注册岩土工程师基础考试基本公式汇总完整版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注册岩土工程师基础考试基本公式汇总

HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

高等数学公式

导数公式:

基本积分表:

三角函数的有理式积分:

a

x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22=

'='⋅-='⋅='-='='2

2

22

11

)(11

)(11

)(arccos 11

)(arcsin x arcctgx x arctgx x x x x +-

='+=

'--

='-=

'⎰

⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==C

a x x a x dx C shx chxdx C chx shxdx C

a a dx a C

x ctgxdx x C x dx tgx x C

ctgx xdx x dx C tgx xdx x dx x

x

)ln(ln csc csc sec sec csc sin sec cos 222

22

22

2C a

x

x a dx C x a x

a a x a dx C a x a

x a a x dx C a x

arctg a x a dx C

ctgx x xdx C tgx x xdx C

x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2

2222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-=

==-C a

x a x a x dx x a C a x x a a x x dx a x C

a x x a a x x dx a x I n

n xdx xdx I n n n

n arcsin 22ln 2

2)ln(221

cos sin 22

2222

2222222

22222

2

22

2

π

π

一些初等函数: 两个重要极限: 三角函数公式: ·诱导公式:

·和差角公式:

·倍角公式: ·半角公式:

α

α

αααααααααααα

α

ααα

cos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 12

2

cos 12cos 2cos 12

sin -=

+=-+±=+=-=+-±

=+±=-±=ctg tg

·

正弦定理:

R C

c

B b A a 2sin sin sin === ·余弦定理:

C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=

-=

2

arccos 2

arcsin π

π

高阶导数公式——莱布尼兹(Leibniz )公式:

2

sin

2sin 2cos cos 2cos

2cos 2cos cos 2sin 2cos 2sin sin 2

cos

2sin 2sin sin β

αβαβαβ

αβαβαβ

αβαβαβ

αβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβ

αβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=

±⋅±=

±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(

中值定理与导数应用: 曲率:

定积分的近似计算: 定积分应用相关公式: 多元函数微分法及应用 多元函数的极值及其求法: 重积分及其应用:

⎰⎰⎰⎰

⎰⎰

⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰

⎰⎰⎰⎰++-=++=++==>===

=

=

=⎪⎪⎭

⎫ ⎝⎛∂∂+⎪⎭⎫

⎝⎛∂∂+==='

D

z D

y D

x z y x D

y D

x D

D

y D

x

D

D D

a y x xd y x fa F a y x yd y x f F a y x xd y x f

F F F F F a a M z xoy d y x x I y d y x y I x d y x d y x y M

M y d y x d y x x M

M x dxdy y z x z A y x f z rdrd r r f dxdy y x f 2

3

2

2

2

2

3

2

2

2

2

3

2

2

2

22D

2

2

)

(),()

(),()

(),(},,{)0(),,0,0(),(,),(),(),(,),(),(1),()sin ,cos (),(σ

ρσ

ρσ

ρσρσρσ

ρσ

ρσ

ρσ

ρθ

θθ, , ,其中:的引力:轴上质点平面)对平面薄片(位于轴 对于轴对于平面薄片的转动惯量: 平面薄片的重心:的面积曲面常数项级数: 级数审敛法:

。的绝对值其余项,那么级数收敛且其和

如果交错级数满足—莱布尼兹定理:

—的审敛法或交错级数111

3214321,0lim )0,(+∞→+≤≤⎪⎩⎪⎨⎧=≥>+-+-+-+-n n n n

n n n n u r r u s u u u u u u u u u u u 绝对收敛与条件收敛: 幂级数:

01

0)3(lim )3(111

1111221032=+∞=+∞

===

≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x x x x x x x n n n

n n n n n 时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。

,其中时不定

时发散时收敛

,使在数轴上都收敛,则必存收敛,也不是在全

,如果它不是仅在原点 对于级数时,发散

时,收敛于

ρρρ

ρρ 函数展开成幂级数:

相关文档
最新文档