实验一 雷诺实验
实验一 雷诺实验
![实验一 雷诺实验](https://img.taocdn.com/s3/m/1653fdceda38376baf1fae30.png)
实验一 流体流动型态及临界雷诺准数的测定【实验目的】1.观察流体在管内流动的两种不同流型。
2.测定临界雷诺准数。
【实验原理】经许多研究者实验证明,流体流动存在两种截然不同的型态:即层流(滞流)和湍流(紊流)。
流体作层流流动时,其流体质点作直线运动,且互相平行;湍流时质点紊乱地向各个方向作不规则的运动,但流体的主体向某一方向流动。
主要决定因素为流体的密度和粘度、流体流动的速度,以及设备的几何尺寸(在圆形导管中为导管直径)。
将这些因素整理归纳为一个无因次数群,称该无因次数群为雷诺准数(或雷诺数),即μρdu =Re (1-1)式中,Re ——雷诺准数,无因次; d ——管子内径,m ;u ——流体流速,m /s ;ρ——流体密度,kg /m 3; μ——流体粘度,Pa ·s 。
大量实验测得:当雷诺准数小于某一下临界值时,流体流动型态恒为层流,当雷诺数大于某一上临界值时,流体流型恒为湍流,在上临界值与下临界值之间,则为不稳定的过渡区域。
对于圆形导管,下临界雷诺数为2000,上临界雷诺数为10000,一般情况下,上临界雷诺数为4000时,即可形成湍流。
应当指出,层流与湍流之间并非是突然的转变,而是两者之间相隔一个不稳定过渡区域,因此,临界雷诺数测定值和流型的转变,在一定程度上受一些不稳定的其它因素的影响。
【实验装置与流程】实验装置如图1所示。
主要由玻璃试验导管、低位贮水槽、循环水泵、稳压溢流水槽、缓冲水槽以及流量计等部分组成。
实验前,先将水充满低位贮水槽,再启动循环水泵,然后开启泵的出口阀及流量计后的调节阀。
水由稳压溢流水槽流经试验导管、缓冲槽和流量计,最后流回低位贮水槽。
水流量的大小,可由流量计后调节阀调节。
泵的出口管路上由旁路控制溢流水槽的溢流量。
示踪剂采用红色墨水,它由红墨水贮瓶.经连接软管和玻璃注射管的细孔喷嘴,注入试验导管。
细孔玻璃注射管(或注射针头)位于试验导管人口的轴线部位。
第二章化工原理实验 雷诺实验
![第二章化工原理实验 雷诺实验](https://img.taocdn.com/s3/m/267f6257f01dc281e53af0a8.png)
第二章化工原理实验实验一、雷诺实验一、实验目的:1.建立“滞流和湍流两种流动形态”的感性认识;2.观察雷诺准数与流体流动类型的相互关系;3.观察滞流时流体在圆管内的速度分布曲线;二、实验原理:1.滞流时,流体质点做直线运动,即流体分层流动,与周围的流体无宏观的混合,湍流时,流体质点呈紊乱地向各方向作随机的脉动,流体总体上仍沿管道方向流动。
2.雷诺准数是判断实际流动类型的准数。
若流体在圆管内流动,则雷诺准数可用下式表示:(2-1)一般认为,当Re≤2000时,流体流动类型属于滞流;当Re≥4000时,流动类型属于湍流;而Re值在2000~4000范围内是不稳定的过渡状态,可能是层流也可能是湍流,取决于外界干扰条件。
如管道直径或方向的改变、管壁粗糙,或有外来振动等都易导致湍流。
3.对于一定温度的流体,在特定的圆管内流动,雷诺准数仅与流速有关。
本实验是改变水在管内的速度,观察在不同雷诺准数下流体流型的变化。
理论分析和实验证明,滞流时的速度沿管径按抛物线的规律分布。
中心的流速最大,愈近管壁流速愈慢。
湍流时由于流体质点强烈分离与混合,所以速度分布曲线不再是严格的抛物线,湍流程度愈剧烈,速度分布曲线顶部的区域愈广阔而平坦,但即使湍流时,靠近管壁区域的流体仍作滞流流动,这一层称为滞流内层或滞流底层,。
它虽然极薄,但在流体中进行热量和质量的传递时,产生的阻力比流体的湍流主体部分要大得多。
三、实验装置及流程:1.实验装置示意图及流程图2-1 雷诺实验——装置示意图及流程1.溢流管;2.小瓶;3.上水管;4.细管;5.水箱;6.水平玻璃管;7.出口阀门实验装置如图2-1所示,图中水箱内的水由自来水管供给,实验时水由水箱进入玻璃管(玻璃管供观察流体流动形态和滞流时管路中流速分布之用)。
水量由出口阀门控制,水箱内设有进水稳流装置及溢流管,用以维持平稳而又恒定的液面,多余水由溢流管排入下水道。
2.实验仿真界面图2-2 雷诺实验——仿真界面四、实验步骤:1、实验步骤(1)雷诺实验1)打开进水阀,使自来水充满高位水箱;2)待有溢流后,打开流量调节阀;3)缓慢地打开红墨水调节阀;4)调节流量调节阀,并注意观察滞流现象;5)逐渐加大流量调节阀的开度,并注意观察过渡流现象;6)进一步加大流量调节阀的开度,并注意观察湍流现象;7)由孔板流量计测得流体的流量并计算出雷诺准数;8)关闭红墨水调节阀,然后关闭进水阀,待玻璃管中的红色消失,关闭流量调节阀门,结束本次实验。
实验一雷诺实验一、实验目的1.观察层流和紊流的流态及其转换特征;2.
![实验一雷诺实验一、实验目的1.观察层流和紊流的流态及其转换特征;2.](https://img.taocdn.com/s3/m/0e52cf1b4b7302768e9951e79b89680203d86bea.png)
实验一 雷诺实验一、实验目的1. 观察层流和紊流的流态及其转换特征;2. 通过临界雷诺数,掌握圆管流态判别准则;3. 学习在流体力学中应用无量纲参数进行试验研究的方法,并了解其使用意义。
二、实验装置本实验的装置如图1.1所示。
1. 自循环供水器;2.实验装置本体3.可控硅无级调速器;4.恒压水箱5.有色水水管;6.稳水孔板;7.溢流板;8.实验管道;9.实验流量调节阀图1.1 自循环雷诺实验装置图供水流量由无级调速器调控,使恒温压水箱始终保持微溢流的状态,以提高管道进口前水流的稳定度。
本恒压水箱还设有多道稳水隔板,可使稳水时间缩短到 3~5分钟。
有色水经有色管水水管注入实验管道,可根据有色水散开与否判别流态。
为防止自循环水污染,有色水采用自行消色的专用色水。
三、实验原理v v q K vd q v d V ⋅=⋅⋅=⋅=π4Re vd K ⋅⋅=π4 式中:Re ——雷诺数V ——流体速度v q ——流量K ——计算常数V ——运动粘度四、实验步骤1. 记录本实验的有关常常数(标记于恒压水箱正面)2. 观察两种流态打开开关,使水箱充水至溢流水位,经稳定后,微微开启流量调节阀,并注入颜色水于实验管内,使颜色水流成一直线。
通过颜色水质点的运动观察管内水流的层流流态,然后逐步开大流量调节阀,通过颜色水直线的变化观察层流转变到紊流的水利特征。
3. 测定下临界雷诺数(1)将流量调节阀打开,使管道中流体呈完全紊流,再逐步关小流量调节阀使流量减小。
当流量调节到使颜色水在全管内刚呈现出一稳定直线时,即为下临界状态;(2)待管中出现临界状态时,用体积法或电测法测定流量;(3)根据所测流量计算下临界雷诺数,并与公认值(2320)比较,偏离过大,需重测;(4)重新打开流量调节阀,使其形成完全紊流,按照上述步骤重复测量不少于三次;(5)同时用水箱中的温度计测量记录水温,从而求得水的运动粘度。
注意:a. 每调节流量调节阀门一次,均需等待稳定几分钟b. 关小阀门过程中,只允许逐渐减小,不允许开大c. 随出水量减小,应适当调小调速器开关(右旋),以减小溢流量引发的扰动。
实验讲义(化工原理)
![实验讲义(化工原理)](https://img.taocdn.com/s3/m/895be474be1e650e52ea998b.png)
实验一、雷诺实验一、实验目的1.了解管内流体质点的运动方式,认识不同流动形态的特点,掌握判别流型的准则。
2.观察圆直管内流体作层流、过渡流、湍流的流动型态。
观察流体层流流动的速度分布。
二、实验内容1. 以红墨水为示踪剂,观察圆直玻璃管内水为工作流体时,流体作层流、过渡流、湍流时的各种流动型态。
2.观察流体在圆直玻璃管内作层流流动的速度分布。
三、实验装置实验装置流程如图1-1所示。
图1-1 雷诺实验装置1 溢流管;2 墨水瓶;3 进水阀;4示踪剂注入管5水箱;6 水平玻璃管;7 流量调节阀实验管道有效长度: L=600 mm外径: Do=30 mm内径: Di=24.5 mm孔板流量计孔板内径: do=9.0 mm四、实验步骤1. 实验前的准备工作(1) 实验前应仔细调整示踪剂注入管4的位置,使其处于实验管道6的中心线上。
(2) 向红墨水储瓶2 中加入适量稀释过的红墨水,作为实验用的示踪剂。
(3) 关闭流量调节阀7,打开进水阀3,使水充满水槽并有一定的溢流,以保证水槽内的液位恒定。
(4) 排除红墨水注入管4中的气泡,使红墨水全部充满细管道中。
2. 雷诺实验过程(1) 调节进水阀,维持尽可能小的溢流量。
轻轻打开阀门7,让水缓慢流过实验管道。
(2) 缓慢且适量地打开红墨水流量调节阀,即可看到当前水流量下实验管内水的流动状况(层流流动如图1-2所示)。
用体积法(秒表计量时间、量筒测量出水体积)可测得水的流量并计算出雷诺准数。
因进水和溢流造成的震动,有时会使实验管道中的红墨水流束偏离管的中心线或发生不同程度的摆动;此时, 可暂时关闭进水阀3,过一会儿,即可看到红墨水流束会重新回到实验管道的中心线。
图1-2层流流动示意图(3) 逐步增大进水阀3和流量调节阀7的开度,在维持尽可能小的溢流量的情况下提高实验管道中的水流量,观察实验管道内水的流动状况(过渡流、湍流流动如图1-3所示)。
同时,用体积法测定流量并计算出雷诺准数。
雷诺实验演示实验报告
![雷诺实验演示实验报告](https://img.taocdn.com/s3/m/e69d3b4258eef8c75fbfc77da26925c52dc5910d.png)
一、实验目的1. 观察流体在管道中的层流和湍流现象,了解两种流态的特征和产生条件。
2. 学习雷诺数的概念及其在流体流动中的应用。
3. 掌握雷诺实验的基本原理和操作方法。
二、实验原理雷诺实验是一种经典的流体力学实验,用于研究流体在管道中的流动状态。
实验原理如下:1. 流体流动存在两种基本状态:层流和湍流。
层流是指流体在管道中作平行于管轴的直线运动,各流层之间没有混合;湍流是指流体在管道中作紊乱的不规则运动,各流层之间有明显的混合。
2. 雷诺数(Re)是判断流体流动状态的无量纲参数,其计算公式为:Re = (ρvd)/μ其中,ρ为流体密度,v为流体在管道中的平均流速,d为管道直径,μ为流体黏度。
3. 当雷诺数小于2000时,流体呈层流状态;当雷诺数大于4000时,流体呈湍流状态;当雷诺数在2000~4000之间时,流体处于过渡状态。
三、实验器材1. 雷诺实验装置:包括管道、水箱、流量计、调速器、有色水等。
2. 测量工具:尺子、秒表、计算器等。
四、实验步骤1. 将实验装置组装好,检查各部件是否正常。
2. 向水箱中加入一定量的有色水,并打开水流,使有色水在管道中流动。
3. 调节调速器,使管道中的流速逐渐增大。
4. 观察管道中的流态变化,记录层流和湍流现象出现的临界流速。
5. 计算不同流速下的雷诺数,分析流体流动状态。
6. 根据实验数据,绘制雷诺数与流速的关系曲线。
五、实验结果与分析1. 实验结果表明,当流速较小时,管道中的流态为层流,表现为流体分层流动,各流层之间没有明显混合。
2. 随着流速的增加,层流现象逐渐减弱,当流速达到一定值时,流态发生突变,出现湍流现象,表现为流体紊乱流动,各流层之间混合明显。
3. 根据实验数据,计算得到的临界雷诺数与理论值基本吻合。
4. 分析实验数据,绘制雷诺数与流速的关系曲线,发现两者呈线性关系。
六、实验总结1. 雷诺实验是一种经典的流体力学实验,用于研究流体在管道中的流动状态。
演示实验1 雷诺实验
![演示实验1 雷诺实验](https://img.taocdn.com/s3/m/e280411da9956bec0975f46527d3240c8447a188.png)
114Ⅱ 化工原理演示实验3. 9 雷诺实验3. 9. 1 实验目的1. 观察流体在圆形直管内的两种不同流动型态,2.确定临界雷诺数,3.观察流体在圆形直管内作层流运动时的速度分布。
3. 9. 2 实验内容和要求1. 观察层流和湍流现象,观察层流时的速度分布, 2.在高位槽液面稳定不变的情况下, 测定从层流变为湍流时的临界Re 和不同流动型态下的Re,3. 9. 3 实验原理流体的流动有两种不同的型态----层流和湍流, 流体作层流运动时, 流体质点仅作平行于管轴方向的直线运动, 流体层之间无相互混合;流体作湍流运动时, 流体质点在沿管轴方向流动的同时, 还作杂乱无章的无规则运动。
雷诺数是判断流体流动形态的特征数, 当流体在圆管内流动时, 雷诺数Re 的计算式为:μρdu =Re (3-9-1)式中: d-----管子内径, m, u-----流速, m/s,ρ----流体密度, kg/m3, μ----流体粘度, Pa ·s由上式可以看出, 一定温度的流体在特定的管路中流动时, 雷诺数仅与流速有关, 本实验通过改变水在管内的流速, 观察流体在管内流动型态的变化。
通常, Re<2000时, 流动型态为层流, Re>4000时为湍流, 2000<Re<4000时, 有时为层流, 有时为湍流, 与环境有关。
雷诺实验对外界环境要求较高, 应该避免振动和高位槽液位波动等因素的影响。
3. 9. 4 实验装置和流程雷诺实验装置和流程如图3-9-1和3-9-2所示, 由图3-9-2可知, 高位水槽6由自来水管供水, 其中设有进水稳流装置4和保持液位稳定的溢流槽5, 多余的水由管7排入下水槽(保持有少许溢流即可)。
高位玻璃瓶1中装有着色水, 经阀2 注入管8 中心。
实验时打开水流量控制阀9, 水即进入供观察用的玻璃管8中, 经转子流量计10计量后排入下水槽。
调节阀2 , 着色水即可通过细针进入玻璃管8的中心处。
实验1 雷诺实验和柏努利实验 - 副本
![实验1 雷诺实验和柏努利实验 - 副本](https://img.taocdn.com/s3/m/0f316d10eff9aef8941e0619.png)
实验一 雷诺实验和柏努利实验雷诺实验一、实验目的1、建立对层流(滞流)和湍流两种流动类型的直观感性认识;2、观测雷诺数与流体流动类型的相互关系;3、观察层流中流体质点的速度分布。
二、基本原理流体流动类型与雷诺数的关系μρdu =Re (1-1)Re <2000~2300时为层流;Re > 4000 时为湍流; 2000<Re < 4000时为过渡区,在此区间可能为层流,也可能为湍流。
确定了温度及流量,即可由仪器铭牌上的图查取雷诺数。
当流体的流速较小时,管内流动为层流,管中心的指示液成一条稳定的细线通过全管,与周围的流体无质点混合;随着流速的增加,指示液开始波动,形成一条波浪形细线;当速度继续增加,指示液将被打散,与管内流体充分混合。
三、实验装置图1-1雷诺实验示意图1、墨水罐2、墨水阀3、进水阀4、高位水槽5、溢流管6、流态观察管7、转子流量计8、排水阀四、操作要点a)开启进水阀,使高位槽充满水,有溢流时即可关闭(若条件许可,此步骤可在实验前进行,以使高位槽中的水经过静置消除旋流,提高实验的准确度)。
b)开启排水阀及墨水阀,根据转子流量计的示数,利用仪器上的对照图查得雷诺数,并列表记录之。
c)逐渐开大排水阀,观察不同雷诺数时的流动状况,并把现象记入表中。
d)继续开大排水阀,到使红墨水与水相混旋,测取此时流量并将相应的雷诺数记入表中。
e)观察在层流中流体质点的速度分布:层流中,由于流体与管壁间及流体与流体间内摩擦力的作用,管中心处流体质点速度较大,愈靠近管壁速度愈小,因此在静止时处于同一横截面的流体质点,开始层流流动后,由于速度不同,形成了旋转抛物面(即由抛物线绕其对称轴旋转而形成的曲面)。
下面的演示可使同学们直观地看到这曲面的形状。
预先打开红墨水阀,使红墨水扩散为团状,再稍稍开启排水阀,使红墨水缓慢随水运动,则可观察到红墨水团前端的界限,形成了旋转抛物面。
五、数据记录层流R e<900 湍流R e>1800六、思考题1、流体的流动类型与雷诺准数的值有什么关系?答:2、为什么要研究流体的流动类型?它在化工过程中有什么意义?答:六、实验讨论柏努利实验 (流体机械能转换实验)一、实验目的1、通过实测静止和流动的流体中各项压头及其相互转换,验证流体静力学原理和柏努利方程;2、通过实测流速的变化和与之相应的压头损失的变化,确定两者之间的关系。
(完整版)雷诺实验
![(完整版)雷诺实验](https://img.taocdn.com/s3/m/67697ae7011ca300a6c390ef.png)
雷诺实验一、实验背景1883年,雷诺通过实验发现到液流中存在着层流和湍流两种流态:流速较小时,水流有条不紊的呈现层状有序的直线运动,流层间没有质点掺混,这种流态称为层流;当流速增大时,流体质点做杂乱无章的无序的运动,流层间质点掺混,这种流态称为湍流。
雷诺实验还发现存在着湍流转变为层流的临界流速0V ,而0V 又与流体的粘性,圆管的直径d 有关。
若要判别流态,就要确定各种情况下的0V 值。
雷诺运用量纲分析的原理,对这些相关因素的不同量值作出排列组合再分别进行实验研究,得出了无量纲数——雷诺数e R ,以此作为层流与紊流的判别依据,使复杂问题得以简化。
经反复测试,雷诺得出圆管流动的下临界雷诺数值为2320,工程上,一般取之为2000。
当e R <2320时,管中流态为层流,反之,则为湍流。
雷诺简介奥斯本 雷诺(Osborne Reynolds),英国力学家、物理学家和工程师。
1842年8月23日生于北爱尔兰的贝尔法斯特,1912年2月21日卒于萨默塞特的沃切特。
1867年毕业于剑桥大学王后学院。
1868年出任曼彻斯特欧文学院(以后改名为维多利亚大学)的首席工程学教授,1877年当选为皇家学会会员,1888年获皇家勋章,1905年因健康原因退休。
他是一位杰出的实验科学家,由于欧文学院最初没有实验室,因此他的许多早期试验都是在家里进行的。
他于1883年发表了一篇经典性论文──《决定水流为直线或曲线运动的条件以及在平行水槽中的阻力定律的探讨》。
这篇文章以实验结果说明水流分为层流与紊流两种形态,并提出以无量纲数Re (后称为雷诺数)作为判别两种流态的标准。
他还于1886年提出轴承的润滑理论,1895年在湍流中引入有关应力的概念。
雷诺兴趣广泛,一生著述很多,其中近70篇论文都有很深远的影响。
这些论文研究的内容包括力学、热力学、电学、航空学、蒸汽机特性等。
他的成果曾汇编成《雷诺力学和物理学课题论文集》两卷。
(完整版)雷诺实验
![(完整版)雷诺实验](https://img.taocdn.com/s3/m/f5cdd00f59fb770bf78a6529647d27284b7337ff.png)
雷诺实验雷诺实验一、实验背景1883 年,雷诺通过实验发现到液流中存在着层流和湍流两种流态:流速较小时,水流有条不紊的呈现层状有序的直线运动,流层间没有质点掺混,这种流态称为层流;当流速增大时,流体质点做杂乱无章的无序的运动,流层间质点掺混,这种流态称为湍流。
雷诺实验还发现存在着湍流转变为层流的临界流速 V ,而V 又0 0与流体的粘性,圆管的直径d 有关。
若要判别流态,就要确定各种情况下的V 值。
0雷诺运用量纲分析的原理,对这些相关因素的不同量值作出排列组合再分别进行实,以此作为层流与紊流的判别依据,使复验研究,得出了无量纲数——雷诺数 Re杂问题得以简化。
经反复测试,雷诺得出圆管流动的下临界雷诺数值为 2320,工程上,一般取之<2320 时,管中流态为层流,反之,则为湍流。
为 2000 。
当Re雷诺简介奥斯本雷诺 (Osborne Reynolds) ,英国力学家、物理学家和工程师。
1842 年 8 月 23 日生于北爱尔兰的贝尔法斯特, 1912年 2 月 21 日卒于萨默塞特的沃切特。
1867 年毕业于剑桥大学王后学院。
1868 年出任曼彻斯特欧文学院(以后改名为维多利亚大学)的首席工程学教授, 1877 年当选为皇家学会会员, 1888年获皇家勋章, 1905 年因健康原因退休。
他是一位杰出的实验科学家,由于欧文学院最初没有实验室,因此他的许多早期试验都是在家里进行的。
他于 1883 年发表了一篇经典性论文── 《决定水流为直线或曲线运动的条件以及在平行水槽中的阻力定律的探讨》。
这篇文章以实验结果说明水流分为层流与紊流两种形态,并提出以无量纲数 Re (后称为雷诺数)作为判别两种流态的标准。
他还于 1886 年提出轴承的润滑理论, 1895 年在湍流中引入有关应力的概念。
雷诺兴趣广泛,一生著述很多,其中近 70 篇论文都有很深远的影响。
这些论文研究的内容包括力学、热力学、电学、航空学、蒸汽机特性等。
雷诺实验实验报告
![雷诺实验实验报告](https://img.taocdn.com/s3/m/079e9296f80f76c66137ee06eff9aef8941e48e1.png)
雷诺实验实验报告一、实验目的雷诺实验是研究流体流动状态的重要实验。
通过本实验,旨在观察流体在不同流速下的流动形态,确定层流与湍流的临界雷诺数,并深入理解雷诺数的物理意义及其在流体流动研究中的应用。
二、实验原理雷诺数(Reynolds Number)是用来表征流体流动状态的无量纲数,其定义为:\Re =\frac{vd\rho}{\mu}\其中,\(v\)为流体的平均流速,\(d\)为管道直径,\(\rho\)为流体密度,\(\mu\)为流体的动力粘度。
当雷诺数小于某一临界值时,流体的流动为层流;当雷诺数大于该临界值时,流动转变为湍流。
在实验中,通过调节流量来改变流速,观察有色液体在玻璃管中的流动形态,并根据测量得到的流速、管径、流体密度和粘度计算雷诺数。
三、实验装置1、雷诺实验装置主要由水箱、水泵、试验管段、调节阀、流量计、有色液体注入装置等组成。
2、试验管段为透明玻璃管,便于观察流体的流动形态。
3、流量计用于测量流体的流量。
4、有色液体注入装置用于在流体中注入有色液体,以便清晰地观察流动形态的变化。
四、实验步骤1、熟悉实验装置,了解各部分的作用和操作方法。
2、打开水泵,使水箱中的水在试验管段中循环流动。
3、缓慢调节调节阀,从小到大逐渐改变流量。
4、在每个流量下,观察有色液体在试验管段中的流动形态,并记录下来。
5、同时,测量相应的流量、水温等数据。
6、根据测量数据计算雷诺数。
五、实验现象与分析1、当流速较小时,有色液体呈现清晰的直线状,流体的流动为层流。
此时,流体的质点沿着管轴方向作有规则的平行运动,各质点之间互不干扰。
2、随着流速的逐渐增大,有色液体开始出现波动和弯曲,但整体仍保持较为清晰的线条。
3、当流速进一步增大到某一值时,有色液体突然与周围的水完全混合,流动形态变得紊乱,此时流体的流动为湍流。
六、数据处理与结果通过测量不同流量下的流速、管径、水温等数据,并查阅相关资料获取水的密度和粘度,计算得到相应的雷诺数。
实验1 雷诺实验和柏努利实验 - 副本
![实验1 雷诺实验和柏努利实验 - 副本](https://img.taocdn.com/s3/m/0f316d10eff9aef8941e0619.png)
实验一 雷诺实验和柏努利实验雷诺实验一、实验目的1、建立对层流(滞流)和湍流两种流动类型的直观感性认识;2、观测雷诺数与流体流动类型的相互关系;3、观察层流中流体质点的速度分布。
二、基本原理流体流动类型与雷诺数的关系μρdu =Re (1-1)Re <2000~2300时为层流;Re > 4000 时为湍流; 2000<Re < 4000时为过渡区,在此区间可能为层流,也可能为湍流。
确定了温度及流量,即可由仪器铭牌上的图查取雷诺数。
当流体的流速较小时,管内流动为层流,管中心的指示液成一条稳定的细线通过全管,与周围的流体无质点混合;随着流速的增加,指示液开始波动,形成一条波浪形细线;当速度继续增加,指示液将被打散,与管内流体充分混合。
三、实验装置图1-1雷诺实验示意图1、墨水罐2、墨水阀3、进水阀4、高位水槽5、溢流管6、流态观察管7、转子流量计8、排水阀四、操作要点a)开启进水阀,使高位槽充满水,有溢流时即可关闭(若条件许可,此步骤可在实验前进行,以使高位槽中的水经过静置消除旋流,提高实验的准确度)。
b)开启排水阀及墨水阀,根据转子流量计的示数,利用仪器上的对照图查得雷诺数,并列表记录之。
c)逐渐开大排水阀,观察不同雷诺数时的流动状况,并把现象记入表中。
d)继续开大排水阀,到使红墨水与水相混旋,测取此时流量并将相应的雷诺数记入表中。
e)观察在层流中流体质点的速度分布:层流中,由于流体与管壁间及流体与流体间内摩擦力的作用,管中心处流体质点速度较大,愈靠近管壁速度愈小,因此在静止时处于同一横截面的流体质点,开始层流流动后,由于速度不同,形成了旋转抛物面(即由抛物线绕其对称轴旋转而形成的曲面)。
下面的演示可使同学们直观地看到这曲面的形状。
预先打开红墨水阀,使红墨水扩散为团状,再稍稍开启排水阀,使红墨水缓慢随水运动,则可观察到红墨水团前端的界限,形成了旋转抛物面。
五、数据记录层流R e<900 湍流R e>1800六、思考题1、流体的流动类型与雷诺准数的值有什么关系?答:2、为什么要研究流体的流动类型?它在化工过程中有什么意义?答:六、实验讨论柏努利实验 (流体机械能转换实验)一、实验目的1、通过实测静止和流动的流体中各项压头及其相互转换,验证流体静力学原理和柏努利方程;2、通过实测流速的变化和与之相应的压头损失的变化,确定两者之间的关系。
化工原理实验报告
![化工原理实验报告](https://img.taocdn.com/s3/m/adb7db5e804d2b160b4ec0a4.png)
值。
所以该实验即为测定直管段的流体阻力引起的压强降 ΔPf 与流速之间的关系。
磨擦系数ξ = 2 ⋅ ΔPf
Байду номын сангаас
(5)
ρ ⋅u2
调节一系列的流量 V,就可测定和计算一系列的 λ 和 Re 值。
5
四 实验装置及流程
倒
U
形
管
压
排 气
差 计
阀 1 1' 6
2 泵
流量
温度
压差
1 234 567
2'3'4' 5'6'7'
4
实验三 流体阻力测定实验
一 实验目的
1. 掌握管路阻力的计算方法和测量原理。 2. 学习掌握细光滑管外径 Φ10(内径 Φ5.32)和内插螺纹管(Φ22.5)直管阻力系数 λ 的测
定方法,并对两者粗糙度进行比较。 3. 测量和估算某一弯头、阀门(全开和半开)及涡轮流量计在一定流量下的阻力系数 ξ 值。
化工原理实验
滨州学院化学化工实验教学中心
-1-
目录
实验一、雷诺实验………………………………………………………………………………1 实验二、流体流动能量转换实验………………………………………………………………3 实验三、流体阻力测定实验……………………………………………………………………5 实验四、离心泵性能测定实验…………………………………………………………………8 实验五、板框式恒压过滤实验…………………………………………………………………10 实验六、套管换热器对流传热系数测定实验…………………………………………………13 实验七、流化床干燥实验………………………………………………………………………16 实验八、NaOH 水溶液降膜蒸发实验…………………………………………………………20 实验九、洞道干燥实验…………………………………………………………………………22 实验十、板式塔操作实验………………………………………………………………………26
水力学实验雷诺实验报告(3篇)
![水力学实验雷诺实验报告(3篇)](https://img.taocdn.com/s3/m/ebc4c26e78563c1ec5da50e2524de518964bd3b2.png)
第1篇一、实验目的1. 观察液体流动时的层流和湍流现象,区分两种不同流态的特征。
2. 搞清两种流态产生的条件,分析圆管流态转化的规律,加深对雷诺数的理解。
3. 测定颜色水在管中的不同状态下的雷诺数及沿程水头损失。
4. 绘制沿程水头损失和断面平均流速的关系曲线,验证不同流态下沿程水头损失的规律是不同的。
5. 进一步掌握层流、湍流两种流态的运动学特性与动力学特性。
6. 通过对颜色水在管中的不同状态的分析,加深对管流不同流态的了解。
7. 学习古典流体力学中应用无量纲参数进行实验研究的方法,并了解其实用意义。
二、实验原理液体在管道中流动时,存在着两种根本不同的流动状态:层流和湍流。
当液体流速较小时,惯性力较小,粘滞力对质点起控制作用,使各流层的液体质点互不混杂,液流呈层流运动。
当液体流速逐渐增大,质点惯性力也逐渐增大,粘滞力对质点的控制逐渐减弱,当流速达到一定程度时,各流层的液体形成涡体并能脱离原流层,液流质点即互相混杂,液流呈湍流运动。
雷诺数(Re)是衡量液体流动状态的无量纲参数,其表达式为:\[ Re = \frac{\rho v D}{\mu} \]其中,ρ为液体密度,v为液体平均流速,D为管道直径,μ为液体动力粘度。
根据雷诺数的不同范围,可以将液体的流动状态分为以下三种:1. 层流(Re < 2000):液体流动稳定,流体质点平行于管道轴线运动,速度分布均匀。
2. 湍流(Re > 4000):液体流动不稳定,流体质点作无规则运动,速度分布不均匀。
3. 过渡流(2000 < Re < 4000):液体流动介于层流和湍流之间,流动状态不稳定。
三、实验装置实验装置主要由以下部分组成:1. 实验台:用于放置实验器材。
2. 可控硅无级调速器:用于调节水的流速。
3. 恒压水箱:用于提供稳定的水源。
4. 实验管道:用于液体流动。
5. 实验流量调节阀:用于调节实验流量。
6. 有色水水管:用于观察液体流动状态。
雷诺实验实验报告
![雷诺实验实验报告](https://img.taocdn.com/s3/m/0f92857d2af90242a895e5e8.png)
实验一雷诺实验一、实验目的1、观察流体流动时各种流动型态;2、观察层流状态下管路中流体速度分布状态;3、测定流动型态与雷诺数Re之间的关系及临界雷诺数值。
二、实验原理概述流体在流动过程中有两种截然不同的流动状态,即层流和湍流。
它取决于流体流动时雷诺数Re值的大小。
雷诺数:Re=duρ/μ式中:d-管子内径,mu-流体流速,m/sρ-流体密度,kg/m3μ-流体粘度,kg/(m·s)实验证明,流体在直管内流动时,当Re≤2000时属层流;Re≤4000时属湍流;当Re在两者之间时,可能为层流,也可能为湍流。
流体于某一温度下在某一管径的圆管内流动时,Re值只与流速有关。
本实验中,水在一定管径的水平或垂直管内流动,若改变流速,即可观察到流体的流动型态及其变化情况,并可确定层流与湍流的临界雷诺数值。
三、装置和流程本实验装置和流程图如右图。
水由高位槽1,流径管2,阀5,流量计6,然后排入地沟。
示踪物(墨水)由墨水瓶3经阀4、管2至地沟。
其中,1为水槽2为玻璃管3为墨水瓶4、5为阀6为转子流量计四、操作步骤1、打开水管阀门2、慢慢打开调节阀5,使水徐徐流过玻璃管3、打开墨水阀4、微调阀5,使墨水成一条稳定的直线,并记录流量计的读数。
5、逐渐加大水量,观察玻璃管内水流状态,并记录墨水线开始波动以及墨水与清水全部混合时的流量计读数。
6、再将水量由大变小,重复以上观察,并记录各转折点处的流量计读数。
7、先关闭阀4、5,使玻璃管内的水停止流动。
再开墨水阀,让墨水流出1~2cm距离再关闭阀4。
8、慢慢打开阀5,使管内流体作层流流动,可观察到此时的速度分布曲线呈抛物线状态。
五、实验数据记录和处理表1 雷诺实验数据记录。
化工雷诺实验实验报告
![化工雷诺实验实验报告](https://img.taocdn.com/s3/m/86118670e3bd960590c69ec3d5bbfd0a7856d50a.png)
一、实验目的1. 了解流体在管道中流动的两种基本状态:层流和湍流。
2. 通过实验观察流体从层流状态过渡到湍流状态的现象。
3. 测定临界雷诺数,了解流体流动状态转变的临界条件。
4. 学习并掌握流体力学中无量纲参数的应用,加深对流体流动规律的理解。
二、实验原理流体在管道中流动时,由于惯性力和粘滞力的作用,存在两种不同的流动状态:层流和湍流。
层流是指流体各质点沿管道轴线方向做平行运动,质点之间无相对运动;湍流是指流体各质点沿管道轴线方向做复杂的涡旋运动,质点之间有相对运动。
流体流动状态转变的判据是雷诺数(Re),其定义为:\[ Re = \frac{\rho v D}{\mu} \]其中,\(\rho\) 为流体密度,\(v\) 为流体速度,\(D\) 为管道直径,\(\mu\)为流体动力粘度。
当雷诺数小于2000时,流体为层流;当雷诺数大于4000时,流体为湍流;当雷诺数在2000到4000之间时,流体处于过渡状态。
三、实验设备与材料1. 雷诺实验装置:包括实验管道、水箱、流量计、计时器等。
2. 流体:水或水溶液(如红墨水)。
3. 计量工具:量筒、刻度尺等。
四、实验步骤1. 将实验装置安装好,并检查各部件连接是否牢固。
2. 向水箱中注入适量流体,调整流量计,使流量稳定。
3. 观察流体在实验管道中的流动状态,记录不同流量下的流动现象。
4. 当观察到流体从层流状态过渡到湍流状态时,记录此时的流量和对应的雷诺数。
5. 改变实验管道的直径,重复上述步骤,观察不同直径管道中流体流动状态的变化。
6. 根据实验数据,绘制雷诺数与流速、管道直径之间的关系曲线。
五、实验结果与分析1. 观察到在低流量下,流体在实验管道中呈层流状态,水流平稳,无涡流产生。
2. 随着流量的增加,流体逐渐从层流状态过渡到湍流状态,水流变得复杂,出现涡流。
3. 通过实验,测得临界雷诺数为2800,与理论值相符。
4. 实验结果表明,流体流动状态转变与管道直径、流量等因素有关。
流体流动形态的观察与测定(雷诺实验)
![流体流动形态的观察与测定(雷诺实验)](https://img.taocdn.com/s3/m/19be08c785254b35eefdc8d376eeaeaad1f31697.png)
实验一 流体流动形态的观察与测定(雷诺实验)一、实验目的:1、实际观察流体在管内作层流、湍流流动时的流动形态,并观察层流和湍流时的速度分布形式。
2、确立雷诺准数与层流和湍流的联系,并测出临界雷诺准数的大小。
3、初步掌握流动形态对化工过程的影响。
二、实验原理的说明:1、液体作滞流流动时,其质点作直线运动,且互相平行;湍流时质点紊乱地向各个方向作不规则运动,但流体的主体向一定的方向流动。
2、利用少量的带色指示液加入透明的玻璃管中,即通过指示液的流动形态来确定管道中流体的流动形态。
3、雷诺准数是确定流体流动类型的准数。
若流体在圆形管子内流动,则雷诺准数用下式表示。
μρμρ⋅⋅⋅=⋅⋅=s d V d u S Re 式中:d -管子内径[m]; s -管子的横截面积[m 2]; u -管内流速[m/s]; ρ-流体密度[kg/m 3]; μ-流体粘度[Pas];Vs -流体的流量[m 3/s]对于一定温度的流体,在特定的圆管内流动,雷诺准数(Re)仅与流速有关。
改变流量,即可改变流速,也可改变流动的形态。
当流体的流动形态由层流转变为过渡流或湍流时,其雷诺准数即为临界雷诺准数;而其流速即是临界流速。
当管内流速高于临界值时,即有可能转变为湍流。
三、设备及流程说明实验装置如图所示,图中大槽为水槽,试验时水即由此进入玻璃管(玻璃管系观察流体流动的形态和层流时导管中流速分布之用)。
槽内之水由自来水管供给,水量由阀A 调节,槽内设有进水稳流袭置及溢流箱。
用以维持平稳而又恒定的液面,多余之水由溢流管排入水沟。
试验时打开阀C ,水即由高位槽进入玻璃管,经转子流量计后,排向排水管,可用C 阀调节水量,流量由转子流量计测出。
高位墨水瓶供贮存墨水之用,墨水由此经阀B 流入玻璃管,阀B 即墨水量的调节阀。
四、实验步骤1、检查水箱5中是否有水,高位墨水瓶中是否有沉淀;转子流量计中转子是否在下部,针孔有无堵塞。
在测试时,必须保证有溢流现象.2、观摩层流、湍流流动形态和层流、湍流时的速度分布。
流体力学实验指导书
![流体力学实验指导书](https://img.taocdn.com/s3/m/fea5e7d428ea81c758f57827.png)
实验一流动演示实验(一)雷诺实验一、实验目的1、观察流体在管内流动的不同流态。
2、层流和湍流的判别。
二、实验原理流体流动有两种不同流态,即层流和湍流。
流体作层流流动时,其流体质点作平行于管轴的直线运动,喘流时流体质点在沿管轴流动的同时还做着杂乱无章的随机运动。
雷诺数是判断流动型态的特征数。
若流体在圆管内流动,雷诺数可用下式表示Re =μρ⋅⋅ud式中:d ——管内径,m;u ——流速, m∕s,ρ——流体密度, k g∕m³,μ——流体黏度,Pa•s。
一般,Re < 2000时,流动型态为层流;Re > 4000时,流动为喘流。
在两者之间时,有时为层流,有时为喘流,流动型态与环境有关。
对于一定温度下的流体,在特定的圆管内流动时,雷诺数仅与流速有关。
本实验通过改变水在管内的流速,观察流体在管内流动型态的变化。
三、实验装置实验装置见图1-1。
图中4为高位槽,实验时水由此高位槽进入玻璃管5。
槽内设有溢流槽3,用以维持平稳、恒定的液面。
实验时打开流量控制阀7,水即由高位槽进入观察用的玻璃管5中,着色水由高位玻璃瓶1经阀9调节流量,通过针形孔进入玻璃管5中心处。
调节阀门7和阀门9,改变流体流速,可以在玻璃管5内观察到不同的流动形态。
流量很小,流体处于层流时,着色水的流动呈一条直线;随着水流量的逐渐加大,着色水由直线开始抖动,继而着色水被扰动成波状前进;随着水流量的继续加大,着色细线变为螺旋前进,再增大流量则出现断裂、旋涡、混合,最后完全与水流主体混在一起,整个水都染上了颜色。
四、实验内容和主要实验步骤1、打开进水阀,向高位槽4送水,使高位槽内的水成溢流状态,以保持高位槽内液位恒定。
2、关闭水流量控制阀7,打开着色水流量控制阀9,观擦着色此时在玻璃管中的状态。
当着色水流出5cm左右后,缓慢打开水流量控制阀7,使水流量尽可能的小,观察层流时流速分布曲线的性状及层流时着色水的流动情况。
3、待玻璃管内的层流流动稳定后,缓慢调节流量控制阀7, 逐渐增大水的流量,观察着色水的流动有何变化,并测定流量,计算不同流动型态时的雷诺数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学号姓名
实验一雷诺实验
一、基本原理
雷诺(Reynolds)用实验方法研究流体流动时,发现影响流动类型的因素除流速u外,尚有管径(或当量管径)d,流体的密度ρ及粘度μ,并且由此四个物理量组成的无因次数群Re=duρ/μ的值是判定流体流动类型的一个标准。
Re<2000~2300时为层流
Re>4000时为湍流
2000<Re<4000时为过渡区,在此区间可能为层流,也可能为湍流。
二、设备参数
环境参数:温度 20℃压力 101325kPa
水的参数:密度 998.2kg/m3 粘度 100.5E-5Pa*s
设备参数:玻璃管径:20mm
三、实验步骤
●打开进水阀门
在输入框输入0-100的数字,也可以通过点击上下按钮调节阀门开度。
按回车键完成输入,按ESC 键取消输入。
●打开红墨水阀
●打开排水阀门
●查看流量
点击转子流量计查看当前流体流量
●观察流体流动状态
点击玻璃管,通过弹出的录像查看流体的流动状态
●记录数据
点击画面下方的自动记录按钮,记录实验数据,也可以手动记录。
●重复第三步到第六步,记录排水阀不同开度下的流量。
四、数据处理
雷诺数计算公式
Re=duρ/μ
从这个定义式来看,对同一仪器d为定值,故u仅为流量的函数。
对于流体水来说,ρ,μ几乎仅为温度的函数。
因此确定了温度及流量,即可唯一的确定雷诺数。
数据记录:
五、注意事项
1、雷诺实验要求减少外界干扰,严格要求时应在有避免振动设施的房间内进行,由于条件不具备演示实验也可以在一般房间内进行,因为外界干扰及管子粗细不均匀等原因,层流的雷诺数上界到不了2300,只能到1600左右。
2、层流时红墨水成一线流下,不与水相混。
3、湍流时红墨水与水混旋,分不出界限。