数据挖掘试题

合集下载

数据挖掘试题及答案

数据挖掘试题及答案

数据挖掘试题及答案数据挖掘是一门利用数据分析技术从大量的数据集中发现规律、模式和知识的过程。

它对我们理解和利用数据提供了有力的支持,被广泛应用于商业、科学研究等领域。

下面是一些常见的数据挖掘试题及其答案。

试题一:什么是数据挖掘?答案:数据挖掘是指利用计算机技术和统计学方法,从大规模数据集中发现隐藏在其中的有价值的信息和知识的过程。

它包括数据预处理、特征选择、模型构建以及模式识别和知识发现等步骤。

试题二:数据挖掘的主要任务有哪些?答案:数据挖掘的主要任务包括分类、聚类、关联规则挖掘和异常检测等。

分类是指将数据集中的样本划分到不同的类别中;聚类是将数据集划分为若干个相似的组;关联规则挖掘是找出数据中项之间的关联关系;异常检测是识别与正常模式不符的数据。

试题三:数据挖掘中常用的算法有哪些?答案:数据挖掘中常用的算法包括决策树、聚类算法、关联规则算法和神经网络等。

决策树算法通过对数据集进行划分,构建一棵树形结构用于分类;聚类算法根据相似度将数据集分为不同的簇;关联规则算法用于发现数据集中项之间的关联关系;神经网络模拟人脑的神经元网络结构,用于数据分类和预测。

试题四:数据挖掘的应用场景有哪些?答案:数据挖掘的应用场景非常广泛。

在商业领域,它可以帮助企业进行市场分析、客户关系管理和产品推荐等;在科学研究中,它能够帮助科学家从大量的实验数据中发现新的知识和规律;在医疗领域,它可以辅助医生进行疾病诊断和治疗方案选择等。

试题五:数据挖掘存在的挑战有哪些?答案:数据挖掘存在一些挑战,包括数据质量不高、维度灾难、算法性能和可解释性等方面。

数据质量不高可能导致挖掘结果不准确;维度灾难是指当数据特征数量很多时,算法的计算复杂度急剧增加;算法性能要求高,对大规模数据集的挖掘需要高效的算法;可解释性是指挖掘结果是否易于被理解和解释。

以上是一些常见的数据挖掘试题及其答案。

通过理解和掌握数据挖掘的基本概念、任务、算法和应用场景,可以帮助我们更好地运用数据挖掘技术,从海量数据中提取有价值的信息和知识,为决策和创新提供支持。

数据挖掘试题(单选)

数据挖掘试题(单选)

单选题1. 某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖掘的哪类问题?(A)A. 关联规则发现B. 聚类C. 分类D. 自然语言处理2. 以下两种描述分别对应哪两种对分类算法的评价标准? (A)(a)警察抓小偷,描述警察抓的人中有多少个是小偷的标准。

(b)描述有多少比例的小偷给警察抓了的标准。

A. Precision, RecallB. Recall, PrecisionA. Precision, ROC D. Recall, ROC3. 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C)A. 频繁模式挖掘B. 分类和预测C. 数据预处理D. 数据流挖掘4. 当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?(B)A. 分类B. 聚类C. 关联分析D. 隐马尔可夫链5. 什么是KDD? (A)A. 数据挖掘与知识发现B. 领域知识发现C. 文档知识发现D. 动态知识发现6. 使用交互式的和可视化的技术,对数据进行探索属于数据挖掘的哪一类任务?(A)A. 探索性数据分析B. 建模描述C. 预测建模D. 寻找模式和规则7. 为数据的总体分布建模;把多维空间划分成组等问题属于数据挖掘的哪一类任务?(B)A. 探索性数据分析B. 建模描述C. 预测建模D. 寻找模式和规则8. 建立一个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的哪一类任务?(C)A. 根据内容检索B. 建模描述C. 预测建模D. 寻找模式和规则9. 用户有一种感兴趣的模式并且希望在数据集中找到相似的模式,属于数据挖掘哪一类任务?(A)A. 根据内容检索B. 建模描述C. 预测建模D. 寻找模式和规则11.下面哪种不属于数据预处理的方法? (D)A变量代换 B离散化 C 聚集 D 估计遗漏值12. 假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215 使用如下每种方法将它们划分成四个箱。

历年数据挖掘期末考试试题及答案

历年数据挖掘期末考试试题及答案

历年数据挖掘期末考试试题及答案2019年春选择题1. 关于数据挖掘下列叙述中,正确的是:- A. 数据挖掘只是寻找数据中的有用信息- B. 数据挖掘就是将数据放置于数据仓库中,方便查询- C. 数据挖掘是指从大量有噪音数据中提取未知、隐含、先前未知的、重要的、可理解的模式或知识- D. 数据挖掘就是从数据中提取出数值型变量2. 下列关于聚类分析的说法中,正确的是:- A. 聚类分析是无监督研究- B. 聚类分析的目的是找到一组最优特征- C. 聚类分析只能用于数值型变量- D. 聚类分析是一种监督研究方法3. 一般的数据挖掘流程包括以下哪些步骤:- A. 数据采集- B. 数据清洗- C. 数据转换- D. 模型构建- E. 模型评价- F. 模型应用- G. A、B、C、D、E- H. A、B、C、D、E、F- I. B、C、D、E、F- J. C、D、E、F简答题1. 什么是数据挖掘?介绍一下数据挖掘的流程。

数据挖掘是从庞大、复杂的数据集中提取有价值的、对决策有帮助的信息。

包括数据采集、数据清洗、数据转换、模型构建、模型评价和模型应用等步骤。

2. 聚类分析和分类分析有什么不同?聚类分析和分类分析都是数据挖掘的方法,不同的是聚类分析是无监督研究,通过相似度,将数据集分为不同的组;分类分析是监督研究,通过已知的训练集数据来预测新的数据分类。

也就是说在分类中有“标签”这个中间过程。

3. 请介绍一个你知道的数据挖掘算法,并简单阐述它的流程。

Apriori算法:是一种用于关联规则挖掘的算法。

主要流程包括生成项集、计算支持度、生成候选规则以及计算可信度四步。

首先生成单个项集,计算各项集在数据集中的支持度;然后根据单个项集生成项集对,计算各项集对在数据集中的支持度;接着从项集对中找出支持度大于某个阈值的,生成候选规则;最后计算规则的置信度,保留置信度大于某个阈值的规则作为关联规则。

数据挖掘试题(150道)

数据挖掘试题(150道)
.对于分类算法,待分样本集中地大部分样本不是支持向量,移去或者减少这些样本对分类结果没有影响.(对)
.法是一种在已知后验概率与类条件概率地情况下地模式分类方法,待分样本地分类结果取决于各类域中样本地全体. (错)
.分类模型地误差大致分为两种:训练误差()和泛化误差(). (对)
.在决策树中,随着树中结点数变得太大,即使模型地训练误差还在继续减低,但是检验误差开始增大,这是出现了模型拟合不足地问题.(错)
.是这样一个分类器,他寻找具有最小边缘地超平面,因此它也经常被称为最小边缘分类器()(错)
.在聚类分析当中,簇内地相似性越大,簇间地差别越大,聚类地效果就越差.(错)
.聚类分析可以看作是一种非监督地分类.(对)
.均值是一种产生划分聚类地基于密度地聚类算法,簇地个数由算法自动地确定.(错
.给定由两次运行均值产生地两个不同地簇集,误差地平方和最大地那个应该被视为较优.(错)
.选择一个算法过程使评分函数最优
.决定用什么样地数据管理原则以高效地实现算法.
.数据挖掘地预测建模任务主要包括哪几大类问题?( )
.分类.回归.模式发现.模式匹配
.数据挖掘算法地组件包括:( )
.模型或模型结构.评分函数.优化和搜索方法.数据管理策略
.以下哪些学科和数据挖掘有密切联系?( )
.统计.计算机组成原理.矿产挖掘.人工智能
.数据仓库地主要目标就是帮助分析,做长期性地战略制定
.数据仓库在技术上地工作过程是:()
.数据地抽取.存储和管理.数据地表现个人收集整理勿做商业用途
.数据仓库设计.数据地表现
.联机分析处理包括以下哪些基本分析功能?()
.聚类.切片.转轴.切块.分类
.利用算法计算频繁项集可以有效降低计算频繁集地时间复杂度.在以下地购物篮中产生支持度不小于地候选项集,在候选项集中需要剪枝地是()

数据挖掘与分析考试试题

数据挖掘与分析考试试题

数据挖掘与分析考试试题一、选择题(每题 3 分,共 30 分)1、以下哪个不是数据挖掘的主要任务?()A 分类B 聚类C 数据清洗D 关联规则挖掘2、在数据挖掘中,以下哪种方法常用于处理缺失值?()A 直接删除包含缺失值的记录B 用平均值填充缺失值C 用中位数填充缺失值D 以上方法都可以3、决策树算法中,用于选择最佳分裂特征的指标通常是()A 信息增益B 基尼系数C 准确率D 召回率4、以下哪个不是聚类算法?()A KMeans 算法B 层次聚类算法C 朴素贝叶斯算法D DBSCAN 算法5、数据挖掘中的关联规则挖掘,常用的算法是()A Apriori 算法B C45 算法C KNN 算法D SVM 算法6、以下哪种数据预处理方法可以用于将连续型特征转换为离散型特征?()A 标准化B 归一化C 分箱D 主成分分析7、在构建分类模型时,如果数据集存在类别不平衡问题,以下哪种方法可以解决?()A 过采样B 欠采样C 调整分类阈值D 以上方法都可以8、以下哪个指标常用于评估分类模型的性能?()A ROC 曲线下面积B 均方误差C 平均绝对误差D 决定系数9、对于高维数据,以下哪种方法可以进行降维?()A 因子分析B 线性判别分析C 主成分分析D 以上方法都可以10、以下关于数据挖掘的描述,错误的是()A 数据挖掘可以发现隐藏在数据中的模式和关系B 数据挖掘需要大量的数据C 数据挖掘的结果一定是准确无误的D 数据挖掘是一个反复迭代的过程二、填空题(每题 3 分,共 30 分)1、数据挖掘的一般流程包括:________、________、________、________、________和________。

2、分类算法中,常见的有________、________、________等。

3、聚类算法中,KMeans 算法的基本思想是:________。

4、关联规则挖掘中,常用的度量指标有________、________等。

数据挖掘原理与应用---试题及答案试卷十二答案精选全文完整版

数据挖掘原理与应用---试题及答案试卷十二答案精选全文完整版

数据挖掘原理与应用 试题及答案试卷一、(30分,总共30题,每题答对得1分,答错得0分)单选题1、在ID3算法中信息增益是指( D )A、信息的溢出程度B、信息的增加效益C、熵增加的程度最大D、熵减少的程度最大2、下面哪种情况不会影响K-means聚类的效果?( B )A、数据点密度分布不均B、数据点呈圆形状分布C、数据中有异常点存在D、数据点呈非凸形状分布3、下列哪个不是数据对象的别名 ( C )A、样品B、实例C、维度D、元组4、人从出生到长大的过程中,是如何认识事物的? ( D )A、聚类过程B、分类过程C、先分类,后聚类D、先聚类,后分类5、决策树模型中应如何妥善处理连续型属性:( C )A、直接忽略B、利用固定阈值进行离散化C、根据信息增益选择阈值进行离散化D、随机选择数据标签发生变化的位置进行离散化6、假定用于分析的数据包含属性age。

数据元组中age的值如下(按递增序):13,15,16,16,19,20,20,21,22,22,25,25,25,30,33,33,35,35,36,40,45,46,52,70。

问题:使用按箱平均值平滑方法对上述数据进行平滑,箱的深度为3。

第二个箱子值为:( A )A、18.3B、22.6C、26.8D、27.97、建立一个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的哪一类任务?( C )A、根据内容检索B、建模描述C、预测建模D、寻找模式和规则8、如果现在需要对一组数据进行样本个体或指标变量按其具有的特性进行分类,寻找合理的度量事物相似性的统计量,应该采取( A )A、聚类分析B、回归分析C、相关分析D、判别分析9、时间序列数据更适合用( A )做数据规约。

A、小波变换B、主成分分析C、决策树D、直方图10、下面哪些场景合适使用PCA?( A )A、降低数据的维度,节约内存和存储空间B、降低数据维度,并作为其它有监督学习的输入C、获得更多的特征D、替代线性回归11、数字图像处理中常使用主成分分析(PCA)来对数据进行降维,下列关于PCA算法错误的是:( C )A、PCA算法是用较少数量的特征对样本进行描述以达到降低特征空间维数的方法;B、PCA本质是KL-变换;C、PCA是最小绝对值误差意义下的最优正交变换;D、PCA算法通过对协方差矩阵做特征分解获得最优投影子空间,来消除模式特征之间的相关性、突出差异性;12、将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?( C )A、频繁模式挖掘B、分类和预测C、数据预处理D、数据流挖掘13、假设使用维数降低作为预处理技术,使用PCA将数据减少到k维度。

数据挖掘试题

数据挖掘试题

单选题1. 某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖掘的哪类问题?(A)A. 关联规则发现 B。

聚类C。

分类 D。

自然语言处理3. 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C)A。

频繁模式挖掘 B. 分类和预测 C. 数据预处理 D。

数据流挖掘4。

当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?(B)A. 分类 B。

聚类 C。

关联分析 D. 隐马尔可夫链6。

使用交互式的和可视化的技术,对数据进行探索属于数据挖掘的哪一类任务?(A)A。

探索性数据分析 B. 建模描述C。

预测建模 D。

寻找模式和规则11.下面哪种不属于数据预处理的方法? (D)A变量代换 B离散化 C 聚集 D 估计遗漏值12。

假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215 使用如下每种方法将它们划分成四个箱.等频(等深)划分时,15在第几个箱子内? (B)A 第一个B 第二个C 第三个D 第四个13.上题中,等宽划分时(宽度为50),15又在哪个箱子里? (A)A 第一个B 第二个C 第三个D 第四个16. 只有非零值才重要的二元属性被称作:( C )A 计数属性B 离散属性 C非对称的二元属性 D 对称属性17. 以下哪种方法不属于特征选择的标准方法: (D)A嵌入 B 过滤 C 包装 D 抽样18.下面不属于创建新属性的相关方法的是: (B)A特征提取 B特征修改 C映射数据到新的空间 D特征构造22。

假设属性income的最大最小值分别是12000元和98000元。

利用最大最小规范化的方法将属性的值映射到0至1的范围内。

对属性income的73600元将被转化为:(D)A 0。

821B 1。

224C 1.458D 0。

数据挖掘与知识发现考试试题

数据挖掘与知识发现考试试题

数据挖掘与知识发现考试试题一、选择题1.数据挖掘的定义是什么?A.从海量数据中提取有用信息的过程B.对数据进行存储和管理的过程C.从数据库中提取有用信息的过程D.数据收集和整理的过程2.下面哪个不是数据挖掘的基本任务?A.分类B.聚类C.回归D.统计3.下面哪个不属于机器学习算法?A.决策树B.神经网络C.朴素贝叶斯D.SQL4.什么是关联规则挖掘?A.发现事物之间的相关性B.对数据进行分类C.预测未来的趋势D.对图像进行处理和分析5.哪种算法常用于异常检测?A.聚类算法B.决策树算法C.关联规则算法D.回归算法二、填空题1.数据挖掘的基本任务包括___和___。

2.决策树算法中,节点是根据___进行分裂。

3.关联规则中的项集是指包含___个项目的集合。

4.异常检测算法常用的指标是___。

5.知识发现的目标是___和___。

三、简答题1.请简述数据预处理的过程。

2.什么是聚类分析?请举例说明。

3.数据挖掘的应用领域有哪些?4.简要介绍关联规则挖掘的步骤。

5.知识发现的挑战和难点是什么?四、应用题某电商平台想要通过数据挖掘和知识发现的方法,提高用户购买转化率。

请你构建一个可行的解决方案,并详细阐述其中的关键步骤和方法。

结束语:本文分别介绍了选择题、填空题、简答题和应用题,涵盖了数据挖掘和知识发现的基本概念、任务、算法以及应用。

希望通过这份试题,能够帮助读者对数据挖掘和知识发现有更深入的理解,并有效应用于实际问题解决中。

数据挖掘测试题及答案

数据挖掘测试题及答案

数据挖掘测试题及答案一、选择题1. 数据挖掘的目的是:A. 数据清洗B. 数据转换C. 模式发现D. 数据存储答案:C2. 以下哪项不是数据挖掘的常用算法?A. 决策树B. 聚类分析C. 线性回归D. 关联规则答案:C二、填空题1. 数据挖掘中的_________是指在大量数据中发现的有意义的模式。

答案:知识2. 一种常用的数据挖掘技术是_________,它用于发现数据中隐藏的分组。

答案:聚类三、简答题1. 简述数据挖掘与数据分析的区别。

答案:数据挖掘是一种自动或半自动的过程,旨在从大量数据中发现模式和知识。

数据分析通常涉及更具体的查询和问题,使用统计方法来理解数据。

2. 描述什么是关联规则挖掘,并给出一个例子。

答案:关联规则挖掘是一种用于发现变量之间有趣关系的技术,特别是变量之间的频繁模式、关联或相关性。

例如,在市场篮子分析中,关联规则挖掘可以用来发现顾客购买行为中的模式,如“购买面包的顾客中有80%也购买了牛奶”。

四、计算题1. 给定以下数据集,计算支持度和置信度:| 事务ID | 购买的商品 |||-|| 1 | A, B || 2 | A, C || 3 | B, C || 4 | A, B, C || 5 | B, D |(1) 计算项集{A}的支持度。

(2) 计算规则A => B的置信度。

答案:(1) 项集{A}的支持度为4/5,因为A出现在4个事务中。

(2) 规则A => B的置信度为3/4,因为A和B同时出现在3个事务中,而A出现在4个事务中。

五、论述题1. 论述数据挖掘在电子商务中的应用,并给出至少两个具体的例子。

答案:数据挖掘在电子商务中的应用非常广泛,包括:- 客户细分:通过数据挖掘技术,商家可以识别不同的客户群体,为每个群体提供定制化的服务或产品。

- 推荐系统:利用关联规则挖掘,电商平台可以推荐用户可能感兴趣的商品,提高用户满意度和购买率。

- 欺诈检测:通过分析交易模式,数据挖掘可以帮助识别异常行为,预防信用卡欺诈等风险。

数据挖掘导论期末考试试题

数据挖掘导论期末考试试题

数据挖掘导论期末考试试题# 数据挖掘导论期末考试试题## 一、选择题(每题2分,共20分)1. 数据挖掘的常用技术不包括以下哪一项?A. 决策树B. 聚类分析C. 神经网络D. 线性回归2. 在数据挖掘中,以下哪个算法主要用于分类问题?A. K-meansB. KNNC. AprioriD. ID33. 以下哪个术语与数据挖掘中的关联规则挖掘无关?A. 支持度(Support)B. 置信度(Confidence)C. 准确度(Precision)D. 先行项(Antecedent)4. 数据挖掘中的“过拟合”是指模型:A. 过于简单,不能捕捉数据的复杂性B. 过于复杂,不能很好地泛化到新数据C. 与数据完全一致,没有误差D. 只适用于特定类型的数据5. 在数据预处理中,数据清洗的目的是什么?A. 增加数据量B. 提高数据质量C. 降低数据的维度D. 转换数据格式## 二、简答题(每题10分,共30分)1. 简述数据挖掘中的“异常检测”是什么,并给出一个实际应用的例子。

2. 解释什么是“特征选择”,并说明它在数据挖掘中的重要性。

3. 描述数据挖掘中的“集成学习”概念,并举例说明其优势。

## 三、计算题(每题25分,共50分)1. 给定一组数据集,包含以下属性:年龄、收入、购买产品。

使用Apriori算法找出频繁项集,并计算相应的支持度和置信度。

(假设最小支持度阈值为0.5,最小置信度阈值为0.7)| 交易ID | 年龄 | 收入 | 购买产品 ||||||| 1 | 25 | 50000| 手机 || 2 | 30 | 60000| 手机,电脑 || 3 | 35 | 70000| 电脑 || ... | ... | ... | ... |2. 假设你有一个客户数据库,包含客户的性别、年龄、年收入和购买历史。

使用决策树算法建立一个模型,预测客户是否会购买新产品。

请描述决策树的构建过程,并给出可能的决策树结构。

数据挖掘及应用考试试题及答案

数据挖掘及应用考试试题及答案

数据挖掘及应用考试试题及答案第一部分:选择题(每题4分,共40分)1.数据挖掘的定义是以下哪一个选项?A)从大数据中提取有用的信息B)从数据库中提取有用的信息C)从互联网中提取有用的信息D)从文件中提取有用的信息2.以下哪个是数据挖掘的一个主要任务?A)数据的存储和管理B)数据的可视化展示C)模型的建立和评估D)数据的备份和恢复3.下列哪个不是数据挖掘的一个常用技术?A)关联规则挖掘B)分类算法C)聚类分析D)数据编码技术4.以下哪个不属于数据预处理的步骤?A)数据清洗B)数据集成C)数据转换D)模型评估5.以下哪个是数据挖掘任务中的分类问题?A)预测数值B)聚类分析C)异常检测D)关联规则挖掘6.以下哪个不属于数据可视化的一种方法?A)散点图B)柱状图C)热力图D)关联规则图7.在使用决策树算法进行分类任务时,常用的不纯度度量指标是:A)基尼指数B)信息增益C)平方误差D)均方根误差8.以下哪个算法常用于处理文本数据挖掘任务?A)K-means算法B)Apriori算法C)朴素贝叶斯算法D)决策树算法9.以下哪种模型适用于处理离散型目标变量?A)线性回归模型B)逻辑回归模型C)支持向量机模型D)贝叶斯网络模型10.数据挖掘的应用领域包括以下哪些?A)金融风控B)医疗诊断C)社交网络分析D)所有选项都正确第二部分:填空题(每题4分,共20分)1.数据挖掘的基础是______和______。

答案:统计学、机器学习2.数据挖掘的任务包括分类、聚类、预测和______。

答案:关联规则挖掘3.常用的数据预处理方法包括数据清洗、数据集成和______。

答案:数据转换4.决策树算法的基本思想是通过选择最佳的______进行分类。

答案:划分属性5.支持向量机(SVM)算法适用于______问题。

答案:二分类问题第三部分:简答题(每题10分,共40分)1.请简述数据挖掘的流程及各个阶段的主要任务。

答:数据挖掘的流程一般包括问题定义、数据收集、数据预处理、模型选择与建立、模型评估与选择、知识应用等阶段。

数据挖掘期末考试试题及答案详解

数据挖掘期末考试试题及答案详解

数据挖掘期末考试试题及答案详解一、选择题(每题2分,共20分)1. 数据挖掘中,关联规则分析主要用于发现数据中的哪种关系?A. 因果关系B. 相关性C. 聚类关系D. 顺序关系答案:B2. 在决策树算法中,哪个指标用于评估特征的重要性?A. 信息增益B. 支持度C. 置信度D. 覆盖度答案:A3. 以下哪个是数据挖掘的常用方法?A. 线性回归B. 逻辑回归C. 神经网络D. 所有选项答案:D4. K-means聚类算法中,K值的选择是基于什么?A. 数据的维度B. 聚类中心的数量C. 数据的分布情况D. 数据的规模答案:B5. 以下哪个是数据挖掘中常用的数据预处理技术?A. 数据清洗B. 数据转换C. 数据归一化D. 所有选项答案:D...(此处省略其他选择题)二、简答题(每题10分,共30分)1. 简述什么是数据挖掘,并列举其主要的应用领域。

答案:数据挖掘是从大量数据中自动或半自动地发现有趣模式的过程。

它主要应用于市场分析、风险管理、欺诈检测、客户关系管理等领域。

2. 解释什么是朴素贝叶斯分类器,并说明其在数据挖掘中的应用。

答案:朴素贝叶斯分类器是一种基于贝叶斯定理的分类算法,它假设特征之间相互独立。

在数据挖掘中,朴素贝叶斯分类器常用于文本分类、垃圾邮件检测等任务。

3. 描述K-means聚类算法的基本原理,并举例说明其在实际问题中的应用。

答案:K-means聚类算法是一种基于距离的聚类方法,其目标是将数据点划分到K个簇中,使得每个数据点与其所属簇的中心点的距离之和最小。

例如,在市场细分中,K-means聚类可以用来将客户根据购买行为划分为不同的群体。

三、计算题(每题25分,共50分)1. 给定一组数据点:{(1,2), (2,3), (3,4), (4,5)},请使用K-means算法将这些点分为两个簇,并计算簇的中心点。

答案:首先随机选择两个点作为初始中心点,然后迭代地将每个点分配到最近的中心点,接着更新中心点。

数据挖掘期末试题及答案完整版

数据挖掘期末试题及答案完整版

数据挖掘期末试题及答案完整版本文档为数据挖掘课程的期末试题及答案完整版,共分为两部分:试题1. 简述数据挖掘的含义,及其在实际应用中的主要应用场景。

2. 数据挖掘的分类有哪些?分别说明其特点和应用场景。

3. 什么是关联规则挖掘?具体方法是什么?4. 简述聚类分析的含义,及其在实际应用中的主要应用场景。

5. 什么是K-means算法?其具体流程是什么?如何确定K值?6. 什么是分类算法?具体有哪些分类算法?举例说明其应用场景。

7. 什么是决策树?它的构建方法是什么?8. 什么是人工神经网络?具体的工作原理是怎样的?9. 什么是支持向量机?简述其分类原理及构建方法。

10. 集成研究是什么?其主要有哪些方法?答案1. 数据挖掘定义:是从大量数据中自动提取未知、隐含的且潜在有用的信息和模式的计算技术,主要应用场景包括:金融风险控制、市场营销、医学诊断和电子商务等领域。

2. 数据挖掘的分类:基于任务分类、基于数据挖掘方法分类、基于应用领域分类等。

其中基于数据挖掘方法的分类包括:分类、聚类、关联规则挖掘、时序挖掘、离群点检测和特征选择等,它们分别对应不同类型的数据挖掘任务和数据类型。

3. 关联规则挖掘:是一种在数据集中发现有趣关系的方法。

具体方法包括:设定最小支持度和最小置信度阈值、频繁集生成、生成关联规则等。

4. 聚类分析:是一种常用的数据挖掘技术,主要应用场景包括:图像分割、生物信息学、无监督研究等领域。

5. K-means算法:是一种基于划分的聚类算法,具体流程包括:选择初始聚类中心、计算数据点到聚类中心的距离、分组聚类、重新计算聚类中心等。

确定K值有多种方法,常用的有肘部法和轮廓系数法。

6. 分类算法:是一种重要的数据挖掘技术,主要包括决策树、朴素贝叶斯、神经网络、支持向量机等方法。

不同的算法适用于不同类型的数据和任务场景。

7. 决策树:是一种基于树结构的分类方法,具体构建方法包括:选择最优特征、树的生长、剪枝等。

数据挖掘导论期末试题及答案

数据挖掘导论期末试题及答案

数据挖掘导论期末试题及答案第一部分:试题问答题1. 数据挖掘的定义是什么?2. 数据挖掘的过程包括哪些步骤?3. 请简要解释数据预处理的步骤。

4. 请列举常用的数据挖掘算法。

5. 请解释聚类分析和分类分析的区别。

6. 什么是关联规则挖掘?请给出一个例子。

7. 在数据挖掘过程中,如何评估模型的性能?8. 什么是过拟合?如何避免过拟合?9. 数据挖掘有哪些应用领域?10. 请简要介绍数据挖掘中的隐私保护技术。

编程题1. 给定一个包含n个整数的列表,请编写Python代码来计算列表中所有数的平均值。

2. 使用Python编写一个函数,接受两个参数n和m,返回一个列表,其中包含从n到m之间所有偶数的平方。

3. 在Python中,定义函数calcBMI(height, weight),接受一个人的身高(单位:米)和体重(单位:千克),计算并返回该人的BMI指数。

4. 使用Python编写一个函数,接受一个字符串作为参数,返回字符串中每个字符出现的次数。

第二部分:答案问答题1. 数据挖掘的定义是从大量的数据中发现先前未知、可理解和实际可用的模式的过程。

2. 数据挖掘的过程包括数据收集、数据预处理、特征选择、算法选择、模型构建、模型评估和模型应用等步骤。

3. 数据预处理的步骤包括数据清洗、数据集成、数据变换和数据规约。

4. 常用的数据挖掘算法包括决策树算法、朴素贝叶斯算法、支持向量机算法、K均值算法和关联规则挖掘算法等。

5. 聚类分析是将数据对象分为不同的组别,而分类分析是根据已有的分类标签对数据对象进行分类。

6. 关联规则挖掘是在大规模数据集中寻找项目之间的有趣关系的过程。

例如,购买尿布的人也倾向于购买婴儿食品。

7. 评估模型的性能可以使用准确率、精确率、召回率、F1值等指标进行评估。

8. 过拟合是指模型在训练集上表现很好,但在测试集或真实数据上表现糟糕的现象。

为了避免过拟合,可以使用交叉验证、正则化等方法。

数据挖掘试题(110道)

数据挖掘试题(110道)

单选题1.某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖掘的哪类问题?(A)A.xx规则发现B.聚类C.分类D.自然语言处理2.以下两种描述分别对应哪两种对分类算法的评价标准?(A)(a)警察抓小偷,描述警察抓的人中有多少个是小偷的标准。

(b)描述有多少比例的小偷给警察抓了的标准。

A. Precision,RecallB. Recall,PrecisionA. Precision,ROC D. Recall,ROC3.将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C)A.频繁模式挖掘B.分类和预测C.数据预处理D.数据流挖掘4.当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?(B)A.分类B.聚类C.关联分析D.隐马尔可夫链5.什么是KDD?(A)A.数据挖掘与知识发现B.领域知识发现C.文档知识发现D.动态知识发现6.使用交互式的和可视化的技术,对数据进行探索属于数据挖掘的哪一类任务?(A)A.探索性数据分析B.建模描述C.预测建模D.寻找模式和规则7.为数据的总体分布建模;把多维空间划分成组等问题属于数据挖掘的哪一类任务?(B)A.探索性数据分析B.建模描述C.预测建模D.寻找模式和规则8.建立一个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的哪一类任务?(C)A.根据内容检索B.建模描述C.预测建模D.寻找模式和规则9.用户有一种感兴趣的模式并且希望在数据集中找到相似的模式,属于数据挖掘哪一类任务?(A)A.根据内容检索B.建模描述C.预测建模D.寻找模式和规则11.下面哪种不属于数据预处理的方法?(D)A变量代换B离散化C 聚集D 估计遗漏值12.假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215使用如下每种方法将它们划分成四个箱。

数据挖掘考试题及答案

数据挖掘考试题及答案

数据挖掘考试题及答案一、单项选择题(每题2分,共20分)1. 数据挖掘的主要任务不包括以下哪一项?A. 分类B. 聚类C. 预测D. 数据清洗答案:D2. 以下哪个算法不是用于分类的?A. 决策树B. 支持向量机C. K-meansD. 神经网络答案:C3. 在数据挖掘中,关联规则挖掘主要用于发现以下哪种类型的模式?A. 序列模式B. 分类模式C. 频繁项集D. 聚类模式答案:C4. 以下哪个指标不是用于评估分类模型性能的?A. 准确率B. 召回率C. F1分数D. 马氏距离答案:D5. 在数据挖掘中,以下哪个算法是用于聚类的?A. K-meansB. 逻辑回归C. 随机森林D. 支持向量机答案:A6. 以下哪个选项不是数据挖掘过程中的步骤?A. 数据预处理B. 模式发现C. 结果评估D. 数据存储答案:D7. 在数据挖掘中,异常检测的主要目的是识别以下哪种类型的数据?A. 频繁出现的模式B. 罕见的模式C. 预测未来的数据D. 聚类的数据答案:B8. 以下哪个选项不是数据挖掘中常用的数据预处理技术?A. 数据清洗B. 数据集成C. 数据变换D. 数据压缩答案:D9. 在数据挖掘中,以下哪个算法是用于特征选择的?A. 主成分分析B. 线性判别分析C. 支持向量机D. 决策树答案:D10. 以下哪个选项不是数据挖掘中常用的数据表示方法?A. 决策树B. 向量空间模型C. 邻接矩阵D. 频率分布表答案:D二、多项选择题(每题3分,共15分)11. 数据挖掘中常用的聚类算法包括哪些?A. K-meansB. 层次聚类C. DBSCAND. 支持向量机答案:A、B、C12. 在数据挖掘中,以下哪些是关联规则挖掘的典型应用场景?A. 市场篮分析B. 异常检测C. 推荐系统D. 社交网络分析答案:A、C13. 数据挖掘中,以下哪些是分类模型评估的常用指标?A. 准确率B. 召回率C. ROC曲线D. 马氏距离答案:A、B、C14. 在数据挖掘中,以下哪些是特征工程的步骤?A. 特征选择B. 特征提取C. 特征变换D. 数据清洗答案:A、B、C15. 数据挖掘中,以下哪些是数据预处理的常见任务?A. 缺失值处理B. 异常值检测C. 数据规范化D. 数据压缩答案:A、B、C三、简答题(每题10分,共30分)16. 请简述数据挖掘中分类和聚类的主要区别。

数据挖掘试题及答案

数据挖掘试题及答案

数据挖掘试题及答案### 数据挖掘试题及答案#### 一、选择题1. 数据挖掘的最终目标是什么?- A. 数据清洗- B. 数据集成- C. 数据分析- D. 发现知识答案:D2. 以下哪个算法不属于聚类算法?- A. K-means- B. DBSCAN- C. Apriori- D. Hierarchical Clustering答案:C3. 在数据挖掘中,关联规则挖掘主要用于发现什么? - A. 异常值- B. 频繁项集- C. 趋势- D. 聚类答案:B4. 决策树算法中的剪枝操作是为了解决什么问题?- A. 过拟合- B. 欠拟合- C. 数据不平衡- D. 特征选择答案:A5. 以下哪个是时间序列分析的常用方法?- A. 逻辑回归- B. 线性回归- C. ARIMA模型- D. 支持向量机答案:C#### 二、简答题1. 简述数据挖掘中的分类和聚类的区别。

答案:分类是监督学习过程,它使用标记的训练数据来预测数据的类别。

聚类是无监督学习过程,它将数据分组,使得同一组内的数据点相似度较高,不同组之间的数据点相似度较低。

2. 解释什么是异常检测,并给出一个实际应用的例子。

答案:异常检测是一种识别数据集中异常或不寻常模式的方法。

它通常用于识别欺诈行为、网络安全问题或机械故障。

例如,在信用卡交易中,异常检测可以用来识别潜在的欺诈行为。

3. 描述决策树的工作原理。

答案:决策树通过一系列的问题(通常是二元问题)来对数据进行分类。

从根节点开始,数据被分割成不同的子集,然后每个子集继续被分割,直到达到叶节点,叶节点代表最终的分类结果。

#### 三、应用题1. 给定一组客户数据,包括年龄、收入和购买历史。

使用数据挖掘技术来识别哪些客户更有可能购买新产品。

答案:可以使用决策树或逻辑回归等分类算法来分析客户数据,识别影响购买行为的关键特征。

通过训练模型,可以预测哪些客户更有可能购买新产品。

2. 描述如何使用关联规则挖掘来发现超市中商品的购买模式。

数据挖掘期末试题及答案

数据挖掘期末试题及答案

数据挖掘期末试题及答案一、选择题(每题2分,共20分)1. 数据挖掘中,以下哪个算法是用于分类的?A. AprioriB. K-meansC. KNND. ID32. 以下哪个不是数据挖掘的步骤?A. 数据预处理B. 数据集成C. 数据可视化D. 数据存储3. 在关联规则挖掘中,支持度(Support)是指什么?A. 规则出现的频率B. 规则的可信度C. 规则的覆盖范围D. 规则的强度4. 以下哪个是聚类算法?A. Logistic RegressionB. Decision TreeC. Naive BayesD. Hierarchical Clustering5. 数据挖掘中,特征选择的目的是什么?A. 增加数据量B. 减少数据量C. 增加模型复杂度D. 减少模型复杂度二、简答题(每题10分,共30分)1. 请简述数据挖掘中过拟合的概念及其预防方法。

2. 解释什么是决策树,并说明其在数据挖掘中的应用。

3. 描述数据预处理的重要性及其主要步骤。

三、应用题(每题25分,共50分)1. 假设你有一个包含客户购买历史的数据集,描述如何使用数据挖掘技术来发现潜在的购买模式。

2. 给出一个实际例子,说明如何使用关联规则挖掘来提高零售业的销售效率。

四、案例分析(共30分)1. 阅读以下案例描述,并分析使用数据挖掘技术解决该问题的优势和可能遇到的挑战。

案例描述:一家电子商务公司想要通过分析用户浏览和购买行为来优化其推荐系统。

公司收集了大量用户数据,包括浏览历史、购买记录、用户评分和反馈。

答案:一、选择题1. D2. D3. A4. D5. D二、简答题1. 过拟合是指模型在训练数据上表现良好,但在新的、未见过的数据上表现差的现象。

预防过拟合的方法包括:使用交叉验证、正则化技术、减少模型复杂度等。

2. 决策树是一种监督学习算法,用于分类和回归任务。

它通过一系列的问题将数据分割成不同的子集,直到达到一个纯度的节点,即决策点。

数据挖掘期末考试试题(含答案)

数据挖掘期末考试试题(含答案)

数据挖掘期末考试试题(含答案)题目一:数据预处理题目描述:给定一个包含缺失值的数据集,采取合适的方法对缺失值进行处理,并解释你的方法选择的原因。

答案:缺失值在数据分析中是一个常见的问题。

我选择使用均值填充的方法来处理缺失值。

这种方法将缺失的值用该特征的均值进行代替。

我选择均值填充的原因是因为这种方法简单易用,并且可以保持数据的整体分布特征。

均值填充假设缺失值与观察到值的分布相似,因此使用均值填充可以避免引入过多的噪音。

题目二:关联规则挖掘题目描述:给定一个购物篮数据集,包含多个商品的组合,使用Apriori 算法挖掘频繁项集和关联规则,并给出相关的评估指标。

答案:Apriori算法是一种常用的关联规则挖掘算法。

它通过计算支持度和置信度来挖掘频繁项集和关联规则。

首先,通过扫描数据集,计算每个项集的支持度。

然后,根据设定的最小支持度阈值,选取频繁项集作为结果。

接着,根据频繁项集,计算每个规则的置信度。

利用最小置信度阈值,筛选出高置信度的关联规则。

评估指标包括支持度、置信度和提升度。

支持度衡量一个项集在数据集中出现的频率,置信度衡量规则的可信程度,提升度衡量规则对目标项集出现的增益。

题目三:聚类算法题目描述:给定一个数据集,包含多个样本和多个特征,使用K-means算法将样本划分为K个簇,并解释评估聚类性能的指标。

答案:K-means算法是一种常用的聚类算法。

它通过迭代的方式将样本划分为K个簇。

首先,随机选择K个初始聚类中心。

然后,对于每个样本,计算其与每个聚类中心的距离,并将其划分到距离最近的簇中。

接着,更新每个簇的聚类中心,计算新的聚类中心位置。

重复以上步骤,直到聚类中心不再发生变化或达到预定的迭代次数。

评估聚类性能的指标包括簇内平方和(SSE)和轮廓系数。

簇内平方和衡量样本与其所属簇的距离之和,SSE越小表示聚类效果越好。

轮廓系数衡量样本与其所属簇以及其他簇之间的距离,值介于-1到1之间,越接近1表示聚类效果越好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单选题1. 某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖掘的哪类问题? (A)A. 关联规则发现B. 聚类C. 分类D. 自然语言处理3. 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务? (C)A. 频繁模式挖掘B. 分类和预测C. 数据预处理D. 数据流挖掘4. 当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?(B)A. 分类B. 聚类C. 关联分析D. 隐马尔可夫链6. 使用交互式的和可视化的技术,对数据进行探索属于数据挖掘的哪一类任务?( A )A. 探索性数据分析B. 建模描述C. 预测建模D. 寻找模式和规则11. 下面哪种不属于数据预处理的方法?(D)A 变量代换B 离散化C 聚集D 估计遗漏值12. 假设 12个销售价格记录组已经排序如下: 5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215 使用如下每种方法将它们划分成四个箱。

等频(等深)划分时, 15 在第几个箱子内? (B) A 第一个 B 第二个C第三个 D 第四个13. 上题中,等宽划分时(宽度为50),15 又在哪个箱子里?(A)A 第一个B 第二个C 第三个D 第四个16. 只有非零值才重要的二元属性被称作: ( C )A 计数属性B 离散属性C 非对称的二元属性D 对称属性17. 以下哪种方法不属于特征选择的标准方法: (D)A 嵌入B 过滤C 包装D 抽样18. 下面不属于创建新属性的相关方法的是:(B)A 特征提取B 特征修改C 映射数据到新的空间D 特征构造22. 假设属性 income 的最大最小值分别是 12000 元和 98000 元。

利用最大最小规范化的方法将属性的值映射到 0 至 1 的范围内。

对属性 income 的 73600 元将被转化为: (D)A 0.821B 1.224C 1.458D 0.71623•假定用于分析的数据包含属性age。

数据元组中age的值如下(按递增序):13, 15, 16,16,19,20,20,21,22,22,25,25,25,30,33,33,35,35,36,40,45,46,52,70, 问题:使用按箱平均值平滑方法对上述数据进行平滑, 箱的深度为 3。

第二个箱子值为:(A)A 18.3B 22.6C 26.8D 27.928. 数据仓库是随着时间变化的,下面的描述不正确的是(C)A. 数据仓库随时间的变化不断增加新的数据内容 ;B. 捕捉到的新数据会覆盖原来的快照 ;C. 数据仓库随事件变化不断删去旧的数据内容 ;D. 数据仓库中包含大量的综合数据,这些综合数据会随着时间的变化不断地进行重新综合.29. 关于基本数据的元数据是指 : (D)A. 基本元数据与数据源,数据仓库,数据集市和应用程序等结构相关的信息;B. 基本元数据包括与企业相关的管理方面的数据和信息 ;C. 基本元数据包括日志文件和简历执行处理的时序调度信息 ;D. 基本元数据包括关于装载和更新处理,分析处理以及管理方面的信息.30. 下面关于数据粒度的描述不正确的是 : (C)A. 粒度是指数据仓库小数据单元的详细程度和级别 ;B. 数据越详细 ,粒度就越小 ,级别也就越高 ;C. 数据综合度越高 ,粒度也就越大 ,级别也就越高 ;D. 粒度的具体划分将直接影响数据仓库中的数据量以及查询质量 .33. OLAP 技术的核心是 : (D)A. 在线性 ;B. 对用户的快速响应 ;C. 互操作性 .D. 多维分析 ;34. 关于 OLAP 的特性 ,下面正确的是 : (D)(1)快速性 (2)可分析性 (3) 多维性 (4)信息性 (5)共享性A. (1) (2) (3)B. (2) (3) (4)C. (1) (2) (3) (4)D. (1) (2) (3) (4) (5)35. 关于 OLAP 和 OLTP 的区别描述 ,不正确的是 : (C)A. OLAP 主要是关于如何理解聚集的大量不同的数据.它与 OTAP 应用程序不同 .B. 与 OLAP 应用程序不同 ,OLTP 应用程序包含大量相对简单的事务 .C. OLAP 的特点在于事务量大 ,但事务内容比较简单且重复率高 .D. OLAP 是以数据仓库为基础的 ,但其最终数据来源与 OLTP 一样均来自底层的数据库系统 , 两者面对的用户是相同的 .37. 关于 OLAP 和 OLTP 的说法 ,下列不正确的是 : (A)A. OLAP 事务量大 ,但事务内容比较简单且重复率高 .B. OLAP 的最终数据来源与 OLTP 不一样 .C. OLTP 面对的是决策人员和高层管理人员 .D. OLTP 以应用为核心 ,是应用驱动的 .38. 设 X={1 ,2, 3}是频繁项集,则可由 X 产生 __(C)__个关联规则。

A、4B、5C、6D、740. 概念分层图是 __(B)__ 图。

A、无向无环B、有向无环C、有向有环D、无向有环41. 频繁项集、频繁闭项集、最大频繁项集之间的关系是: (C)A、频繁项集频繁闭项集=最大频繁项集B、频繁项集=频繁闭项集最大频繁项集C、频繁项集频繁闭项集最大频繁项集D、频繁项集=频繁闭项集=最大频繁项集44. 在图集合中发现一组公共子结构,这样的任务称为 ( B )A、频繁子集挖掘B、频繁子图挖掘C、频繁数据项挖掘D、频繁模式挖掘48. 以下哪些算法是分类算法, A,DBSCAN B,C4.5 C,K-Mean D,EM (B)50.决策树中不包含一下哪种结点,A,根结点(root node) B,内部结点(internal node) C,外部结点( external node) D, 叶结点( leaf node) (C)53. 以下哪项关于决策树的说法是错误的 (C)A. 冗余属性不会对决策树的准确率造成不利的影响B. 子树可能在决策树中重复多次C. 决策树算法对于噪声的干扰非常敏感D. 寻找最佳决策树是 NP 完全问题54. 在基于规则分类器的中,依据规则质量的某种度量对规则排序,保证每一个测试记录都是由覆盖它的“最好的”规格来分类,这种方案称为 (B)A. 基于类的排序方案B. 基于规则的排序方案C. 基于度量的排序方案D. 基于规格的排序方案。

57. 如果对属性值的任一组合, R 中都存在一条规则加以覆盖,则称规则集 R 中的规则为 (B)A,无序规则B,穷举规则C,互斥规则D,有序规则58. 如果规则集中的规则按照优先级降序排列,则称规则集是 (D)A,无序规则B,穷举规则C,互斥规则D,有序规则61. 以下关于人工神经网络( ANN )的描述错误的有 (A)A,神经网络对训练数据中的噪声非常鲁棒B,可以处理冗余特征 C,训练ANN是一个很耗时的过程D,至少含有一个隐藏层的多层神经网络二、多选题1. 通过数据挖掘过程所推倒出的关系和摘要经常被称为: (A B)A. 模型B. 模式C. 模范D. 模具2 寻找数据集中的关系是为了寻找精确、方便并且有价值地总结了数据的某一特征的表示,这个过程包括了以下哪些步骤?(A B C D)A. 决定要使用的表示的特征和结构B. 决定如何量化和比较不同表示拟合数据的好坏C. 选择一个算法过程使评分函数最优D. 决定用什么样的数据管理原则以高效地实现算法。

4. 数据挖掘算法的组件包括: (A B C D)A. 模型或模型结构B. 评分函数C. 优化和搜索方法D. 数据管理策略5. 以下哪些学科和数据挖掘有密切联系? (A D)A. 统计B. 计算机组成原理C. 矿产挖掘D. 人工智能6. 在现实世界的数据中,元组在某些属性上缺少值是常有的。

描述处理该问题的各种方法有:(ABCDE )A 忽略元组 C 使用一个全局常量填充空缺值B 使用属性的平均值填充空缺值 D 使用与给定元组属同一类的所有样本的平均值E 使用最可能的值填充空缺值8. 对于数据挖掘中的原始数据,存在的问题有:(ABCDE )A 不一致B 重复C 不完整D 含噪声E 维度高12. 下面列出的条目中,哪些是数据仓库的基本特征:(ACD)A. 数据仓库是面向主题的B. 数据仓库的数据是集成的C. 数据仓库的数据是相对稳定的D. 数据仓库的数据是反映历史变化的E. 数据仓库是面向事务的13. 以下各项均是针对数据仓库的不同说法,你认为正确的有( BCDE )。

A •数据仓库就是数据库B •数据仓库是一切商业智能系统的基础C.数据仓库是面向业务的,支持联机事务处理( OLTP)D •数据仓库支持决策而非事务处理E. 数据仓库的主要目标就是帮助分析,做长期性的战略制定14. 数据仓库在技术上的工作过程是:(ABCD)A. 数据的抽取B. 存储和管理C. 数据的表现D. 数据仓库设计E. 数据的表现15. 联机分析处理包括以下哪些基本分析功能?(BCD)A. 聚类B. 切片C. 转轴D. 切块E. 分类16. 利用 Apriori 算法计算频繁项集可以有效降低计算频繁集的时间复杂度。

在以下的购物篮中产生支持度不小于 3的候选 3-项集,在候选 2-项集中需要剪枝的是( BD)ID 项集1 面包、牛奶2 面包、尿布、啤酒、鸡蛋3 牛奶、尿布、啤酒、可乐4 面包、牛奶、尿布、啤酒5 面包、牛奶、尿布、可乐A、啤酒、尿布B、啤酒、面包C、面包、尿布D、啤酒、牛奶18. Apriori 算法的计算复杂度受 __(ABCD)?__ 影响。

A、支持度阀值B、项数(维度)C、事务数D、事务平均宽度19. 非频繁模式 __(AD)__A、其支持度小于阈值B、都是不让人感兴趣的C、包含负模式和负相关模式D、对异常数据项敏感22.贝叶斯信念网络(BBN)有如下哪些特点,A,构造网络费时费力 B,对模型的过分问题非常鲁棒C,贝叶斯网络不适合处理不完整的数据D,网络结构确定后,添加变量相当麻烦( AB )三、判断题1. 数据挖掘的主要任务是从数据中发现潜在的规则,从而能更好的完成描述数据、预测数据等任务。

(对)2. 数据挖掘的目标不在于数据采集策略,而在于对于已经存在的数据进行模式的发掘。

(对)3. 图挖掘技术在社会网络分析中扮演了重要的角色。

(对)4. 模式为对数据集的全局性总结,它对整个测量空间的每一点做出描述;模型则对变量变化空间的一个有限区域做出描述。

(错)5. 寻找模式和规则主要是对数据进行干扰,使其符合某种规则以及模式。

(错)6. 离群点可以是合法的数据对象或者值。

(对)7. 离散属性总是具有有限个值。

(错)8. 噪声和伪像是数据错误这一相同表述的两种叫法。

相关文档
最新文档