地源热泵的工作原理及技术经济性分析
地源热泵原理
地源热泵是利用浅层地能进行供热制冷的新型能源利用技术,是热泵的一种,热泵是利用卡诺循环和逆卡诺循环原理转移冷量和热量的设备.地源热泵通常是指能转移地下土壤中热量或者冷量到所需要的地方.通常热泵都是用来做为空调制冷或者采暖用的.地源热泵还利用了地下土壤巨大的蓄热蓄冷能力,冬季地源把热量从地下土壤中转移到建筑物内,夏季再把地下的冷量转移到建筑物内,一个年度形成一个冷热循环.编辑本段地源热泵的由来地源一词是从英文“ground source”翻译而来,汉语的内涵则十分广泛,应包括所有地下资源的含义。
但在空调业内,目前仅指地壳表层(小于400米)范围内的低温热资源,它的热源主要来自太阳能,极少能量来自地球内部的地热能。
"地源热泵"的概念,最早于1912年由瑞士的专家提出,而该技术的提出始于英、美两国。
1946年美国在俄勒冈州的波兰特市中心区建成第一个地源热泵系统。
但是这种能源的利用方式没有引起当时社会各界的广泛注意,无论是在技术、理论上都没有太大的发展。
20世纪50年代,欧洲开始了研究地源热泵的第一次高潮,但由于当时的能源价格低,这种系统并不经济,因而未得到推广。
直到20世纪70年代初世界上出现了第一次能源危机,它才开始受到重视,许多公司开始了地源热泵的研究、生产和安装。
这一时期,欧洲建立了很多水平埋管式土壤源热泵,主要用于冬季供暖。
虽然欧洲是世界上发展地源热泵最成熟的地区,但是它也曾因为热泵专家不懂安装技术,安装工人又不懂热泵原理等因素,致使地源热泵的发展走了一段弯路。
随着科技的进步,关于能源消耗和环境污染的法律制订越来越严格,地源热泵的发展迎来了它的另一次高潮。
欧洲国家以瑞士、瑞典和奥地利等国家为代表,大力推广地源热泵供暖和制冷技术。
政府采取了相应的补贴政策和保护政策,使得地源热泵生产和使用范围迅速扩大。
上世纪80年代后期,地源热泵技术已经趋于成熟,更多的科学家致力于地下系统的研究,努力提高热吸收和热传导效率,同时越来越重视环境的影响问题。
地源热源工作原理
工作原理——地源热泵1 地源热泵工作原理地源热泵则是利用水源热泵的一种形式,它是利用水与地能(地下水、土壤或地表水)进行冷热交换来作为水源热泵的冷热源,冬季把地能中的热量“取”出来,供给室内采暖,此时地能为“热源”;夏季把室内热量取出来,释放到地下水、土壤或地表水中,此时地能为“冷源”。
地源热泵供暖空调系统主要分三部分:室外地能换热系统、水源热泵机组和室内采暖空调末端系统。
其中水源热泵机主要有两种形式:水—水式或水—空气式。
三个系统之间靠水或空气换热介质进行热量的传递,水源热泵与地能之间换热介质为水,与建筑物采暖空调末端换热介质可以是水或空气。
2 地源热泵技术路线地源热泵技术路线有以下两种:土--气型地源热泵技术和水--水型地源热泵技术土--气型地源热泵技术以美国的技术为代表,水--水地源热泵技术以北欧的技术为代表。
二者的差别是:前者从浅层土壤或地下水中取热或向其排热,通过分散布置于各个房间的地源热泵机组直接转换成热风或冷风为房间供暖或制冷。
后者是从地下水中取热或向其排热,经过热泵机组转换成热水或冷水,然后再经过布置在各个房间的风机盘管转换成热风或冷风给房间供暖或制冷。
由于美国的土--气型地源热泵技术,可以不用地下水,采用埋设垂直管、水平管或向地表水抛设管路等多种方式,直接从浅层土壤取效或向其排热,不受地下水开采的限制,推广的范围更大、更灵活。
3 地源分类地源按照室外换热方式不同可分为三类:(1)土壤埋管系统,(2)地下水系统,(3)地表水系统。
根据循环水是否为密闭系统,地源又可分为闭环和开环系统。
闭环系统如埋盘管方式(垂直埋管或水平埋管),地表水安置换热器方式。
开环系统如抽取地下水或地表水方式。
此外,还有一种“直接膨胀式”,它不象上述系统那样采用中间介质水来传递热量,而是直接将热泵的一个换热器(蒸发器)埋入地下进行换热。
4 地源热泵系统的形式土-气型地源热泵系统按照室外换热方式不同分,主要有三类形式:1、地耦管系统该方案只需在建筑物的周边空地、道路或停车场打一些地耦管孔,室外水系统注满水后形成一个封闭的水循环,利用水的循环和地下土壤换热,将能量在空调室内和地下土壤之间进行转换。
地源热泵优缺点及基本原理和参数
地源热泵的12大优势由于地源热泵系统采取了特殊的换热方式,使它具有普通中央空调和锅炉不可比拟的优点:一、高效节能与锅炉(电、燃料)供热系统相比,土--气/水型地源热泵系统的转换效率最高可达4.7 。
而锅炉供热只能将90%以上的电能或70~90%的燃料内能转换为热量供用户使用,因此它要比电锅炉加热节省2/3以上的电能,比燃料锅炉节省1/2以上的能量,运行费用为各种采暖设备的30-70%。
由于土壤的温度全年稳定在10℃—20℃之间,其制冷、制热系数可达3.5—4.7,与传统的空气源热泵(家用窗式和分体式空调、中央式风冷热泵)相比,要高出40%以上,其运行费用仅为普通中央空调的50—60%。
夏季高温差的散热和冬季低温差的取热,使得土--气型地源热泵系统换热效率很高。
因此在产生同样热量或冷量时,只需小功率的压缩机就可实现,从而达到节能的目的,其耗电量仅为普通中央空调与锅炉系统的40%—60%。
二、绿色环保土--气/水型地源热泵系统在冬季供暖时,不需要锅炉,无废气、废渣、废水的排放,可大幅度地降低温室气体的排放,能够保护环境,是一种理想的绿色技术。
三、分户计费实现机组独立计费,分户计表,方便业主对整个系统的管理。
四、使用寿命长家用空调设计寿命8年,燃气锅炉为10年;土--气型地源热泵机组为50年,水循环和风管系统60年以上,地耦管路系统为70年,它比所有各种空调系统和采暖设备的寿命都要长。
五、节省建筑空间控制设备简单土--气/水型地源热泵系统采用将地源热泵机组分散安装于各处所(居室、会所、办公室等)的方式,中央控制仅需选择水路控制,除去了一般中央空调集中控制所有参量的复杂环节,从而降低控制成本。
在各分散安装单元(居室、会所、办公室)可根据用户要求设不同的体积很小的终端控制器,实现从最简单(起停、供暖、制冷三档)到复杂的可编程智能控制方式。
六、系统可靠性强每台机组可独立供冷或供热,个别机组故障不影响整个系统的运行。
地源热泵的工作原理及技术经济性分析
地源热泵的工作原理及技术经济性分析一、什么是地源热泵地源热泵是一种利用地下浅层地热资源(也称地能,包含地下水、土壤或者地表水等)的既可供热又可制冷的高效节能空调系统。
地源热泵通过输入少量的高品位能源(如电能),实现低温位热能向高温位转移。
地能分别在冬季作为热泵供暖的热源与夏季空调的冷源,即在冬季,把地能中的热量“取”出来,提高温度后,供给室内采暖;夏季,把室内的热量取出来,释放到地能中去。
热泵机组的能量流淌是利用其所消耗的能量(如电能)将吸取的全部热能(即电能+汲取的热能)一起排输至高温热源。
而其所耗能量的作用是使制冷剂氟里昂压缩至高温高压状态,从而达到汲取低温热源中热能的作用。
请参见能流图所示。
通常地源热泵消耗1kW的能量,用户能够得到5kW以上的热量或者4kW以上冷量,因此我们将其称之节能型空调系统。
与锅炉(电、燃料)供热系统相比,锅炉供热只能将90%以上的电能或者70~90%的燃料内能为热量,供用户使用,因此地源热泵要比电锅炉加热节约三分之二以上的电能,比燃料锅炉节约二分之一以上的能量;由于地源热泵的热源温度全年较为稳固,通常为10~25℃,其制冷、制热系数可达3.5~4.4,与传统的空气源热泵相比,要高出40%左右,其运行费用为普通中央空调的50~60% 。
因此,近十几年来,特别是近五年来,地源热泵空调系统在北美如美国、加拿大及法国、瑞士、瑞典等国家取得了较快的进展,中国的地源热泵市场也日趋活跃,能够估计,该项技术将会成为21世纪最有效的供热与供冷空调技术。
二、地源热泵国内外进展近况地源热泵的历史能够追朔到1912年瑞士的一个专利,欧洲第一台热泵机组是在1938年间制造的。
它以河水低温热源,向市政厅供热,输出的热水温度可达60o C。
在冬季使用热泵作为采暖需要,在夏季也能用来制冷。
1973年能源危机的推动,使热泵的进展形成了一个高潮。
目前,欧洲的热泵理论与技术均已高度发达,这种“一举两得”同时环保的设备在法、德、日、美等发达国家业已广泛使用。
地源热泵技术讲解
地源热泵技术讲解【热泵概念】热泵是一种能从自然界的空气、水或土壤中获取低品位热能,经过电力做功,输出可用的高品位热能的设备,可以把消耗的高品位电能转换为3倍甚至3倍以上的热能,是一种高效供能技术。
热泵技术在空调领域的应用可分为空气源热泵、水源热泵以及地源热泵三类。
{备注}空调概念:空调即空气调节器(room air conditioner),挂式空调是一种用于给空间区域〔一般为密闭〕提供处理空气温度变化的机组。
它的功能是对房间〔或封闭空间、区域〕内空气的温度、湿度、洁净度和空气流速等参数进行调节,以满足人体舒适或工艺过程的要求。
【地源热泵概念】地源热泵(也称地热泵)是利用地下常温土壤和地下水相对稳定的特性,通过深埋于建筑物周围的管路系统或地下水,采用热泵原理,通过少量的高位电能输入,实现低位热能向高位热能转移与建筑物完成热交换的一种技术。
地源热泵空调系统主要分为三个部分:室外地能换热系统、水源热泵机组系统和室内采暖空调末端系统。
其中水源热泵机组主要有两种形式:水-水型机组或水-空气型机组。
三个系统之间靠水或空气换热介质进行热量的传递,水源热泵与地能之间换热介质为水,与建筑物采暖空调末端换热介质可以是水或空气。
【地源热泵工作原理】冬季,热泵机组从地源〔浅层水体或岩土体〕中吸收热量,向建筑物供暖;夏季,热泵机组从室内吸收热量并转移释放到地源中,实现建筑物空调制冷。
根据地热交换系统形式的不同,地源热泵系统分为地下水地源热泵系统和地表水地源热泵系统和地埋管地源热泵系统。
【地源热泵技术原理】地源热泵是一种利用地下浅层地热资源既能供热又能制冷的高效节能环保型空调系统。
地源热泵通过输入少量的高品位能源〔电能〕,即可实现能量从低温热源向高温热源的转移。
在冬季,把土壤中的热量“取”出来,提高温度后供应室内用于采暖;在夏季,把室内的热量“取”出来释放到土壤中去。
【地源热泵技术特点】环保:使用电力,没有燃烧过程,对周围环境无污染排放;不需使用冷却塔,没有外挂机,不直接向周围大气环境排热,没有热岛效应,没有噪音;不抽取地下水,不破坏地下水资源。
地源热泵系统简介
地源热泵系统简介一、地源热泵原理地源热泵系统是一种由双管路水系统连接起建筑物中的所有地源热泵机组而构成的封闭环路的中央空调系统。
冬季,地源热泵系统通过埋在地下的封闭管道(称为环路)从大地收集自然界的热量,而后由环路中的循环水把热量带到室内。
再由装在室内的地源热泵系统驱动的压缩机和热交换器把大地的能量集中,并以较高的温度释放到室内。
在夏季,此运行程序则相反,地源热泵系统将从室内抽出的多余热量排入环路而为大地所吸收,使房屋得到供冷。
尤如电冰箱那样,从冰箱内部抽出热量并将它排出箱外使箱内保持低温。
循环水泵地源热泵机组地下埋管图2地源热泵系统图地源热泵机组优点高效节能性夏季高温差的散热和冬季低温差的取热,使得地源热泵系统换热效率很高。
因此在产生同样热量或冷量时,只需小功率的压缩机就可实现,而且冬季运行不需要任何辅助热源和除霜,大大地减少电能消耗和除霜的损失,从而达到节能的目的,其耗能仅为普通中央空调加锅炉系统的50%-60%。
地源热泵技术在很大程度上为国家节省能源,缓解电荒,同时也为用户节省了大量的运行费用。
下面是北京一项目中,提供的各种采暖制冷费用比较:从下面两个分析图中可以看出,与其它供暖制冷产品相比,地源热泵技术运行费用是最便宜的一种,很大程度地为最终使用户节约运行费用,也保证安全,健康。
一个采暖季(北京为125天)各种采暖方式的采暖费用比较表0.005.0010.0015.0020.0025.0030.0035.0040.00地源热泵电缆地板采暖天燃气集中供暖壁挂炉电热膜系列1一个制冷季(北京为90天)各种制冷方式的费用(元/m2)比较表0.005.0010.0015.0020.00地源热泵家用空调中央空调直燃机系列1● 环保、零污染地源热泵系统高效节能的优点,决定了它的运行费用低。
维修量极少,折旧费和维修费也都大大地低于传统空调。
据专家预测,在未来50年,世界将释放160亿吨CO2,对人们的健康和自然环境形成直接的影响。
地源热泵技术的概念和工作原理
第一章地源热泵技术的概念和工作原理第一节地源热泵技术概念地源热泵技术是利用地球表面浅层水源如地下水、河流和湖泊中吸收的太阳能和地热能而形成的低温低位热能资源,并采用热泵原理,通过少量的高位电能输入,实现低位热能向高位热能转移的一种技术。
地源热泵机组工作原理就是在夏季,将建筑物中的热量转移到水源中,由于水源温度低于空气温度,所以可以高效地带走热量。
而冬季,则从水源中提取热量,通过热泵系统提升热量能级后送到建筑物中。
一般地源热泵消耗一份电能量,可得到4倍以上的热量或冷量,离心大型热泵可以达到5左右。
第二节地源热泵中央空调系统的组成及功能地源热泵供暖系统由地源能量采集系统、能量提升系统和能量释放系统三大部分组成。
⑴能量采集系统:通过能量采集系统将水源中所包含的能量(热量和冷量)采集出来,送至地源热泵机组加以利用。
它由水源水井、水源水抽取设备、水源水输送管道、水源水质处理设备和热交换设备构成。
⑵能量提升系统:通过能量提升系统将能量采集系统采集到的不可直接利用的低品位能量,转化成可直接利用的高品位能量。
它由压缩机完成并通过制冷剂封闭环路和各种控制阀门实现其功能。
⑶能量释放系统:通过能量释放系统将能量提升系统提升的能量传递到需要的场合。
它由热交换设备、供暖水循环设备和末端能量释放设备组成。
第三节地源热泵供暖(制冷)系统的工作原理◎冬季采暖工作原理:在供热模式下,高压高温制冷剂气体(R22、R134a等)从压缩机压出后进入冷凝器,同时向经过冷凝器的空调末端循环水中排放热量,末端循环水被加热后形成采暖热源。
而制冷剂冷却成高压液体,然后经热膨胀阀节流膨胀成低压液体进入蒸发器蒸发成低压蒸汽,蒸发过程中吸收水源水中的热量,制冷剂获得热量后变为饱和蒸汽又进入压缩机,压缩成高压气液体,如此循环不断的将水源水当中的热能提取出来形成热源。
地下水(水温在12-14℃左右)被吸收5℃-7℃的热量,降至5-7℃左右回灌地下,水在渗流过程中吸收地下土壤热量,温度又升至12℃,然后经过地下水流流走或再被抽取上来循环使用。
某工业园区水蓄能式地源热泵工程案例经济分析
热泵技术 为 建 筑 物 供 暖、制 冷 和 提 供 生 活
理念。 地源热泵空调系 统 是 一 种 既 能 供 暖
浅层地( 热) 能 作 为 可 再 生 能 源,通 过
热 水 ,可 减 少 传 统 化 石 燃 料 的 消 耗 , 有 利 于
调整能 源 利 用 结 构,实 现 节 能 低 碳
— 106 —
台
120
额定冷量:25. 1 kW,额定热量:27. 4 kW,额 定 风 量:2 000
台
6
台
300
5 ℃ / 11 ℃ ,H 型高效精密布水装置,镀锌钢管材质
1 480 kg,运行重量:3 130 kg
6 000 m 3 / h,功率:0. 9 kW
m 3 / h,功率:0. 55 kW,带初效过滤网,带电控箱
制冷量:3 640 W,制热量:5 820 W
制冷量:22. 3 kW,制热量:42. 4 kW
台
备注
20
区域供热 2021. 3 期
求( 冷、热、生 活 热 水) 及 峰 谷 电 价 政 策 ( 执 行
表 3 地源热泵与水冷机组 +燃气锅炉
峰谷平电价) ,园区空调系统设计采用水 蓄 能
式地源热 泵 系 统, 夏 季 地 源 热 泵 联 合 水 蓄 冷
kW;1 台 全 热 回 收 型 地 源 热 泵 机 组 型 号 为
30XW0502,制冷量 495 kW, 制 热 量 555 kW。
其他设备选型见表 2。
2. 4 水蓄能系统
考虑项目 浅 层 地 热 能 资 源 条 件、 空 调 需
— 107 —
区域供热 2021. 3 期
图 1 地源热泵水蓄冷( 热) 原理图
建筑中的地源热泵系统
建筑中的地源热泵系统地源热泵系统是一种利用地表地热能的环保暖通设备,它能够在供热和供冷过程中实现节能减排的目的。
地源热泵系统通过地下埋设的地源换热器,利用地下土壤中的稳定温度进行热能交换,提供建筑物的冷暖空调系统。
本文将介绍地源热泵系统的工作原理、优势以及在建筑中的应用。
一、地源热泵系统工作原理地源热泵系统由地源换热器、热泵主机、暖通末端设备和监控系统组成。
地源换热器是地源热泵系统的核心部件,它通常采用水土换热器或地埋螺旋换热器。
地源换热器通过埋入地下的方式,与地下土壤进行热交换,达到热能的吸收或释放。
热泵主机负责将地源换热器中吸收的地热能转化为供热或供冷能量,并将其传递至暖通末端设备。
监控系统用于实时监测和调控地源热泵系统的运行参数,以确保系统的安全高效运行。
二、地源热泵系统的优势1. 节能环保:地源热泵系统不需要燃料燃烧,只需耗电运行,能够充分利用地下稳定的地热能源,实现高效节能。
与传统的锅炉采暖系统相比,地源热泵系统可节能50%以上,显著降低二氧化碳等污染物的排放量,对保护环境具有重要意义。
2. 独立控制:地源热泵系统可以实现建筑内的多区域独立控制,根据不同区域的需求进行供热或供冷。
这样可以提高空调的舒适性,减少能源的浪费。
3. 良好适应性:地源热泵系统适用于不同类型的建筑,包括住宅、商用办公楼、医院、学校等。
不论是新建楼宇还是现有楼宇的改造都可以采用地源热泵系统,为建筑提供可持续、节能的供热和供冷解决方案。
4. 长期经济性:尽管地源热泵系统的初始投资相对较高,但由于其节能效果显著,运行成本远低于传统供热系统。
通过长期运行,地源热泵系统能够带来较高的回报率,并且在未来能源价格上涨的情况下更具经济优势。
三、地源热泵系统在建筑中的应用地源热泵系统在建筑中的应用领域广泛。
在住宅建筑中,地源热泵系统可以通过地暖、壁挂散热器等方式为居民提供舒适的室内温度。
在商业建筑中,地源热泵系统可以应用于中央空调系统,为员工和客户创造一个舒适的工作和购物环境。
关于地源热泵简介地源热泵概述
地源热泵简介地源热泵概括地源热泵是一种利用浅层地热资源(也称地能,包括地下水、土壤或地表水等)的既可供热又可制冷的高效节能空调设备。
地源热泵经过输入少量的高品位能源(如电能),实现由低温位热能向高温位热能转移。
地能分别在冬天作为热泵供热的热源和夏天制冷的冷源,即在冬天,把地能中的热量取出来,提升温度后,供给室内采暖;夏天,把室内的热量取出来,释放到地能中去。
平时地源热泵耗资 1kWh 的能量,用户能够获取 4kWh 以上的热量或冷量。
地源热泵由来"地源热泵 "的看法,最早于 1912 年由瑞士的专家提出,而该技术的提出始于英、美两国。
北欧国家主要重视于冬天采暖,而美国则重视冬夏联供。
由于美国的天气条件与中国很相似,因此研究美国的地源热泵应用情况,对我国地源热泵的发展有着借鉴意义。
编写本段地源热泵的热源地源热泵目前,地源热泵已成功利用地下水、江河湖水、水库水、海水、城市中水、工业尾水、坑道水等各样水资源以及土壤源作为地源热泵的冷、热源。
编写本段地源热泵组成地源热泵供暖空调系统主要分三部分:室外处能换热系统、地源热泵机组和室内采暖空调尾端系统。
其中地源热泵机主要有两种形式:水—水式或水—空气式。
三个系统之间靠水或空气换热介质进行热量的传达,地源热泵与地能之间换热介质为水,与建筑物采暖空调尾端换热介质能够是水或空气。
主要特点(1)地源热泵技术属可再生能源利用技术。
由于地源热泵是利用了地球表面浅层地热资源(平时小于400 米深)作为冷热源,进行能量变换的供暖空调系统。
地表浅层地热资源能够称之为地能,是指地表土壤、地下水或河流、湖泊中吸取太阳能、地热能而储存的低温位热能。
地表浅层是一个巨大的太阳能集热器,收集了47%的太阳能量,比人类每年利用能量的500 倍还多。
它不受地域、资源等限制,真切是量大面广、无处不在。
这种储存于地表浅层近乎无量的可再生能源,使得地能也成为干净的可再生能源一种形式。
《地源热泵》课件
通过地源热泵系统,将地下土壤、地 下水或地表水中的低位热能提取出来 ,通过中央空调系统将热能传递到室 内,实现供暖或制冷的目的。
历史与发展
历史
地源热泵技术起源于19世纪,经过多年的研究和发展,目前已经成为一种成熟 、高效、环保的能源利用方式。
发展
随着全球能源危机和环境问题的日益严重,地源热泵技术得到了更广泛的应用 和推广,各国政府纷纷出台相关政策支持地源热泵的发展。
地区。
初投资较高
相比传统空调系统,地源热泵系统 的初投资较高。
安装难度较大
地源热泵系统的安装需要专业的设 计和施工队伍,安装难度较大。
02 地源热泵系统组成
地下换热系统
地下换热系统是地源热泵的重要组成部分,主要通过地埋管换热器实现地下土壤的 热量交换。
地埋管换热器一般采用高密度聚乙烯管或无缝钢管作为换热材料,通过在地下钻孔 并填充砂石等传热介质,与土壤进行热量交换。
节能效果
地源热泵系统的节能效果显著,尤其是在冬季和夏季等需要大量供暖和 制冷的时候,其节能效果更加明显。
03
人工费用
地源热泵系统的人工费用主要包括设备的维护和检修等,相对于传统的
空调和供暖系统来说,其人工费用较低。
生命周期成本
生命周期成本
地源热泵系统的生命周期成本是指在系统的使用寿命内,所有的初投资成本和运行费用之和。由于地源热泵系统的使 用寿命较长,且维护费用较低,其生命周期成本相对于传统的空调和供暖系统来说较低。
地下换热系统的作用是将土壤中的热量或冷量传递给地埋管内的循环水,为整个地 源热泵系统提供冷热源。
热泵机组
热泵机组是地源热泵系统的核心部分 ,负责将地下换热系统传递来的冷热 量进行吸收、压缩和循环使用。
地源热泵工作基本原理
地源热泵工作基本原理
地源热泵是一种利用地热能源进行制热和制冷的设备,其工作原理主要包括地
热能的吸收、传输和利用。
地源热泵系统由地热换热器、压缩机、膨胀阀和冷凝器等组成,通过循环工作实现能源的转换和利用。
首先,地源热泵系统通过地热换热器吸收地下的热能。
地热换热器埋设在地下
深处,利用地下恒定的温度来吸收地热能源。
当地下热能被吸收后,通过管道输送至地源热泵系统中。
接着,地源热泵系统利用压缩机将吸收的地热能源进行压缩,使其温度升高。
压缩机起到增压作用,将地热能源的温度提高到足够高的温度,以满足建筑物的供暖需求。
然后,经过膨胀阀的调节,高温高压的地热能源被释放,温度降低。
释放后的
地热能源进入建筑物内部的供暖系统,通过散热器将热能释放到室内,实现建筑物的供暖需求。
此外,地源热泵系统在夏季也可实现制冷效果。
当室内温度较高时,地源热泵
系统通过循环工作,将室内的热能吸收并释放到地下,从而实现室内温度的降低。
综上所述,地源热泵系统通过循环工作,利用地下的恒定温度吸收地热能源,
通过压缩和释放实现能源的转换和利用,以满足建筑物的供暖和制冷需求。
地源热泵系统以其高效节能、环保无污染的特点,成为了现代建筑节能环保的重要设备之一。
在实际应用中,地源热泵系统的工作原理需要与建筑物的结构和热负荷相结合,通过合理的设计和调节,实现最佳的能源利用效果。
同时,地源热泵系统的运行维护也需要定期检查和保养,以确保系统的稳定运行和长期使用。
通过对地源热泵系统工作原理的深入了解和实际应用,可以更好地发挥其节能环保的优势,为建筑物的舒适环境和能源利用效率提供保障。
《地源热泵技术》课件
• 地源热泵技术简介 • 地源热泵系统组成 • 地源热泵技术优势与特点 • 地源热泵技术应用实例 • 地源热泵技术的前景与展望
目录
01
地源热泵技术简介
技术定义与原理
技术定义
地源热泵是一种利用地球表面浅层地热资源进行供热和制冷的节能环保型技术 。
技术原理
通过地源热泵系统,将地下土壤、地下水或地表水中的低位热能提取出来,通 过系统中的热交换器和压缩机等设备,将热能转化为高位的热能或冷能,实现 供暖或制冷的目的。
地源热泵系统可以为住宅提供 供暖和制冷服务,具有高效、
舒适、环保等优点。
商业建筑
商业建筑如酒店、商场、办公 楼等也可以采用地源热泵系统
,实现节能减排。
工业生产
在某些工业生产过程中,地源 热泵技术可以提供稳定的热源
或冷源,提高生产效率。
农业种植
地源热泵技术可以为农业种植 提供适宜的温度和湿度条件,
促进作物的生长。
运行费用低
长期运行费用低
虽然地源热泵系统的初投资较高,但由于其节能效果显著,长期运行下来,相比 传统空调系统可以节省大量的运行费用。
费用构成合理
地源热泵系统的运行费用主要由维护费用、人工费用、水费、电费等构成,其中 电费占据较大比例,可以通过合理调整系统运行方式来降低电费支出。
维护方便
系统简单
地源热泵系统的组成部件相对简单, 因此在维护方面较为方便。同时,该 系统的自动化程度较高,可以减少人 工干预和操作。
技术发展历程
起源
地源热泵技术起源于19世纪初,但直到20世纪40年代才开始得到 实际应用。
初期发展
20世纪70年代,随着能源危机的出现,地源热泵技术得到了快速 发展。
地源热泵可行性研究报告
地源热泵可行性研究报告一、引言地源热泵是一种利用地下的稳定温度进行能量转换的技术,能够实现建筑物的供暖、制冷和热水供应。
本报告旨在研究地源热泵在实际应用中的可行性,以评估其经济、环境和技术可行性。
二、地源热泵原理及工作机制地源热泵利用地下的稳定温度和热能储存特性,将低温热能转换为高温热能,以满足建筑物的供暖、制冷和热水需求。
其工作原理主要包括地热能吸收、传递、变换和释放四个过程,通过地下水或地表土壤的热交换来实现能量的转化和传递。
三、地源热泵的优势1. 节能环保:地源热泵利用周围环境的温度资源,相比传统采暖和供热系统能够显著降低能源消耗,减少碳排放。
2. 综合效益高:地源热泵系统能同时满足供暖和空调需求,减少系统投资和运营成本。
3. 稳定可靠:地下温度较为稳定,地源热泵系统运行稳定可靠,寿命长。
4. 空间占用小:地源热泵系统模块化设计,占地面积小,适用于小型建筑物。
四、地源热泵的可行性研究1. 技术可行性:地源热泵技术已经得到广泛应用和研究,相关设备和材料的供应链也相对成熟。
理论分析和实践验证表明,地源热泵系统在各类建筑物中的应用效果良好。
2. 经济可行性:地源热泵系统的初期投资相对较高,但由于其长期节能效果明显,可以在几年内回收成本,并获得可观的经济效益。
此外,政府相关扶持政策的出台也提高了地源热泵系统的经济可行性。
3. 环境可行性:地源热泵系统实现了能源的清洁利用,减少了对化石燃料的依赖,降低了温室气体的排放,对环境保护具有积极意义。
五、地源热泵实施需注意的问题1. 地质条件评估:在选择地源热泵系统时,需要对地下温度、岩土构造和地质条件进行充分评估,确保地源热泵系统的正常运行。
2. 设计与安装:地源热泵系统的设计和安装需要专业团队进行操作,确保系统的高效运行和安全性。
3. 运行与维护:地源热泵系统需要定期维护和保养,以确保系统的正常运行和寿命。
六、结论经过对地源热泵的可行性研究,我们可以得出以下结论:地源热泵技术在实际应用中具有显著的经济、环境和技术优势,可以在建筑物供暖、制冷和热水供应方面发挥重要作用。
地源热泵中央空调系统设计及经济性分析
地源热泵中央空调系统设计及经济性分析1. 引言1.1 地源热泵中央空调系统设计及经济性分析地源热泵中央空调系统是一种通过利用地下热能来实现建筑物供暖和制冷的系统。
它通过地下的地热能源和空气热能来进行热交换,从而实现能耗的节约和环境保护的目的。
在设计和建设地源热泵中央空调系统时,需要考虑到系统的工作原理、设计要点、经济性分析、节能减排优势以及市场应用等方面。
未来,地源热泵中央空调系统将不断发展壮大,逐渐成为建筑节能减排的主流技术之一。
其可持续性也将得到更好的保障和应用。
地源热泵中央空调系统的设计及经济性分析对于建筑节能减排具有重要意义,有着广阔的市场应用前景和发展空间。
2. 正文2.1 地源热泵中央空调系统的工作原理地源热泵中央空调系统是一种利用地下能源进行空调供热的热泵系统。
其工作原理主要分为地热换热、压缩蒸发和压缩冷凝三个过程。
地热换热过程是指地源热泵通过地下地热井或管道向地下取回低温热能,利用地下恒定的地温来进行空气冷却或加热。
通过地源换热器,热泵将地下的低温热量吸收传送到蒸发器。
压缩蒸发过程是指地源热泵利用压缩机将蒸发器中蒸发介质蒸发成低温低压气体,从而吸收热量并加热蒸发器内的传热介质。
压缩冷凝过程是指经过蒸发后的低温低压气体通过压缩机进行加压,使其变成高温高压气体,通过冷凝器将高热气体释放热量,传送到热泵的蒸发器,完成一个循环。
通过这三个过程的循环,地源热泵中央空调系统能够实现高效节能的供热和制冷功能,减少能源消耗和环境污染。
地源热泵系统还能够与太阳能、风能等可再生能源相结合,进一步提高能源利用效率。
2.2 地源热泵中央空调系统的设计要点1. 地热井的设计和布局:地热井是地源热泵系统的核心部件,其设计和布局的合理性直接影响系统性能。
在设计地热井时,需要考虑地下水位、地热井的深度和间距,以及地热井的材料和施工工艺等因素。
2. 地源热泵机组的选择:地源热泵机组的选择应考虑系统的规模和设计需求,以确保系统性能和能效。
采用地源热泵系统可行性分析
采用地源热泵系统可行性分析地源热泵系统是一种清洁、高效的供暖和制冷技术,通过利用地下深处的稳定温度来提供空调、供暖和热水。
在当前全球能源危机和环境保护压力下,采用地源热泵系统成为了一种可持续的能源选择。
本文将从技术可行性、经济可行性和环境可行性三个方面对采用地源热泵系统进行可行性分析。
一、技术可行性1. 地源热泵系统的工作原理地源热泵系统通过地下热交换器从地下获得稳定的热能,然后将其转换为可供建筑物使用的热能或制冷能力。
该系统利用了地下贮存的热能,使能源的利用效率达到了很高的水平。
2. 技术成熟度地源热泵系统是一种相对成熟的技术,已经在世界各地得到广泛应用。
许多国家和地区都已经制定了相关的标准和规范,确保系统设计、建设和维护的质量。
3. 适用性地源热泵系统适用于各种建筑类型,包括住宅、商业和工业建筑。
不论是新建还是现有建筑,都可以根据实际情况进行改造或安装。
二、经济可行性1. 投资成本地源热泵系统的投资成本相对较高,但由于其长期的能源节约效益,可以在几年内实现投资回收。
2. 运营成本相比传统的供暖和制冷系统,地源热泵系统的运营成本较低。
地下稳定的温度条件使得系统的运行效率更高,从而减少了能源的消耗。
3. 能源节约效益地源热泵系统可以节约大量的能源。
根据实际情况,其能耗较传统供暖系统能降低30%至70%。
这将大大降低建筑物的能源开支,提高了经济效益。
三、环境可行性1. 温室气体减排地源热泵系统是一种清洁能源利用技术,其减少了传统供暖和制冷系统对环境的污染。
采用地源热泵系统可以减少温室气体的排放,对环境保护和应对气候变化有着积极的贡献。
2. 资源可持续性地源热泵系统利用地下稳定的温度作为能源,地热资源具有很好的可持续性。
相比传统的化石燃料能源,地源热泵系统对于地球资源的消耗更加环保和可持续。
3. 环境适应性由于地源热泵系统对环境的适应性较强,它可以根据不同地区和气候条件进行设计和调整。
这使得地源热泵系统在不同的地理位置和气候条件下都能够发挥良好的效果。
地源热泵可行性研究报告
地源热泵可行性研究报告一、引言地源热泵是一种能有效利用地下储存的能源进行空调和供暖的系统。
本报告旨在对地源热泵的可行性进行研究,并评估其在能源利用、环境保护和经济效益等方面的优势。
二、地源热泵技术介绍地源热泵系统是利用地下恒定温度的地热能源进行换热的设施,主要由地热换热器、热泵机组、供暖设备和控制系统等组成。
其工作原理是通过地热换热器从地下获取热量,在经过热泵机组的压缩和膨胀过程后,将热量传递给供暖设备或者从室内空气中提取热量进行制冷。
三、地源热泵系统的优势1. 能源利用:地源热泵系统通过利用地下的稳定温度进行换热,能够充分利用可再生能源,减少对传统能源的依赖。
2. 环境保护:地源热泵系统在工作过程中不产生废气、废水和噪音等污染物,对环境没有负面影响。
3. 经济效益:虽然地源热泵系统的初投资较高,但长期运行下来能够降低能源消耗和运行成本,为用户带来显著的经济效益。
4. 空调效果:地源热泵系统具有良好的供暖和制冷效果,能够为用户提供舒适的室内环境。
四、地源热泵系统的应用案例1. 住宅小区:地源热泵系统可以为住宅小区提供集中供暖和制冷服务,提高能源利用效率,改善居民生活品质。
2. 商业办公楼:地源热泵系统可以为商业办公楼提供恒定的室内温度,提高员工工作效率,降低能源消耗。
3. 公共建筑:地源热泵系统可以为公共建筑如学校、医院等提供供暖和制冷服务,满足大量人群的需求。
五、地源热泵系统的可行性评估通过对地源热泵系统的技术性、经济性和环境性进行综合评估,得出如下结论:1. 技术性:地源热泵技术已经相对成熟,相关设备供应商和安装服务提供商较多,具备较高的可实施性。
2. 经济性:虽然地源热泵系统的初投资较高,但长期运行下来能够节约能源和运行成本,具备一定的经济回报。
3. 环境性:地源热泵系统不产生污染物,对环境没有负面影响,符合可持续发展的要求。
六、结论地源热泵系统具有良好的可行性,能够有效利用地下热能,实现节能环保。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地源热泵的工作原理及技术经济性分析一、什么是地源热泵地源热泵是一种利用地下浅层地热资源(也称地能,包括地下水、土壤或地表水等)的既可供热又可制冷的高效节能空调系统。
地源热泵通过输入少量的高品位能源(如电能),实现低温位热能向高温位转移。
地能分别在冬季作为热泵供暖的热源和夏季空调的冷源,即在冬季,把地能中的热量“取”出来,提高温度后,供给室内采暖;夏季,把室内的热量取出来,释放到地能中去。
热泵机组的能量流动是利用其所消耗的能量(如电能)将吸取的全部热能(即电能+吸收的热能)一起排输至高温热源。
而其所耗能量的作用是使制冷剂氟里昂压缩至高温高压状态,从而达到吸收低温热源中热能的作用。
请参见能流图所示。
通常地源热泵消耗1kW的能量,用户可以得到5kW以上的热量或4kW以上冷量,所以我们将其称为节能型空调系统。
与锅炉(电、燃料)供热系统相比,锅炉供热只能将90%以上的电能或70~9 0%的燃料内能为热量,供用户使用,因此地源热泵要比电锅炉加热节省三分之二以上的电能,比燃料锅炉节省二分之一以上的能量;由于地源热泵的热源温度全年较为稳定,一般为10~25℃,其制冷、制热系数可达3.5~4.4,与传统的空气源热泵相比,要高出40%左右,其运行费用为普通中央空调的50~60% 。
因此,近十几年来,尤其是近五年来,地源热泵空调系统在北美如美国、加拿大及法国、瑞士、瑞典等国家取得了较快的发展,中国的地源热泵市场也日趋活跃,可以预计,该项技术将会成为21世纪最有效的供热和供冷空调技术。
二、地源热泵国内外发展近况地源热泵的历史可以追朔到1912年瑞士的一个专利,欧洲第一台热泵机组是在1938年间制造的。
它以河水低温热源,向市政厅供热,输出的热水温度可达6 0o C。
在冬季采用热泵作为采暖需要,在夏季也能用来制冷。
1973年能源危机的推动,使热泵的发展形成了一个高潮。
目前,欧洲的热泵理论与技术均已高度发达,这种“一举两得”并且环保的设备在法、德、日、美等发达国家业已广泛使用。
如美国,截止1985年全国共有14,000台地源热泵,而1997年就安装了45,000台,到目前为止已安装了400,000台,而且每年以10%的速度稳步增长。
1998年美国商业建筑中地源热泵系统已占空调总保有量的19%,其中有新建筑中占30%。
美国地源热泵工业已经成立了由美国能源部、环保署、爱迪逊电力研究所及众多地源热泵厂家组成的美国地源热泵协会,该协会在近年中将投入一亿美元从事开发、研究和推广工作。
美国计划到2001年达到每年安装40万台地源热泵的目标,届时将降低温室气体排放1百万吨,相当于减少50万辆汽车的污染物排放或种植树1百万英亩,年节约能源费用达4.2亿美元,此后,每年节约能源费用再增加1. 7亿美元。
与美国的地源热泵发展有所不同,中、北欧如瑞典、瑞士、奥地利、德国等国家主要利用浅层地热资源,地下土壤埋盘管(埋深<400米深)的地源热泵,用于室内地板辐射供暖及提供生活热水。
据1999年的统计,为家用的供热装置中,地源热泵所占比例,瑞士为96%,奥地利为38%,丹麦为27%。
我国的地源热泵事业近几年已开始起步,而且发展势头看好。
天津大学、清华大学分别与有关企业结成产学研联合体开发出中国品牌的地源热泵系统,已建成数个示范工程,越来越多的中国用户开始熟悉地源热泵,并对其应用产生了浓厚的兴趣,可以预计中国的地源热泵市场前景广阔。
之所以对中国的地源热泵市场发展前景持乐观态度,一方面是要节约常规能源、充分利用可再生能源的国内外大趋势;另一方面,我国具有较好的热泵科研与应用的基础,早在50年代,天津大学热能研究所吕灿仁教授就开展了我国热泵的最早研究,1965年研制成功国内第一台水冷式热泵空调机。
重庆建筑大学、天津商学院等单位对地下埋盘管的地源热泵也进行了多年的研究。
在中国科学院广州能源研究所等单位还多次召开全国性的有关热泵技术发展与应用的专题研讨会。
三、地源热泵特点1.属可再生能源利用技术地源热泵是利用了地球表面浅层地热资源(通常小于400米深)作为冷热源,进行能量转换的供暖空调系统。
地表浅层地热资源可以称之为地能(Earth Energ y),是指地表土壤、地下水或河流、湖泊中吸收太阳能、地热能而蕴藏的低温位热能。
地表浅层是一个巨大的太阳能集热器,收集了47%的太阳能量,比人类每年利用能量的500倍还多。
它不受地域、资源等限制,真正是量大面广、无处不在。
这种储存于地表浅层近乎无限的可再生能源,使得地能也成为清洁的可再生能源一种形式。
2.属经济有效的节能技术地能或地表浅层地热资源的温度一年四季相对稳定,冬季比环境空气温度高,夏季比环境空气温度低,是很好的热泵热源和空调冷源,这种温度特性使得地源热泵比传统空调系统运行效率要高40%,因此要节能和节省运行费用40%左右。
另外,地能温度较恒定的特性,使得热泵机组运行更可靠、稳定,也保证了系统的高效性和经济性。
据美国环保署EPA估计,设计安装良好的地源热泵,平均来说可以节约用户3 0~40%的供热制冷空调的运行费用。
3.环境效益显著地源热泵的污染物排放,与空气源热泵相比,相当于减少40%以上,与电供暖相比,相当于减少70%以上,如果结合其它节能措施节能减排会更明显。
虽然也采用制冷剂,但比常规空调装置减少25%的充灌量;属自含式系统,即该装置能在工厂车间内事先整装密封好,因此,制冷剂泄漏机率大为减少。
该装置的运行没有任何污染,可以建造在居民区内,没有燃烧,没有排烟,也没有废弃物,不需要堆放燃料废物的场地,且不用远距离输送热量。
4.一机多用,应用范围广地源热泵系统可供暖、空调,还可供生活热水,一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统;可应用于宾馆、商场、办公楼、学校等建筑,更适合于别墅住宅的采暖、空调。
此外,机组使用寿命长,均在15年以上;机组紧凑、节省空间;维护费用低;自动控制程度高,可无人值守。
当然,象任何事物一样,地源热泵也不是十全十美的,如其应用会受到不同地区、不同用户及国家能源政策、燃料价格的影响;一次性投资及运行费用会随着用户的不同而有所不同;采用地下水的利用方式,会受到当地地下水资源的制约,实际上地源热泵并不需要开采地下水,所使用的地下水可全部回灌,不会对水质产生污染。
四、工作原理与分类热泵工作原理作为自然界的现象,正如水由高处流向低处那样,热量也总是从高温流向低温。
但人们可以创造机器,如同把水从低处提升到高处而采用水泵那样,采用热泵可以把热量从低温抽吸到高温。
所以热泵实质上是一种热量提升装置,它本身消耗一部分能量,把环境介质中贮存的能量加以挖掘,提高温位进行利用,而整个热泵装置所消耗的功仅为供热量的三分之一或更低,这也是热泵的节能特点。
热泵与制冷的原理和系统设备组成及功能是一样的,对蒸汽压缩式热泵(制冷)系统主要由压缩机、蒸发器、冷凝器和节流阀组成:压缩机起着压缩和输送循环工质从低温低压处到高温高压处的作用,是热泵(制冷)系统的心脏;蒸发器是输出冷量的设备,它的作用是使经节流阀流入的制冷剂液体蒸发,以吸收被冷却物体的热量,达到制冷的目的;冷凝器是输出热量的设备,从蒸发器中吸收的热量连同压缩机消耗功所转化的热量在冷凝器中被冷却介质带走,达到制热的目的;膨胀阀或节流阀对循环工质起到节流降压作用,并调节进入蒸发器的循环工质流量。
根据热力学第二定律,压缩机所消耗的功(电能)起到补偿作用,使循环工质不断地从低温环境中吸热,并向高温环境放热,周而往复地进行循环。
热泵分类热泵是需要冷凝器的热量,蒸发器则从环境中取热,此时从环境取热的对象称为热源;相反制冷是需要蒸发器的冷量,冷凝器则向环境排热,此时向环境排热的对象称为冷源。
蒸发器冷凝器根据循环工质与环境换热介质的不同,主要分为空气换热和水换热两种形式。
这样热泵或制冷机根据与环境换热介质的不同,可分为水—水式,水—空气式,空气—水式,和空气—空气式共四类。
利用空气作冷热源的热泵,称之为空气源热泵。
空气源热泵有着悠久的历史,而且其安装和使用都很方便,应用较广泛。
但由于地区空气温度的差别,在我国典型应用范围是长江以南地区。
在华北地区,冬季平均气温低于零摄氏度,空气源热泵不仅运行条件恶劣,稳定性差,而且因为存在结霜问题,效率低下。
利用水作冷热源的热泵,称之为水源热泵。
水是一种优良的热源,其热容量大,传热性能好,一般水源热泵的制冷供热效率或能力高于空气源热泵,但由于受水源的限制,水源热泵的应用远不及空气源热泵。
地源热泵工作原理及分类地源热泵则是利用水源热泵的一种形式,它是利用水与地能(地下水、土壤或地表水)进行冷热交换来作为水源热泵的冷热源,冬季把地能中的热量“取”出来,供给室内采暖,此时地能为“热源”;夏季把室内热量取出来,释放到地下水、土壤或地表水中,此时地能为“冷源”。
地源热泵供暖空调系统主要分三部分:室外地能换热系统、水源热泵机组和室内采暖空调末端系统。
其中水源热泵机主要有两种形式:水—水式或水—空气式。
三个系统之间靠水或空气换热介质进行热量的传递,水源热泵与地能之间换热介质为水,与建筑物采暖空调末端换热介质可以是水或空气。
地源热泵同空气源热泵相比,有许多优点:(1)全年温度波动小。
冬季温度比空气温度高,夏季比空气温度低,因此地源热泵的制热、制冷系数要高于空气源热泵,一般可高于40%,因此可节能和节省费用40%左右。
(2)冬季运行不需要除霜,减少了结霜和除霜的损失。
(3)地源有较好的蓄能作用。
地源分类地源按照室外换热方式不同可分为三类:1.土壤埋盘管系统,2.地下水系统,3.地表水系统。
根据循环水是否为密闭系统,地源又可分为闭环和开环系统。
闭环系统如埋盘管方式(垂直埋管或水平埋管),地表水安置换热器方式。
开环系统如抽取地下水或地表水方式。
此外,还有一种“直接膨胀式”,它不象上述系统那样采用中间介质水来传递热量,而是直接将热泵的一个换热器(蒸发器)埋入地下进行换热。
五、地源热泵应用方式地源热泵的应用方式从应用的建筑物对象可分为家用和商用两大类,从输送冷热量方式可分为集中系统、分散系统和混合系统。
家用系统用户使用自己的热泵、地源和水路或风管输送系统进行冷热供应,多用于小型住宅,别墅等户式空调。
集中系统热泵布置在机房内,冷热量集中通过风道或水路分配系统送到各房间。
分散系统用中央水泵,采用水环路方式将水送到各用户作为冷热源,用户单独使用自己的热泵机组调节空气。
一般用于办公楼、学校、商用建筑等,此系统可将用户使用的冷热量完全反应在用电上,便于计量,适用于目前的独立热计量要求。
混合系统将地源和冷却塔或加热锅炉联合使用作为冷热源的系统,混合系统与分散系统非常类似,只是冷热源系统增加了冷却塔或锅炉。
南方地区,冷负荷大,热负荷低,夏季适合联合使用地源和冷却塔,冬季只使用地源。