注册岩土工程师基础考试基本公式汇总完整版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注册岩土工程师基础考试基本公式汇总
HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】
高等数学公式
导数公式:
基本积分表:
三角函数的有理式积分:
a
x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22=
'='⋅-='⋅='-='='2
2
22
11
)(11
)(11
)(arccos 11
)(arcsin x arcctgx x arctgx x x x x +-
='+=
'--
='-=
'⎰
⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==C
a x x a x dx C shx chxdx C chx shxdx C
a a dx a C
x ctgxdx x C x dx tgx x C
ctgx xdx x dx C tgx xdx x dx x
x
)ln(ln csc csc sec sec csc sin sec cos 222
22
22
2C a
x
x a dx C x a x
a a x a dx C a x a
x a a x dx C a x
arctg a x a dx C
ctgx x xdx C tgx x xdx C
x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2
2222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-=
==-C a
x a x a x dx x a C a x x a a x x dx a x C
a x x a a x x dx a x I n
n xdx xdx I n n n
n arcsin 22ln 2
2)ln(221
cos sin 22
2222
2222222
22222
2
22
2
π
π
一些初等函数: 两个重要极限: 三角函数公式: ·诱导公式:
·和差角公式:
·倍角公式: ·半角公式:
α
α
αααααααααααα
α
ααα
cos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 12
2
cos 12cos 2cos 12
sin -=
+=-+±=+=-=+-±
=+±=-±=ctg tg
·
正弦定理:
R C
c
B b A a 2sin sin sin === ·余弦定理:
C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=
-=
2
arccos 2
arcsin π
π
高阶导数公式——莱布尼兹(Leibniz )公式:
2
sin
2sin 2cos cos 2cos
2cos 2cos cos 2sin 2cos 2sin sin 2
cos
2sin 2sin sin β
αβαβαβ
αβαβαβ
αβαβαβ
αβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβ
αβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=
±⋅±=
±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(
中值定理与导数应用: 曲率:
定积分的近似计算: 定积分应用相关公式: 多元函数微分法及应用 多元函数的极值及其求法: 重积分及其应用:
⎰⎰⎰⎰
⎰⎰
⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰
⎰⎰⎰⎰++-=++=++==>===
=
=
=⎪⎪⎭
⎫ ⎝⎛∂∂+⎪⎭⎫
⎝⎛∂∂+==='
D
z D
y D
x z y x D
y D
x D
D
y D
x
D
D D
a y x xd y x fa F a y x yd y x f F a y x xd y x f
F F F F F a a M z xoy d y x x I y d y x y I x d y x d y x y M
M y d y x d y x x M
M x dxdy y z x z A y x f z rdrd r r f dxdy y x f 2
3
2
2
2
2
3
2
2
2
2
3
2
2
2
22D
2
2
)
(),()
(),()
(),(},,{)0(),,0,0(),(,),(),(),(,),(),(1),()sin ,cos (),(σ
ρσ
ρσ
ρσρσρσ
ρσ
ρσ
ρσ
ρθ
θθ, , ,其中:的引力:轴上质点平面)对平面薄片(位于轴 对于轴对于平面薄片的转动惯量: 平面薄片的重心:的面积曲面常数项级数: 级数审敛法:
。的绝对值其余项,那么级数收敛且其和
如果交错级数满足—莱布尼兹定理:
—的审敛法或交错级数111
3214321,0lim )0,(+∞→+≤≤⎪⎩⎪⎨⎧=≥>+-+-+-+-n n n n
n n n n u r r u s u u u u u u u u u u u 绝对收敛与条件收敛: 幂级数:
01
0)3(lim )3(111
1111221032=+∞=+∞
===
≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x x x x x x x n n n
n n n n n 时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。
,其中时不定
时发散时收敛
,使在数轴上都收敛,则必存收敛,也不是在全
,如果它不是仅在原点 对于级数时,发散
时,收敛于
ρρρ
ρρ 函数展开成幂级数: