工程材料及热处理
工程材料及热处理pdf
![工程材料及热处理pdf](https://img.taocdn.com/s3/m/b660804a7dd184254b35eefdc8d376eeaeaa17ed.png)
工程材料及热处理一、引言工程材料是现代工业和科技领域中不可或缺的一部分,广泛应用于建筑、机械、电子、航空航天、交通运输等领域。
热处理是工程材料加工过程中的重要环节,通过改变材料的内部结构,提高其力学性能、物理性能和化学性能。
本文将详细介绍工程材料的分类、性能与特点、热处理原理、常见热处理工艺、材料选用原则、材料检测与评估、热处理设备与工艺优化以及工程材料应用领域。
二、工程材料分类工程材料可分为金属材料和非金属材料两大类。
金属材料包括钢铁材料、有色金属材料和合金等;非金属材料包括塑料、橡胶、陶瓷、玻璃等。
这些材料在性能上各有特点,适用于不同的工程领域。
三、材料性能与特点1.金属材料:具有较高的强度、塑性和韧性,具有良好的导电性和导热性。
不同的金属材料在耐磨性、耐腐蚀性等方面也表现出不同的特点。
2.非金属材料:具有轻质、高强、耐腐蚀等特点,且具有良好的绝缘性能。
非金属材料在加工过程中具有较好的可塑性和可加工性。
四、热处理原理热处理是通过加热、保温和冷却等工艺手段,改变材料的内部结构,从而提高其力学性能和物理性能。
热处理过程中,材料的内部原子或离子重新排列,形成新的晶体结构,从而改变材料的性质。
五、常见热处理工艺1.退火:将材料加热到一定温度后保温一段时间,然后缓慢冷却至室温。
退火可以消除材料的内应力,改善其组织和性能。
2.淬火:将材料加热到一定温度后迅速冷却,使材料表面硬化而内部保持韧性。
淬火可以提高材料的硬度和耐磨性。
3.回火:将淬火后的材料加热到一定温度后保温一段时间,然后缓慢冷却至室温。
回火可以消除材料的内应力,改善其组织和性能。
4.表面处理:通过化学或电化学方法对材料表面进行处理,提高其耐磨性、耐腐蚀性和抗氧化性等性能。
六、材料选用原则1.根据工程要求选择合适的材料类型和牌号;2.考虑材料的性能参数,如强度、硬度、韧性等;3.考虑材料的耐腐蚀性、耐磨性等特殊要求;4.考虑材料的加工工艺和经济性等因素。
《工程材料与热处理》(适用中职生源)
![《工程材料与热处理》(适用中职生源)](https://img.taocdn.com/s3/m/0fa6d3c96429647d27284b73f242336c1eb930a1.png)
《工程材料与热处理》课程标准课程名称:工程材料与热处理课程性质:专业基础课学分:3.5计划学时:60适用专业:机械设计与制造1.前言1.1课程性质工程材料与热处理机制专业学生必修的一门专业基础课。
是一门应用性和综合性很强的课程,使学生通过理论教学,获得常用机械工程材料、金属热加工和热处理的基本知识,为学习后续课程及形成综合职业能力打下必要的基础。
1.2设计思路本课程根据机械行业技术专业发展需要和完成职业岗位实际工作任务所需要的知识、能力、素质要求选择课程内容,从“任务与职业能力”分析出发,设定职业能力培养目标。
通过绪论\金属材料力学性能、纯金属与合金的晶体结构与结晶、铁碳合金相图、钢的热处理、常用钢材及选用、铸铁、非铁金属材料、非金属材料、铸造成型工艺、锻压成形工艺、焊接成形工艺、机械零件的毛坯成形综合选材等十三个任务的学习,让学生在了解金属材料特性,各毛培成形工艺过程的基础上,初步形成合理选择零件材料及毛坯加工成形方法的能力,培养学生解决实际问题的能力。
在课程实施过程中,充分利用课程特征,加大学生工程体验的教学设计,激发学生的主体意识和学习兴趣。
2.课程目标2.1总体目标学习并掌握常用材料特性和用途、掌握常用材料的热处理方法与作用和用途,使学生能合理选择材料和进行合理的热处理,从而培养适合专业发展需要的专门人才。
2.2具体目标2.2.1能力目标:1.具有根据零件的使用要求选择零件材料的能力;2.初步具有选择钢材热处理方法的能力;3.初步具有选择零件毛坯成形方法的能力。
2.2.2知识目标:1.以铁碳合金的成分组织温度性能为主线,了解四者的相互关系和变化规律的基础知识,初步具有根据零件的使用要求选择零件材料的能力;2.了解钢材在实际加热和冷却时内部组织的变化及其对钢材性能的影响,了解各种热处理方法的目的、工艺和应用,初步具有选择钢材热处理方法的能力;3.了解毛坯的成形方法和基本工艺过程,初步具有选择零件毛坯成形方法的能力。
工程材料及金属热处理知识
![工程材料及金属热处理知识](https://img.taocdn.com/s3/m/b7b32f5aa517866fb84ae45c3b3567ec102ddc9c.png)
工程材料及金属热处理知识工程材料是指用于机械、建筑、电气等领域的材料。
它们通常需要具有高强度、耐腐蚀、耐磨损等特性。
工程材料可以分为金属材料、非金属材料和复合材料。
金属材料是最常见的工程材料,包括铁、钢、铜、铝、镁等金属以及它们的合金。
金属材料具有良好的导电性、导热性、高强度和塑性。
常见的金属材料处理方法有退火、淬火、回火、冷作等。
其中,淬火是加热金属到一定温度后迅速冷却,目的是增加材料的硬度和强度;回火则是通过再次加热金属来减轻淬火后的内应力,使得金属具有更好的韧性。
非金属材料包括塑料、橡胶、陶瓷等。
它们通常具有较低的密度、化学稳定性、耐腐蚀和绝缘性。
热处理方法主要包括退火、烧结和化学处理。
复合材料是将不同材料组合在一起形成的新材料,如碳纤维增强塑料、玻璃纤维增强塑料等。
这种材料结合了各种材料的优点,因此在许多领域都有广泛的应用。
金属的热处理是一种改变金属结构和性质的方法。
经过热处理,金属可以获得更高的硬度、强度和耐蚀性。
以下是一些金属热处理方法的描述:退火:将金属加热到适当温度,保持一段时间后缓慢冷却。
该方法可使金属软化、去除内部应力,并提高延展性和冲击性能。
淬火:将金属加热到一定温度,然后迅速冷却。
这会使金属的组织产生变化,从而提高硬度和强度。
回火:通过在较低的温度下将金属加热一段时间,以达到减轻淬火后产生的内部应力的目的。
正火:将金属加热到适当的温度,然后在空气中自然冷却。
这样的过程可以增加材料的硬度和强度。
淬化:使用醇类或水溶液使淬火后的金属变脆,然后在热水中浸泡一段时间来恢复其硬度和强度。
热处理对于工程材料的重要性不言而喻。
能够正确选择和使用热处理方法将有助于确保材料能够耐用、稳定地运行,并具有所需的物理和化学性质。
工程材料及热处理——材料的力学性能和工艺性能
![工程材料及热处理——材料的力学性能和工艺性能](https://img.taocdn.com/s3/m/4504be1ff18583d049645944.png)
第三节 材料的工艺性能
材料的成型 铸造、拉、拔、挤、压、锻 车、钳、铣、刨、磨
材 料 加 工
材料的切削
材料的改性
材料的联接
合金化、热处理
焊接、粘接
工程材料的工艺性能主要有铸造性能、锻压性能、 焊接性能、切削加工性能、热处理性能。
具体实验条件及应用范围参见表1-2
优点:操作简便,直接读数,压痕小,应用范围最广。 缺点:需在试样不同部位测定,取平均值。
3.维氏硬度 (HV)
维氏硬度计
顶角为136°的金刚石正四棱锥压头 压痕两条对角线的平均长度d
维氏硬度值不需要计算,一般是根据d查表得出。
优点:压痕浅,轮廓清晰,数值准确,硬度范围广,广泛 应用于测量金属镀层、薄片材料、化学热处理后的 表面硬度和显微硬度。 缺点:不适合成批生产的检验,测量效率低于洛氏硬度。
Titanic号钢板和近代船用钢板的冲击试验结果比较
Titanic
近代船用钢板
六、疲劳极限
1.疲劳现象
材料在交变载荷作用下,尽管零件所受的应力低于屈服点, 但经过较长时间的工作后,在一处或几处产生局部永久性累积损 伤,经一定循环次数后产生裂纹或突然发生完全断裂,这种现象 称为疲劳。
2.疲劳极限σ-1
四、硬度(Hardness)
材料的软硬程度,表征抵抗局部变形或破坏的能力。 压入法测量硬度常用的方法有: 压入法 弹性回跳法
肖氏 布氏、洛氏、维氏
划痕法
莫氏
1.布氏硬度 (HBS/HBW)
布氏硬度计
数值一般不需计算,而用带有刻度盘的 放大镜测量出压痕的直径,直接由表查得硬 度值大小,一般只标大小而不标单位。
摆锤式冲击试验
AK mgH mgh mg( H h)
(建筑工程管理)工程材料及热处理
![(建筑工程管理)工程材料及热处理](https://img.taocdn.com/s3/m/eb94ce1a3b3567ec112d8a21.png)
工程材料及热处理授课教师:李静研究内容科学性a. 从化学角度出发,研究材料的化学组成、键性、 结构与性能的关系b. 从物理角度,阐述材料的组成原子、分子及其运动状态与各物性之间的关系c. 材料的制备工艺技术性d. 材料的性能表征e. 材料的应用(3) 材料工程 Materials Engineering对于工程技术人员:如何选择特定应用环境下需要的材料,来满足使用要求,如何按实际要求设计新材料,须弄清以下三个关系使用性能Performance合成与制备过程 Synthesis and Processing 组成与结构Compositionsand Structures性质Properties(工程)(化学) (物理学)第二节合金及相结构一基本知识:1.合金:有2种或2种以上的金属元素或金属元素与非金属元素组成的具有金属性质的物质。
2.组元:组成合金的最简单、最基本、能够独立存在的物质。
3.相:成分相同,结构相同,并与其他部分以界面分开的均匀组成部分。
二、合金中的相结构固溶体:形成合金时,如果一种组元的晶格中可以包含其他组元,即新相的晶格结构与某一组元的晶格相同,这种新相称为固溶体。
晶格与固溶体相同的组元称为溶剂,其他组元称为溶质。
化合物:形成合金时,新相的晶格结构不同于任一组元的晶格,则新相是组元间形成的一种新的物质,这种新相称为化合物。
(一)固溶体1.分类:置换固溶体和间隙固溶体2.特征:造成晶格畸变,固溶体的强度及硬度升高,物理性能也会发生变化。
——固溶强化(二)化合物1.分类:正常价化合物,电子价化合物及间隙化合物2.各种化合物的比较第四节二元合金相图1.合金系:由给定的的组元可以配制成不同成分的合金,这些合金组成的合金系统称为合金系。
2.(相)平衡:在一定条件下,合金中参与结晶或相变过程中的各相之间的相对重量和相的浓度不再改变的状态。
3.相图:不同温度及成分下,合金中的合金相的构成及相之间的平衡关系的图形。
工程材料及热处理(完整版)
![工程材料及热处理(完整版)](https://img.taocdn.com/s3/m/9e9edacb89eb172ded63b7c5.png)
工程材料及热处理一、名词解释(20分)8个名词解释1.过冷度:金属实际结晶温度T和理论结晶温度、Tm之差称为过冷度△T,△T=Tm-T。
2.固溶体:溶质原子溶入金属溶剂中形成的合金相称为固溶体。
3.固溶强化:固溶体的强度、硬度随溶质原子浓度升高而明显增加,而塑、韧性稍有下降,这种现象称为固溶强化。
4.匀晶转变:从液相中结晶出单相的固溶体的结晶过程称匀晶转变。
5.共晶转变:从一个液相中同时结晶出两种不同的固相6.包晶转变:由一种液相和固相相互作用生成另一种固相的转变过程,称为包晶转变。
7.高温铁素体:碳溶于δ-Fe的间隙固溶体,体心立方晶格,用符号δ表示。
铁素体:碳溶于α-Fe的间隙固溶体,体心立方晶格,用符号α或F表示。
奥氏体:碳溶于γ-Fe的间隙固溶体,面心立方晶格,用符号γ或F表示。
8.热脆(红脆):含有硫化物共晶的钢材进行热压力加工,分布在晶界处的共晶体处于熔融状态,一经轧制或锻打,钢材就会沿晶界开裂。
这种现象称为钢的热脆。
冷脆:较高的含磷量,使钢显著提高强度、硬度的同时,剧烈地降低钢的塑、韧性并且还提高了钢的脆性转化温度,使得低温工作的零件冲击韧性很低,脆性很大,这种现象称为冷脆。
氢脆:氢在钢中含量尽管很少,但溶解于固态钢中时,剧烈地降低钢的塑韧性增大钢的脆性,这种现象称为氢脆。
9.再结晶:将变形金属继续加热到足够高的温度,就会在金属中发生新晶粒的形核和长大,最终无应变的新等轴晶粒全部取代了旧的变形晶粒,这个过程就称为再结晶。
10.马氏体:马氏体转变是指钢从奥氏体状态快速冷却,来不及发生扩散分解而产生的无扩散型的相变,转变产物称为马氏体。
含碳量低于0.2%,板条状马氏体;含碳量高于1.0%,针片状马氏体;含碳量介于0.2%-1.0%之间,马氏体为板条状和针片状的混合组织。
11.退火:钢加热到适当的温度,经过一定时间保温后缓慢冷却,以达到改善组织提高加工性能的一种热处理工艺。
12.正火:将钢加热到3c A或ccmA以上30-50℃,保温一定时间,然后在空气中冷却以获得珠光体类组织的一种热处理工艺。
工程材料及热处理
![工程材料及热处理](https://img.taocdn.com/s3/m/367a04ab0875f46527d3240c844769eae109a366.png)
目 录
• 工程材料概述 • 金属材料 • 非金属材料 • 材料的选择与加工工艺 • 材料性能的检测与评价
工程材料概述
01
定义与分类
定义
工程材料是指在工业生产和工程建设 中使用的各种金属、非金属和复合材 料。
分类
根据材料的组成、结构和性能特点, 工程材料可分为金属材料、非金属材 料和复合材料等。
材料的物理与机械性能
物理性能
包括密度、热膨胀系数、热导率、电导 率等,这些性能决定了材料在不同环境 下的表现。
VS
机械性能
包括硬度、强度、韧性、耐磨性等,这些 性能决定了材料在受力或受冲击时的表现 。
材料的应用领域
航空航天
需要高强度、轻质、耐 高温的材料,如钛合金
和铝合金。
汽车制造
需要高强度、耐腐蚀、 轻质的材料,如高强度
国家标准
行业标准
根据国家制定的相关标准,对材料的性能 进行评估和比较。
根据行业制定的相关标准,对材料的性能 进行评估和比较。
企业标准
客户要求
根据企业制定的相关标准,对材料的性能 进行评估和比较。
根据客户提出的具体要求,对材料的性能 进行评估和比较。
材料性能的优化与改进
材料成分优化
通过调整材料的化学成分,改善其性能, 如提高强度、韧性、耐腐蚀性等。
钢和铝合金。
建筑领域
需要耐久性、防火性能 好的材料,如混凝土和
钢材。
电子产品
需要导电、导热性能好 的材料,如铜和铝。
金属材料
02
钢铁材料
碳钢
碳钢是一种以铁为主要元素,碳 含量一般在2.0%以下的铁碳合金。
根据碳含量的不同,碳钢的性能 和用途也有所不同。
工程材料及热处理
![工程材料及热处理](https://img.taocdn.com/s3/m/def7c84403020740be1e650e52ea551811a6c94a.png)
工程材料及热处理工程材料是指在工程设计和制造中所使用的材料,其性能和特性直接影响着工程产品的质量和使用寿命。
而热处理则是指通过加热、保温和冷却等工艺,改变材料的组织结构和性能,以达到提高材料硬度、强度、耐磨性和耐腐蚀性的目的。
本文将对工程材料及其热处理进行介绍和分析。
首先,工程材料包括金属材料、非金属材料和复合材料。
金属材料是工程中使用最广泛的材料,包括钢、铝、铜、镍等,具有优良的导热性、导电性和机械性能,常用于制造结构件、零部件和工具。
非金属材料包括塑料、橡胶、陶瓷等,具有轻质、绝缘、耐腐蚀等特点,常用于制造绝缘材料、密封件和化工设备。
复合材料是由两种或两种以上的材料组成,具有综合性能优异的特点,如碳纤维复合材料、玻璃钢复合材料等,广泛应用于航空航天、汽车、船舶等领域。
其次,热处理是对金属材料进行加热、保温和冷却等工艺处理,以改变其组织结构和性能。
常见的热处理工艺包括退火、正火、淬火、回火等。
退火是将金属材料加热至一定温度,然后缓慢冷却,以减少内部应力、改善塑性和韧性。
正火是将金属材料加热至一定温度,然后在油或水中急冷,以提高硬度和强度。
淬火是将金属材料加热至一定温度,然后在油或水中急冷,使其获得高硬度和强度。
回火是将经过淬火处理的金属材料加热至一定温度,然后冷却,以降低脆性和提高韧性。
最后,工程材料的选择和热处理工艺的应用是工程设计和制造中至关重要的环节。
在选择工程材料时,需要考虑其力学性能、耐磨性、耐腐蚀性、导热性、导电性等因素,以满足工程产品的使用要求。
在应用热处理工艺时,需要根据材料的种类和要求,选择合适的加热温度、保温时间和冷却方法,以获得理想的组织结构和性能。
同时,还需要注意控制热处理过程中的各项参数,以确保产品质量和稳定性。
综上所述,工程材料及热处理是工程设计和制造中不可或缺的重要内容,对工程产品的质量和性能有着直接的影响。
因此,工程技术人员需要对工程材料的性能和特性有深入的了解,熟悉各种热处理工艺和方法,以保证工程产品的质量和可靠性。
工程材料及热处理计划方案
![工程材料及热处理计划方案](https://img.taocdn.com/s3/m/658bcc2f1fd9ad51f01dc281e53a580217fc5057.png)
工程材料及热处理计划方案一、引言工程材料的选择和热处理方案的制定是工程设计中非常重要的一环,直接影响着工程产品的质量、性能和寿命。
在实际工程中,我们常常面对着众多材料选型和热处理方案选择的困难,而且这其中涉及到了许多复杂的技术问题。
因此,本文将结合实际工程案例,阐述工程材料及热处理计划方案的重要性,以及在实际工程中应该如何进行选择和制定。
二、工程材料的选择1. 材料选型的影响因素在工程设计中,对于材料的选择往往是一个非常复杂的过程,需要综合考虑许多因素。
其中,最主要的影响因素包括:工程产品的使用环境、使用要求和要求的性能指标。
例如,对于需要承受高温、高压的零部件,应选择具有较高耐热、抗压和耐腐蚀性能的材料;对于需要有较高强度、硬度和耐磨性的部件,应选择具有这些性能的材料。
此外,材料的可加工性、可焊接性、成本等也是影响材料选型的重要因素。
在选择材料时,必须综合考虑这些因素,使得所选材料既能够满足工程产品的使用要求,又能够满足生产加工的要求,并且成本合理。
2. 材料种类及特点根据不同的使用要求和要求的性能指标,工程材料可以分为金属材料、塑料材料、陶瓷材料、复合材料等几种。
其中,金属材料是应用最广泛的一类工程材料,主要包括铁、钢、铜、铝、镁、钛、镍、锌、锡等金属及其合金。
金属材料的特点是:具有良好的导电、导热和强度性能;可塑性、可焊性和可加工性强;一般具有较高的强度、硬度和耐磨性;易于回收再利用;但也存在一定的腐蚀、磨损和高温变形等问题。
另外,金属材料的选择和使用需要根据不同的要求,选择不同种类、牌号和热处理状态的材料。
比如,对于需要高强度、硬度和耐磨性的零部件,应选择高强度钢、合金钢、特种钢等材料,并通过热处理提高其性能。
三、热处理的基本概念1. 热处理的定义热处理是通过对金属材料进行加热、保温和冷却等一系列工艺过程,改善其组织结构和性能的工艺。
热处理工艺可以改变金属材料的组织组成、提高其强度、硬度、耐磨性、耐腐蚀性和韧性等性能。
工程材料-普通热处理与表面热处理)
![工程材料-普通热处理与表面热处理)](https://img.taocdn.com/s3/m/75b3e7cbf9c75fbfc77da26925c52cc58bd69084.png)
螺杆表面的 淬火裂纹
一、回火的目的
1、减少或消除淬火内 应力, 防止变形或开裂。
2、获得所需要的力学性能。淬火钢一般硬度高,脆 性大,回火可调整硬度、韧性。
3、稳定尺寸。淬火M和A’都是非平衡组织,有自发 向平衡组织转变的倾向。回火可使M与A’转变为平 衡或接近平衡的组织,防止使用时变形。
熔盐作为淬火介质称盐浴,冷却能力在水和油之间, 用于形状复杂件的分级淬火和等温淬火。
聚乙烯醇、硝盐水溶液等也是工业常用的淬火介质.
三、淬火方法
1、单液淬火法 加热工件在一种介质
中连续冷却到室温的 淬火方法。 操作简单,易实现自 动化。 采用不同的淬火方法 可弥补介质的不足。
1—单液淬火法 2—双液淬火法 3—分级淬火法 4—等温淬火法
淬成半马氏体的最大直径,用D0表示。 D0与介质有关,如45钢D0水=16mm,D0油=8mm。 只有冷却条件相同时,才能进行不同材料淬透性比
较,如45钢D0油=8mm,40Cr D0油=20mm。
马氏体
马氏体 索氏体
五、淬透性的应用
1、利用淬透性曲线及圆棒冷速与端淬距离的关系 曲线可以预测零件淬火后的硬度分布。下图为预 测50mm直径40MnB钢轴淬火后断面的硬度分布.
2、利用淬透性曲线进行选材。如要求厚60mm汽 车转向节淬火后表面硬度超过HRC50,3/4半径处 为HRC45。可按下图箭头所示程序进行选材分析.
3、利用淬透性可控制淬硬 层深度。
– 对于截面承载均匀的重要件, 要全部淬透。如螺栓、连杆、 模具等。对于承受弯曲、扭转 的零件可不必淬透(淬硬层深 度一般为半径的1/2~1/3),如 轴类、齿轮等。
火焰加热 感
应 加 热
表面淬火目的: ① 使表面具有高的硬度、耐磨性和疲劳极限; ② 心部在保持一定的强度、硬度的条件下,具有
工程材料及热处理
![工程材料及热处理](https://img.taocdn.com/s3/m/d91fc5b6c9d376eeaeaad1f34693daef5ef71324.png)
工程材料及热处理
工程材料是指用于各种工程和制造领域的材料,包括金属材料、聚合物材料、
复合材料等。
而热处理是指通过加热和冷却过程来改变材料的性能和结构。
工程材料的选择和热处理工艺对于产品的质量和性能具有至关重要的影响。
首先,工程材料的选择是工程设计中的重要环节。
不同的工程应用需要不同的
材料,比如在机械制造领域,需要具有良好机械性能和耐磨性的金属材料;在建筑领域,需要具有良好耐候性和耐腐蚀性的材料。
因此,工程师需要根据不同的工程要求选择合适的材料,以确保产品的性能和可靠性。
其次,热处理是改善材料性能的重要手段。
热处理可以通过改变材料的晶粒结构、组织形态和化学成分来提高材料的硬度、强度、韧性和耐磨性。
常见的热处理工艺包括退火、正火、淬火、回火等,每种工艺都有其特定的应用领域和效果。
通过合理的热处理工艺,可以使材料达到最佳的性能状态,满足工程设计的要求。
此外,工程材料的热处理还可以改善材料的加工性能。
在金属加工过程中,材
料的硬度和韧性对于加工工艺和工具的选择具有重要影响。
通过热处理可以调节材料的硬度和韧性,提高其加工性能,降低加工难度,提高加工效率。
总的来说,工程材料及热处理是工程设计和制造过程中不可或缺的环节。
工程
师需要充分了解不同材料的性能和特点,选择合适的材料,并通过合理的热处理工艺来改善材料的性能,以确保产品的质量和可靠性。
只有在工程材料的选择和热处理工艺的合理应用下,才能生产出性能优良的工程产品,满足不同工程领域的需求。
工程材料及热处理复习要点
![工程材料及热处理复习要点](https://img.taocdn.com/s3/m/7fe2c81714791711cc7917f4.png)
工程材料及热处理复习要点一、材料的力学性能1. 强度、塑性、冲击韧性的定义,常用衡量指标、符号及其含义;2. 布氏硬度HBS、洛氏硬度HRC的表示方法及应用;3. 当对零件热处理后的力学性能有要求时,在零件设计图纸上常常标出其硬度指标。
二、纯金属的晶体结构与结晶1.纯金属的三种典型晶格类型。
具有面心立方晶格的金属塑性最好。
2.晶体缺陷的三种类型及其对金属力学性能的影响。
(位错强化、细晶强化)3.纯金属结晶的必要条件和基本规律4.晶粒度的概念、晶粒大小对金属材料常温下力学性能的影响;5.铸造生产中(金属结晶时)常获得细小晶粒的方法。
三、合金的结构与结晶1.合金的两种相结构——固溶体和金属化合物的结构和性能特点。
(固溶强化)2. 合金与纯金属结晶相比的不同点:(1)纯金属的结晶是在恒温下进行的,只有一个相变点(临界点);合金的结晶是大多是在一个温度范围内进行的,结晶开始和终止温度不同,有两个相变点。
(2)液态合金结晶时,在局部范围内有成分的波动。
3.具有单相固溶体的合金塑性好,变形抗力小,具有良好的锻造性能。
→钢可加热到单相A区进行锻造成形。
共晶或接近共晶成分的合金熔点低,流动性好,铸造性能好。
→铸铁具有共晶反应,适于铸造成形。
四、铁碳合金1. F、A、Fe3C、P、Ld的定义、结构及性能特点2. 关于F—Fe3C相图(1)默画并填写各区的组织,A1、A3、Acm线的位置及含义(2)共晶反应、共析反应的反应式及其产物(3)亚共析(如45、60钢)、过共析钢(如T10、T12钢)的平衡结晶过程分析,发生了哪些转变,画出室温组织示意图。
(4)计算室温组织组成物的相对百分含量。
3. 含碳量对碳钢平衡组织和力学性能的影响。
(做到活学活用,如55页习题7、8、9)五、金属塑性变形1.加工硬化的定义、产生原因及利弊,如何消除。
2.理论上,热加工和冷加工如何区别。
注意:热塑性变形加工不产生加工硬化现象,但仍会使金属的组织和性能发生显著变化。
工程材料热处理
![工程材料热处理](https://img.taocdn.com/s3/m/bb5d35d343323968001c928b.png)
1、热处理的定义:主要有三点要注意,一是热处理是在固态范围内进行的,二是有三个过程(加热、保温和冷却),三是热处理是通过改变钢的组织结构来改善其性能的;2、热处理的实质3、热处理的目的:不改变材料的形状的尺寸,改善其性能,包括使用性能和工艺性能,可以充分发挥材料的潜力,提高零件的内在质量;4、热处理的应用:十分广泛;5、热处理的分类:普通热处理,表面热处理,化学热处理6、热处理的三要素:加热温度、保温时间、冷却速度;第一节钢在加热时的转变目的是使原始组织转变为奥氏体,所以也称奥氏体化过程。
然后以奥氏体为母相进行转变。
一、钢的奥氏体化过程2、要使原始组织变为奥氏体,应将钢加热到A1(727℃)温度以上;具体的,亚共析钢应加热到Ac3线以上;共析钢加热到Ac1线以上;过共析钢如果进行完全奥氏体化应加热到Accm线以上。
3、转变过程:1)奥氏体的形核和长大;2)残余渗碳体的溶解;3)奥氏体成分的均匀化;二、奥氏体晶粒度及其控制1、奥氏体晶粒大小对热处理的影响细小的组织力学性能高(塑性变形和再结晶一章中已学过);另外,如果奥氏体的晶粒细小,那么由其转变的产物也就细小;否则转变产物就比较粗大,或出现缺陷组织,还容易引起变形和开裂,所以要对奥氏体的晶粒大小进行控制。
2、奥氏体晶粒大小的表示方法1)用晶粒的直径d表示;2)用单位面积内的晶粒数目n表示;3、奥氏体晶粒度的控制1)正确制订和执行加热规范;2)选用长大倾向小的钢种,如用Al脱氧的钢,以及含Nb、TI、V等元素的钢;第二节钢在冷却时的转变冷却是热处理的最后一个工序,也是最关键的工序,它决定了钢热处理后的组织和性能。
同一种钢,加热温度和保温时间相同,冷却方法不同,热处理后的性能截然不同。
这是因为过冷奥氏体在冷却过程中转变成了不同的产物。
那么奥氏体在冷却时转变成什么产物?有什么规律呢?这就是本次课的主要内容。
碳钢热处理时的冷却速度一般较大,大多都偏离了平衡状态(除退火外),所以热处理后的组织为非平衡组织。
工程材料及热处理实验报告册
![工程材料及热处理实验报告册](https://img.taocdn.com/s3/m/042e1dfdc67da26925c52cc58bd63186bdeb927d.png)
工程材料及热处理试验
报告
专业:
班级:
姓名:
学号:
时间:
实验一、金相显微镜的使用和金相试样的制备及观察实验报告
一、试验目的
二、实验原理
三、主要仪器设备及材料
(1)金相显微镜的结构
请写出图中各数字代表的金相显微镜上的零部件
(2)设备及材料
四、制备金相试样和观察试样微观结构的主要过程。
(1)金相试样的制备过程
(2)金相试样的观察(请在下图中画出所观察到的金相组织)五、实验后的收获
实验二热处理后钢的硬度及显微组织观察实验报告一、实验目的
二、实验设备材料
三、实验原理
四、实验内容
1、绘制45#钢淬火的热处理工艺曲线
2、样品的制备过程
3、45#钢热处理前后硬度
金相经不同冷却速度的硬度
淬火前硬度(HRC ) 淬火后硬度(HRC ) 水冷
空冷 4观察热处理后的显微组织
在下图圆圈内画出所观察到的金相显微组织示意图
五、实验收获
硬
度 冷 却 方 式。
工程材料与热处理
![工程材料与热处理](https://img.taocdn.com/s3/m/83e1978b84868762caaed599.png)
绪论工程材料的分类及发展趋势一、工程材料的简述1、工程材料是人类生产生活的物质基础,反映人类的文明程度。
历史上就以材料进行命名的。
例:石器时代、青铜器时代、铁器时代等。
2、材料的性能材料的组织、结构所决定的。
材料的结构:材料中的原子的结构及原子间的具体结合方式。
材料的组织:用肉眼或不同放大倍数显微镜所观察的形貌。
二、工程材料的分类(图0.1)1、根据物质的形状、用途、结构等分类(本课程的研究主要是金属材料)例:工业工程、物质结构、用途…习惯上分类为:金属材料:纯金属、合金金属或黑色金属、有色金属两种分类。
金属:有良好的导电性和导热性,有一定的强度和塑性并具有光泽的物质。
纯金属:是某种金属元素组成的物质;强度、硬度低,而且冶炼困难,价格高。
合金:两种或两种以上的金属元素或金属与非金属元素组成的金属材料。
2、新型号材料的发展三、课程研究金属材料的结构(微观)、物理性能、化学性能、力学性能、工艺性能。
工程材料的生产过程概述一、钢铁材料生产过程的概述钢铁材料的区别:(含碳量)工业纯铁Wc < 0.0218 %钢Wc = 0.0218 % ~ 2.11 %生铁Wc > 2.11 %1、炼铁原料:铁矿石、焦炭、石灰石设备:氧化转炉/电弧炉产物:生铁、煤气、炉渣生铁分类(含硅量);Wsi > 1.5%铸铁生铁主要用于生产铸件Wsi < 1.5%炼钢生铁主要用于炼钢原料煤气: 可用于取热炉渣: 可用于生产水泥2、炼钢实质:脱碳、脱氧处理原料:生铁、废钢;设备:氧化转炉/电弧炉产物:钢产物根据脱氧程度不同:特殊镇静钢、镇静钢、半镇静钢、沸腾钢(区别:内部组织致密程度不同。
)3、钢产品生产使用连铸法,生产钢锭和铸坯。
生产率高,质量好,节约能源,生产成本降低。
4、钢的最终产品钢锭进过冷轧、热轧最终生成所需的板材、管材、型材…二、高分子化合物是由低分子化合物组成,是大量低分子的聚合物。
三、陶瓷材料是人工的以硅酸盐为原料,经过制粉、配料、成形、高温烧结而成的无机非金属材料。
工程材料及热处理
![工程材料及热处理](https://img.taocdn.com/s3/m/4afc527b326c1eb91a37f111f18583d049640f99.png)
工程材料及热处理工程材料及热处理是现代工程领域中极其重要的一部分。
随着工程发展的日益迅速,对材料的要求也日益提高。
在此背景下,工程材料及热处理的研究变得尤为关键。
本篇文档将探讨工程材料及热处理的定义、分类、特性、热处理方法以及其在实际应用中的重要性和限制。
1. 工程材料的定义与分类工程材料是指设计、制造和使用机器、结构、设备和其他物品所必需的材料。
包括金属、塑料、丝绸、琉璃、橡胶、陶瓷等一系列材料。
而从材料的特性来看,工程材料基本上可归为六大类:① 金属材料:如钢、铁、铝、铜等;② 非金属无机材料:如玻璃、陶瓷、水泥等;③ 硅酸盐纤维及纺织品:如玻璃纤维、石棉、铬绿石等;④ 聚合物材料:如塑料、橡胶、纤维素等;⑤ 复合材料:如碳纤维复合材料、铝基复合材料、玻璃钢等;⑥ 其他材料:如木材、纸张等。
2. 工程材料特性工程材料的特性包括机械特性、物理特性、化学特性、热特性、电特性及防腐蚀特性等。
其中,机械特性是指材料的强度、韧性、硬度、弹性模量、屈服点等方面的特性。
而物理特性则是指材料的密度、热膨胀系数、热导率、热容等方面的特性。
化学特性是指材料的化学成分组成、耐腐蚀性、易溶性等方面的特性。
热特性是指材料的热膨胀系数、热导率、热容等方面的特性。
电特性则是指材料的电阻率、导电率等方面的特性。
防腐蚀特性是材料的长期使用时所表现出的耐腐蚀性能。
3. 热处理方法热处理是通过控制工程材料的加热、冷却、温度保持等过程来改善或调整其力学性能和硬度等特性的方法。
常见的热处理方法包括:① 硬化:将工程材料加热到高温,再通过淬火、油淬、水淬等方式进行快速冷却,使工程材料获得更高的硬度和强度;② 回火:对硬化处理过的工程材料进行低温加热处理,通过缓慢冷却来降低材料的硬度,增加其韧性;③ 退火:将工程材料加热至一定温度并保持一定时间,然后缓慢冷却,从而降低材料的硬度和强度,并达到改善材料塑性和加工性能的目的;④ 淬火:将工程材料加热至一定温度,并在保持一定时间后迅速冷却,以增加材料的硬度和强度;⑤ 等温淬火:将工程材料加热到一定温度,然后在该温度下保持一定时间,再通过快速冷却获得更为均匀的组织结构和高强度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 工程材料及热处理
HBS P 0.102 P N / mm2
F
DH
式中: P——试验力(kgf); F——表面积(mm2); H——压痕深度(mm); D——压头直径(mm)。
第2章 工程材料及热处理
由于压痕深度H的测量比较困难, 而测量压痕直 径d比较方便, 因此上式中H可换算成压痕直径d。 即:
第2章 工程材料及热处理
表2-1 布氏硬度试验规范
第2章 工程材料及热处理
2. 洛氏硬度 洛氏硬度试验法采用金刚石圆锥体或淬火钢球压 入金属表面, 如图2-4所示。 用一定直径(D)的淬火 钢球或硬质合金球在初载荷与初、 主载荷的先后作用 下, 将压头压入试件表面。 经规定的保持时间后卸除 主载荷, 根据压痕深度确定金属硬度值。 根据所用压头种类和所加试验力, 洛氏硬度分为 HRA、 HRB及HRC等。 表2-2所列为有关洛氏硬度指 标的规定。
式中: σe——应力(MPa); Pe——载荷(N); F0——试样的原始截面面积(mm2)。
第2章 工程材料及热处理
2) 屈服强度
试棒屈服时的应力为材料的屈服点, 称为屈服强
度, 用σS表示。 σS表示金属抵抗小量塑性变形的应力。 即:
式中:
S
PS F0
σS——屈服强度(MPa); PS——试样屈服时载荷(N); F0——试样的原始截面面积(mm2)。
第2章 工程材料及热处理
3) 抗拉强度
抗拉强度是指试样在拉断前所承受的最大拉应力。
即:
b
Pb F0
式中: σb——抗拉强度(MPa); Pb——试样在断裂前的最大载荷(N); F0——试样的原始截面面积(mm2)。
第2章 工程材料及热处理
2. 刚度 在外力作用下, 材料抵抗弹性变形的能力称为刚 度。 衡量刚度大小的指标是弹性模量。 弹性模量是材 料在弹性变形范围内, 应力与应变(即试样的相对伸 长量Δl/l0)的比值, 即:
第2章 工程材料及热处理
2.1.2 硬度 硬度是材料表面抵抗局部塑性变形的能力, 是反
映材料软硬程度的力学性能指标。 硬度是材料的一个 重要指标, 其测试方法简便、 迅速, 不需要专门试样, 也不损坏试样, 设备也很简单。 而且对大多数金属材 料, 可以从硬度值估算出它的抗拉强度。 硬度值是通 过试验测得的。
第2章 工程材料及热处理
加 载P
卸载
D d
图2-3 布氏硬度试验原理示意图
第2章 工程材料及热处理
1. 布氏硬度 布氏硬度试验原理如图2-3所示。 用一规定直径 (D为10.5 mm和2.5 mm)的淬火钢球或硬质合金球以 一定的试验力压入所测表面, 保持一定时间后卸除试 验力, 随即在金属表面出现一个压坑(压痕)。 以压 痕单位面积上所承受试验力的大小确定被测材料的硬 度值, 用符号HBS(淬火钢球压头)或HBW(硬质合 金钢球压头)表示, 如45钢调质后其硬度为220~240 HBS。
E
弹
式中: E——弹性模量(Pa); σ ——在弹性范围内的应力(Pa); ε弹——在弹性范围内的应变(%)。
第2章 工程材料及热处理
3. 塑性 金属材料在载荷作用下, 在断裂前产生塑性变形 的能力称为塑性。 常用的塑性指标有伸长率δ和断面收 缩率ψ两种。 1) 伸长率 伸长率是试样被拉断时的标距长度的伸长量与原 始标距长度的百分比, 用符号δ表示。 即:
第2章 工程材料及热处理
l
0
图2-1 钢的拉伸试棒
d0
第2章 工程材料及热处理
Pb Pe s Pg e PБайду номын сангаас p
载 荷P
b k
o 伸 长 量l
图2-2 退火低碳钢拉伸曲线
第2章 工程材料及热处理
无论何种材料, 其内部原子之间都具有平衡的原子 力相互作用, 以使其保持其固定的形状。 材料在外力 作用下, 其内部会产生相应的作用力以抵抗变形, 这 种作用力称为内力。 材料单位截面上承受的内力称为应 力, 用σ表示。 金属材料的强度是用应力来表示的。
性变形、 塑性变形和断裂。 弹性变形是指材料在载荷 卸除后能恢复到原形的变形, 而塑性变形是载荷卸除 后永久保留下来的变形。 对于不同类型的载荷, 这三 个过程的发生和发展是不同的。
第2章 工程材料及热处理
使用中一般多用静拉伸试验法来测定金属材料的强度 和塑性指标。 低碳钢试棒的拉伸过程具有典型意义。 将拉伸试棒按GB 6397—86的规定, 制成如图2-1所示 的试棒, 在拉伸试验机上缓慢增加载荷, 记录载荷与 变形量的数值, 直至试样拉断为止, 便可获得如图22所示的载荷与变形量之间的关系曲线, 即拉伸曲线。
第2章 工程材料及热处理
第2章 工程材料及热处理
2.1 金属材料的力学性能 2.2 铁碳合金相图 2.3 钢的热处理 2.4 碳钢与合金钢 2.5 铸铁 2.6 非金属及新型材料 习题2
第2章 工程材料及热处理
2.1 金属材料的力学性能
2.1.1 强度和塑性 1. 强度 材料在受载荷过程中一般会出现三个过程, 即弹
P
F0
第2章 工程材料及热处理
式中: σ——应力(MPa); P——载荷(N); F0——试样的原始截面面积(mm2)。 常用的强度指标有弹性极限、 屈服强度和抗拉强度。
第2章 工程材料及热处理
1) 弹性极限 弹性极限是试样在弹性变形范围内承受的最大拉 应力, 用符号σe表示。 即:
e
Pe F0
L1 L0 100 %
L0
式中: L0——试样原始标距长度(mm); L1——试样拉断时的标距长度(mm)。
第2章 工程材料及热处理
2) 断面收缩率 断面收缩率是指试样被拉断时, 缩颈处横截面积 的最大缩减量与原始横截面积的百分比, 用符号ψ表 示。 即:
F0 Fk 100 %
F0
式中: Fk——试样被拉断时缩颈处最小横截面积(mm2); F0——原始截面面积(mm2)。
HBS 0.102
2F
D(D D2 d 2 )
式中: d——压痕直径(mm)。
第2章 工程材料及热处理
由于金属材料有软有硬, 工件有薄有厚、 有大有 小, 如果仅采用一种标准的试验力P和钢球直径D, 就会出现如下现象: 如果对硬的材料适合, 对软的材 料就会发生钢球陷入金属内部; 若对厚的材料适合, 对薄的材料就会产生压透现象等等。 因此在生产中进 行布氏硬度试验时, 要求使用不同大小的试验力和不 同直径的钢球或硬质合金球。 因此在进行布氏硬度试 验时, 钢球直径D、 试验力P与力保持时间应根据所 测试金属的种类和试样厚度, 按表2-1所示布氏硬度试 验规范, 正确进行选择。