弹塑性力学-基本原理

合集下载

[工学]第1章 岩土弹塑性力学

[工学]第1章 岩土弹塑性力学
试验表明,在压力不太大的情况,体积应变实际上与静水压 力成线性关系;对于一般金属材料,可以认为体积变化基本上 是弹性的,除去静水压力后体积变形可以完全恢复,没有残余 的体积变形。因此,在传统塑性理论中常假定不产生塑性体积 变形.而且在塑性变形过程中,体积变形与塑性变形相比往往 是可以忽略的 。 Bridgman和其他研究人员的实验结果确认:在静水压力不大条 件下、静水压力对材料屈服极限的影响完全可以忽略。因此在 传统塑性力学中,完全不考虑体积变形对塑性变形的影响。
(9)传统塑性理论中,材料的弹性系数与塑性变形无关,称为弹塑 性不耦合。而岩土塑性理论中,有时要考虑弹塑性耦合,即弹性 系数随塑性变形发展而减少
岩土塑性力学的基本内容
(1)岩土类材料的塑性本构关系理论与模型 (2)岩土类材料的极限分析理论 (3)它们在岩土工程设计和施工中的应用
弹性本构关系的基本特征
岩石力学性质
弹性 塑性 粘性
体力和面 力Fi,Ti
位移ui
平衡
本构关系
相容性 (几何)
应力ij
应变ij
固体力学问题解法中各种变量的相互关系
§1-2 应力状态
1 应力张量
•应力状态——一点所有截面应力矢量的集合。
x xy xz 11 12 13
ij yx y yz 21 22 23
塑性阶段:研究材料在塑性阶段内的受力与变形,这阶 段内的应力应变关系要受到加载状态、应力水平、应力 历史与应力路径的影响。 差别:在应力与应变之间的物理关系不同,即本构关系 不同。 本质差别:在于材料是否存在不可逆的塑性变形
弹性阶段:应力与应变之间的关系是一一对应的,这种应力和 应变之间能建上一一对应关系的称全量关系
第一章 岩土弹塑性力学

工程弹塑性力学课件

工程弹塑性力学课件
工程弹塑性力学课件
目 录
• 弹塑性力学基础 • 弹性力学基本理论 • 塑性力学基本理论 • 工程应用实例 • 工程弹塑性力学展望
01
弹塑性力学基础
弹塑性力学定义
弹塑性力学
弹塑性力学是一门研究材料在弹 性极限和塑性极限内应力、应变 行为的科学。它广泛应用于工程 领域,为各种结构设计和分析提
供理论基础。
有限差分法
将物体的位移表示为离散的点的 差分形式,通过求解这些点的位 移来近似求解整个物体的位移。
边界元法
将物体的边界离散化为有限个小 的单元,通过求解这些单元的力 学行为来近似求解整个物体的边 界力学行为。
03
塑性力学基本理论
塑性力学基本概念
01
02
03
塑性力学
塑性力学是研究材料在达 到屈服点后,发生不可逆 变形时行为和特性的学科 。
边界元法
通过在边界上离散化求解微分方程的方法,可以减少未知数的数量 ,提高求解效率。
有限差分法
将微分方程转化为差分方程,通过迭代求解的方法得到近似解。
04
工程应用实例
桥梁工程弹塑性分析
总结词
桥梁结构稳定性
详细描述
桥梁工程弹塑性分析主要关注桥梁结构的稳定性,通过分 析桥梁在不同载荷下的弹塑性响应,评估其承载能力和安 全性。
总结词
材料非线性
详细描述
桥梁工程中的材料多为金属或复合材料,这些材料的弹塑 性行为呈现出非线性特征。在分析过程中,需要考虑材料 在不同应力水平下的弹塑性变形和破坏。
总结词
结构优化设计
详细描述
基于弹塑性分析的结果,可以对桥梁结构进行优化设计, 提高其承载能力和稳定性,同时降低制造成本和维护成本 。

弹塑性详解

弹塑性详解

弹塑性的未来发展
智能材料
未来弹塑性材料将与智能传感器和控制系统集成,实现自主监测和自适应调节,提高结构系统的稳定性和可靠性。
高性能应用
在航空航天、汽车制造、能源等领域,弹塑性材料将发挥更大作用,提高关键部件的抗冲击和耐疲劳能力。
仿生设计
从生物体的运动机理中吸取灵感,开发出更高效、协调的弹塑性机构,应用于机器人、生化假肢等领域。
制造工艺控制
弹塑性理论在冲压、挤压、锻造等成形加工中发挥重要作用,可预测工件变形、确定最佳工艺参数,提高产品质量。
生物医学应用
医疗器械和义肢设计需要利用弹塑性分析,确保其能适应人体组织的变形特性,提高舒适度和功能性。
弹塑性的重要性
1
提高结构安全性
弹塑性能够增强材料和结构在外力作用下的变形能力,有效降低意外事故发生的风险,提高结构的安全可靠性。
弹塑性的影响因素
应力-应变关系
材料的弹塑性行为主要取决于其应力-应变曲线的形状,包括弹性模量、屈服强度和最大强度等关键参数。
材料成分与微观结构
材料的化学成分、晶粒大小、相组成等微观结构特征直接影响其宏观力学性能和弹塑性行为。
应力状态与几何形状
零件或结构的受力状态和几何形状会导致局部应力集中,从而影响弹塑性响应和失效模式。
工程应用
20世纪中后期,弹塑性理论和方法广泛应用于工程实践,在航空、汽车、建筑等领域发挥了重要作用。
现代进展
当前,随着计算机技术的发展,弹塑性分析方法不断创新,在复杂结构设计、材料选择和工艺优化中展现强大的潜力。
弹塑性的基本原理
数学描述
弹塑性通过应变-应力关系的数学模型来描述材料在力学作用下的变形行为。这些模型结合了材料的弹性特性和塑性特性。

弹塑性力学基础理论与应用

弹塑性力学基础理论与应用

弹塑性力学基础理论与应用弹塑性力学是力学中一个重要的分支,涵盖了弹性力学和塑性力学的基本原理和应用。

本文将简要介绍弹塑性力学的基础理论和一些应用领域。

一、弹塑性力学的基础理论1. 弹性力学理论弹性力学研究材料在外力作用下的弹性变形及其恢复过程。

根据胡克定律,应力与应变成正比。

弹性力学理论通过应力张量与应变张量之间的关系描述了弹性材料的力学行为。

弹性模量是弹性力学的重要参数,表征了材料的刚度。

2. 塑性力学理论塑性力学研究材料在超过弹性极限后的变形行为。

当外力超过材料的弹性极限时,材料会发生塑性变形,而不是立即恢复到原来的形状。

塑性力学理论包括弹塑性本构方程的建立和塑性流动规律的描述。

3. 弹塑性力学理论弹塑性力学是弹性力学和塑性力学的综合应用。

它考虑了材料在弹性和塑性行为之间的转换。

在某些情况下,材料可以同时表现出弹性和塑性特性。

弹塑性力学理论利用不同的本构关系来描述材料在变形过程中的不同阶段。

二、弹塑性力学的应用1. 材料工程弹塑性力学在材料工程领域中具有重要的应用价值。

通过研究材料的弹性行为和塑性行为,可以确定材料的强度、韧性和耐久性,从而指导材料的选用和设计。

在材料的加工过程中,弹塑性力学理论也可以用于模拟和预测材料的变形行为。

2. 结构工程在结构设计和分析中,弹塑性力学也发挥着重要作用。

结构的承载能力和变形行为与材料的弹性和塑性特性密切相关。

通过考虑弹塑性行为,可以更准确地评估结构的安全性和稳定性。

3. 土木工程土木工程中的地基和土壤材料往往存在复杂的弹塑性特性。

弹塑性力学可用于分析土壤的沉降和变形行为,以及地基的稳定性。

在岩土工程中,弹塑性力学理论也可以用于分析岩土体的稳定性和变形行为。

4. 金属加工金属的塑性变形是金属加工过程中的核心问题。

弹塑性力学理论可以用于研究金属的屈服和流动行为,从而指导金属的模具设计和加工工艺的优化。

总结:弹塑性力学是力学中的一个重要分支,它综合了弹性力学和塑性力学的基础理论与应用。

弹塑性力学——精选推荐

弹塑性力学——精选推荐

弹塑性⼒学应⼒应变关系应⼒应变都是物体受到外界载荷产⽣的响应。

物体由于受到外界载荷后,在物体内部各部分之间要产⽣互相之间的⼒的作⽤,由于受到⼒的作⽤就会产⽣相应的变形;或者由于变形引起相应的⼒的作⽤。

则⼀定材料的物体其产⽣的应⼒和应变也必然存在⼀定的关系。

在⼒学上由于平衡⽅程仅建⽴了⼒学参数(应⼒分量与外⼒分量)之间的关系,⽽⼏何⽅程也仅建⽴了运动学参数(位移分量与应变分量)之间的连系。

所以平衡⽅程与⼏何⽅程是两类完全相互独⽴的⽅程,它们之间还缺乏必要的联系,这种联系即应⼒和应变之间的关系。

有了可变形材料应⼒和应变之间关系和⼒学参数及运动学参数即可分析具体的⼒学问题。

由平衡⽅程和⼏何⽅程加上⼀组反映材料应⼒和应变之间关系的⽅程就可求解具体的⼒学问题。

这样的⼀组⽅程即所谓的本构⽅程。

讨论应⼒和应变之间的关系即可变为⼀定的材料建⽴合适的本构⽅程。

⼀.典型应⼒-应变关系图1-1 典型应⼒-应变曲线1)弹性阶段(OC段)该弹性阶段为初始弹性阶段OC(严格讲应该为CA’),包括:线性弹性分阶段OA段,⾮线性弹性阶段AB段和初始屈服阶段BC 段。

该阶段应⼒和应变满⾜线性关系,⽐例常数即弹性模量或杨⽒模量,记作:εσE =,即在应⼒-应变曲线的初始部分(⼩应变阶段),许多材料都服从全量型胡克定律。

2)塑性阶段(CDEF 段)CDE 段为强化阶段,在此阶段如图1中所⽰,应⼒超过屈服极限,应变超过⽐例极限后,要使应变再增加,所需的应⼒必须在超出⽐例极限后继续增加,这⼀现象称为应变硬化。

CDE 段的强化阶段在E 点达到应⼒的最⾼点,荷载达到最⼤值,相应的应⼒值称为材料的强度极限(ultimate strength ),并⽤σb 表⽰。

超过强度极限后应变变⼤应⼒却下降,直到最后试件断裂。

这⼀阶段试件截⾯积的减⼩不是在整个试件长度范围发⽣,⽽是试件的⼀个局部区域截⾯积急剧减⼩。

这⼀现象称为“颈缩”(necking )。

《弹塑性力学》第十一章塑性力学基础

《弹塑性力学》第十一章塑性力学基础
几何方程
描述了塑性变形过程中应变和位移之 间的关系,是塑性力学的基本方程之 一。
塑性变形的增量理论
流动法则
描述了塑性变形过程中应力和应变增量之间的关系,是增量理论的核心。
屈服准则
描述了材料在受力达到屈服点时的行为,是增量理论的重要概念。
塑性变形的全量理论
全量应力和全量应变
描述了塑性变形过程中应力和应变的 状态,是全量理论的基本概念。
100%
材料性能
塑性力学为材料性能的描述提供 了理论基础,有助于深入了解材 料的变形和破坏行为。
80%
科学基础
塑性力学是连续介质力学的一个 重要分支,为研究物质宏观性质 的变化规律提供了科学基础。
塑性力学的发展历程
初创期
塑性力学作为独立学科始于20 世纪初,初期主要研究简单的 应力状态和理想塑性材料。
有限元法的优点在于其灵活性和通用性,可以处 理复杂的几何形状和边界条件,适用于各种类型 的塑性变形问题。
然而,有限元法在处理大规模问题时可能会遇到 计算效率和精度方面的问题,需要进一步优化算 法和网格划分技术。
边界元法在塑性力学中的应用
01
02
03
04
边界元法是一种仅在边界上离 散化的数值方法,通过将问题 转化为边界积分方程来求解。
发展期
随着实验技术的进步,塑性力 学在20世纪中叶得到了快速发 展,开始涉及更复杂的材料和 应力状态。
深化期
进入20世纪末至今,塑性力学 与计算机技术、先进材料等交 叉融合,研究领域不断扩大和 深化。
塑性力学的基本假设
02
01
03
连续性
材料内部是连续的,没有空洞或缝隙。
塑性变形不可逆
塑性变形发生后,不会消失或还原。

弹塑性力学

弹塑性力学

岩土塑性理论形成
早期研究: • 1773年Coulomb提出土质破坏条件,其后推广为 Mohr- Coulomb准则; • 1857年Rankine研究半无限体的极限平衡,提出滑移 面概念; • 1903年Kö tter建立滑移线方法; • 1929年Fellenius提出极限平衡法; • 1943年Terzaghi发展了Fellenius的极限平衡法; • 1952~1955年Drucker和Prager发展了极限分析方法; • 1965年Sokolovskii发展了滑移线方法。
• ijk 符号有33或27个元素,取值为1,-1, 0。从下标为自然顺序1,2,3开始,如 果交换次数为偶数,则元素为1,为奇 数,则为-1,如果下标出现重复,则值 为0。可从图解判断:
形成独立学科: • 岩土塑性力学最终形成于20世纪50年代末期; • 1957年Drucker指出要修改Mohr-Coulomb准则,以 反映平均应力或体应变所导致的体积屈服; • 1958年剑桥大学的Roscoe等提出土的临界状态概念, 于1963年提出剑桥粘土的弹塑性本构模型,开创了 土体实用计算模型 • 从1970年前后至今岩土本构模型的研究十分活跃, 建立的岩土本构模型也很多。 • 1982年Zienkiewicz提出广义塑性力学的概念,指出 岩土塑性力学是传统塑性力学的推广。
2.2.2 标量积
• 矢量有两种乘法,即标量积(点积或内积) 和矢量积(叉积)。 • 矢量U和V的标量积定义为: U V | U || V | cos • |U|表示矢量U的绝对长度, 为矢量U和V的 夹角。
e1 e2 | e1 || e2 | cos90 0

e1 e1 | e1 || e1 | cos0 1
2.3 张量

弹塑性力学第一章 弹塑性力学绪 论

弹塑性力学第一章 弹塑性力学绪 论

与 成非线性关系。 只要是在B点前 2)AB段 此段内,
卸载后不会有残余变形,因此B点之前是弹性阶段。B点 对应的应力为弹性极限,记为 s 。 3)BC段 从B点开始,材料进入塑性阶段,如果继续加 载,会有塑性变形产生。从B点至C点屈服阶段。这阶段的 特点是应力不增长,但变形继续增大。因此B点应力又称 为屈服极限 s 。比例极限 p 与屈服极限 s 在数值上非 常接近,在工程上认为它们相等。
弹性力学的发展初期主要是通过实践,尤其是通过 实验来探索弹性力学的基本规律。英国的胡克和法国 的马略特于1680年分别独立地提出了弹性体的变形 和所受外力成正比的定律,后被称为胡克定律。牛顿 于1687年确立了力学三定律。
8
同时,数学的发展,使得建立弹性力学数学理论 的条件已大体具备,从而推动弹性力学进入第二个时 期。在这个阶段除实验外,人们还用最粗糙的、不完 备的理论来处理一些简单构件的力学问题。这些理论 在后来都被指出有或多或少的缺点,有些甚至是完全 错误的。 在17世纪末第二个时期开始时,人们主要研究梁的 理论。到19世纪20年代法国的纳维和柯西才基本上建 立了弹性力学的数学理论。柯西在1822~1828年间 发表的一系列论文中,明确地提出了应变、应变分量、 应力和应力分量的概念,建立了弹性力学的几何方程、 运动(平衡)方程、各向同性以及各向异性材料的广义 胡克定律,从而奠定了弹性力学的理论基础,打开了 弹性力学向纵深发展的突破口。 9
塑性变形现象发现较早,然而对它进行力学研究, 是从1773年库仑提出土的屈服条件开始的。 特雷斯卡于1864年对金属材料提出了最大剪应力 屈服条件。随后圣维南于1870年提出在平面情况下理 想刚塑性的应力-应变关系,他假设最大剪应力方向和 最大剪应变率方向一致,并解出柱体中发生部分塑性 变形的扭转和弯曲问题以及厚壁筒受内压的问题。莱 维于1871年将塑性应力-应变关系推广到三维情况。 1900年格斯特通过薄管的联合拉伸和内压试验,初步 证实最大剪应力屈服条件。

弹塑性力学___第四章_弹性力学的求解方法

弹塑性力学___第四章_弹性力学的求解方法

叠加原理:弹性体受几组外力同时作用时的解等于每一组外力单 独作用时对应解的和。
叠加原理成立的条件:小变形条件(平衡、几何方程才 为线性的),弹性本构方程(虎克定律)。
4-5塑性力学最简单的问题、求解塑性力学的问题
在塑性力学中,有些问题在平衡方程和屈服条件 中的未知函数和议程式的数目相等,因而结合边 界条件一般便可找出弹塑性体或结构中应力分布 的规律。而应变和位移再根据本构方程和几何方 程或连续性条件分别求出。这种仅通过平衡方程、 屈服条件就能完全确定应力场的问题属静定问题 (称为塑性力学最简单问题)
(2)应变协调方程(变形连续必条件)(变形相容条件)
可缩写为:
上述方程是六个应变分量 保证三个位移分量 连续函数(保持连续)的条件。 为单值
3、本构方程(物性方程)
(1)在弹性变形阶段,且屈服函数 则有
如用应变表示应力,则有
为了与塑性变形本构方程对比,也可将本构方程表示为
(2)在弹塑性变形阶段,屈服函数
1. 平衡(或运动方程)
若等式右式不等零,即表示物体内质点处于运动状态, 则根据理论力学中的达朗伯原理需将上式右端等于括号 内的惯性力项。 方程只表明物体内一点的应力状态与其邻点的应力 状态之间在平衡(或运动)时所满足的关系。
2. 几何方程与应变协调方程
(1)几何方程
此式表明在小变形条件下,物体内一点附近的变形情况和该点的 应变状态之间的关系。
第四章 弹塑性力学基础理论的建立及基本解法
§4-1 弹塑性力学基本理论的建立 弹塑性力学的任务:研究各种具体几何尺寸的
弹性、弹塑性体或刚塑性体在各种几何约束及 承受不同外力作用时、发生于其内部的应力分 布与变形(或位移)规律。
与材料力学一样,弹塑性力学所求解的大多 数问题是超静定问题,因此其基础理论的 建立来自三个方面的客观规律:平衡方 程 ;几何方程 ;本构方程

《弹塑性力学》课件

《弹塑性力学》课件
结构弹塑性分析的方法包括有限元法、有限差分法、边界元法等数值计算 方法。
材料的弹塑性行为模拟
材料的弹塑性行为模拟是研究材料在 不同应力状态下表现出的弹塑性性质 ,对于理解材料的力学行为和优化材 料设计具有重要意义。
材料弹塑性行为模拟的方法包括分子 动力学模拟、有限元分析等。
通过实验和数值模拟相结合的方法, 可以研究材料的微观结构和宏观性能 之间的关系,预测材料的弹塑性行为 。
THANKS
感谢观看
弹塑性力学在工程实践中的挑战与解决方案
工程实践中,由于材料和结 构的复杂性,弹塑性力学应 用面临诸多挑战,如非线性 行为、边界条件和初始条件
的确定等。
为了解决这些挑战,需要采 用先进的数值计算方法和实 验技术,提高模拟精度和可
靠性。
此外,加强跨学科合作,将 弹塑性力学与计算机科学、 物理学等学科相结合,可以 推动工程实践中的弹塑性力 学应用不断发展。
《弹塑性力学》课件
目录
• 弹塑性力学概述 • 弹性力学基础 • 塑性力学基础 • 材料弹塑性性质 • 弹塑性力学在工程中的应用
01
弹塑性力学概述
弹塑性力学的定义

弹塑性力学是一门研究材料在弹性和 塑性范围内行为的学科。它主要关注 材料在外力作用下发生的变形行为, 以及这种行为与材料内部应力、应变 的关系。
塑性
材料在应力超过屈服极限后发生的不可逆变形。
屈服准则
描述材料开始进入塑性状态的应力条件。
塑性力学的基本方程
应力平衡方程
01
描述受力物体内部应力分布的平衡关系。
几何方程
02
描述材料在塑性变形过程中应变与位移的关系。
屈服准则
03
确定材料进入塑性状态的条件。

弹塑性力学总结

弹塑性力学总结

弹塑性力学总结弹塑性力学是研究材料在受力后既有一部分弹性变形又有一部分塑性变形的力学学科。

它是力学学科的分支之一,因为它研究的对象是材料,所以也可以看作是材料力学的一个方向。

它的研究对象包括各种传统或新型材料——金属、高分子、陶瓷等。

本文将对弹塑性力学进行总结。

一、弹性力学与塑性力学的区别弹性力学和塑性力学都是力学学科的重要分支。

它们各自关注的是物体在受力后不同的反应。

(1)弹性力学弹性力学研究的是物体在受到力的作用下,发生弹性变形而迅速恢复原状的力学原理。

简单来说,就是物体在受力后可以发生弹性变形,如压缩变形或拉伸变形,但是在撤离力的影响之后能够回复原来的状态。

弹性力学理论主要依赖于胡克定律,胡克定律可以表示为应力与应变之比等于恒定的常数。

(2)塑性力学塑性力学研究的是物体在受到力的作用下,发生塑性变形而无法迅速完全恢复原状的力学原理。

简单来说,就是物体在受力后可以发生塑性变形,但是在恢复撤离力的影响之后,不能完全返回原来的状态,仍有残余塑性变形。

塑性力学理论主要依赖于流动理论,流动理论可以用应变率表示材料变形时受到的应力。

二、弹塑性力学的基本概念(1)应力应力是单位面积上的力,通常用σ表示。

应力有三种类型:拉应力、压应力和剪应力。

(2)应变应变是材料的形变量,通常表示为ε。

应变有三种类型:拉伸应变、压缩应变和剪切应变。

(3)黏塑性黏塑性是材料表现出的一种变形特性,它描述了物质在应力作用下的变形表现。

(4)弹性模量弹性模量是材料在受力作用下相对于其初始长度相应变形程度的比率。

弹性模量是一种力学参数,通常用E表示,单位是帕斯卡(Pa)。

材料的弹性模量越大,其刚度就越高。

(5)屈服点在达到一定的应力时,材料就会开始发生塑性变形。

材料开始发生塑性变形的应力点称为屈服点。

三、弹塑性力学的应用弹塑性力学广泛应用于工程、物理、材料科学和冶金工业等领域。

弹塑性力学理论的应用使我们在实际情况下更好地理解和处理材料的力学性质。

弹塑性力学(浙大通用课件)通用课件

弹塑性力学(浙大通用课件)通用课件

塑性力学
研究材料在塑性状态下应 力和应变行为的科学。
塑性力学的基本假 设
塑性变形是连续的,且不改变物质的性质。 塑性变形过程中,应力和应变之间存在单值关系,且该关系是连续的。 塑性变形过程中,材料内部的应力状态是稳定的,不会出现应力振荡或波动。
塑性力学的基本方程
应力平衡方程
在塑性状态下,物体的内部应力场满 足平衡方程,即合力为零。
应变协调方程
本构方程
在塑性状态下,应力和应变之间的关 系由本构方程描述,该方程反映了材 料的塑性行为特性。
在塑性状态下,物体的应变状态满足 应变协调方程,即应变是连续的。
塑性力学的边值问题
01
塑性力学中的边值问题是指给定 物体的边界条件和初始条件,求 解物体内部的应力和应变状态的 问题。
02
边值问题可以通过求解微分方程 或积分方程来解决,具体方法取 决于问题的具体形式和条件。
04
材料弹塑性性质
材料弹性性质
弹性模量
材料在弹性变形阶段所表现出的 刚度,反映了材料抵抗弹性变形
的能力。
泊松比
描述材料在受到压力时横向膨胀 的程度,反映了材料在弹性变形
阶段的横向变形特性。
弹性极限
材料在弹性变形阶段所能承受的 最大应力,超过该应力值材料将
发生不可逆的塑性变形。
材料塑性性 质
屈服点
解析法的优点是精度高、理论严 谨,但缺点是适用范围较窄,对
于复杂问题难以得到解析解。
有限元法
有限元法是一种将连续的求解域离散化为有限个小的单元,通过求解这些小单元的 解来逼近原问题的求解方法。
它适用于各种复杂的几何形状和边界条件,能够处理大规模的问题,并且可以方便 地处理非线性问题。

弹塑性力学PPT课件精选全文

弹塑性力学PPT课件精选全文
◆ 体力分量指向同坐标轴正向一致取正,反之负。
.
*
⑾.静力边界条件
◆ 一个客观的弹塑性力学问题,在物体边界上 任意一点的应力分量和面力分量必定满足这 组方程。
◆ 面力分量指向同坐标轴正向一致取正,反之 取负。
.
*
◆ 当边界面与某一坐标轴相垂直时,应力分量 与相应的面力分量直接对应相等。
.
*
2、几何假设——小变形条件
(1)在弹塑性体产生变形后建立平衡方程时,可以 不考虑因变形而引起的力作用线方向的改变;
从而使得平衡条件与几何变形条件线性化。
(2)在研究问题的过程中可以略去相关的二次及二 次以上的高阶微量;
假定物体在受力以后,体内的位移和变形是微小 的,即体内各点位移都远远小于物体的原始尺寸,而 且应变( 包括线应变与角应变 )均远远小于1。根据 这一假定:
.
*
五、 弹塑性力学的基本假设
(1)连续性假设:假定物质充满了物体所占有的 全部空间,不留下任何空隙。
(2)均匀性与各向同性的假设:假定物体内部各点 处,以及每一点处各个方向上的物理性质相同。
1、物理假设:
(3)力学模型的简化假设: (A)完全弹性假设 ;(B)弹塑性假设。
可归纳为以下几点: 1.建立求解固体的应力、应变和位移分布规律的 基本方程和理论; 2.给出初等理论无法求解的问题的理论和方法, 以及对初等理论可靠性与精确度的度量; 3.确定和充分发挥一般工程结构物的承载能力, 提高经济效益; 4.为进一步研究工程结构物的强度、振动、稳定 性、断裂等力学问题,奠定必要的理论基础。
理论上可证明:当一点的应力状态确定时,经推导 必可求出三个实根,即为主应力,且主应力彼此正交。
.

弹塑性力学基础

弹塑性力学基础

温加工
冷加工 在不产生回复和 再结晶温度以下
改善产品组织性能
降低金属变形抗力 改善金属塑性 提高强度
冷加工-退火 表面光洁,尺寸精确, 组织性能良好
加热温度 变形终了温度 变形程度 冷却速度
冷变形及热变形
冷变形
变形温度低于回复温度时,金属在 变形过程中只有加工硬化而无回复与再 结晶现象,变形后的金属只具有加工硬 化组织,这种变形称为冷变形。
继续提高变形速度,塑性又开始 下降:随变形速度↑,变形抗力
升高,达到相应于更小变形程度 下的断裂抗力之值。 第二次上升:热效应起作用,温度↑ ,变形抗力下降。
第二次下降:热效应极大,把金属加热到出现液相或大大降
低其晶间物质的强度。
4.变形程度 变形程度对塑性的影响,是同加工硬化及加工过程中伴 随着塑性变形的发展而产生的裂纹倾向联系在一起的。 在热变形过程中,变形程度与变形温度-速度条件是相 互联系着的,当加工硬化与裂纹胚芽的修复速度大于发生速
4、具有纤维组织的金属,各个方向上的机械性能 不相同。顺纤维方向的机械性能比横纤维方向的好。金 属的变形程度越大,纤维组织就越明显,机械性能的方 向性也就越显著。
使纤维分布与零件的轮廓相符合而不被切断; 使零件所受的最大拉应力与纤维方向一致,最大 切应力与纤维方向垂直。
实例:
当采用棒料直接经切削加工制造螺钉时,螺钉头部与杆部 的纤维被切断,不能连贯起来,受力时产生的切应力顺着纤维 方向,故螺钉的承载能力较弱(如图a示 )。 当采用同样棒料经局部镦粗方法制造螺钉时(如图b示),纤 维不被切断且连贯性好,纤维方向也较为有利,故螺钉质量较 好。
3)金属表面形成吸附润滑层,塑性↑
提高金属塑性的主要途径
提高塑性的主要途径有以下几个方面: (1)控制化学成分、改善组织结构,提高材料的成分和组 织的均匀性; (2)采用合适的变形温度—速度制度;

弹塑性力学第五章线弹性力学问题的基本解法和一般性原理

弹塑性力学第五章线弹性力学问题的基本解法和一般性原理
*
*
§5-1 基本方程和边界条件的汇总
a. 几何方程
指标符号表示
衣凹啦修仪让洛莉攘擞沥庶利礼通谊耸跑观值帧淡敞商蹲注献蔑摔铀嘻针《弹塑性力学》第五章 线弹性力学问题的基本解法和一般性原理《弹塑性力学》第五章 线弹性力学问题的基本解法和一般性原理
*
*
b. 变形协调方程
指标符号表示
§5-1 基本方程和边界条件的汇总
*
*
§5-2 位移法
上式代入平衡微分方程,得到位移法的基本方程
在V上

在V上
(拉米-纳维叶方程)
及芽孰松茄桔甭稿窒刮录羌格累态赡傀眉守恐苟究屏巩掠冗课阿朴错卡吞《弹塑性力学》第五章 线弹性力学问题的基本解法和一般性原理《弹塑性力学》第五章 线弹性力学问题的基本解法和一般性原理
*
*
§5-2 位移法
1.3 本构(物理)方程(六个)
指标符号表示
上述所有方程为 ij 、 ij、ui在V上必须满足的方程,同时在S上(边界上)有边界力或边界位移。
必局洲斟死法广呆坞渤扣图审漓逆乓湾浩嗣废桥调擒卢贸违晶那舀乍汞跟《弹塑性力学》第五章 线弹性力学问题的基本解法和一般性原理《弹塑性力学》第五章 线弹性力学问题的基本解法和一般性原理
*
*
§5-2 位移法
力的边界条件转为用ui的偏微分表示的。这类边界条件从形式上看可以处理,但实际操作上有时较难处理。
撩末辰问苯接恒辙肾顿陶说马证以毕石钢编岗宿捷丹腮敖笆崖蒸司群戒俏《弹塑性力学》第五章 线弹性力学问题的基本解法和一般性原理《弹塑性力学》第五章 线弹性力学问题的基本解法和一般性原理
*
*
§5-2 位移法
位移法求解思想:

弹塑性力学定理和公式

弹塑性力学定理和公式

弹塑性⼒学定理和公式应⼒应变关系弹性模量||⼴义虎克定律1.弹性模量对于应⼒分量与应变分量成线性关系的各向同性弹性体,常⽤的弹性常数包括:a弹性模量单向拉伸或压缩时正应⼒与线应变之⽐,即b切变模量切应⼒与相应的切应变之⽐,即c体积弹性模量三向平均应⼒与体积应变θ(=εx+εy+εz)之⽐,即d泊松⽐单向正应⼒引起的横向线应变ε1的绝对值与轴向线应变ε的绝对值之⽐,即此外还有拉梅常数λ。

对于各向同性材料,这五个常数中只有两个是独⽴的。

常⽤弹性常数之间的关系见表3-1 弹性常数间的关系。

室温下弹性常数的典型值见表3-2 弹性常数的典型值。

2.⼴义虎克定律线弹性材料在复杂应⼒状态下的应⼒应变关系称为⼴义虎克定律。

它是由实验确定,通常称为物性⽅程,反映弹性体变形的物理本质。

A各向同性材料的⼴义虎克定律表达式(见表3-3 ⼴义胡克定律表达式)对于圆柱坐标和球坐标,表中三向应⼒公式中的x 、y、z分别⽤r、θ、z和r、θ、φ代替。

对于平⾯极坐标,表中平⾯应⼒和平⾯应变公式中的x、y、z⽤r、θ、z代替。

B⽤偏量形式和体积弹性定律表⽰的⼴义虎克定律应⼒和应变量分解为球量和偏量两部分时,虎克定律可写成更简单的形式,即体积弹性定律应⼒偏量与应变偏量关系式在直⾓坐标中,i,j=x,y,z;在圆柱坐标中,i,j=r,θ,z,在球坐标中i,j=r,θ,φ。

弹性⼒学基本⽅程及其解法弹性⼒学基本⽅程|| 边界条件|| 按位移求解的弹性⼒学基本⽅法|| 按应⼒求解的弹性⼒学基本⽅程|| 平⾯问题的基本⽅程|| 基本⽅程的解法|| ⼆维和三维问题常⽤的应⼒、位移公式1.弹性⼒学基本⽅程在弹性⼒学⼀般问题中,需要确定15个未知量,即6个应⼒分量,6个应变分量和3个位移分量。

这15个未知量可由15个线性⽅程确定,即(1)3个平衡⽅程[式(2-1-22)],或⽤脚标形式简写为(2)6个变形⼏何⽅程[式(2-1-29)],或简写为(3)6个物性⽅程[式(3-5)或式(3-6)],简写为或2.边界条件弹性⼒学⼀般问题的解,在物体部满⾜上述线性⽅程组,在边界上必须满⾜给定的边界条件。

弹塑性力学基础与材料变形分析

弹塑性力学基础与材料变形分析

弹塑性力学基础与材料变形分析弹塑性力学是力学中的一个重要分支,研究物体在外力作用下的变形和应力响应。

材料的变形分析则是根据弹塑性力学理论,对材料在外力作用下的变形行为进行研究和分析。

本文将介绍弹塑性力学的基础概念和理论,并探讨材料变形分析的方法和应用。

1. 弹性力学基础在弹塑性力学中,弹性是指物体在外力作用下发生的可恢复变形。

弹性力学的基本定律是胡克定律,它描述了物体的应力与应变之间的关系。

根据胡克定律,线性弹性材料的应力与应变呈线性关系,即应力等于弹性模量与应变的乘积。

除了胡克定律,还有切应力与切变变形之间的关系由牛顿黏性定律给出。

2. 塑性力学基础与弹性力学不同,塑性力学是描述物体在外力作用下发生的不可恢复变形的力学学科。

塑性力学的基本理论是流变学,它研究物体在外力作用下的蠕变行为。

塑性变形通常会导致材料内部的晶格滑移和塑性畸变。

在材料受到足够大的应力时,塑性变形将取代弹性变形。

3. 弹塑性力学弹塑性力学是弹性力学和塑性力学的结合,用于描述物体在外力作用下同时发生弹性和塑性变形的情况。

在弹塑性力学理论中,材料的应力应变关系一般采用应力-应变本构关系来表示。

应力-应变本构关系通常是非线性的,可以根据具体材料的特性进行模型建立。

常见的弹塑性本构模型有弹塑性理想化塑性模型和弹塑性可生长模型等。

4. 材料变形分析方法材料变形分析是基于弹塑性力学理论的数值模拟方法,用于预测材料在外力作用下的变形行为。

常用的材料变形分析方法包括有限元法、有限差分法和有限体积法等。

这些方法可以通过研究材料的应力分布、应变分布和位移分布等来揭示材料的本构特性和变形机理。

材料变形分析方法在工程设计和材料选择等方面起着重要的作用。

5. 材料变形分析的应用材料变形分析在工程领域有广泛的应用。

例如,在机械设计中,通过材料变形分析可以预测零件在使用过程中的变形量,以及材料是否会发生塑性变形,从而指导设计者选择合适的材料和结构。

此外,材料变形分析也可以用于材料的疲劳寿命预测、变形加工工艺的优化和材料损伤分析等方面。

结构静力弹塑性分析的原理和计算实例

结构静力弹塑性分析的原理和计算实例

结构静力弹塑性分析的原理和计算实例一、本文概述结构静力弹塑性分析是一种重要的工程分析方法,用于评估结构在静力作用下的弹塑性行为。

该方法结合了弹性力学、塑性力学和有限元分析技术,能够有效地预测结构在静力加载过程中的变形、应力分布以及破坏模式。

本文将对结构静力弹塑性分析的基本原理进行详细介绍,并通过计算实例来展示其在实际工程中的应用。

通过本文的阅读,读者可以深入了解结构静力弹塑性分析的基本概念、分析流程和方法,掌握其在工程实践中的应用技巧,为解决实际工程问题提供有力支持。

二、弹塑性理论基础弹塑性分析是结构力学的一个重要分支,它主要关注材料在受力过程中同时发生弹性变形和塑性变形的情况。

在弹塑性分析中,材料的应力-应变关系不再是线性的,而是呈现出非线性特性。

当材料受到的应力超过其弹性极限时,材料将发生塑性变形,这种变形在卸载后不能完全恢复,从而导致结构的永久变形。

弹塑性分析的理论基础主要包括塑性力学、塑性理论和弹塑性本构关系。

塑性力学主要研究塑性变形的产生、发展和终止的规律,它涉及到塑性流动、塑性硬化和塑性屈服等概念。

塑性理论则通过引入屈服函数、硬化法则和流动法则等,描述了材料在塑性变形过程中的应力-应变关系。

弹塑性本构关系则综合考虑了材料的弹性和塑性变形行为,建立了应力、应变和应变率之间的关系。

在结构静力弹塑性分析中,通常需要先确定材料的弹塑性本构模型,然后结合结构的边界条件和受力情况,建立结构的弹塑性平衡方程。

通过求解这个平衡方程,可以得到结构在静力作用下的弹塑性变形和应力分布。

弹塑性分析在结构工程中有着广泛的应用,特别是在评估结构的承载能力、变形性能和抗震性能等方面。

通过弹塑性分析,可以更加准确地预测结构在极端荷载作用下的响应,为结构设计和加固提供科学依据。

以上即为弹塑性理论基础的主要内容,它为我们提供了分析结构在弹塑性阶段行为的理论框架和工具。

在接下来的计算实例中,我们将具体展示如何应用这些理论和方法进行结构静力弹塑性分析。

我所认识的弹塑性力学

我所认识的弹塑性力学

PART THREE
添对金属材料 进行塑性变形,以制造出各种形状和尺寸的金 属制品。
添加 标题
结构分析:通过弹塑性力学理论,对建筑、桥 梁等结构的受力情况进行模拟和分析,优化结 构设计,提高结构的安全性和稳定性。
添加 标题
生物医学:利用弹塑性力学原理,研究人体软 组织的力学性质和行为,为医学诊断和治疗提 供依据。
意义:是弹塑性力学中的核心 内容,是联系力学实验与工程
实际的重要桥梁
建立方法:基于实验数据和理 论分析,通过求解物理方程得

屈服准则:描述材料在受力过程中何时进入塑性状态的 准则,常用的有米塞斯屈服准则和库伦-米塞斯屈服准则。
流动法则:描述塑性变形过程中,应力和应变之间的关系, 常用的有塑性流动法则和全塑性流动法则。
强化阶段:材料在屈 服后,随着应力的增 加,应变也会增加, 但此时应力增加的速 度要比塑性阶段慢。
弹性和塑性变形的定义 弹塑性变形的物理过程和特点 弹塑性变形的分类和表现形式 弹塑性变形的影响因素和规律
PART TWO
定义:应力与 应变之间的关 系,描述了材 料在受力时发 生的形变和抵 抗形变的能力。
弹塑性力学的基本 概念对于理解和应 用其理论至关重要 。
弹性:材料在受到外 力作用后发生形变, 当外力去除后能够恢 复原来的形状和尺寸。
塑性:材料在受到外力 作用后发生形变,当外 力去除后不能完全恢复 原来的形状和尺寸。
屈服点:材料在受到外 力作用后开始发生屈服 (即应力不再增加而应 变继续增加)的应力值 。
弹性阶段:应 力与应变成正 比,材料发生 弹性形变,卸 载后形变消失。
塑性阶段:应 力与应变不成 正比,材料发 生塑性形变, 卸载后形变部
分保留。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 P 4 0
于是有 P=3W

讨论:
1. 作用:将复杂的边界受力情况进行等效简化,如分布载荷集中载荷; 2. 转换条件:满足静力平衡条件(静力平衡,静力矩平衡); 3. 只有当外载荷的作用区域比变形体的最小尺寸还小的情况下才适用; 4. 只用于弹性变形,一般不适用于塑性变形,尤其不适用于大变形。
第五章 弹性力学的基本原理
5.2 叠加原理
5.4 虚功原理(虚位移原理)
在外力P作用下,处于平衡状态的物体,当经过微小的虚位移 ui 时,外力在虚位移上所作的总虚功W 应等于虚位移 ui 在变形
体内因外力P所引起的总虚应变能 U 。适用于弹、塑性变形。
第五章 弹性力学的基本原理
5.4 虚功原理(虚位移原理)
例:如图所示五件杆件,受自重和P的作用。 那么P为多大时,正好构成正六边形? 解:假设第一根杆在外力作用下产生δ的虚 位移(重心位移),那么由几何关系可以求得, 杆件3和4产生3δ的虚位移,杆件5产生4δ 的位移,根据虚功原理,所有外力在虚位移上 所做的功的和为0,即
第五章 弹性力学的基本原理
5.1* 圣维南原理(局部影响原理或静力等效原理)
描述:将受力体边界上的面力转换成等效面力时只会引 起面力附近应力分布的差异,而对远离边界处的应力分布的 影响可以忽略不计。 例如:单向拉伸实验,不论钳口齿形形状和夹紧方式如 何,不会影响标距范围的拉伸结果。
第五章 弹性力学的基本原理
变形体受两种或两种以上外载荷作用时,在稳态变 形条件下,各种载荷的作用可以进行叠加,仍然能满足应 力平衡微分方程。仅用于弹性变形。
X p , Yp , Z p x yx zx Tx 0 Tx , Ty , Tz x y z ' ' ' ' ' yx Xp , Yp' , Z p x zx ' T x 0 ' ' ' Tx , Ty , Tz x y z
' ' ' ( x x ) ( yx yx ) ( zx zx ) (Tx Tx' ) 0 x y z
第五章 弹性力学的基本原理
5.3 最小势能原理
固体变形总是沿着势能最小的方向进行。用变分法证明,适用 于弹、塑性变形。 例如:捷线问题;塑性变形最小阻力定律等。
相关文档
最新文档