; (2)B A A B A U U =.证:(1)A A B B A B A AB =Ω==)(U U ;(2)B A B A B A A A B A A U U U U U =Ω==)())((. 11.设F 为一事件域,若A n ∈F ,n = 1, 2, …,试证:(1)∅ ∈F ;(2)有限并∈=U ni i A 1F ,n ≥ 1;(3)有限交∈=I ni i A 1F ,n ≥ 1;(4)可列交∈+∞=I 1i i A F ;(5)差运算A 1 − A 2 ∈ F .证:(1)由事件域定义条件1,知 Ω ∈F ,再由定义条件2,可得∅∈Ω=F ;(2)在定义条件3中,取A n + 1 = A n + 2 = … = ∅,可得∈=∞==U U 11i i ni i A A F ;(3)由定义条件2,知∈n A A A ,,,21L F ,根据(2)小题结论,可得∈=U ni i A 1F ,再由定义条件2,知∈=U ni i A 1F ,即∈=I ni i A 1F ;(4)由定义条件2,知∈L L ,,,,21n A A A F ,根据定义条件3,可得∈∞=U 1i i A F ,再由定义条件2,知∈∞=U 1i i A F ,即∈∞=I 1i i A F ;(5)由定义条件2,知∈2A F ,根据(3)小题结论,可得∈21A A F ,即A 1 − A 2 ∈ F .习题1.21. 对于组合数⎟⎟⎠⎞⎜⎜⎝⎛r n ,证明:(1)⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛r n n r n ; (2)⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−−=⎟⎟⎠⎞⎜⎜⎝⎛r n r n r n 111; (3)nn n n n 210=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛L ; (4)12221−⋅=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n n L ;(5)⎟⎟⎠⎞⎜⎜⎝⎛+=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛n b a b n a n b a n b a 0110L ,n = min{a , b }; (6)⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n 210222L . 证:(1)⎟⎟⎠⎞⎜⎜⎝⎛=−=−−−=⎟⎟⎠⎞⎜⎜⎝⎛−r n r r n n r n n r n n r n n !)!(!)]!([)!(!; (2)⎟⎟⎠⎞⎜⎜⎝⎛=−=−+−−=−−−+−−−=⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−−r n r n r n r n r r n r n r n r n r n r n r n r n )!(!!)]([)!(!)!1()!1(!)!1()!()!1()!1(111; (3)由二项式展开定理nn n n y n n y x n x n y x ⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=+−L 110)(,令x = y = 1,得 nn n n n 210=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛L ; (4)当1 ≤ r ≤ n 时,⎟⎟⎠⎞⎜⎜⎝⎛−−=−⋅−−=−⋅−=−⋅=⎟⎟⎠⎞⎜⎜⎝⎛11)!()!1()!1()!()!1(!)!(!!r n n r n r n n r n r n r n r n rr n r , 故12111101221−⋅=⎟⎟⎠⎞⎜⎜⎝⎛−−++⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n n n n n n n n n L L ; (5)因a ax a a x a a x ⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=+L 10)1(,b b x b b x b b x ⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=+L 10)1(, 两式相乘,其中x n 的系数为⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛0110b n a n b a n b a L ,另一方面ba b a b a x a b a x b a b a x x x ++⎟⎟⎠⎞⎜⎜⎝⎛+++⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+=+=++L 10)1()1()1(,其中x n 的系数为⎟⎟⎠⎞⎜⎜⎝⎛+n b a ,即⎟⎟⎠⎞⎜⎜⎝⎛+=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛n b a b n a n b a n b a 0110L ; (6)在(5)小题结论中,取a = b = n ,有⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n n n n n n 20110L , 再由(1)小题结论,知⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛r n n r n ,即⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n 210222L . 2. 抛三枚硬币,求至少出现一个正面的概率.解:样本点总数n = 23 = 8,事件“至少出现一个正面”的对立事件为“三个都是反面”,其所含样本点个数为1, 即事件“至少出现一个正面”所含样本点个数为k = 8 − 1 = 7,故所求概率为87)(=A P . 3. 任取两个正整数,求它们的和为偶数的概率. 解:将所有正整数看作两个类“偶数”、“奇数”,样本点总数n = 22 = 4,事件“两个都是偶数”所含样本点个数为1,事件“两个都是奇数”所含样本点个数也为1, 即事件A =“它们的和为偶数”所含样本点个数k = 2,故所求概率为2142)(==A P .4. 掷两枚骰子,求下列事件的概率:(1)点数之和为6; (2)点数之和不超过6; (3)至少有一个6点. 解:样本点总数n = 62 = 36.(1)事件A 1 =“点数之和为6”的样本点有 (1, 5), (2, 4), (3, 3), (4, 2), (5, 1),即个数k 1 = 5,故所求概率为365)(1=A P ;(2)事件A 2 =“点数之和不超过6”的样本点有(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (5, 1), 即个数k 2 = 15,故所求概率为1253615)(2==A P ;(3)事件A 3 =“至少有一个6点”的样本点有(1, 6), (6, 1), (2, 6), (6, 2), (3, 6), (6, 3), (4, 6), (6, 4), (5, 6), (6, 5), (6, 6), 即个数k 3 = 11,故所求概率为3611)(3=A P .5. 考虑一元二次方程x 2 + Bx + C = 0,其中B , C 分别是将一颗骰子接连掷两次先后出现的点数,求该方程有实根的概率p 和有重根的概率q . 解:样本点总数n = 62 = 36,事件A 1 =“该方程有实根”,即B 2 − 4C ≥ 0,样本点有(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3), (4, 4), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6),即个数k 1 = 19,故36191==n k p . 事件A 2 =“该方程有重根”,即B 2 − 4C = 0,样本点有(2, 1),(4, 4),即个数k 2 = 2,故1813622===n k q .6. 从一副52张的扑克牌中任取4张,求下列事件的概率:(1)全是黑桃; (2)同花;(3)没有两张同一花色; (4)同色.解:样本点总数270725123449505152452=××××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,(1)事件A 1 =“全是黑桃”所含样本点个数7151234101112134131=××××××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为0026.0270725715)(1==A P ;(2)事件A 2 =“同花”所含样本点个数2860123410111213441342=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛×=k , 故所求概率为0106.02707252860)(2==A P ;(3)事件A 3 =“没有两张同一花色”所含样本点个数k 3 = 13 × 13 × 13 × 13 = 28561,故所求概率为1055.027072528561)(3==A P ;(4)事件A 4 =“同色”所含样本点个数29900123423242526242624=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛×=k , 故所求概率为1104.027072529900)(4==A P .7. 设9件产品中有2件不合格品.从中不返回地任取2个,求取出的2个中全是合格品、仅有一个合格品和没有合格品的概率各为多少?解:样本点总数36128929=××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,事件A 1 =“全是合格品”所含样本点个数211267271=××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为1273621)(1==A P ; 事件A 2 =“仅有一个合格品”所含样本点个数142712171=×=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为1873614)(2==A P ;事件A 3 =“没有合格品”所含样本点个数1223=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为361)(3=A P . 8. 口袋中有7个白球、3个黑球,从中任取两个,求取到的两个球颜色相同的概率.解:样本点总数4512910210=××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,事件A =“两个球颜色相同”所含样本点个数24122312672327=××+××=⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为1584524)(==A P . 9. 甲口袋有5个白球、3个黑球,乙口袋有4个白球、6个黑球.从两个口袋中各任取一球,求取到的两个球颜色相同的概率. 解:样本点总数n = 8 × 10 = 80,事件A =“两个球颜色相同”所含样本点个数k = 5 × 4 + 3 × 6 = 38,故所求概率为40198038)(==A P . 10.从n 个数1, 2, …, n 中任取2个,问其中一个小于k (1 < k < n ),另一个大于k 的概率是多少?解:样本点总数)1(212−=⎟⎟⎠⎞⎜⎜⎝⎛=n n n N ,事件A = “其中一个小于k ,另一个大于k ”所含样本点个数K = (k − 1)(n − k ), 故所求概率为)1())(1(2)(−−−=n n k n k A P .11.口袋中有10个球,分别标有号码1到10,现从中不返回地任取4个,记下取出球的号码,试求:(1)最小号码为5的概率; (2)最大号码为5的概率.解:样本点总数210123478910410=××××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,(1)事件A 1 =“最小号码为5”所含样本点个数10123345351=××××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为21121010)(1==A P ; (2)事件A 2 =“最大号码为5”所含样本点个数4123234342=××××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为10522104)(2==A P . 12.掷三颗骰子,求以下事件的概率:(1)所得的最大点数小于等于5; (2)所得的最大点数等于5. 解:样本点总数n = 63 = 216,(1)事件A 1 =“所得的最大点数小于等于5”所含样本点个数k 1 = 53 = 125,故所求概率为216125)(1=A P ; (2)事件A 2 =“所得的最大点数等于5”所含样本点个数k 2 = 53 − 43 = 61,故所求概率为21661)(2=A P .13.把10本书任意地放在书架上,求其中指定的四本书放在一起的概率. 解:样本点总数n = 10!,事件A =“其中指定的四本书放在一起”所含样本点个数k = 4! × 7!,故所求概率为30189101234!10!7!4)(=×××××=×=A P . 14.n 个人随机地围一圆桌而坐,求甲乙两人相邻而坐的概率. 解:样本点总数N = (n − 1)!,事件A =“甲乙两人相邻而坐”所含样本点个数k = 2! × (n − 2)!,故所求概率为12)!1()!2(!2)(−=−−×=n n n A P . 15.同时掷5枚骰子,试证明:(1)P {每枚都不一样} = 0.0926; (2)P {一对} = 0.4630; (3)P {两对} = 0.2315;(4)P {三枚一样} = 0.1543(此题有误); (5)P {四枚一样} = 0.0193; (6)P {五枚一样} = 0.0008. 解:样本点总数n = 65 = 7776,(1)事件“每枚都不一样”所含样本点个数72023456561=××××==A k ,故P {每枚都不一样}0926.07776720==; (2)事件“一对”所含样本点个数3600345124563525162=××××××=⋅⋅=A C A k , 故P {一对}4630.077763600==; (3)事件“两对”所含样本点个数18004122312451256142325263=×××××××××=⋅⋅⋅=A C C C k , 故P {两对}2315.077761800==; (4)事件“三枚一样”所含样本点个数15005123345652235164=××××××=⋅⋅=C A k ,故P {三枚一样}1929.077761500==; 事件“三枚一样且另两枚不一样”所含样本点个数12004512334562535164=×××××××=⋅⋅=A C A k ,故P {三枚一样且另两枚不一样}1543.077761200==; (5)事件“四枚一样”所含样本点个数15051234234561545165=××××××××=⋅⋅=A C A k ,故P {四枚一样}0193.07776150==; (6)事件“五枚一样”所含样本点个数6161555166=×=⋅⋅=A C A k ,故P {五枚一样}0008.077766==. 16.一个人把六根草紧握在手中,仅露出它们的头和尾.然后随机地把六个头两两相接,六个尾也两两相接.求放开手后六根草恰巧连成一个环的概率.解:在同一种六个头两两相接情况下,只需考虑六个尾两两相接的样本点总数n = 5 × 3 = 15,事件A =“放开手后六根草恰巧连成一个环”所含样本点个数k = 4 × 2 = 8,故所求概率为158)(=A P .17.把n 个“0”与n 个“1”随机地排列,求没有两个“1”连在一起的概率.解:样本点总数!!)!2(2n n n n n N ⋅=⎟⎟⎠⎞⎜⎜⎝⎛=,事件A =“没有两个‘1’连在一起”所含样本点个数11+=⎟⎟⎠⎞⎜⎜⎝⎛+=n n n k ,故所求概率为)!2()!1(!)(n n n A P +⋅=.18.设10件产品中有2件不合格品,从中任取4件,设其中不合格品数为X ,求X 的概率分布.解:样本点总数210123478910410=××××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,事件X = 0所含样本点个数7011234567802480=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为3121070}0{===X P ; 事件X = 1所含样本点个数112212367812381=×××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为158210112}1{===X P ; 事件X = 2所含样本点个数281127822282=×××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为15221028}2{===X P . 19.n 个男孩,m 个女孩(m ≤ n + 1)随机地排成一排,试求任意两个女孩都不相邻的概率.解:样本点总数!!)!(m n m n n m n N ⋅+=⎟⎟⎠⎞⎜⎜⎝⎛+=,事件A =“任意两个女孩都不相邻”所含样本点个数)!1(!)!1(1m n m n m n k −+⋅+=⎟⎟⎠⎞⎜⎜⎝⎛+=, 故所求概率为)2()1)(()2()1()!1()!()!1(!)(+−++−+−=−+⋅++⋅=n m n m n m n n n m n m n n n A P L L .20.将3个球随机放入4个杯子中去,求杯子中球的最大个数X 的概率分布. 解:样本点总数n = 43 = 64,事件X = 1所含样本点个数24234341=××==A k ,故所求概率为836424}1{===X P ; 事件X = 2所含样本点个数363341323142=××==A C A k ,故所求概率为1696436}2{===X P ; 事件X = 3所含样本点个数4143==A k ,故所求概率为161644}3{===X P . 21.将12只球随意地放入3个盒子中,试求第一个盒子中有3只球的概率. 解:样本点总数n = 312 = 531441,事件A =“第一个盒子中有3只球”所含样本点个数11264051212310111223129=×××××=×⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为2120.0531441112640)(==A P .22.将n 个完全相同的球(这时也称球是不可辨的)随机地放入N 个盒子中,试求:(1)某个指定的盒子中恰好有k 个球的概率; (2)恰好有m 个空盒的概率;(3)某指定的m 个盒子中恰好有j 个球的概率.解:样本点总数为N 取n 次的重复组合,即)!1(!)!1(1−⋅−+=⎟⎟⎠⎞⎜⎜⎝⎛−+=N n n N n n N M , (1)事件A 1 =“某个指定的盒子中恰好有k 个球”所含样本点个数为N − 1取n − k 次的重复组合,即)!2()!()!2(21)(11−⋅−−−+=⎟⎟⎠⎞⎜⎜⎝⎛−−−+=⎟⎟⎠⎞⎜⎜⎝⎛−−−+−=N k n k n N k n k n N k n k n N K , 故所求概率为)1()2)(1()1()1()1()!2()!()!1()!1(!)!2()(1−−+−+−+−⋅+−−=−⋅−⋅−+−⋅⋅−−+=k n N n N n N N k n n n N k n n N N n k n N A P L L ;(2)事件A 2 =“恰好有m 个空盒”所含样本点个数可分两步考虑:首先N 选m 次的组合,选出m 个空盒,而其余N − m 个盒中每一个都分别至少有一个球, 其次剩下的n − (N − m )个球任意放入这N − m 个盒中,即N − m 取n − (N − m )次的重复组合,则)!1()!()!(!)!1(!)(12−−⋅−+⋅−⋅−⋅=⎟⎟⎠⎞⎜⎜⎝⎛−−−⎟⎟⎠⎞⎜⎜⎝⎛=m N N m n m N m n N m N n n m N K ,故所求概率为)!1()!1()!()!(!)!1(!)!1(!)(2−+⋅−−⋅−+⋅−⋅−⋅⋅−⋅=n N m N N m n m N m N n n N A P ;(3)事件A 3 =“某指定的m 个盒子中恰好有j 个球”所含样本点个数为m 取j 次的重复组合乘以N − m 取n − j 次的重复组合,则)!1()!()!1(!)!1()!1(1)()(13−−⋅−⋅−⋅−−−+⋅−+=⎟⎟⎠⎞⎜⎜⎝⎛−−−+−⎟⎟⎠⎞⎜⎜⎝⎛−+=m N j n m j j m n N j m j n j n m N j j m K , 故所求概率为)!1()!1()!()!1(!)!1(!)!1()!1()(3−+⋅−−⋅−⋅−⋅−⋅⋅−−−+⋅−+=n N m N j n m j N n j m n N j m A P .23.在区间(0, 1)中随机地取两个数,求事件“两数之和小于7/5”的概率.解:设这两个数分别为x 和y ,有Ω = {(x , y ) | 0 < x < 1, 0 < y < 1},得m (Ω) = 1,事件A =“两数之和小于7/5”,有A = {(x , y ) | 0 < x +y < 7/5}, 得504153211)(2=⎟⎠⎞⎜⎝⎛×−=A m , 故所求概率为5041)()()(=Ω=m A m A P . 24.甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内到达的时间是等可能的.如果甲船的停泊时间是一小时,乙船的停泊时间是两小时,求它们中任何一艘都不需要等候码头空出的概率是多少?解:设甲乙两艘轮船到达码头的时间分别为x 和y 小时,有Ω = {(x , y ) | 0 ≤ x ≤ 24, 0 ≤ y ≤ 24},得m (Ω) = 242 = 576, 事件A =“它们中任何一艘都不需要等候码头空出”, 若甲先到,有x + 1 ≤ y ≤ 24;若乙先到,有y + 2 ≤ x ≤ 24;即A = {(x , y ) | 0 ≤ x ≤ 24, 0 ≤ y ≤ 24, x + 1 ≤ y ≤ 24或y + 2 ≤ x ≤ 24},得2101322212321)(22=×+×=A m , 故所求概率为11521013)()()(=Ω=m A m A P . 25.在平面上画有间隔为d 的等距平行线,向平面任意投掷一个边长为a , b , c (均小于d )的三角形,求三角形与平行线相交的概率.解:不妨设a ≥ b ≥ c ,三角形的三个顶点分别为A , B , C ,其对边分别为a , b , c ,相应三个角也记为A , B , C ,设O 为BC 的中点,点O 与最近的一条平行线的距离为x , 从点O 向三角形外作与平行线平行的射线OD , 若B , C 中点C 更靠近某条平行线,则记α = ∠COD ,否则记α = −∠BOD , 有π}π,20|),{(<<−≤≤=Ωααdx x ,得m (Ω) = π d ,事件E =“三角形与平行线相交”,当α ≥ 0时,如果C ≤ α < π,事件E 就是OC 与平行线相交; 如果0 ≤ α < C ,事件E 就是OC 或AC 与平行线相交; 当α < 0时,如果−π < α ≤ −B ,事件E 就是OB 与平行线相交;如果−B < α < 0,事件E 就是OB 或AB 与平行线相交.记}sin 2,|),{(1αααax C x E ≤≥=, )}sin(sin 2,0|),{(2αααα−+≤<≤=C b ax C x E ,}sin 2,|),{(3αααax B x E −≤−≤=,)}sin(sin 2,0|),{(4αααα++−≤<<−=B c ax B x E ,有E = E 1∪E 2∪E 3∪E 4,得∫∫−−−⎥⎦⎤⎢⎣⎡++−+⎟⎠⎞⎜⎝⎛−=0π)sin(sin 2sin 2)(BB d B c a d a E m ααααα∫∫+⎥⎦⎤⎢⎣⎡−++π0sin 2)sin(sin 2C C d a d C b a ααααα∫∫∫∫+−++++⎟⎠⎞⎜⎝⎛−=−−π0000πsin 2)sin()sin(sin 2ααααααααd a d C b d B c d a C B π0000πcos 2)cos()cos(cos 2ααααa C b B c aCB −−++−=−− 22cos cos 22a a C b b c B c a a +⎟⎠⎞⎜⎝⎛−−−++−⎟⎠⎞⎜⎝⎛−−=c b a a a c b a abc b a b ac b c a c c b a ++=−++=−+⋅−−+⋅−++=2222222222222,故所求概率为dcb a m E m E P π)()()(++=Ω=. 方法二:设事件A , B , C 分别表示“边长为a , b , c 三条边与平行线相交”,事件E 表示“三角形与平行线相交”, 由于三角形与平行线相交时,将至少有两条边与平行线相交,即E = AB ∪AC ∪BC ,则由三个事件的加法公式得P (E ) = P (AB ) + P (AC ) + P (BC ) − 2 P (ABC ), 因ABC 表示“三条边都与平行线相交”,有P (ABC ) = 0, 则P (E ) = P (AB ) + P (AC ) + P (BC ),另一方面,由于三角形与平行线相交时,将至少有两条边与平行线相交, 有A = AB ∪AC ,B = AB ∪BC ,C = AC ∪BC ,则P (A ) = P (AB ) + P (AC ) − P (ABC ) = P (AB ) + P (AC ), P (B ) = P (AC ) + P (BC ),P (C ) = P (AC ) + P (BC ),可得P (A ) + P (B ) + P (C ) = [P (AB ) + P (AC )] + [P (AC ) + P (BC )] + [P (AC ) + P (BC )]= 2[P (AB ) + P (AC ) + P (BC )],根据蒲丰投针问题知d a A P π2)(=,d b B P π2)(=,dc C P π2)(=, 故dcb a C P B P A P BC P AC P AB P E P π)]()()([21)()()()(++=++=++=.26.在半径为R 的圆内画平行弦,如果这些弦与垂直于弦的直径的交点在该直径上的位置是等可能的,即交点在直径上一个区间内的可能性与这区间的长度成比例,求任意画弦的长度大于R 的概率.1A解:设弦与垂直于弦的直径的交点与圆心的距离为x ,有Ω = {x | 0 ≤ x < R },得m (Ω) = R ,事件A =“弦的长度大于R ”,有2222⎟⎠⎞⎜⎝⎛>−R x R ,2243R x <,即}230|{R x x A <≤=,得R A m 23)(=,故所求概率为23)()()(=Ω=m A m A P . 27.设一个质点落在xOy 平面上由x 轴、y 轴及直线x + y = 1所围成的三角形内,而落在这三角形内各点处的可能性相等,即落在这三角形内任何区域上的概率与区域的面积成正比,试求此质点还满足y < 2x 的概率是多少?解:Ω = {(x , y ) | 0 < x < 1, 0 < y < 1, 0 < x + y < 1},得21)(=Ωm , 事件A =“满足y < 2x ”,有A = {(x , y ) | 0 < y < 1, y /2 ≤ x ≤ 1 − y },得3132121)(=××=A m , 故所求概率为32)()()(=Ω=m A m A P . 28.设a > 0,有任意两数x , y ,且0 < x < a ,0 < y < a ,试求xy < a 2/4的概率. 解:Ω = {(x , y ) | 0 ≤ x ≤ a , 0 ≤ y ≤ a },得m (Ω) = a 2,事件A =“xy < a 2/4”,有A = {(x , y ) | 0 ≤ x ≤ a , 0 ≤ y ≤ a , xy < a 2/4},即4ln 44ln 44)(22422422a a x a ax a dx x a a a A m aa aa +=⎟⎟⎠⎞⎜⎜⎝⎛−−=⎟⎟⎠⎞⎜⎜⎝⎛−−=∫, 故所求概率为5966.04ln 4141)()()(=+=Ω=m A m A P . 29.用主观方法确定:大学生中戴眼镜的概率是多少? (自己通过调查,作出主观判断)30.用主观方法确定:学生中考试作弊的概率是多少? (自己通过调查,作出主观判断)x习题1.31. 设事件A 和B 互不相容,且P (A ) = 0.3,P (B ) = 0.5,求以下事件的概率:(1)A 与B 中至少有一个发生; (2)A 和B 都发生; (3)A 发生但B 不发生. 解:(1)P (A ∪B ) = P (A ) + P (B ) = 0.3 + 0.5 = 0.8;(2)P (AB ) = 0;(3)P (A − B ) = P (A ) = 0.3.2. 设P (AB ) = 0,则下列说法哪些是正确的?(1)A 和B 不相容; (2)A 和B 相容;(3)AB 是不可能事件;(4)AB 不一定是不可能事件; (5)P (A ) = 0或P (B ) = 0; (6)P (A − B ) = P (A ). 解:(1)错误,当P (AB ) = 0时,A 和B 可能相容也可能不相容;(2)错误,当P (AB ) = 0时,A 和B 可能相容也可能不相容;(3)错误,当P (AB ) = 0时,A 和B 可能相容也可能不相容,即AB 不一定是不可能事件; (4)正确,当P (AB ) = 0时,A 和B 可能相容也可能不相容,即AB 不一定是不可能事件; (5)错误,当P (A ) > 0,P (B ) > 0时,只要A 和B 不相容,就有P (AB ) = 0; (6)正确,P (A − B ) = P (A ) − P (AB ) = P (A ).3. 一批产品分一、二、三级,其中一级品是二级品的三倍,三级品是二级品的一半,从这批产品中随机地抽取一个,试求取到二级品的概率. 解:设A , B , C 分别表示“取到一、二、三级品”,有P (A ) + P (B ) + P (C ) = 1,P (A ) = 3P (B ),)(21)(B P C P =, 则1)(29)(21)()(3==++B P B P B P B P ,即92)(=B P , 故取到二级品的概率92)(=B P .4. 从0, 1, 2, …, 9等十个数字中任意选出三个不同的数字,试求下列事件的概率:(1)A 1 = {三个数字中不含0和5}; (2)A 2 = {三个数字中不含0或5}; (3)A 3 = {三个数字中含0但不含5}.解:样本点总数1201238910310=××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,(1)事件A 1所含样本点个数56123678381=××××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故15712056)(1==A P ; (2)事件=2A “三个数字中含0和5”所含样本点个数8182=⎟⎟⎠⎞⎜⎜⎝⎛=A k ,故1514120112)(1)(22==−=A P A P ; (3)事件A 3所含样本点个数281278283=××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故30712028)(3==A P .5. 某城市中共发行3种报纸A , B , C .在这城市的居民中有45%订阅A 报、35%订阅B 报、25%订阅C 报,10%同时订阅A 报B 报、8%同时订阅A 报C 报、5%同时订阅B 报C 报、3%同时订阅A , B , C 报.求以下事件的概率: (1)只订阅A 报;(2)只订阅一种报纸的; (3)至少订阅一种报纸的; (4)不订阅任何一种报纸的.解:设A , B , C 分别表示“订阅报纸A , B , C ”,则P (A ) = 0.45,P (B ) = 0.35,P (C ) = 0.30,P (AB ) = 0.10,P (AC ) = 0.08,P (BC ) = 0.05,P (ABC ) = 0.03,(1))()()()()()())(()(ABC P AC P AB P A P AC AB P A P C B A P C B A P +−−=−=−=U U= 0.45 − 0.10 − 0.08 + 0.03 = 0.30;(2))()()()(B A P C B A P C B A P C B A C B A C B A P ++=U U ,因)()()()()()())(()(ABC P BC P AB P B P BC AB P B P C A B P C B A P +−−=−=−=U U= 0.35 − 0.10 − 0.05 + 0.03 = 0.23,)()()()()()())(()(ABC P BC P AC P C P BC AC P C P B A C P C B A P +−−=−=−=U U= 0.30 − 0.08 − 0.05 + 0.03 = 0.20,故73.020.023.030.0)()()()(=++=++=C B A P C B A P C B A P C B A C B A C B A P U U ; (3)P (A ∪B ∪C ) = P (A ) + P (B ) + P (C ) − P (AB ) − P (AC ) − P (BC ) + P (ABC )= 0.45 + 0.35 + 0.30 − 0.10 − 0.08 − 0.05 + 0.03 = 0.90;(4)10.090.01)(1(=−=−=C B A P C B A P U U .6. 某工厂一个班组共有男工9人、女工5人,现要选出3个代表,问选的3个代表中至少有1个女工的概率是多少?解:样本点总数364123121314314=××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,事件=A “选的3个代表中没有女工”所含样本点个数8412378939=××××=⎟⎟⎠⎞⎜⎜⎝⎛=A k ,故所求概率为1310364280364841)(1)(==−=−=A P A P . 7. 一赌徒认为掷一颗骰子4次至少出现一次6点与掷两颗骰子24次至少出现一次双6点的机会是相等的,你认为如何? 解:“掷一颗骰子4次”的样本点总数n 1 = 64 = 1296,事件=1A “没有出现6点”所含样本点个数为625541==A k ,则5177.0129667112966251)(1)(11==−=−=A P A P ; “掷两颗骰子24次”的样本点总数n 2 = (62 )24 = 36 24,事件=2A “没有出现双6点”所含样本点个数为2424235)16(2=−=A k ,则4914.036353636351)(1)(242424242422=−=−=−=A P A P ;故掷一颗骰子4次至少出现一次6点的机会比掷两颗骰子24次至少出现一次双6点的机会更大. 8. 从数字1, 2, …, 9中可重复地任取n 次,求n 次所取数字的乘积能被10整除的概率. 解:样本点总数N = 9 n ,因事件A =“n 次所取数字的乘积能被10整除”就是“至少取到一次数字5并且至少取到一次偶数”, 则事件=A “没有取到数字5或没有取到偶数”, 设事件B =“没有取到数字5”,C =“没有取到偶数”,则事件B 所含样本点个数为K B = 8 n ,事件C 所含样本点个数为K C = 5 n , 且事件BC =“没有取到数字5和偶数”所含样本点个数为K BC = 4 n ,故nnn n n n n n n n n BC P C P B P C B P A P A P 945899495981)()()(1)(1)(1)(+−−=+−−=+−−=−=−=U . 9. 口袋中有n − 1个黑球和1个白球,每次从口袋中随机地摸出一球,并换入一只黑球.问第k 次摸球时,摸到黑球的概率是多少? 解:样本点总数N = n k ,事件=A “第k 次摸球时摸到白球”,此时前n − 1次摸球时都必须是摸到黑球, 则A 中所含样本点个数1)1(−−=k A n K ,故所求概率为kk nn A P A P 1)1(1)(1)(−−−=−=. 10.若P(A ) = 1,证明:对任一事件B ,有P (AB ) = P (B ).证:因P (A ) = 1,且A B A ⊂,有0)(1)()(=−=≤A P A P B A P ,则0)()()()(=−=−=AB P B P A B P A P ,故P (AB ) = P (B ).11.掷2n + 1次硬币,求出现的正面数多于反面数的概率. 解:设A =“出现的正面数多于反面数”,因掷奇数次硬币,出现的正面数与反面数不可能相等,事件=A “出现的反面数多于正面数”,由于掷一枚硬币出现正面与出现反面的可能性相同,则“出现的正面数多于反面数”与“出现的反面数多于正面数” 的可能性相同, 可得)()(A P A P =,又1()(=+A P A P ,故P (A ) = 0.5.12.有三个人,每个人都以同样的概率1/5被分配到5个房间中的任一间中,试求:(1)三个人都分配到同一个房间的概率; (2)三个人分配到不同房间的概率. 解:样本点总数n = 53 = 125,(1)事件A 1 =“三个人都分配到同一个房间”所含样本点个数为k 1 = 5,故所求概率为2511255)(1==A P ; (2)事件A 2 =“三个人分配到不同房间”所含样本点个数为60345352=××==A k ,故所求概率为251212560)(2==A P . 13.一间宿舍住有5位同学,求他们之中至少有2个人生日在同一个月份的概率.解:首先假设一个人的生日在每一个月份的可能性相同,样本点总数n = 125,事件=A “每个人生日都在不同月份”所含样本点个数为512A k A =,故所求概率为6181.014489121)(1)(5512==−=−=A A P A P . 14.某班n 个战士各有1支归个人保管使用的枪,这些枪的外形完全一样,在一次夜间紧急集合中,每人随机地取了1支枪,求至少有1人拿到自己的枪的概率.解:设A i =“第i 个战士拿到自己的枪”,n i ,,2,1L =,有==i ni A 1U “至少有1人拿到自己的枪”,因)()1()()()()(2111111n n nk j i kjinj i jini i i ni A A A P A A A P A A P A P A P L L U ⋅−+++−=−≤<<≤≤<≤==∑∑∑,且n n n A P i 1!)!1()(=−=,)1(1!)!2()(−=−=n n n n A A P j i ,)2)(1(1)(−−=n n n A A A P k j i ,……, 故!)1(!31!211!1)1()2)(1(1)1(11)(11321n n C n n n C n n C n n A P n nn n n n i ni −−=−+−+−=⋅−+−−−⋅+−⋅−×=L L U . 15.设A , B 是两事件,且P (A ) = 0.6,P (B ) = 0.8,问: (1)在什么条件下P (AB )取到最大值,最大值是多少? (2)在什么条件下P (AB )取到最小值,最小值是多少? 解:(1)因P (AB ) ≤ min{P (A ), P (B )} = P (A ) = 0.6,故当P (AB ) = P (A ) 时,P (AB )取到最大值0.6;(2)因P (AB ) = P (A ) + P (B ) − P (A ∪B ) ≥ P (A ) + P (B ) − 1 = 0.4,故当P (A ∪B ) = 1时,P (AB )取到最小值0.4. 注:若A ⊂ B ,有AB = A ,可得P (AB ) = P (A ),但不能反过来,由P (AB ) = P (A ),得出A ⊂ B ;若A ∪B = Ω,可得P (A ∪B ) = 1,但不能反过来,由P (A ∪B ) = 1,得出A ∪B = Ω. 16.已知事件A , B 满足)()(B A P AB P I =,记P (A ) = p ,试求P (B ).解:因)()()(1)(1)()()(AB P B P A P B A P B A P B A P AB P +−−=−===U U I ,有1 − P (A ) − P (B ) = 0,故P (B ) = 1 − P (A ) = 1 − p .17.已知P (A ) = 0.7,P (A − B ) = 0.4,试求)(AB P .解:因P (A − B ) = P (A ) − P (AB ),有P (AB ) = P (A ) − P (A − B ) = 0.7 − 0.4 = 0.3,故7.0)(1(=−=AB P AB P . 18.设P (A ) = 0.6,P (B ) = 0.4,试证)()(B A P AB P I =.证:)()(4.06.01)()()(1)(1)()(AB P AB P AB P B P A P B A P B A P B A P =+−−=+−−=−==U U I . 19.对任意的事件A , B , C ,证明:(1)P (AB ) + P (AC ) − P (BC ) ≤ P (A );(2)P (AB ) + P (AC ) + P (BC ) ≥ P (A ) + P (B ) + P (C ) − 1. 证:(1)因P (AB ∪AC ) = P (AB ) + P (AC ) − P (ABC ),且 (AB ∪AC ) ⊂ A ,ABC ⊂ BC ,有P (AB ∪AC ) ≤ P (A ),P (ABC ) ≤ P (BC ),故P (AB ) + P (AC ) − P (BC ) = P (AB ∪AC ) + P (ABC ) − P (BC ) ≤ P (AB ∪AC ) ≤ P (A ). (2)因P (A ∪B ∪C ) = P (A ) + P (B ) + P (C ) − P (AB ) − P (AC ) − P (BC ) + P (ABC ),故P (AB ) + P (AC ) + P (BC ) = P (A ) + P (B ) + P (C ) + P (ABC ) − P (A ∪B ∪C )≥ P (A ) + P (B ) + P (C ) + P (ABC ) − 1 ≥ P (A ) + P (B ) + P (C ) − 1.20.设A , B , C 为三个事件,且P (A ) = a ,P (B ) = 2a ,P (C ) = 3a ,P (AB ) = P (AC ) = P (BC ) = b ,证明:a ≤ 1/4,b ≤ 1/4.证:因P (B ∪C ) = P (B ) + P (C ) − P (BC ) = 5a − b ,且a = P (A ) ≥ P (AB ) = b ,则P (B ∪C ) = 5a − b ≥ 4a ,即4a ≤ 1,故a ≤ 1/4且b ≤ a ≤ 1/4.21.设事件A , B , C 的概率都是1/2,且)()(C B A P ABC P I I =,证明:2 P (ABC ) = P (AB ) + P (AC ) + P (BC ) − 1/2.证:因)(1)()()(C B A P C B A P C B A P ABC P U U U U I I −==== 1 − P (A ) − P (B ) − P (C ) + P (AB ) + P (AC ) + P (BC ) − P (ABC ),故2 P (ABC ) = P (AB ) + P (AC ) + P (BC ) + 1 − P (A ) − P (B ) − P (C ) = P (AB ) + P (AC ) + P (BC ) − 1/2. 22.证明:(1)P (AB ) ≥ P (A ) + P (B ) − 1;(2)P (A 1 A 2 …A n ) ≥ P (A 1) + P (A 2) + … + P (A n ) − (n − 1). 证:(1)因P (A ∪B ) = P (A ) + P (B ) − P (AB ),故P (AB ) = P (A ) + P (B ) − P (A ∪B ) ≥ P (A ) + P (B ) − 1;(2)用数学归纳法证明,当n = 2时,由(1)小题知结论成立,设当n = k 时,结论成立,即P (A 1 A 2 …A k ) ≥ P (A 1) + P (A 2) + … + P (A k ) − (k − 1), 则P (A 1 A 2 …A k A k + 1) ≥ P (A 1 A 2 …A k ) + P (A k + 1) − 1≥ P (A 1) + P (A 2) + … + P (A k ) − (k − 1) + P (A k + 1) − 1 = P (A 1) + P (A 2) + … + P (A k ) + P (A k + 1) − k ,即当n = k + 1时,结论成立,故由数学归纳法知P (A 1 A 2 …A n ) ≥ P (A 1) + P (A 2) + … + P (A n ) − (n − 1). 23.证明:41|)()()(|≤−B P A P AB P . 证:因)()()](1)[()]()()[()()()()(A P A P A P AB P B A P AB P A P AB P B P A P AB P −−=+−=−,且0 ≤ P (AB )[1 − P (A )] ≤ P (A )[1 − P (A )],)](1)[(()()()(0A P A P A P A P B A P A P −=≤≤, 故)}()()],(1)[(max{|)()()](1)[(||)()()(|A P A P A P AB P B A P A P A P AB P B P A P AB P −≤−−=−4121)(41)]([)()](1)[(22≤⎥⎦⎤⎢⎣⎡−−=−=−≤A P A P A P A P A P .习题1.41. 某班级学生的考试成绩数学不及格的占15%,语文不及格的占5%,这两门课都不及格的占3%.(1)已知一学生数学不及格,他语文也不及格的概率是多少? (2)已知一学生语文不及格,他数学也不及格的概率是多少? 解:设A =“数学不及格”,B =“语文不及格”,有P (A ) = 0.15,P (B ) = 0.05,P (AB ) = 0.03,(1)所求概率为2.015.003.0)()()|(===A P AB P A B P ; (2)所求概率为6.005.003.0)()()|(===B P AB P B A P . 2. 设一批产品中一、二、三等品各占60%, 35%, 5%.从中任意取出一件,结果不是三等品,求取到的是一等品的概率.解:设A , B , C 分别表示“取出一、二、三等品”,有P (A ) = 0.6,P (B ) = 0.35,P (C ) = 0.05,故所求概率为191205.016.0)(1)()()()|(=−=−==C P A P C P C A P C A P . 3. 掷两颗骰子,以A 记事件“两颗点数之和为10”,以B 记事件“第一颗点数小于第二颗点数”,试求条件概率P (A | B ) 和P (B | A ). 解:样本点总数n = 6 2 = 36,则事件A 中的样本点有 (4, 6), (5, 5), (6, 4),即个数k A = 3,有363)(=A P , 事件B 中所含样本点个数k B = 5 + 4 + 3 + 2 + 1 + 0 = 15,有3615)(=B P ,事件AB 中的样本点有 (4, 6),即个数k C = 1,有361)(=AB P ,故1513615361)()()|(===B P AB P B A P ,31363361)()()|(===A P AB P A B P .4. 以某种动物由出生活到10岁的概率为0.8,而活到15岁的概率为0.5,问现年为10岁的这种动物能活到15岁的概率是多少?解:设A , B 分别表示“这种动物能活到10岁, 15岁”,有P (A ) = 0.8,P (B ) = 0.5,故所求概率为858.05.0)()()()()|(====A P B P A P AB P A B P .5. 设10件产品中有4件不合格品,从中任取两件,已知其中一件是不合格品,求另一件也是不合格品的概率.解:设A =“其中一件是不合格品”,B =“两件都是不合格品”,有AB = B ,样本点总数45210=⎟⎟⎠⎞⎜⎜⎝⎛=n , 事件A 中所含样本点个数30624241614=+=⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=A k ,得4530)(=A P , 事件AB = B 中所含样本点个数624=⎟⎟⎠⎞⎜⎜⎝⎛=B k ,得456)()(==B P AB P ,故所求概率为2.04530456)()()|(===A P AB P A B P . 6. 设n 件产品中有m 件不合格品,从中任取两件,已知两件中有一件是合格品,求另一件也是合格品的概率.解:设A =“两件中至少有一件是合格品”,B =“两件都是合格品”,有AB = B ,样本点总数2)1(2−=⎟⎟⎠⎞⎜⎜⎝⎛=n n n N , 事件A 中所含样本点个数2)1)((2)1)(()(211−+−=−−−+−=⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛=m n m n m n m n m n m m n m n m k A , 得)1()1)(()(−−+−=n n m n m n A P ,事件AB = B 中所含样本点个数2)1)((2−−−=⎟⎟⎠⎞⎜⎜⎝⎛−=m n m n m n k B , 得)1()1)(()()(−−−−==n n m n m n B P AB P ,故所求概率为11)1()1)(()1()1)(()()()|(−+−−=−−+−−−−−==m n m n n n m n m n n n m n m n A P AB P A B P . 7. 掷一颗骰子两次,以x , y 分别表示先后掷出的点数,记A = {x + y < 10},B = {x > y },求P (B | A ),P (A | B ). 解:样本点总数n = 6 2 = 36,则事件A 中所含样本点个数k A = 6 + 6 + 6 + 5 + 4 + 3 = 30,有3630)(=A P , 事件B 中所含样本点个数k B = 0 + 1 + 2 + 3 + 4 + 5 = 15,有3615)(=B P ,事件AB 中所含样本点个数k AB = 0 + 1 + 2 + 3 + 4 + 3 = 13,有3613)(=AB P ,故301336303613)()()|(===A P AB P A B P ,151336153613)()()|(===B P AB P B A P .8. 已知P (A ) = 1/3,P (B | A ) = 1/4,P (A | B ) = 1/6,求P (A ∪B ).解:因1214131)|()()(=×==A B P A P AB P ,2161121)|()()(===B A P AB P B P , 故431212131)()()()(=−+=−+=AB P B P A P B A P U . 9. 已知3.0)(=A P ,P (B ) = 0.4,5.0(=B A P ,求)|(B A B P U . 解:因2.05.03.01)()(1)()()(=−−=−−=−=B A P A P B A P A P AB P ,且8.05.04.013.01()(1)(1)()()()(=−−+−=−−+−=−+=B A P B P A P B A P B P A P B A P U , 故25.08.02.0)()()())(()|(====B A P AB P B A P B A B P B A B P U U U U . 10.设A , B 为两事件,P (A ) = P (B ) = 1/3,P (A | B ) = 1/6,求|(B A P . 解:因1816131)|()()(=×==B A P B P AB P ,有18111813131)()()()(=−+=−+=AB P B P A P B A P U , 则18718111)(1)()(=−=−==B A P B A P B A P U U ,且32311)(1)(=−=−=B P B P , 故12732187)()()|(===B P B A P B A P . 11.口袋中有1个白球,1个黑球.从中任取1个,若取出白球,则试验停止;若取出黑球,则把取出的黑球放回的同时,再加入1个黑球,如此下去,直到取出的是白球为止,试求下列事件的概率.(1)取到第n 次,试验没有结束;(2)取到第n 次,试验恰好结束.解:设A k =“第k 次取出的是黑球”,k = 1, 2, ……(1)所求概率为P (A 1A 2…A n − 1A n ) = P (A 1A 2…A n − 1)P (A n | A 1A 2…A n − 1)1113221)|()|()(121121+=+×××==−n n n A A A A P A A P A P n n L L L ; (2)所求概率为)|()()(121121121−−−=n n n n n A A A A P A A A P A A A A P L L L)1(1113221)|()|()(121121+=+×××==−n n n A A A A P A A P A P n n L L L . 12.一盒晶体管有8只合格品,2只不合格品.从中不返回地一只一只取出,试求第二次取出的是合格品的概率.解:设A 1, A 2分别表示“第一次取出的是合格品、不合格品”,B 表示“第二次取出的是合格品”, 故所求概率为8.090729810297108)|()()|()()(2211==×+×=+=A B P A P A B P A P B P . 13.甲口袋有a 个白球、b 个黑球,乙口袋有n 个白球、m 个黑球.(1)从甲口袋任取1个球放入乙口袋,然后再从乙口袋任取1个球.试求最后从乙口袋取出的是白球的概率;(2)从甲口袋任取2个球放入乙口袋,然后再从乙口袋任取1个球.试求最后从乙口袋取出的是白球的概率.解:(1)设A 0 , A 1分别表示“从甲口袋取出的是白球、黑球”,B 表示“从乙口袋取出的是白球”,故所求概率为P (B ) = P (A 0)P (B | A 0) + P (A 1)P (B | A 1) )1)(()1(111+++++=++×+++++×+=n m b a bn n a m n n b a b m n n b a a ; (2)设A 0 , A 1 , A 2分别表示“从甲口袋取出的是2个白球、1个白球1个黑球、2个黑球”,B 表示“从乙口袋取出的是白球”,故所求概率为P (B ) = P (A 0)P (B | A 0) + P (A 1)P (B | A 1) + P (A 2)P (B | A 2)。

概率论与数理统计(茆诗松)第二版第一章课后习题1.4参考答案

概率论与数理统计(茆诗松)第二版第一章课后习题1.4参考答案

30 , 36 15 事件 B 中所含样本点个数 kB = 0 + 1 + 2 + 3 + 4 + 5 = 15,有 P( B ) = , 36 13 事件 AB 中所含样本点个数 kAB = 0 + 1 + 2 + 3 + 4 + 3 = 13,有 P ( AB ) = , 36 P( AB) 13 36 13 P ( AB ) 13 36 13 , P( A | B) = = = = = . P( A) 30 36 30 P ( B ) 15 36 15
= P( A1 ) P( A2 | A1 ) L P ( An | A1 A2 L An −1 ) =
1 2 1 1 . × ×L× = 2 3 n + 1 n(n + 1)
12.一盒晶体管有 8 只合格品,2 只不合格品.从中不返回地一只一只取出,试求第二次取出的是合格品 的概率. 解:设 A1, A2 分别表示“第一次取出的是合格品、不合格品” ,B 表示“第二次取出的是合格品” ,
⎛ n ⎞ n(n − 1) 样本点总数 N = ⎜ , ⎟= ⎜ 2⎟ 2 ⎝ ⎠
事件 A 中所含样本点个数
⎛ m ⎞⎛ n − m ⎞ ⎛ n − m ⎞ (n − m)(n − m − 1) (n − m)(n + m − 1) = , kA = ⎜ ⎟ = m( n − m) + ⎜ 2 ⎟ ⎟+⎜ ⎜ 1 ⎟ ⎟⎜ ⎜1⎟ 2 2 ⎠ ⎠ ⎝ ⎝ ⎠⎝
得 P( A) =
(n − m)(n + m − 1) , n( n − 1)
⎛ n − m ⎞ (n − m)(n − m − 1) 事件 AB = B 中所含样本点个数 k B = ⎜ , ⎟= ⎜ 2 ⎟ 2 ⎠ ⎝

概率论与数理统计(第二版)习题解答

概率论与数理统计(第二版)习题解答

习题解答——第一章1-1解:(1)C AB ;(2)ABC ;(3)C B A ;(4)C AB C B A BC A ; (5)C B A ;(6)C B A C B A C B A C B A 。

1-2 解:(1)A B ;(2)A B ;(3)A BC ;(4)A BC ()。

1-3解:1+1=2点,…,6+6=12点,共11种; 样本空间的样本点数:n =6×6=12, 和为2,1,1A ,1An ,1()36An P A n , …… 和为6,1,5;2,4;3,3;4,2;5,1A,5An ,5()36A n P A n, 和为(2+12)/2=7,1,6;2,5;3,4;4,3;5,2;6,1A ,6An ,61()366A n P A n , 和为8,2,6;3,5;4,4;5,3;6,2A ,5An ,5()36A n P A n , …… 和为12,6,6A,1An ,1()36A n P A n , ∴ 出现7点的概率最大。

1-4解:只有n =133种取法,设事件A 为取到3张不同的牌,则313A n A ,(1)31333131211132()1313169AA n P A n;(2)37()1()169P A P A 。

1-5解: (1)()()()()()0.450.100.080.030.30P ABC P A P AB P AC P ABC(2)()()()0.100.030.07P ABC P AB P ABC(3)∵ ,,ABC ABC ABC 为互不相容事件,参照(1)有()()()()()()()()()()()()()()()()()()()2[()()()]3()0.450.350.302(0.100.080.05)0.090.73P ABCABCABC P ABC P ABC P ABC P A P AB P AC P ABC P B P AB P BC P ABC P C P AC P BC P ABC P A P B P C P AB P BC P AC P ABC (4)∵ ,,ABC ABC ABC 为互不相容事件,参照(2)有()()()()()()()3()0.100.080.0530.030.14P ABC ABC ABC P ABC P ABC P ABC P AB P AC P BC P ABC(5)()()()()()()()3()0.450.350.300.100.080.0530.030.90P A B C P A P B P C P AB P AC P BC P ABC(6)()1()10.900.10P A B C P AB C 。

概率论第二版习题答案

概率论第二版习题答案

概率论第二版习题答案概率论是一门研究随机现象的数学分支,它在统计学、金融学、工程学等多个领域都有广泛的应用。

第二版的概率论教材通常会在第一版的基础上进行修订和补充,以反映最新的研究成果和教学方法。

以下是一些概率论习题的答案示例,这些答案仅供参考,具体习题的答案可能会根据教材的不同而有所变化。

第一章:概率空间1. 习题1:描述一个概率空间的基本元素。

- 答案:一个概率空间由三个基本元素组成:样本空间(Ω),事件集合(F),以及概率测度(P)。

样本空间包含了所有可能的结果,事件集合是样本空间的子集,概率测度为每个事件分配一个介于0和1之间的实数,表示事件发生的可能性。

2. 习题2:证明如果事件A和事件B互斥,那么P(A∪B) = P(A) +P(B)。

- 答案:由于A和B互斥,即A∩B = ∅,根据概率测度的性质,P(A∪B) = P(A) + P(B) - P(A∩B)。

由于A和B互斥,P(A∩B) = 0,因此P(A∪B) = P(A) + P(B)。

第二章:随机变量及其分布1. 习题1:定义离散型随机变量和连续型随机变量。

- 答案:离散型随机变量是其取值可以列举的随机变量,其概率分布可以用概率质量函数来描述。

连续型随机变量是其取值无法一一列举的随机变量,其概率分布可以用概率密度函数来描述。

2. 习题2:如果X是一个随机变量,求E(X)和Var(X)。

- 答案:期望E(X)是随机变量X的平均值,定义为E(X) = ∑x *P(X = x)(对于离散型随机变量)或E(X) = ∫x * f(x) d x(对于连续型随机变量)。

方差Var(X)是随机变量X的离散程度的度量,定义为Var(X) = E[(X - E(X))^2]。

第三章:多维随机变量及其分布1. 习题1:描述联合分布函数和边缘分布函数的关系。

- 答案:联合分布函数给出了两个或多个随机变量同时取特定值的概率,而边缘分布函数是通过对联合分布函数进行积分或求和得到的,它给出了单个随机变量的分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《概率论与数理统计及其应用》(第二版)第一章习题参考解答1.解:(1){}67,5,4,3,2=S (2){} ,4,3,2=S (3){} ,,,TTH TH H S =(4){}6,5,4,3,2,1,,T T T T T T HT HH S = 2.解:81)(,21)(,41)(===AB P B P A P ∴ )()()()(AB P B P A P B A P -+= 85812141=-+=)()()(AB P B P B A P -==838121=-=87811)(1)(=-=-=AB P AB P)])([(AB B A P )]()[(AB B A P -=)()(AB P B A P -= )(B A AB ⊂ 218185=-=3.解:用A 表示事件“取到的三位数不包含数字1”2518900998900)(191918=⨯⨯==C C C A P4、解:用A 表示事件“取到的三位数是奇数”,用B 表示事件“取到的三位数大于330”(1) 455443)(2515141413⨯⨯⨯⨯==A C C C C A P =0.48 2) 455421452)(251514122512⨯⨯⨯⨯+⨯⨯=+=A C C C A C B P =0.48 5、解:用A 表示事件“4只中恰有2只白球,1只红球,1只黑球”,用B 表示事件“4只中至少有2只红球”,用C 表示事件“4只中没有只白球”(1)412131425)(C C C C A P ==495120=338(2)4124838141)(C C C C B P +-==16567495201= 或16567)(4124418342824=++=C C C C C C B P (3)99749535)(41247===C C C P 6.解:用A 表示事件“某一特定的销售点得到k 张提货单”nkn k n MM C A P --=)1()( 7、解:用A 表示事件“3只球至少有1只配对”,用B 表示事件“没有配对”(1)3212313)(=⨯⨯+=A P 或321231121)(=⨯⨯⨯⨯-=A P(2)31123112)(=⨯⨯⨯⨯=B P8、解 1.0)(,3.0)(,5.0)(===AB P B P A P (1)313.01.0)()()(===B P AB P B A P ,515.01.0)()()(===A P AB P A B P 7.01.03.05.0)()()()(=-+=-+=AB P B P A P B A P )()()()()()]([)(B A P AB P B A P AB A P B A P B A A P B A A P ===757.05.0==717.01.0)()()()])([()(====B A P AB P B A P B A AB P B A AB P1)()()()]([)(===AB P AB P AB P AB A P AB A P(2)设{}次取到白球第i A i = 4,3,2,1=i则)()()()()(32142131214321A A A A P A A A P A A P A P A A A A P = 0408.020592840124135127116==⨯⨯⨯=9、解: 用A 表示事件“取到的两只球中至少有1只红球”,用B 表示事件“两只都是红球”方法1 651)(2422=-=C C A P ,61)(2422==C C B P ,61)()(==B P AB P516561)()()(===A P AB P A B P方法2 在减缩样本空间中计算 51)(=A B P 10、解:A 表示事件“一病人以为自己得了癌症”,用B 表示事件“病人确实得了癌症” 由已知得,%40)(%,10)(%,45)(%,5)(====B A P B A P B A P AB P (1)B A AB B A AB A 与,=互斥5.045.005.0)()()()(=+=+==∴B A P AB P B A AB P A P同理 15.01.005.0)()()()(=+=+==B A P AB P B A AB P B P (2)1.05.005.0)()()(===A P AB P A B P(3)2.05.01.0)()()(,5.05.01)(1)(====-=-=A P B A P A B P A P A P(4)17985.045.0)()()(,85.015.01)(1)(====-=-=B P B A P B A P B P B P(5)3115.005.0)()()(===B P AB P B A P11、解:用A 表示事件“任取6张,排列结果为ginger ”92401)(61113131222==A A A A A A P 12、解:用A 表示事件“A 该种疾病具有症状”,用B 表示事件“B 该种疾病具有症状” 由已知2.0)(=B A P 3.0)(=B A P 1.0)(=AB P (1),B A AB B A B A S =且B A AB B A B A ,,,互斥()6.01.03.02.0)()()(=++=++=∴AB P B A P B A P B A P 4.06.01)(1)()(=-=-==B A P B A P B A P ()()()4.0)(1=---=AB P B A P B A P B A P(2)()()()6.01.03.02.0)(=++=++=AB P B A P B A P AB B A B A P (3)B A AB B =, B A AB ,互斥4.03.01.0)()()()(=+=+==B A P AB P B A AB P B P)()()(])[()(B P AB P B P B AB P B AB P ==414.01.0==13、解:用i A 表示事件“讯号由第i 条通讯线输入”,,4,3,2,1=i B 表示“讯号无误差地被接受” ;2.0)(,1.0)(,3.0)(,4.0)(4321====A P A P A P A P9998.0)(1=A B P ,9999.0)(2=A B P ,,9997.0)(3=A B P 9996.0)(4=A B P 由全概率公式得9996.02.09997.01.09999.03.09998.04.0)()()(41⨯+⨯+⨯+⨯==∑=ii iA B P A P B P99978.0=14、解:用A 表示事件“确实患有关节炎的人”,用B 表示事件“检验患有关节炎的人”由已知 1.0)(=A P ,85.0)(=A B P ,04.0)(=A B P , 则 9.0)(=A P ,85.0)(=A B P ,96.0)(=A B P , 由贝叶斯公式得017.096.09.015.01.015.01.0)()()()()()()(=⨯+⨯⨯=+=A B P A P A B P A P A B P A P B A P15、解:用A 表示事件“程序交与打字机A 打字”,B 表示事件“程序交与打字机B 打字”,C 表示事件“程序交与打字机C 打字”;D 表示事件“程序因计算机发生故障被打坏”由已知得 6.0)(=A P ,3.0)(=B P ,1.0)(=C P ;01.0)(=A D P ,05.0)(=B D P ,04.0)(=C D P由贝叶斯公式得 )()()()()()()()()(C D P C P B D P B P A D P A P A D P A P D A P ++=24.025604.01.005.03.001.06.001.06.0==⨯+⨯+⨯⨯=)()()()()()()()()(C D P C P B D P B P A D P A P B D P B P D B P ++=6.05304.01.005.03.001.06.005.03.0==⨯+⨯+⨯⨯=)()()()()()()()()(C D P C P B D P B P A D P A P C D P C P D A P ++=16.025604.01.005.03.001.06.004.01.0==⨯+⨯+⨯⨯=16、解:用A 表示事件“收到可信讯息”,B 表示事件“由密码钥匙传送讯息”由已知得 95.0)(=A P ,05.0)(=A P ,1)(=A B P ,001.0)(=A B P由贝叶斯公式得999947.0001.005.0195.0195.0)()()()()()()(≈⨯+⨯⨯=+=A B P A P A B P A P A B P A P B A P17、解:用A 表示事件“第一次得H ”,B 表示事件“第二次得H ”,C 表示事件“两次得同一面”则 ,21)(,21)(==B P A P ,21211)(2=+=C P ,4121)(2==AB P ,4121)(2==BC P ,4121)(2==AC P)()()(),()()(),()()(C P A P AC P C P B P BC P B P A P AB P ===∴ C B A ,,∴两两独立而41)(=ABC P ,)()()()(C P B P A P ABC P ≠ C B A ,,∴不是相互独立的18、解:用A 表示事件“运动员A 进球”,B 表示事件“运动员B 进球”,C 表示事件“运动员C 进球”,由已知得 5.0)(=A P ,7.0)(=B P ,6.0)(=C P 则 5.0)(=A P ,3.0)(=B P ,4.0)(=C P(1){})(C B A C B A C B A P P =恰有一人进球)()()(C B A P C B A P C B A P ++= (C B A C B A C B A ,,互斥))()()()()()()()()(C P B P A P C P B P A P C P B P A P ++= 相互独立)C B A ,,( 29.06.03.05.04.07.05.04.03.05.0=⨯⨯+⨯⨯+⨯⨯= (2){})(C B A BC A C AB P P =恰有二人进球)()()(C B A P BC A P C AB P ++= (C B A BC A C AB ,,互斥))()()()()()()()()(C P B P A P C P B P A P C P B P A P ++= 相互独立)C B A ,,( 44.06.03.05.06.07.05.04.07.05.0=⨯⨯+⨯⨯+⨯⨯= (3){})(C B A P P =至少有一人进球 )(1C B A P -= )(1C B A P -=)()()(1C P B P A P -= 相互独立)C B A ,,( 4.03.05.01⨯⨯-= 94.0=19、解:用i A 表示事件“第i 个供血者具有+-RH A 血型”, ,3,2,1=iB 表示事件“病人得救”,4321321211A A A A A A A A A A B =4321321211,,,A A A A A A A A A A 互斥,i A ( ,3,2,1=i )相互独立()()(1P A P B P +=∴+)21A A )()(4321321A A A A P A A A P +8704.04.06.04.06.04.06.04.032=⨯+⨯+⨯+=20、解:设i A 表示事件“可靠元件i ” i=1,2,3,4,5 ,B 表示事件“系统可靠”由已知得p A P i =)(1,2,3,4,5)(i = 54321,,,,A A A A A 相互独立 方法1:54321A A A A A B =)()(54321A A A A A P B P =∴()()()()()()542154332154321A A A A P A A A P A A A P A A P A P A A P ---++=()54321A A A A A P +543322p p p p p p p +---++= ()相互独立54321,,,,A A A A A 543222p p p p p +--+=方法2:)(1)(54321A A A A A P B P -=)()()(154321A A P A P A A P -= ()相互独立54321,,,,A A A A A ()()]1][1)][(1[154321A A P A P A A P ----=()()()]1][1)][()(1[154321A P A P A P A P A P ----= ()相互独立54321,,,,A A A A A ()()()221111p p p----=543222p p p p p +--+= 21、解:用A 表示事件“真含有杂质”,用B 表示事件“次检验认为不含有杂质次检验认为含有杂质次检验中有123”由已知得 4.0)(=A P ,6.0)(=A P ,2.08.0)(223⨯⨯=C A B P ,9.01.0)(223⨯⨯=C A B P由贝叶斯公式得9.01.06.02.08.04.02.08.04.0)()()()()()()(223223223⨯⨯⨯+⨯⨯⨯⨯⨯⨯=+=C C C A B P A P A B P A P A B P A P B A P 905.016981536==。

相关文档
最新文档