两角和与差及二倍角

合集下载

(完整版)两角和与差及二倍角公式经典例题及答案

(完整版)两角和与差及二倍角公式经典例题及答案

成功是必须的:两角和与差及其二倍角公式知识点及典例知识要点: 1、 两角和与差的正弦、余弦、正切公式 C( a — 3 ): cos( a — 3 )= S( a + 3 ): sin( a + 3 )=T( a + 3 ): tan( a + 3 )=2、 二倍角的正弦、余弦、正切公式 S 2 : sin2 a = C( a + 3 ): cos( a + 3 )= S( a — 3 ): T( a — 3 ): 2h例 2 设 cos a —21 9’T 2 : tan2 . asin 2 — 23,其中n 2,n0, 2,求 cos( a+ 3).sin( a — 3 )= tan( a — 3 )= C 2 : cos2 a =— — ,3、 在准确熟练地记住公式的基础上 ,要灵活运用公式解决问题:如公式的正用、逆用和变形用等。

如T( a± 3可变形为:tan a± tan 3= 考点自测: 1、已知tan A 、7 11 B、 tan 3 = 3, 7 11 变式2:已知03.ncos(— 4 435,sin( 4)—,求 sin( a + 3 )的值. 13则 tan( a C 、? 13 tan a an 3= 3)=( 13 题型3给值求角已知三角函数值求角,一般可分以下三个步骤:(1)确定角所在的范围;值(要求该三角函数应在角的范围内严格单调 );(3)求出角。

1 1例 3 已知 a, 3^ (0, n,且 tan (a — 3 ="2, tan 3=— 7 求 2 a — 3 的值.(2)求角的某一个三角函数n a — 6 +A —症A . 5 2、已知cos 3、在厶ABC 中,若 sin a= 43」 B辺B.5 4 q 5cosA = 5,cosB = 13, B 56 B.65sin 7 n a+舀的值是( C . — 4 5 则cosC 的值是( c 丄或56 C.65或65 4、若 cos2 9+ cos 0= 0,贝U sin2 0+ sin B 的值等于( )C . 0 或 3 4D ・516 65 0或土 3A . 0B . ± 3 一.卜 2cos55 — j‘3sin55、二角式 A 辽 2 题型训练 题型1给角求值 一般所给出的角都是非特殊角,利用角的关系(与特殊角的联系)化为特殊角 cos5B.o■值为( 例 1 求[2si n50 sin 10 (1 3tan10)]? 2sin 280 的值• 11变式3:已知tan a =, tan 3 =-,并且a , 3均为锐角,求a +23的值.7 3题型4辅助角公式的应用J 22asinx bcosx a b sin x (其中 角所在的象限由 a, b 的符号确定,角的值由btan —确定)在求最值、化简时起着重要作用。

两角和与差及二倍角公式定理讲义,例题含规范标准答案

两角和与差及二倍角公式定理讲义,例题含规范标准答案

3.3 两角和与差及二倍角公式(答案)3.3 两角和与差及二倍角公式一.【复习要求】1.掌握两角和与差的正弦、余弦、正切公式,了解它们的内在联.2.掌握二倍角的正弦、余弦、正切公式.2.能够利用两角和与差的公式、二倍角公式进行三角函数式的求值、化简和证明.二、【知识回顾】1.两角和与差的三角函数sin()αβ+= ;sin()αβ-= ; cos()αβ+= ;cos()αβ-= ; tan()αβ+= ;tan()αβ-= ;2.二倍角公式:在sin(),cos(),tan()αβαβαβ+++中令αβ=,可得相应的二倍角公式。

sin2α= ;cos2α= = =tan 2α= 。

3.降幂公式2sin α= ; 2cos α= .注意:二倍角公式具有“升幂缩角“作用,降幂公式具有“降幂扩角”作用4.辅助角公式证明:)sin cos x x y x x +=+=sin sin cos )x x ϕϕ+)x ϕ+其中,cos ϕ=sin ϕ=,tan baϕ=且角ϕ终边过点(,)a b 在使用时,不必死记结论,而重在这种收缩(合二为一)思想如:sin cos αα+= ;sin cos αα-= 。

5.公式的使用技巧(1)连续应用:sin()sin[()]sin()cos cos()sin αβγαβγαβγαβγ++=++=+++ (2)“1”的代换:22sin cos 1αα+=,sin 1,tan124ππ==(3)收缩代换:sin cos y x x =+=)x ϕ+,(其中,a b 不能同时为0) (4)公式的变形:tan tan tan()1tan tan αβαβαβ++=-→tan()tan tan tan()tan tan αβαβαβαβ+=+++tan tan tan()1tan tan αβαβαβ--=+→tan()tan tan tan()tan tan αβαβαβαβ-=---如:tan 95tan 3595tan 35-=oooo。

两角和与差及二倍角的三角函数公式

两角和与差及二倍角的三角函数公式

两角和与差及二倍角的三角函数公式1.两角和公式:cos(A + B) = cos(A)cos(B) - sin(A)sin(B)sin(A + B) = sin(A)cos(B) + cos(A)sin(B)tan(A + B) = (tan(A) + tan(B))/(1 - tan(A)tan(B))这些公式表明,将两个角度的三角函数相加时,可以将它们的三角函数值相乘、相加或者相除,从而得到结果的三角函数值。

2.两角差公式:cos(A - B) = cos(A)cos(B) + sin(A)sin(B)sin(A - B) = sin(A)cos(B) - cos(A)sin(B)tan(A - B) = (tan(A) - tan(B))/(1 + tan(A)tan(B))这些公式表明,将两个角度的三角函数相减时,可以将其中的一个角度的三角函数值取相反数,并进行相乘、相加或者相除,从而得到结果的三角函数值。

3.二倍角公式:cos(2A) = cos^2(A) - sin^2(A) = 2cos^2(A) - 1 = 1 - 2sin^2(A) sin(2A) = 2sin(A)cos(A)tan(2A) = 2tan(A)/(1 - tan^2(A))这些公式表明,角度的两倍的三角函数值可以通过将角度的三角函数值平方、相乘、相加或者相除,并进行一些基本运算,从而得到结果的三角函数值。

这些公式在解决各种三角函数问题时非常有用。

它们可以帮助我们计算两个角度的和、差以及角度的两倍的三角函数值。

例如,当需要计算sin(75°)时,可以利用sin(45° + 30°)的两角和公式,以及sin(2 * 30°)的二倍角公式,从而得到sin(75°)的值。

此外,这些公式也有一些相关的推论:1.三角函数的积和商:sin(A)sin(B) = (cos(A - B) - cos(A + B))/2cos(A)cos(B) = (cos(A - B) + cos(A + B))/2sin(A)cos(B) = (sin(A + B) + sin(A - B))/22.三角函数的平方:sin^2(A) = (1 - cos(2A))/2。

两角和与差的正弦、余弦和正切公式及二倍角公式

两角和与差的正弦、余弦和正切公式及二倍角公式

两角和与差的正弦、余弦和正切公式及二倍角公式一、基础知识1.两角和与差的正弦、余弦、正切公式 S (α±β):sin(α±β)=sin αcos β±cos αsin β. C (α±β):cos(α±β)=cos αcos β∓sin αsin β. T (α±β):tan(α±β)=tan α±tan β1∓tan αtan β⎝⎛⎭⎫α,β,α±β≠π2+k π,k ∈Z .两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C (α±β)同名相乘,符号反;S (α±β)异名相乘,符号同;T (α±β)分子同,分母反.2.二倍角公式 S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.T 2α:tan 2α=2tan α1-tan 2α⎝⎛⎭⎫α≠k π+π2且α≠k π2+π4,k ∈Z . 二倍角是相对的,例如,α2是α4的二倍角,3α是3α2的二倍角.二、常用结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α. (3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β). (4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ)⎝⎛⎭⎪⎫其中sin φ=b a 2+b 2,cos φ=a a 2+b 2.考点一 三角函数公式的直接应用[典例] (1)已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan β=-12,则tan(α-β)的值为( )A .-211B.211C.112D .-112(2)(2019·呼和浩特调研)若sin ()π-α=13,且π2≤α≤π,则sin 2α的值为( )A .-229B .-429C.229D.429[解析] (1)因为sin α=35,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.所以tan(α-β)=tan α-tan β1+tan αtan β=-211.(2)因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-1-sin 2α=-223,所以sin 2α=2sin αcos α=2×13×⎝⎛⎭⎫-223=-429.[答案] (1)A (2)B[解题技法] 应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用. (3)注意配方法、因式分解和整体代换思想的应用. [题组训练]1.已知sin α=13+cos α,且α∈⎝⎛⎭⎫0,π2,则cos 2αsin ⎝⎛⎭⎫α+π4的值为( ) A .-23B.23C .-13D.13解析:选A 因为sin α=13+cos α,所以sin α-cos α=13,所以cos 2αsin ⎝⎛⎭⎫α+π4=cos 2α-sin 2αsin αcos π4+cos αsin π4=(cos α-sin α)(cos α+sin α)22(sin α+cos α)=-1322=-23.2.已知sin α=45,且α∈⎝⎛⎭⎫π2,3π2,则sin ⎝⎛⎭⎫2α+π3的值为________. 解析:因为sin α=45,且α∈⎝⎛⎭⎫π2,3π2,所以α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-1-⎝⎛⎭⎫452=-35. 因为sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=-725.所以sin ⎝⎛⎭⎫2α+π3=sin 2αcos π3+cos 2αsin π3=-24+7350. 答案:-24+7350考点二 三角函数公式的逆用与变形用[典例] (1)(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.(2)计算:tan 25°+tan 35°+3tan 25°tan 35°=________. [解析] (1)∵sin α+cos β=1,① cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1, ∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.(2)原式=tan(25°+35°)(1-tan 25°tan 35°)+3tan 25°·tan 35°=3(1-tan 25°tan 35°)+3tan 25°tan 35°= 3. [答案] (1)-12 (2)3[解题技法]两角和、差及倍角公式的逆用和变形用的技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式. (2)公式的一些常用变形:sin αsin β+cos(α+β)=cos αcos β; cos αsin β+sin(α-β)=sin αcos β; 1±sin α=⎝⎛⎭⎫sin α2±cos α22; sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.[提醒](1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题.(3)注意特殊角的应用,当式子中出现12,1,32, 3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.[题组训练]1.设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .a >c >b解析:选D 由两角和与差的正、余弦公式及诱导公式,可得a =cos 50°cos 127°+cos 40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =22(sin 56°-cos 56°)=22sin 56°-22cos 56°=sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°.因为函数y =sin x ,x ∈⎣⎡⎦⎤0,π2为增函数,所以sin 13°>sin 12°>sin 11°,所以a >c >b .2.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+π6=________. 解析:由cos ⎝⎛⎭⎫α-π6+sin α=435, 可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435,∴3sin ⎝⎛⎭⎫α+π6=435,即sin ⎝⎛⎭⎫α+π6=45. 答案:453.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 答案:12考点三 角的变换与名的变换考法(一) 三角公式中角的变换[典例] (2018·浙江高考改编)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝⎛⎭⎫-35,-45.若角β满足sin(α+β)=513,则cos β的值为________. [解析] 由角α的终边过点P ⎝⎛⎭⎫-35,-45, 得sin α=-45,cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.[答案] -5665或1665[解题技法]1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝⎛⎭⎫α+β2-⎝⎛⎭⎫α2+β等. 考法(二) 三角公式中名的变换[典例] (2018·江苏高考)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值; (2)求tan(α-β)的值.[解] (1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α .因为sin 2α+cos 2α=1, 所以cos 2α=925,所以cos 2α=2cos 2α-1=-725. (2)因为α,β 为锐角,所以α+β∈(0,π). 又因为cos(α+β)=-55,所以α+β∈⎝⎛⎭⎫π2,π. 所以sin(α+β)=1-cos 2(α+β)=255,所以tan(α+β)=-2. 因为tan α=43,所以 tan 2α=2tan α1-tan 2α=-247. 所以tan(α-β)=tan [2α-(α+β)] =tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.[解题技法] 三角函数名的变换技巧明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.[题组训练]1.已知tan θ+1tan θ=4,则cos 2⎝⎛⎭⎫θ+π4=( ) A.12 B.13C.14D.15解析:选C 由tan θ+1tan θ=4,得sin θcos θ+cos θsin θ=4,即sin 2θ+cos 2θsin θcos θ=4,∴sin θcos θ=14,∴cos 2⎝⎛⎭⎫θ+π4=1+cos ⎝⎛⎭⎫2θ+π22=1-sin 2θ2=1-2sin θcos θ2=1-2×142=14. 2.(2018·济南一模)若sin ⎝⎛⎭⎫A +π4=7210,A ∈⎝⎛⎭⎫π4,π,则sin A 的值为( ) A.35 B.45C.35或45D.34解析:选B ∵A ∈⎝⎛⎭⎫π4,π,∴A +π4∈⎝⎛⎭⎫π2,5π4, ∴cos ⎝⎛⎭⎫A +π4=- 1-sin 2⎝⎛⎭⎫A +π4=-210, ∴sin A =sin ⎣⎡⎦⎤⎝⎛⎭⎫A +π4-π4 =sin ⎝⎛⎭⎫A +π4cos π4-cos ⎝⎛⎭⎫A +π4sin π4=45. 3.已知sin α=-45,α∈⎣⎡⎦⎤3π2,2π,若sin (α+β)cos β=2,则tan(α+β)=( ) A.613 B.136C .-613D .-136解析:选A ∵sin α=-45,α∈⎣⎡⎦⎤3π2,2π, ∴cos α=35.又∵sin (α+β)cos β=2,∴sin(α+β)=2cos [(α+β)-α].展开并整理,得65cos(α+β)=135sin(α+β),∴tan(α+β)=613.[课时跟踪检测]A 级1.sin 45°cos 15°+cos 225°sin 165°=( ) A .1 B.12C.32D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.2.若2sin x +cos ⎝⎛⎭⎫π2-x =1,则cos 2x =( ) A .-89B .-79C.79D .-725解析:选C 因为2sin x +cos ⎝⎛⎭⎫π2-x =1,所以3sin x =1,所以sin x =13,所以cos 2x =1-2sin 2x =79.3.(2018·山西名校联考)若cos ⎝⎛⎭⎫α-π6=-33,则cos ⎝⎛⎭⎫α-π3+cos α=( ) A .-223B .±223C .-1D .±1解析:选C cos ⎝⎛⎭⎫α-π3+cos α=12cos α+32sin α+cos α=32cos α+32sin α=3cos ⎝⎛⎭⎫α-π6=-1. 4.tan 18°+tan 12°+33tan 18°tan 12°=( ) A.3 B.2 C.22D.33解析:选D ∵tan 30°=tan(18°+12°)=tan 18°+tan 12°1-tan 18°tan 12°=33,∴tan 18°+tan 12°=33(1-tan 18°tan 12°),∴原式=33. 5.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( )A .-118B.118C .-1718D.1718解析:选C 由3cos 2α=sin ⎝⎛⎭⎫π4-α,可得3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈⎝⎛⎭⎫π2,π,可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin 2α=-1718.6.已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13B.13C .-23D.23解析:选D cos 2⎝⎛⎭⎫α-π4=1+cos ⎝⎛⎭⎫2α-π22=12+12sin 2α=12+12×13=23. 7.已知sin ⎝⎛⎭⎫π2+α=12,α∈⎝⎛⎭⎫-π2,0,则cos ⎝⎛⎭⎫α-π3的值为________. 解析:由已知得cos α=12,sin α=-32,所以cos ⎝⎛⎭⎫α-π3=12cos α+32sin α=-12. 答案:-128.(2019·湘东五校联考)已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________.解析:因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cosαsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=sin αcos βcos αsin β=5.答案:59.(2017·江苏高考)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4=tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:7510.化简:sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-1 11.已知tan α=2. (1)求tan ⎝⎛⎭⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值. 解:(1)tan ⎝⎛⎭⎫α+π4=tan α+tanπ41-tan αtanπ4=2+11-2=-3. (2)sin 2αsin 2α+sin αcos α-cos 2α-1 =2sin αcos αsin 2α+sin αcos α-(2cos 2α-1)-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1.12.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值.解:(1)∵α,β∈⎝⎛⎭⎫0,π2,∴-π2<α-β<π2. 又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010.∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=45×31010+35×⎝⎛⎭⎫-1010=91050. B 级1.(2019·广东五校联考)若tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),|θ|<π2,则tan 2θ=________. 解析:∵tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),∴cos θsin θ=4cos θ, 又∵|θ|<π2,∴sin θ=14, ∴0<θ<π2,cos θ=154,tan θ=sin θcos θ=115, 从而tan 2θ=2tan θ1-tan 2θ=157. 答案:157 2.(2018·江西新建二中期中)已知A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35,则cos ⎝⎛⎭⎫A -π3=________. 解析:因为A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35, 所以π2<A +B <π,π2<B +π3<π, 所以sin(A +B )=1-cos 2(A +B )=725,cos ⎝⎛⎭⎫B +π3=- 1-sin 2⎝⎛⎭⎫B +π3=-45, 可得cos ⎝⎛⎭⎫A -π3=cos ⎣⎡⎦⎤(A +B )-⎝⎛⎭⎫B +π3=-2425×⎝⎛⎭⎫-45+725×35=117125. 答案:1171253.(2019·石家庄质检)已知函数f (x )=sin ⎝⎛⎭⎫x +π12,x ∈R. (1)求f ⎝⎛⎭⎫-π4的值; (2)若cos θ =45,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫2θ-π3的值. 解:(1)f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π12=sin ⎝⎛⎭⎫-π6=-12. (2)f ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫2θ-π3+π12=sin ⎝⎛⎭⎫2θ-π4=22(sin 2θ-cos 2θ). 因为cos θ=45,θ∈⎝⎛⎭⎫0,π2,所以sin θ=35,所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725, 所以f ⎝⎛⎭⎫2θ-π3=22(sin 2θ-cos 2θ)=22×⎝⎛⎭⎫2425-725=17250.。

两角和与差及其二倍角公式知识点及典学生用

两角和与差及其二倍角公式知识点及典学生用

两角和与差及其二倍角公式知识点及典例1、两角和与差的正弦、余弦、正切公式C(α-β):cos(α-β)=; C(α+β):cos(α+β)=;S(α+β):sin(α+β)=; S(α-β):sin(α-β)=;T(α+β):tan(α+β)=; T(α-β):tan(α-β)=;2、二倍角的正弦、余弦、正切公式2S α:sin2α=; 2T α:tan2α=;2C α:cos2α===;2、二倍角的正弦、余弦、正切公式2S α:sin2α=; 2T α:tan2α=;2C α:cos2α===;3、在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等。

如T(α±β)可变形为: tan α±tan β=_____________; tan αtan β= =. 1、已知tan α=4,tan β=3,则tan(α+β)=( )711A 、711B 、-713C 、713D 、-2、已知cos ⎝⎛⎭⎫α-π6+ sin α=453,则 sin ⎝⎛⎭⎫α+7π6的值是( )A .-235 B.235C .-45D.453、在△ABC 中,若cos A =45,cos B =513,则cos C 的值是( )A.1665B.5665C.1665或5665D .-16654、若cos2θ+cos θ=0,则sin2θ+sin θ的值等于( )A .0B .±3C .0或3D .0或±35、三角式2cos55°-3sin5°cos5°值为( )A.32B.3C .2 D .1例1求[2sin 50sin10(1)]︒︒︒+.变式1:化简求值:2cos10sin 20.cos 20︒︒︒-例2 设cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,其中α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫0,π2,求cos(α+β).变式2:π3π33π50π,cos(),sin(),4445413βααβ<<<<-=+=已知求sin(α+β)的值.例3已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.变式3:已知tan α= 17,tan β= 13,并且α,β 均为锐角,求α+2β的值.例4求函数25f (x )sin xcos x x =-x R )∈的单调递增区间?变式4(1)如果()()sin 2cos()f x x x ϕϕ=+++是奇函数,则tan ϕ= ;(2)若方程sin x x c =有实数解,则c 的取值范围是___________.1、下列各式中,值为12的是 ( )A 、1515sin cosB 、221212cos sin ππ- C 、22251225tan .tan .- D 2、命题P :0tan(A B )+=,命题Q :0tan A tan B +=,则P 是Q 的 ( )A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件3、已知3sin 5α=,tan 0α<则tan()4πα-= . 4、=︒+︒-︒20sin 6420cos 120sin 32225、2sin()2sin()cos()333x x x πππ++---=______________.6、0000cos(27)cos(18)sin(18)sin(27)x x x x +---+=7、若sin α=sin β=,αβ都为锐角,则αβ+= 8、在△ABC 中,已知tan A 、tan B 是方程3x 2+8x -1=0的两个根,则tan C 等于9、110sin - ;10、︒︒-︒70sin 20sin 10cos 2= 11、(1tan 22)(1tan 23)︒︒++=12、)20tan 10(tan 320tan 10tan ︒+︒+︒︒=13、(福建理17)在ABC △中,1tan 4A =,3tan 5B =.求角C 的大小; 14、已知0,1413)cos(,71cos 且=β-α=α<β<α<2π,(1)求α2tan 的值.(2)求β.15、如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于A,B 两点,已知A,B (1)求tan(α+β)的值;(2)求α+2β的值.。

5.4 两角和与差、二倍角的三角函数公式

5.4 两角和与差、二倍角的三角函数公式

高考总复习数学 高考总复习 数学

高考总复习数学 高考总复习 数学
1 + cos 2 x 1 + sin 2 x 解: f ( x) = 2 2
2 2 2 1 = ( sin 2 x + cos 2 x) + 2 2 2 2 2 π 1 = sin(2 x + ) + 2 4 2
3π 2 1 1 (I) f ( ) = sin π + = 8 2 2 2
(Ⅰ)求 f ( x) 的定义域; (Ⅱ)若角a在第一象限且
3 cos α = 5
,求 f (α )
高考总复习数学 高考总复习 数学
π sin x + ≠ 0 解:(Ⅰ) 由 2 π x ≠ kπ ( k ∈ Z ) 即
π 得 x ≠ + kπ , 2
2
π 故 f ( x) 的定义域为 x ∈ R | x ≠ kπ ,k ∈ Z 2
1 + cos 2α + sin 2α 2 cos 2 α + 2sin α cos α = = cos α cos α
14 = 2(cos α + sin α ) = 5
高考总复习数学 高考总复习 数学 【点评与感悟 点评与感悟】求值,化简,证明是三角函数中最常见的题型, 点评与感悟 其解题一般思路为 "五遇六想"即:遇到切,想化弦;遇多元, 想消元;遇差异,想联系;遇高次,想降次;遇特角,想求值; 想消元,引辅角. "五遇六想"作为解题经验的总结和概括,操 作简便,十分有效.其中蕴含了一个变换思想(找差异,抓联 系,促进转化),两种数学思想(转化思想和方程思想),三 个追求目标(化为特殊角的三角函数值,使之出现相消项或相 约项),三种变换方法(切化弦法,消元降次法,辅助元素法).

两角和与差及二倍角三角函数公式

两角和与差及二倍角三角函数公式
解。
05 公式的应用举例
在三角形中的应用
已知两边及夹角求第三边
求三角形的面积
利用两角和与差的余弦公式,结合三 角形的边长和角度关系,可以求出第 三边的长度。
在已知三角形的三边长度时,可以利 用海伦公式结合两角和与差的三角函 数公式求出三角形的面积。
判断三角形的形状
通过比较三角形的三个内角的余弦值, 可以判断三角形的形状(锐角、直角 或钝角^circ - 45^circ) = cos30^circcos45^circ + sin30^circsin45^circ = frac{sqrt{3}}{2} times frac{sqrt{2}}{2} + frac{1}{2} times frac{sqrt{2}}{2} = frac{sqrt{6} + sqrt{2}}{4}$。
二倍角公式允许我们将一个 角的二倍角的三角函数表达 式化简为单角的三角函数表 达式,这在解决一些特定问 题时非常有用,如求某些特 殊角的三角函数值或证明某 些恒等式。
公式在三角恒等 式证明中的应用
两角和与差及二倍角公式在 三角恒等式的证明中扮演着 重要角色。通过使用这些公 式,我们可以将复杂的三角 函数表达式化简为更简单的 形式,从而更容易地证明恒 等式。
04 公式推导与证明
两角和与差公式的推导
利用三角函数的和差化积公式, 将两角和与差的三角函数表达式 转化为单个角的三角函数表达式。
通过三角函数的加减变换,得到 两角和与差的正弦、余弦公式。
结合三角函数的周期性,将公式 扩展到任意角。
二倍角公式的推导
利用三角函数的倍角公式,将 二倍角的三角函数表达式转化 为单个角的三角函数表达式。
三角函数的性质

§15.2 两角和、两角差及二倍角公式

§15.2 两角和、两角差及二倍角公式

§15.2 两角和、两角差与二倍角公式在诱导公式中,我们有sin(α+2π)=cos α,sin(π-α)=sin α 等等一批公式,公式中同一个三角函数符号下出现了两个角,其中一个角α可以任意,但另一个角2π,π等却是固定的.如果把另一个角改成也是可以任意的例如β,那么sin(α+β)、sin(α-β)等与α,β的三角函数之间会有联系吗?如果有联系,又是怎样的联系?一、两角和与差的余弦1、知识要点设角α的终边与单位圆的交点坐标为P (cos α,sin α),角β的终边与单位圆的交点坐标为Q (cos β,sin β).记 a=OP =(cos α,sin α),b =OQ =(cos β,sin β), 则 a b =|a|⋅|b |cos(α-β)=cos(α-β); 又应用向量数量积的坐标表示公式 a b=cos α cos β+ sin α sin β,所以cos(α-β)=cos α cos β+ sin α sin β (C α-β )(1)我们把C α-β叫做两角差的余弦公式.在C α-β 中用-β代替β,就可以得到cos(α+β)= cos [α-(-β)] =cos α cos(-β)+ sin α sin(-β)即 cos(α+β)= cos α cos β- sin α sin β. (C α+β )(2)把C α+β 叫做两角和的余弦公式. 2、例题分析例1 不查表,求cos105°及cos15°的值. 解 设法把105°,15°分解成已知三角函数值的特殊角的和或差,再应用C α-β 或C α+β .cos105°=cos(60°+45°)=cos60°cos45°-sin60°sin45°=1222⋅=462-; cos15°=cos(45°-30°)= cos45°cos30°+sin45°sin30°12+=426+. 例2 已知cos α=-54, (2π<α<π),求cos(6π-α), cos(6π+α). 解 因为cos α=--54,且2π<α<π,所以sin α=2)54(1--=53.cos(6π-α)=cos6πcos α+sin6πsin α413)525-+⋅=10343-; cos(6π+α)= cos6πcos α-sin6πsin α413)525--⋅=10343+-. 例3 利用公式C α+β 证明cos [α+(2k +1)π]=-cos α.证明 cos [α+(2k +1)π]=cos αcos(2k +1)π-sin αsin(2k +1)π=cos α(-1)-sin α⋅0=-cos α,所以原式成立. 3、课内练习1. 不查表,求下列三角函数的值: (1)cos75°; (2)cos(-15°); (3)cos80°cos20°+sin80°sin20°;β)(4)cos20°cos25°-sin20°sin25°; (5)cos22.5°cos22.5°-sin22.5°sin22.5°; (6)cos 215°-sin 215°. 2.利用公式C α+β 、C α-β 证明(1)cos(α+2π)=-sin α; (2)cos(-α)=cos α.3.已知sin α=32,α (2π,π),求cos(3π+α), cos(3π-α). 4.已知sin α=1715, cos β=135-, α, β∈(2π,π),求cos(α+β), cos(α-β)的值.二.两角和与差的正弦.1、知识要点有了C α+β 和C α-β的公式,自然会联想两角和与差的正弦公式如何?因为sin(α+β)=cos [2π-(α+β)]=cos [(2π-α)-β]=cos(2π-α)cos β+sin(2π-α)sin β=sin αcos β+cos αsin β即 sin(α+β)=sin αcos β+cos αsin β. (S α+β)(1)我们把S α+β 叫做两角和的正弦公式.在两角和的正弦公式中,用(-β)代替β就可以得到 sin(α-β)=sin(α+(-β))=sin αcos(-β)+ cos αsin(-β),即 sin(α-β)=sin αcos β-cos αsin β. (S α-β)(2)我们把S α-β 叫做两角差的正弦公式. 2、例题分析例1 不查表,求sin75︒,sin15︒的值解 sin75︒=sin (45︒+30︒)=sin45︒⋅cos30︒+cos45︒⋅sin30︒=2322⋅ +2122⋅=426+;sin15︒=sin (45︒-30︒)=sin45︒⋅cos30︒-cos45︒⋅sin30︒=2322⋅ -2122⋅=426-.例2 已知向量OP =(3,4),绕原点旋转45︒到P O '的位置(见图10-2),求点P ’的坐标(x ’,y ’). 解 设∠xOP =α.因为|OP |=2243+=5,所以cos α=53,sin α=54,x ’=5cos(α+45︒)=5(cos αcos45︒- sin αsin45︒)=5(53⨯22-54⨯22)=-22;y ’=5sin(α+45︒)=5(sin αcos45︒+ cos αsin45︒)=5(54⨯22+53⨯22)=227.所以 P ’( -22, 227).3、课内练习1. 不查表,求下列各式的值(1)sin105︒; (2)sin165︒; (3)sin(-125π); (4)sin13︒cos17︒+cos13︒sin17︒; (5)sin70︒cos25︒-sin25︒cos70︒.2. 化简(1)sin(α+β)cos β-cos(α+β)sin α; (2)sin(α-β)cos β+cos(α-β)sin β.图10-2• yxαPO•P ' 45︒3.已知sin α=1715,α∈(2π,π),求sin(3π+α), sin(3π-α).4.已知sin α=32, cos β=-43,且α, β都是第二象限的角,求sin(α+β), sin(α-β).5.向量OP =(4,3)绕原点旋转60︒, 120︒, -60︒到1OP ,2OP ,3OP 的位置,求点P 1,P 2,P 3的坐标.三.两角和与差的正切1、知识要点根据同角三角函数的关系:tan(α+β)=)cos()sin(βαβα++,得tan(α+β)=βαβαβαβαsin sin cos cos sin cos cos sin -+;分子、分母同除以cos αcos β, (cos αcos β)≠0), 则tan(α+β)=βαβαtan tan 1tan tan -+. (T α+β )(1)我们把T α+β 叫做两角和的正切.在T α+β 中用-β代替β,并用负角公式tan(-x)=-tanx ,就可以得到tan(α-β)=βαβαtan tan tan tan ⋅+-1. (T α-β )(2)我们把T α-β 叫做两角差的正切. 2、例题分析例1 不查表,求下列各式的值(1)tan75︒; (2)︒︒︒+︒34tan 71tan -134tan 71tan .解 (1) tan75︒= tan (45︒+30︒)=︒⋅︒︒+︒30tan 45tan -130tan 45tan =3333-+=2+3;(2)︒︒︒+︒34tan 71tan -134tan 71tan =tan(17︒+43︒)= tan60︒=3例2 不查表,求下列各式的值(1)151151tan tan -+; (2)tan23︒+tan22︒+tan23︒tan22︒. 解 (1)︒-︒+15tan 115tan 1=︒︒-︒+︒15tan 45tan 115tan 45tan =tan (45︒+15︒)=tan60︒=3;(2)因为tan(23︒+22︒)=︒︒+︒+︒22tan 32tan 122tan 32tan ,所以tan23︒+tan22︒=tan(23︒+22︒)(1- tan23︒tan22︒),原式=tan45︒ (1-tan23︒tan22︒)+tan23︒tan22︒=1-tan23︒ tan22︒+ tan23︒ tan22︒ =1. 3、课内练习1. 不查表,求下列各式的值:(1)tan15︒; (2)tan105︒; (3)︒︒-︒+︒33tan 21tan 133tan 21tan ; (4)3tan125tan 13tan 125tanππππ-+. 2. 已知tan x =2, tan y =51,求tan (x +y ),tan (x -y ). 3. 不查表,求下列各式的值(1)︒+︒-75tan 175tan 1; (2)tan17︒ +tan43︒+3tan17︒ tan43︒.4. 求证(1)θθtan 1tan 1+-=tan(θπ-4); (2)θθtan 1tan 1-+=tan(θπ+4). 5. 已知tan α=52,tan β=73,求tan(α+β). 6. 已知tan α=23,tan β=53,求tan(α-β).四.倍角公式1、知识要点在和角公式S α+β , C α+β , T α+β 中,取β=α,就可得出相应的二倍角的三角函数公式: (1)sin2α=2sin αcos α; (S 2α ) (2)cos2α=cos 2α-sin 2α=2 cos 2α-1=1-2 sin 2α; (C 2α )(3)t a n2α=αα2tan -12tan . (T 2α ) 2、例题分析例1 已知sin α=135, α∈(2π,π),求sin2α, cos2α, tan2α的值.解 因为sin α=135, α∈(2π,π),所以cos α=-α2sin 1-=-2)135(1-=-1312.sin2α=2sin αcos α=2⨯135⨯(-1312)=-169120;cos2α=cos 2α-sin 2α=(-1312)2-(135)2=169119; tan2α=αα2cos 2sin =-169120÷169119=-119120.例2 证明恒等式θθθθθθtan cos sin 22cos 2sin 2sin 2=+++. 证明 左边=θθθθθθθcos sin 2)sin (cos 2sin cos sin 2222++-+=)1cos 2(cos )1cos 2(sin ++θθθθ=θtan =右边.所以原式成立.例3 证明sin50︒(1+3tan10︒)=1.证明 左边=sin50︒(1+10cos 10sin 3)=sin50︒ 10cos 10sin 310cos + =2sin50︒1010102321cos sin cos +=2 sin50︒10cos 10sin 30cos 10cos 30sin + =2sin50︒ 10cos 40sin = 10cos 50cos 50sin 2=10cos 100sin =10cos 10cos =1=右边.所以原式成立. 在例10的证明过程中,使用了正弦函数的和角公式、倍角公式,两次应用了诱导公式,还使用了分子、分母同除以2的技巧,其目的是要把看似互不关联的三角函数值关联起来,应用已知公式予以简化,达到证明的目的.可见熟悉公式并灵活应用的重要性.3、课内练习1. 不查表,求下列各式的值:(1)2sin67°30cos67°30'; (2)cos 28π-sin 28π; (3)2cos 212π-1;(4)1-2sin 275°;(5)5.22tan 15.22tan 22-; (6)sin15°cos15°. 2.化简下列各式:(1)(sin α-cos α)2; (2)sin 2θcos 2θ; (3)cos 4ϕ-sin 4ϕ; (4)θθtan 11tan 11+--. 3.已知sin α=0.8,α∈(0, π),求cos2α,sin2α.4.已知cos α=1312-,α∈(2π,π),求cos2α,sin2α.5.已知tan α=21,求tan2α.6.证明下列恒等式:(1)2sin (π-α)cos (π+α)=-sin2α; (2)1+2cos 2θ-cos2θ=2; (3)αααsin 2sin 2cos 1=-; (4)ααα2tan 2cos 12cos 1=+-.五、和、差、倍角公式的综合应用1、知识要点(1)两角和与差的三角函数的简单应用应用三角函数的和差角公式和倍角公式,为许多数学问题和实际问题的解决,提供了有力的工具.(2)三角函数式的变形 三角式化简、求值及三角恒等式证明中,主要手段是对三角函数式作各种变形,使之或简单或易于求值或与另一种形式相等.三角函数的和差角公式、倍角公式本身就是一种变形,因此在上述各类问题讨论中有广泛应用.下面将通过一些例子来看一下具体问题中是如何灵活应用的.2、例题分析例1 应用三角函数的和差角公式导出三角函数诱导公式.解 只要取和差角公式中两角之一为诱导公式中的特殊角,就能导出所有的诱导公式.下面挑选几个予以证明,类似可以证明其余.(1)sin(π-α)=sin πcos α-cos πsin α=0⋅cos α-(-1)sin α=sin α; (2)cos(π-α)=cos πcos α+sin πsin α=(-1) cos α+0⋅sin α=-cos α; (3)cos(2π+α)=cos 2πcos α-sin 2πsin α0⋅cos α-1⋅sin α=-sin α.例2 求函数y =sin x +cos x 的最大值和最小值,并判断它是否是周期函数.解 y =sin x +cos x =2(21 sin x +21cos x )=2(sin x cos4π+ cos x sin 4π)=2sin(x +4π). 当x +4π=2π+2k π (k ∈Z ),即x =4π+2k π, (k ∈Z )时,y 达到最大y max =2;当x +4π=-2π+2k π(k ∈Z ),即x =-43π+2k π, (k ∈Z )时,y 达到最小y min =-2 因为sin(x +4π)是以2π为周期的周期函数,所以y =sin x +cos x 是周期是2π的周期函数.例3 如图2三个相同的正方形相接,求证α+β=4π.证明 如图2易知tan α=21, tan β=31,且α,β∈(0,2π).tan(α+β)=βαβαtan tan 1tan tan -+=312113121⨯-+=1,因为α,β∈(0,2π),所以α+β∈(0, π).在区间(0,π)内,正切值为1的角只有1个,即tan4π=1,所以α+β=4π.例4 求cos20°cos40°cos80°的值.解一 由sin2α=2sin αcos α,得cos α=ααsin 22sin .分别应用于原式中三个因子,得cos20°cos40°cos80°=︒︒20sin 240sin ⋅︒︒40sin 280sin ⋅︒︒80sin 2160sin =︒︒20sin 8160sin =81.解二 将所求式的分子分母同乘以23sin20°,逐次应用S 2α ,原式=︒︒︒︒︒20sin 280cos 40cos 20cos 20sin 233=︒︒︒︒20sin 280cos 40cos 40sin 232=︒︒︒20sin 280cos 80sin 23=︒︒20sin 8160sin =81. 例5 已知2π<β<α<43π,cos(α-β)=1312,sin(α+β)=-53,求sin2α. 分析 2α=(α-β)+(α+β), sin2α=sin [(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β).解 由2π<β<α<43π,知π<α+β<23π,0<α-β<4π,所以 sin(α-β)=)(cos 12βα--=2)1312(1-=135;cos(α+β)=-)(sin 12βα+-=-2)53(1--=-54, 故 sin2α= sin(α+β)cos(α-β)+ cos(α+β)sin(α-β)=-135)54(131253⨯-+⨯=6556-.例6 不查表,求︒-︒10sec 2310csc 21的值.解 原式=︒-︒10cos 2310sin 21=︒︒︒-︒10cos 10sin 210sin 310cos =︒︒-︒20sin )1030sin(2=︒︒20sin 20sin 2=2. 切割化弦(把正切、余切、正割、余割函数化为正弦或余弦函数表示),使函数名得到统一,是化简三角式中常用手段;遇到三角式a sin α+b cos α时,常用技巧是a sin α+b cos α=2222b a b a b a ++⋅+ααcos sin ,进而简化为22b a +cos(α+ϕ)或22b a +sin(α+ϕ).例7 若α, β均为锐角,且cos α=552,cos β=10103,求α+β的值. 分析 求α+β的值,一般可先求(α+β)的三角函数值.解 因为α、β均为锐角,所以图2 αβsin α=α2cos 1-=2)552(1-=55,sin β=β2cos 1-=2)10103(1-=1010,cos(α+β)=cos α cos β- sin α sin β=因为0<α+β<π,所以α+β=4π.例8 在斜∆ABC 中,求证:tan A +tan B +tan C =tan A tan B tan C .分析 因为A ,B ,C 为三角形内角,有A +B +C =π,A +B =π-C ,考虑选用两角和的正切公式. 证明 因为A ,B ,C 为三角形内角,有A +B +C =π, A +B =π-C ,且A ,B ,A +B 都不等于π,所以 tan(A +B )=tan(π-C ),即BA B A tan tan 1tan tan -+=-tan C .所以tan A +tan B +tan C =tan A tan B tan C .3、课内练习 1.不查表,求值(1)cos65°sin70°+sin65°sin20°; (2)︒-︒5.22tan 15.22tan 2; (3)1-22cos 8π; (4)sin40°(tan10°-3); (5)cos 10°cos20°cos40°.2.已知α+β=4π,求(1+tan α)(1+tan β)的值.3.已知tan(α+β)=52, tan(β-4π)=41,求tan(α+4π)的值.4.若α, β是锐角,且满足cos α=54, cos(α+β)=53,求sin β的值.5.已知sin α=53, α∈(2π,π), tan(π-β)=21,求tan(α-2β)的值.6.已知α, β是锐角,且tan α, tan β是方程6x 2-5x +1=0的两个根,求α+β的值. 7.求证:(1)sin2x (cot2x -tan 2x)=4cos 2x ; (2)2sin(2π+x )cos(2π-x )cos α+(2cos 2x -1)sin α=sin(2x +α).8.求下列函数的最小值和最大值: (1)y =x x sin cos 2123-; (2)y =2(sin x -cos x ). 9.如图在ΔABC 中,AD ⊥BC 垂足为D ,BD :DC :AD =2:3:6,求∠BAC . 10.已知等腰三角形的顶角的余弦等于257,求它底角的正弦、余弦和正切.第9题图AB§15.2 知 识 体 系一、三角化简变换:1、同角变换:①1cos sin 22=+αα, ②1cot tan =⋅αα, ③αααcos sin tan =2、负角变换:①ααsin )sin(-=-, ②ααcos )cos(=-, ③ααtan tan(-=-)3、余角变换:①ααπcos )2sin(=±, ②ααπsin )2cos( =±, ③ααπcot )2tan( =±4、平角变换:①ααπsin )sin( =±, ②ααπcos )cos(-=±, ③ααπtan )tan(±=±5、周期变换:①ααπsin )2sin(±=±,②ααπcos )2cos(±=±,③ααπtan )tan(±=± 二、两角和公式1、两角和的正弦: βαβαβαsin cos cos sin )sin(+=+;2、两角和的余弦:βαβαβαsin sin cos cos )cos(-=+;3、两角和的正切:βαβαβαtan tan 1tan tan )tan(-+=+。

第24课--两角和与差公式及二倍角公式

第24课--两角和与差公式及二倍角公式

第24课两角和与差公式及二倍角公式基础知识:1.两角和与差的正弦、余弦、正切公式(1)公式①()cos cos cos :(sin sin ) C αβαβαβαβ--+=;②()cos cos cos :(sin sin ) C αβαβαβαβ-=++③():sin sin cos o n )i (c s s S αβαβαβαβ-=--;④()sin sin cos :(cos sin ) S αβαβαβαβ+=++⑤()()tan tan :tan 1tan tan T αβαβαβαβ---=+;⑥()()tan tan :tan 1tan tan T αβαβαβαβ+++=-(2)公式变形①(tan tan tan 1tan ta )()n αβαβαβ++-=;②tan tan tan 1tan t ()n )(a αβαβαβ-=-+.2.二倍角公式(1)公式①sin 22sin cos ααα=;②2222cos 2cos sin 2cos 112sin ααααα=-=-=-;③22tan tan 21tan ααα=-.(2)公式变形①221cos 21cos 2cos ,sin 22αααα+-==;②()21sin 2sin cos ααα+=+,()21sin 2sin cos ααα-=-,sin cos 4αααπ⎛⎫±=± ⎪⎝⎭.一、典型例题1.若1sin ,3α=且ππ2α<<,则sin2α=().A. B. C. D.答案:B解析:∵1sin ,3α=且ππ2α<<,∴22cos 3α==-,∴1sin22sin cos 2339ααα⎛==⨯⨯-=- ⎝⎭,故选B.2.若1sin 33απ⎛⎫-= ⎪⎝⎭,则cos 23απ⎛⎫+= ⎪⎝⎭().A.79 B.23 C.23- D.79-答案:D 解析:sin sin cos 3266αααπ⎡ππ⎤π⎛⎫⎛⎫⎛⎫-=-+=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ,1cos 63απ⎛⎫∴+= ⎪⎝⎭,217cos 2cos 22cos 12136699αααπππ⎛⎫⎛⎫⎛⎫+=+=+-=⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选D.3.已知()()π3π123,cos ,sin 24135βααβαβ<<<-=+=-,则cos2α=__________.答案:3365-解析:∵π324βαπ<<<,()12cos 13αβ-=,()5sin 13αβ∴-==,()()34sin ,cos 55αβαβ+=-∴+==- ,则()()()()()()cos 2cos cos cos sin sin ααβαβαβαβαβαβ=++-=+--+-⎡⎤⎣⎦412533351313565⎛⎫=-⨯-⨯-=- ⎪⎝⎭.二、课堂练习1.已知31tan(),tan()534αββπ+=-=,那么tan()3απ+的值为().A.318B.1323C.723 D.717答案:C解析:由31tan(),tan()534αββπ+=-=,知tan(tan[()(33ααββππ+=+--=31tan()tan(735431231tan()tan()1354αββαββπ+---==π++-+⨯,故选C.2.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________.答案:12-解析:sin cos 1 αβ+=,22sin 2sin cos cos 1a a b b \++=,又cos sin 0 αβ+=,22cos 2cos sin sin 0a a b b \++=,两式相加可得22sin()1a b ++=,1sin()a b \+=-.3.记直线:210l x y -+=的倾斜角为α,则1tan2sin2αα+的值为________.答案:112-解析:∵直线:210l x y -+=的斜率为2,∴tan 2α=,∴22222sin cos 2tan 224sin2=sin cos 1tan 125ααααααα⨯===+++,222tan 224tan21tan 123ααα⨯===---,∴1541tan2sin24312αα+=-=-.三、课后作业1.若1sin 3α=,则cos2α=().A.89B.79 C.79- D.89-答案:B解析:227cos2α12sin 199α=-=-=,故选B.2.已知cos 63θπ⎛⎫+=- ⎪⎝⎭,则sin 26θπ⎛⎫-= ⎪⎝⎭().A.13 B.23 C.13- D.23-答案:C解析:由已知得221cos 22cos 116633θθ⎡π⎤π⎛⎫⎛⎫+=+-=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,即1cos 233θπ⎛⎫+=- ⎪⎝⎭,1sin 2sin 2cos 262333θθθπ⎡ππ⎤π⎛⎫⎛⎫⎛⎫∴-=-+=+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故选C.3.已知1sin 23α=,则2cos 4απ⎛⎫-= ⎪⎝⎭().A.13 B.13- C.23 D.23-答案:C 解析:由降幂公式可得,21cos 21111124cos sin 242222233αααπ⎛⎫+- ⎪π⎛⎫⎝⎭-==+=+⨯= ⎪⎝⎭,故选C.4.已知0α<<π2β<,满足cos 5α=,sin 10β=,求αβ+的值().A.π4 B.π4或3π4 C.π2π4k + D.3π4答案:D解析:由题意得sin αβ==()cos αβ+=-,又0παβ<+<,所以3π4αβ+=,故选D.5.已知(),0,παβ∈,且()1tan 2αβ-=,1tan 5β=-,则tan2α的值为__________.答案:3356解析:()()()tan tan tan tan 1tan tan αββααββαββ-+=-+=⎡⎤⎣⎦--11325,1111125-==⎛⎫-⨯- ⎪⎝⎭22322tan 3311tan 2.1tan 563111ααα⨯===-⎛⎫- ⎪⎝⎭6.在ABC 中,已知()()212cos cos sin sin cos 22A B B A B B A C ---++=,(1)求角A ;(2)若π0,3B ⎛⎫∈ ⎪⎝⎭,且()3sin 5A B -=,求sin B .答案:(1)π3A ∠=;(2)43310-解析:(1)由题可得,()()11cos cos sin sin cos 2AB B A B B B +----=⎡⎤⎣⎦,则()()1cos cos cos sin sin cos 2B A B B A B B B +----=,则1cos 2A =,∴π3A ∠=.(2)∵π3A ∠=,π0,3B ⎛⎫∈ ⎪⎝⎭,()3sin 5A B -=,∴()4cos 5A B -=,∴()()()413sin sin sin cos cos sin B A A B A A B A A B =--=---=-⨯=⎡⎤⎣⎦。

高考数学两角和与差及二倍角的三角函数公式课件

高考数学两角和与差及二倍角的三角函数公式课件

-23×12+ 35× 23=
15-2 6.
故选 D. 答案:D
(2)4sin 80°-csoins 1100°°=(
A. 3
B.- 3
) C. 2
D.2 3-3
解析:因
4sin
80°-csoins
1100°°=4sin
80°sin10 °-cos sin 10°
10°=
2sin
20°-cos sin 10°
10°=2sin30°-sin101°0°-cos
【规律方法】三角函数的给角求值,关键是把待求角用已 知角表示:
①已知角为两个时,待求角一般表示为已知角的和或差; ②已知角为一个时,待求角一般与已知角成“倍的关系” 或“互余、互补”的关系.
考点 2 给值求值问题 例 2:(1)(2016 年新课标Ⅰ)已知 θ 是第四象限角,且 sinθ+π4=35,则 tanθ-π4=________.
1.两角和与差的三角函数
三角函数
两角和
正弦
sin(α+β)=sin αcos β+cos αsin β
余弦
cos(α+β)=_c_o_s_α__co_s__β_-__s_in__α_si_n__β_
正切
tan(α+β)=1t-antαan+αttaannββ
简写形式 Sα+β Cα+β
Tα+β
(续表) 三角函数 正弦 余弦
考点 3 给值求角问题
例 3:已知 A,B 均为钝角,且 sin A= 55,sin B= 1100,求 A+B 的值.
解:∵A,B 均为钝角,且 sin A= 55,sin B= 1100,
∴cos A=-
1-sin2A=-
2 =-2 5

两角和与差及二倍角公式经典例题及答案

两角和与差及二倍角公式经典例题及答案

:两角和与差及其二倍角公式知识点及典例题型 1 给角求值一般所给出的角都是非特别角,利用角的关系(与特别角的联系)化为特别角知识重点:3 tan10 )] ? 2sin 2 80 的值.1、两角和与差的正弦、余弦、正切公式例 1 求[2sin50sin10 (1C(α-β) : cos( α-β ) =; C( α+β) : cos( α+β ) =;S( α+β) : sin( α+β ) =; S( α-β) : sin( α-β ) =;T( α+β) : tan( α+β ) =; T( α-β) : tan( α-β) =;变式 1:化简求值:2cos10sin 20 .cos202、二倍角的正弦、余弦、正切公式S2:sin2α=;T2:tan2α=;C2:cos2α===;3、在正确娴熟地记着公式的基础上, 要灵巧运用公式解决问题: 如公式的正用、逆用和变形用等。

如 T( α±β) 可变形为 :tanα±tanβ=___________________;tanα tanβ==.考点自测:1、已知 tan α= 4,tan β= 3,则 tan( α+β) = ()7、7C、7D、-7、1313 111147ππ2、已知 cos α-6+ sinα =53,则 sinα+6的值是()234A.-5C.-53、在△4=5C的值是 ()中,若 cos =, cos,则 cosABC A 5B1356D16或.-65654、若 cos2θ+ cos θ= 0,则 sin2θ+sinθ 的值等于()A. 0B.± 3C.0或 3D.0或± 3 2cos55°-3sin5 °)5、三角式cos5°值为 (C. 2D. 1题型 2 给值求值三角函数的给值求值问题解决的重点在于把“所求角”用“已知角”表示.如()(),2() (),2() ()2,2222例 2设 cos αβ1α2π,β∈0,π,求 cos( α+β) .-=-, sin-β =,此中α ∈,π229232变式 2:已知0π3π,cos(π)3,sin(3 π)5, 求sin(α+β)的值.4445413题型 3 给值求角已知三角函数值求角,一般可分以下三个步骤:(1) 确立角所在的范围;(2) 求角的某一个三角函数值( 要求该三角函数应在角的范围内严格单一) ;( 3)求出角。

19《三角函数-两角和与差二倍角公式》

19《三角函数-两角和与差二倍角公式》

2 ,
(一)公式正用 例1、求值:
1sin555

5 2 cot 12
例2
P(53 例1)
1 2 设 . , sin , cos 2 9 2 3
50
3
求α+2β。
[点评] “给值求角”:求角的大小,常分两步 完成:第一步,先求出此角的某一三角函数 值;第二步,再根据此角的范围求出此角。 在确定角的范围时,要尽可能地将角的范围 缩小,否则易产生增解。
四.给式求值 例4:P(55例3)已知a为第二象限角,且
和sin2a+cos2a的值
5 cos sin 求 sin con 2 2 2 2 2
【作业布置】
三角函数的化简与证明
一、知识点 1、化简 (1)化简目标:项数习量少,次数尽量低,尽量 不含分母和根号 (2)化简三种基本类型: 1) 根式形式的三角函数式化简 2) 多项式形式的三角函数式化简 3)分式形式的三角函数式化简 (3)化简基本方法:用公式;异角化同角;异名 化同名;化切割为弦;特殊值与特殊角的三角函 数值互化。
一.给角求值. 例1、计算 sin 40 (tan 10
0 0
3 ) 的值。
练习:(全国高考)tan20°+4sin20°
[点评] “给角求值” 观察非特殊角的 特点,找出和特殊角之间的关系 注意特殊值象1、等,有时需将其转化 成某个角的三角函数,这种技巧在化 简求值中经常用到。
二.给值求值 例2、例2、(P(55) 已知
3 1 sin( x ) cos( x ) 4 4 4
求cos4x的值.

两角和与差及二倍角公式

两角和与差及二倍角公式

cos2α-sin2α=cos2α, 2tan =tan2α, 2 1 tan
1±sin2α=sin2α+cos2α±2sinαcosα =(sinα±cosα)2,
1+cos2α=2cos2α,
1-cos2α=2sin2α.
考点陪练
1.sin15°cos75°+cos15°sin105°等于(
第十八讲
两角和与差及二倍角公式
回归课本
1.C(α-β)∶cos(α-β)=cosαcosβ+sinαsinβ C(α+β)∶cos(α+β)=cosαcosβ-sinαsinβ
S(α+β)∶sin(α+β)=sinαcosβ+cosαsinβ
S(α-β)∶sin(α-β)=sinαcosβ-cosαsinβ
答案:B
则sin 等于 33 A. 65 33 C. 65
3 5 5.已知cos( ) , sin , 且 0, , , 0 , 5 13 2 2

63 B. 65 63 D. 65
解析 :由于 0, , , 0 ,因此 (0, ). 2 2 3 又由于cos( ) 0,因此 0, . 5 2 4 12 sin( ) 且cos , sin sin 5 13 sin cos cos sin 4 12 3 5 33 .因此选A. 5 13 5 13 65
3.余弦二倍角公式有三种形式,即cos2α=cos2αsin2α=2cos2α-1=1-2sin2α,由此可得变形公式sin2α= 1 cos 2 1 cos 2 2 ,cos α= ,它的双向应用分别起到缩角

015两角和与差的三角函数及二倍角公式

015两角和与差的三角函数及二倍角公式

页眉内容两角和与差的三角函数及二倍角公式、三角恒等式证明1.两角和的余弦公式的推导方法:2.基本公式sin(α±β)=sinα cosβ±cosα sinβcos(α±β)= ;tan(α±β)= .3.公式的变式tanα+tanβ=tan (α+β)(1-tanα tanβ)1-tanα tanβ=)tan(tan tan βαβα++ 4.常见的角的变换:2α=(α+β)+(α-β);α=2βα++2βα- α=(α+β)-β =(α-β)+β2βα+=(α-2β)-(2α-β); )4()4(x x ++-ππ=2π 5.二倍角公式sin2α= ;cos2α= = = ;tan2α= .6.公式的变用:1+cos2α= ;1-cos2α= .7.三角函数式的化简的一般要求:① 函数名称尽可能少;② 项数尽可能少;③ 尽可能不含根式;④ 次数尽可能低、尽可能求出值.8.常用的基本变换方法有:异角化同角、异名化同名、异次化同次.9.求值问题的基本类型及方法① “给角求值”一般所给的角都是非特殊角,解题时应该仔细观察非特殊角与特殊角之间的关系,通常是将非特殊角转化为特殊角或相互抵消等方法进行求解.② “给值求值”即给出某些角的三角函数(式)的值,求另外的一些角的三角函数值,解题关键在于:变角,使其角相同;③ “给值求角”关键也是:变角,把所求的角用含已知角的式子表示,由所求得的函数值结合该函数的单调区间求得角.基础过关10.三角恒等式的证明实质是通过恒等变形,消除三角恒等式两端结构上的差异(如角的差异、函数名称的差异等).11.证三角恒等式的基本思路是“消去差异,促成同一”,即通过观察、分析,找出等式两边在角、名称、结构上的差异,再选用适当的公式,消去差异,促进同一.12.证明三角恒等式的基本方法有:⑴ 化繁为简;⑵ 左右归一;⑶ 变更问题.13.三角条件等式的证明就是逐步将条件等价转化为结论等式的过程,须注意转化过程确保充分性成立.14.三角条件等式的证明,关键在于仔细地找出所附加的条件和所要证明的结论之间的内在联系,其常用的方法有:⑴ 代入法:就是将结论变形后将条件代入,从而转化为恒等式的证明.⑵ 综合法:从条件出发逐步变形推出结论的方法.⑶ 消去法:当已知条件中含有某些参数,而结论中不含这些参数,通过消去条件中这些参数达到证明等式的方法.⑷ 分析法:从结论出发,逐步追溯到条件的证明方法,常在难于找到证题途径时用之.例1.求[2sin50°+sin10°(1+3tan10°)]· 80sin 22的值.变式训练1:(1)已知α∈(2π,π),sin α=53,则tan(4πα+)等于( ) A.71 B.7 C.- 71 D.-7 (2) sin163°sin223°+sin253°sin313°等于 ( )A.-21B.21 C.-23 D.23 例2. 已知α∈(4π,43π),β∈(0,4π),cos (α-4π)=53,sin(43π+β)=135,求sin(α+β)的值.典型例题变式训练2:设cos (α-2β)=-91,sin (2α-β)=32,且2π<α<π,0<β<2π, 求cos (α+β).例3. 若sinA=55,sinB=1010,且A,B 均为钝角,求A+B 的值.例4.化简sin 2α·sin 2β+cos 2αcos 2β-21cos2α·cos2β.变式训练4:化简:(1)2sin ⎪⎭⎫ ⎝⎛-x 4π+6cos ⎪⎭⎫ ⎝⎛-x 4π; (2)⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--απαπα4sin 4tan 21cos 222.1.三角函数式的化简、求值、证明等是三角变形常见的题型,三角函数式变形的过程就是分析矛盾、发现差异,进而消除差异的过程。

高考总复习数学两角和与差及二倍角的三角函数公式ppt课件

高考总复习数学两角和与差及二倍角的三角函数公式ppt课件

2tanα
sin2α=___2_s_in_α_c_o_s_α___;tan2α=____1_-__t_a_n_2α__.
3.降次公式
1+cos2α
1-cos2α
cos2α=_______2_____;sin2α=________2____.
5
4.辅助角公式 asinx+bcosx= a2+b2sin(x+φ). 其中 cosφ= a2a+b2,sinφ= a2b+b2, tanφ=ba,角 φ 称为辅助角.
8
考点 1 三角函数式的化简 例 1:已知函数 f(x)=sincoxs+2xπ4. (1)求函数 f(x)的定义域; (2)若 f(x)=43,求 sin2x 的值.
9
解:(1)由题意,sinx+π4≠0,∴x+π4≠kπ(k∈Z). 即 x≠kπ-π4 (k∈Z).
函数 f(x)的定义域为xx≠kπ-π4,k∈Z
1-sin2B=-
3 =-3 10
10 10 .
20
∴cos(A+B)=cosAcosB-sinAsinB
=-2
5
5×-3 1010-
55×
1100=
2 2.
又∵π2<A<π,π2<B<π,
∴π<A+B<2π,∴A+B=74π.
21
【方法与技巧】通过求角的某种三角函数值来求角,在选 取函数时,遵照以下原则:①已知正切函数值,选正切函数; ②已知正、余弦函数值,选正弦或余弦函数;若角的范围是
即ffxxmmainx==-2+1+a+a+1,1, ∴2a+3=3,即 a=0.
14
考点 2 三角函数式的求值
例 2:化简求值:(1)tan15°; (2)1t-an4ta2n°4+2°ttaann1188°°; (3)11-+ttaann1155°°; (4)tan20°+tan40°+ 3tan20°tan40°. 解:(1)体会正用公式:tan15°=tan(60°-45°)= 1t+an6ta0n°6-0°ttaann4455°°=1+3-13=2- 3. (2)体会逆用公式:1t-an4ta2n°4+2°ttaann1188°°=tan(42°+18°)=tan60° = 3.又Biblioteka α为第二象限角,∴sinα=2

两角和与差二倍角公式PPT教学课件

两角和与差二倍角公式PPT教学课件
(3)“给值求角”:转化为给值求值,由所得函 数值结合角的范围求出角。
(4)“给式求值”:给出一些较复杂的三角式的 值,求其他式子的值。将已知式或所求式进行化简, 再求之
三角函数式常用化简方法:切割化弦、高次化低次
注意点:灵活角的变形和公式的变形 重视角的范围对三角函数值的影响,对角的
范围要讨论
一.给角求值.
四、作业:
三角函数式的求值
三角函数式的求值的关键是熟练掌握公式及应 用, 掌握公式的逆用和变形
三角函数式的求值的类型一般可分为:
(1)“给角求值”:给出非特殊角求式子的值。仔细 观察非特殊角的特点,找出和特殊角之间的关系, 利用公式转化或消除非特殊角
(2)“给值求值”:给出一些角得三角函数式的 值,求另外一些角得三角函数式的值。找出已知 角与所求角之间的某种关系求解
1 sin
1 cos
(2)书例1
求证 : sin(2 ) 2cos( ) sin
sin
sin
练习:已知 270 360 ,化简
1 1 1 1 cos2
2222
三.求三角最值
例2、P(55 例1) 试求函数
Y若=xsin[x0+,co]sx呢+2?sinx cosx +2 的最大值,最小值.
重视角的范围对三角函数值的影响,对角的 范围要讨论
【作业布置】
三角函数的化简与证明
一、知识点 1、化简 (1)化简目标:项数习量少,次数尽量低,尽量 不含分母和根号
(2)化简三种基本类型: 1) 根式形式的三角函数式化简 2) 多项式形式的三角函数式化简 3)分式形式的三角函数式化简
(3)化简基本方法:用公式;异角化同角;异名 化同名;化切割为弦;特殊值与特殊角的三角函 数值互化。

两角和与差的正弦、余弦和正切公式及二倍角公式

两角和与差的正弦、余弦和正切公式及二倍角公式

答案 D 由cos +sin α= , 可得 cos α+ sin α+sin α= , 即 sin α+ cos α= , ∴ sin = , 即sin = , ∴sin =-sin =- .
单击此处添加大标题内容
2-1 已知cos +sin α= ,则sin 的值是 ( ) A.- B. C. D.-
方法技巧 三角恒等变换的变“角”与变“名”问题的解题思路 角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角 与未知角),熟悉角的拆分与组合的技巧,半角与倍角的相互转化,如:2α= (α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°, + = , =2× 等. 名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、 诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.
添加标题
1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2.
添加标题
cos2α=⑩ ,sin2α= ;
添加标题
1.sin 20°cos 10°-cos 160°sin 10°= ( ) A.- B. C.- D.
02
03
已知sin(α-kπ)= (k∈Z),则cos 2α的值为 ( ) A. B.- C. D.-
A
若tan = ,则tan α= .
.
考点突破
典例1 (1)已知sin =cos ,则tan α= ( ) A.-1 B.0 C. D.1 (2)(2017课标全国Ⅰ,15,5分)已知α∈ ,tan α=2,则cos = (3)设sin 2α=-sin α,α∈ ,则tan 2α的值是 .

第三章 第5讲 两角和与差及二倍角的三角函数公式[配套课件]

第三章 第5讲 两角和与差及二倍角的三角函数公式[配套课件]

二倍角
2sin αcos α sin 2α=______________
简写形式 S2α C2α
余弦
cos 2α=cos2α-sin2α=2cos2α-1=
1-2sin2α 正切
3.降次公式
2tan α tan 2α= 1-tan2α
T2α
1+cos 2α 1-cos 2α 2 cos α= ;sin α= . 2 2
3 10 - ×- 10
5 10 2 5 × 10 = 2 .
7π ∴π<A+B<2π.∴A+B= 4 .
【规律方法】已知三角函数值求角时,要先确定所求角的 范围,再选择在该范围内具有单调性的某一三角函数求解,否 π π 则容易出现增根.如若 α∈(0, π), 则选余弦函数; 若 α∈-2,2, 则选正弦函数.
tan 20° +tan 40° 解析:tan(20° +40° )= ,可得 3- 1-tan 20° tan 40° 3tan 20° tan 40° =tan 20° +tan 40° , 移项, 可得 tan 20° +tan 40° + 3tan 20° tan 40° = 3.
答案: 3
6 答案: 2
cos 10° + 3sin 10° (3)计算: =________. 1-cos 80°
cos 10° + 3sin 10° 2cos10° -60° 2cos 50° 解析: = = = 2 2sin 40° 2sin 40° 1-cos 80° 2.
答案: 2
(4)计算:tan 20° +tan 40° + 3tan 20° tan 40° =________.
解析:由题意 得
π 3 sinθ+4=5,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档