(完整版)现代材料测试技术——知识点识记
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代材料测试技术知识点识记、掌握
1.材料现代分析方法的类别:
基于电磁辐射及运动粒子束与材料相互作用的各种性质建立起来的分析方法已成为材料现代分析方法的重要组成部分,大体可分为光谱分析、电子能谱分析、衍射分析和电子显微分析等四大类。此外,基于其它物理性质或电化学性质与材料的特征关系建立的色谱分析、质谱分析、电化学分析及热分析等方法,也是材料现代分析的重要方法。
材料分析测试技术的发展,使得材料分析不仅包括材料整体的成分、结构分析,也包括材料表面与界面分析、微区分析、形貌分析等内容。
组织形貌分析——
A.光学显微分析:光学显微镜最先用于医学及生物学方面,直接导致了细胞的发现,在此基础上形成了19世纪最伟大的发现之一------细胞学说。冶金及材料学工作者利用显微镜观察材料的显微结构,例如:经过抛光腐蚀后可以看到不同金属或合金的晶粒大小及特点,从而判断其性能及其形成条件,使人们能够按照自己的意愿改变金属的性能,或合成新的合金。举例:纯钨丝退火过程中的组织变化。
B. 扫描电镜分析:扫描电子显微镜是用细聚焦的电子束在样品表面进行逐行扫描,电子束激发样品表面发射二次电子,二次电子被收集并转换成电信号,在荧光屏上同步扫描成像。由于样品表面形貌各异,发射的二次电子强度不同。对应在屏幕上亮度不同,得到表面形貌像。目前扫描电子显微镜的分辨率已经达到了2nm左右。举例:金属铸锭的树枝晶结构;化学法生长的纳米ZnO;钢铁中的珠光体组织(铁素体 -Fe和渗碳体Fe3C间层混合物);Al-Cu合金;Ni合金大变形冷轧后晶粒状态;
C. 透射电镜分析:举例:Ni合金大变形冷轧后晶粒状态;纯Al热轧晶粒状态;
D. 扫描探针显微镜:1982年发明扫描隧道显微镜。扫描隧道显微镜没有镜头,它使用一根探针。探针和物体之间加上电压,如果探针距离物体表面大约在纳米级的距离时,就会产生电子隧穿效应。电子会穿过物体与探针之间的空隙,形成一股微弱的电流。如果探针与物体的距离发生变化,这股电流也会相应的改变。这样,通过测量电流可以探测物体表面的形状,分辨率可以达到原子的级别。因为这项奇妙的发明,Binnig和Rohrer获得了1986年的诺贝尔物理学奖。
改变微探针的性能,可以测量样品表面的导电性、导磁性等等,现在已经成为庞大的扫描探针显微镜(SPM)家族。建立在SPM技术之上的纳米加工工艺研究、纳米结构理化性能表征、材料和器件纳米尺度形貌分析、高密度储存技术,是当今科学技术中最活跃的前沿领域之一。它已被用来探测各种表面力、纳米力学性能、对生物过程进行现场观察;还被用来将电荷定向沉积、对材料进行纳米加工等。
晶体的相结构分析——
在材料科学领域,相是指具有特定的结构和性能的物质状态。材料中原子排列方式决定晶体的相结构,原子排列方式的变化导致了相结构的变化。在一种组织中可以同时存在几种相;同种材料在不同条件下会以不同的相存在。改变加工成形工艺及后续热处理来获得不同的相组成,并实现可控的相变。
物相分析是指利用衍射的方法探测晶格类型和晶胞常数,确定物质的相结构。主要的物相分析手段有三种:X射线衍射(XRD)、电子衍射(ED)及中子衍射(ND),其共同的原理是:利用电磁波或运动电子束、中子束等与材料内部规则排列的原子作用产生相干散射,获得材料内部原子排列的信息,从而重组出物质的结构。
晶体的相结构分析:电子衍射TEM
依据入射电子的能量大小,电子衍射可分为高能电子衍射和低能电子衍射。低能电子衍射(LEED)以能量为10~500eV的电子束照射样品表面,产生电子衍射。由于入射电子能量低,因而低能电子衍射给出的是样品表面1~5个原子层的(结构)信息,故低能电子衍射是分析晶体表面结构的重要方法,应用于表面吸附、腐蚀、催化、外延生长、表面处理等材料表面科学与工程领域。
高能电子衍射分析(HEED),入射电子能量为10~200 keV。由于原子对电子的散射强(比X 射线高4个数量级),电子穿透能力差,因而透射式高能电子衍射只适用于对薄膜样品的分析。
随着透射电子显微镜的发展,电子衍射分析多在透射电子显微镜上进行。由于电子束可以在电磁场作用下会聚得很细小,所以特别适合测定微细晶体或亚微米尺度的晶体结构。透射电子显微镜具有可实现样品选定区域电子衍射,并可实现微区样品结构(衍射)分析与形貌观察相对应的特点。
晶体的相结构分析------中子衍射
与X射线、电子受原子的电子云或势场散射的作用机理不同,中子受物质中原子核的散射,轻重原子对中子的散射能力差别比较小,中子衍射利于测定材料中轻原子分布。中子衍射仪价格较高,不普及。
成分和价键(电子)结构分析
化学成分和价键(电子)结构包括宏观和微区化学成分(不同相的成分、基体与析出相的成分)、同种元素的不同价键类型和化学环境。
大部分成分和价键分析手段都是基于同一个原理,即核外电子的能级分布反应了原子的特征信息。利用不同的入射波激发核外电子,使之发生层间跃迁,在此过程中产生元素的特征信息。按照出射信号的不同,成分分析手段可以分为两类:X光谱和电子能谱,出射信号分别是X射线和电子。
X光谱包括X射线荧光光谱(XRF)和电子探针X射线显微分析(EPMA)两种技术,而电子能谱包括X 射线光电子能谱(XPS)、俄歇电子能谱(AES)、电子能量损失谱(EELS)等分析手段。
2. 电子衍射内容:
⏹单晶电子衍射分析及应用
我们进行观察的样品大半是多晶体,晶粒尺寸一般是微米数量级,但通过选区电子衍射方法,用选区光阑套住某一晶粒,获得就是单晶电子衍射花样。单晶花样比多晶花样能提供更多的晶体学信息。
由于电子衍射图可以认为是一个放大了的二维倒易点阵平面,其衍射电子束分布的几何形状与二维倒易点阵平面上倒易阵点的分布是相同的,所以电子衍射图的对称性可以用一个二维倒易点阵平面的对称性加以解释。晶体的空间点阵与其倒易点阵是互为倒易的。
电子衍射图与二维倒易点阵平面的直接对应关系,使得电子衍射图的解释变得简单。当电子束沿n 次旋转轴入射到晶体样品时,电子衍射图就具有n次旋转对称性。每一个衍射电子束对应一个晶面,对电子衍射图的指标化就是将产生每一个衍射电子束对应的晶面指数找出来。一张电子衍射图相当于一个放大了的倒易点阵面,对电子衍射图的指标化就转化为对这个倒易面上的倒易阵点进行指数标定。利用晶体几何学的知识就可以对倒易阵点进行指标化。
⏹单晶电子衍射花样的基本应用:1物相鉴定——
⏹X射线衍射一直是物相分析的主要手段,但是电子衍射的应用日益增多,与X射线物相分析相辅相成。一方面,电子衍射物相分析的灵敏度非常高,就连一个小到几十甚至几个纳米的微晶也能通过现代的纳米衍射技术给出清晰的电子衍射花样。另一方面,选区电子衍射都给出单晶电子衍射花样,当出现未知的新结构时,可能比X射线多晶衍射花样易于分析。
⏹单晶花样还可以得到有关晶体取向关系的信息等。电子衍射物相分析可以与形貌观察同时进行,还能得到物相大小、形态、分布等重要信息。
⏹透射电子显微镜中加上X射线能谱仪和电子能量损失谱仪附件,可直接得到所测物相的化学成分。物相验证的三个条件是:①由衍射花样确定的点阵类型必须与ASTM卡片中物相符合;②衍射斑点指数必须自洽;③主要低指数晶面间距与卡片中给出的标准d值相符,允许的误差约为3%左右。
⏹单晶电子衍射花样的基本应用:2. 晶体取向关系的验证——
⏹晶体取向分析一般分为两种情况,一种是已知两相之间可能存在的取向关系,用电子衍射花样加以验证,另一种是对两种晶体取向关系的预测。
⏹在相变过程中,两相之间常有固定的取向关系,这种关系常用一对互相平行的晶面及面上一对平行的晶向来表示。现举例说明如何用电子衍射花样来进行取向关系验证。某低碳钒钢金属薄膜样品,已知α铁素体(体心立方晶体,点阵常数a=0.2866 nm)和V4C3析出相(面心立方晶体,a=0.4130 nm)两相的选区电子衍射花样负片示意如图所示。对两相花样分别指数化,计算(已知相机常数K=2.065 mm⋅nm)。
3. 厄瓦尔德图-衍射矢量方程的几何图解:
以晶体点阵原点O为圆心,以为半径1/λ作一圆球面,从O作入射波波矢k,其端点O为相应的倒易点阵的原点,称为厄瓦尔德反射球。当倒易阵点G与反射球面相截时,衍射方程成立,即衍射波矢k’就是从球心到这个倒易阵点的连线方向。反射球面是衍射方程的图解。
产生衍射波的条件:只有当衍射矢量与倒易矢量相同时才可能产生强衍射,这就将衍射与倒易空间联系在一起了。因此倒易空间也被称为波矢空间或衍射空间。入射电子波发生弹性散射的条件是它传递给晶格的动量恰好等于某一倒易矢量。
❖因为电子波λ很小,比d小两个数量级,所以衍射角θ只有1~2度。
❖由电子衍射的Ewald图解法可知,由于反射球半径相对于倒易阵点间距来说很大,在倒易原点附近可将反射球近似看成平面,所以一个倒易平面上的倒易点可同时与反射球相截。电子衍射花样就是倒易截面的放大。