一种经验模式预报东亚夏季风
南海季风试验与东亚夏季风
南海季风试验与东亚夏季风南海季风试验与东亚夏季风导语:气候变化在全球范围内产生了广泛而深远的影响。
在东亚地区,季风是一种重要的气候现象。
南海季风试验是一项旨在研究南海季风与东亚夏季风之间相互作用的大型实验。
本文将探讨南海季风试验与东亚夏季风之间的关系,并进一步探讨其对气候变化的响应。
第一部分:南海季风试验概述南海季风试验是由中国科学院、国家海洋局和气象局共同发起的一项大型现场观测实验。
该实验于2018年在南海海域展开,旨在研究南海季风系统中的各个关键过程,以及南海季风与东亚夏季风之间的相互作用。
通过实时的观测数据和模拟模型的分析,科学家们希望揭示南海季风与东亚夏季风之间的关系,并为气候预测和灾害防范提供科学依据。
第二部分:南海季风与东亚夏季风的相互作用1. 影响因素南海季风与东亚夏季风之间的相互作用受到多种因素的影响。
首先,东南亚的地理位置决定了南海季风的形成和发展。
季风风场由南半球的南部高压和北半球的西南季风共同驱动,而南海位于这两个区域的交汇地带。
其次,海洋温度和海洋表面热量通量对季风的形成和变化起着重要作用。
南海的热带海洋温暖湿润的气候条件为南海季风的形成和增强提供了有利条件。
此外,陆地和海洋之间的差异也对季风的形成和发展产生着重要影响。
2. 相互作用机制南海季风与东亚夏季风之间的相互作用通过空气和能量的交换实现。
南海季风在夏季携带大量的湿热气团向东北方向北上,进而影响东亚地区的夏季天气和气候。
与此同时,东亚夏季风通过向南吹送较干燥的空气,调节着南海季风的强弱和路径。
3. 影响气候变化的响应气候变化对南海季风和东亚夏季风的相互作用产生了重要影响。
一方面,全球变暖导致海洋温度的增加,进而影响了南海季风和东亚夏季风的形成和强度。
另一方面,气候变化也可能改变季风风场的分布和强度,进而影响南海季风和东亚夏季风之间的相互作用。
第三部分:南海季风试验的意义与挑战南海季风试验作为一项系统性、综合性的实验研究,对于深入了解南海季风与东亚夏季风之间的相互作用和气候变化的响应具有重要意义。
近40年东亚夏季风及我国夏季大尺度天气气候异常
近40年东亚夏季风及我国夏季大尺度天气气候异常近40年东亚夏季风及我国夏季大尺度天气气候异常近年来,东亚地区的夏季风和我国夏季的大尺度天气气候出现了一系列异常现象。
这些异常现象引起了广泛的关注和研究。
本文将对近40年来东亚夏季风及我国夏季大尺度天气气候异常进行分析和探讨。
东亚地区的夏季风是一种季风环流系统,它在夏季时吹向大陆,给我国南方和东南亚地区带来了丰沛的雨水。
然而,近40年来,东亚地区的夏季风呈现出一些不正常的变化。
首先,夏季风的强度出现了不稳定的波动。
有些年份,夏季风非常强劲,给我国南方地区带来了洪涝灾害;而有些年份,夏季风却相对较弱,造成了旱灾。
其次,夏季风的到来时间也出现了提前或推迟的现象。
有些年份,夏季风到来得比往年早,导致南方地区的雨水过多,而有些年份,夏季风推迟到来,南方地区则出现干旱。
这种夏季风的不稳定性导致了我国南方地区的农业生产困难重重,给经济发展带来了一定的压力。
我国夏季的大尺度天气气候同样存在着异常现象。
大尺度天气系统主要包括台风、暴雨、干旱等。
近40年来,我国夏季的台风活动频率和强度均有所增加。
特别是近几年,台风带来的破坏性灾害越发严重,给沿海地区带来了巨大的损失。
此外,我国夏季的暴雨也不断增多,强降雨频率和强度都有所上升,造成了城市内涝和山洪灾害。
与此同时,干旱的发生频率也在增加,给农业生产和水资源利用带来了诸多困扰。
那么,为什么近40年来东亚夏季风及我国夏季大尺度天气气候出现如此异常的变化呢?有研究表明,全球气候变暖是导致这些异常变化的重要原因之一。
全球气候变暖导致大气环流和海洋循环发生了一系列的调整,而这些调整反过来又影响了夏季风的形成和运动路径,导致了夏季风的不稳定。
此外,全球气候变暖对大尺度天气系统的形成和发展也产生了影响,使得台风、暴雨等灾害性天气事件更加频繁和强烈。
面对这些异常变化,我们应该采取一系列的应对措施。
首先,加强对东亚夏季风和大尺度天气气候异常的监测和研究,提前预警和应对灾害事件的发生。
科研进展(1)
皿睁旦岬g譬三∞OE0>0[O《科研进展,lc量子计算研究获重大突破中国科大微尺度物质科学国家实验室杜江峰研究组与香港中文大学刘仁保教授合作,通过电子自旋共振实验技术.在国际E首次通过固态体系实验实现了最优动力学解耦,极大地提高了电子自旋相十时间。
该成果发表于10月29日出版的Nature上。
审稿人认为“该工作有效地保持了同态自旋比特的量子相十性。
对固态自旋量子计算的真正实现具有极其重要的意义”。
删期“新闻与展单”栏目还发表的评述文章指出:“量子系统不可避免的信息流失局限其现实的应用。
然而杜江峰与其同事的研究表明,通过精巧的脉冲控制,使得同态体系环境对电了量子比特的不利影响被降到最小,从而大大减少r量子体系中量子信息的流失。
他们所使用的量子相干调控技术被证明是一种可以帮助人们理解并且有效对抗量子信息流失的一个重要资源,取得的研究进展的重要性在于极大提升了现实物理体系的性能.从而朝实现量子计算迈出了重要的一步。
”退相干对量子自旋霍尔效应的影响研究取得新进展物理所凝聚态理论与材料计算实验室研究员谢心澄、孙庆丰和博士生江华、成淑光在前期的工作基础上二.进一步研究了退相干对量子自旋霍尔效应的影响。
他们把退相干分成两类来考虑:一类是普通退相干,即载流子仅仅丢失位相记忆,但保留自旋记忆;另一类是自旋退相十。
即载流子既丢失位相记忆也丢失自旋记忆:普通退相干对量子自旋霍尔效应几乎没有影响,但自旋退相干急剧影响量子自旋霍尔效应。
破坏纵向电导的量子化。
他们还发现纵向电阻随样品长度线性增加而基本上不依赖于样品宽度的变化,这些特性也与实验结果很好符合。
另外,他们进一步引入一个新的物理量,即一个新的自旋霍尔电阻,并发现该自旋霍尔电阻也能表现出量子化平台的特性。
研究结果表明,该自旋霍尔电阻的量子化平台对两种类型的退相干都不敏感。
也就是说,该量子化平台在宏观样品中也能被观测到,所以它能伞面反应量子自旋霍尔效应的拓扑特性。
该工作发表在Phys.Rev.Lett.上。
IPCC AR4气候模式对东亚夏季风年代际变化的模拟性能评估
IPCC AR4气候模式对东亚夏季风年代际变化的模拟性能评估孙颖;丁一汇【期刊名称】《气象学报》【年(卷),期】2008(66)5【摘要】文中使用多种观测资料和分类的方法评估了IPCC AR4(政府间气候变化委员会第4次评估报告)气候模式(亦称Coupled Model Intercomparison Program 3, CMIP3)对东亚夏季风降水与环流年代际变化的模拟性能.结果表明,在评估的19个模式中,有9个模式可以较好地再现中国东部地区多年平均降水场,但仅有3个模式(第1类模式)可以较好地对东亚夏季风降水的年代际变化作出模拟,这3个模式是:GFDL-CM2.0、MIROC3.2(hires)和MIROC3.2(medres),其中模式GFDL-CM2.0具有最好的模拟性能.进一步的分析表明,大部分模式对东亚夏季风变化模拟能力的缺乏是因为这些模式没有抓住东亚夏季风降水变化的主要动力和热力学机制,即东亚地区在过去所出现的大范围对流层变冷和变干.而第1类模式由于较好地再现了东亚地区垂直速度场(动力学因子)和水汽场(热力学因子)的变化特征,因此较好地模拟出中国东部南涝北旱的气候变化特征.本文的评估清楚地表明,当选择不同模式进行集合时,模式对某一研究变量的模拟性能好坏极大地影响了集合的结果.当模拟性能较好的模式在一起进行集合时,所得到的结果更加接近于真实的观测结果.就特定的研究变量而言,这种集合更加优于将可得到的所有模式进行集合.这说明,虽然多模式集合一般优于单个模式的结果,但应考虑使参与集合的模式对所研究变量具有一定的模拟能力.【总页数】16页(P765-780)【作者】孙颖;丁一汇【作者单位】国家气候中心,北京,100081;国家气候中心,北京,100081【正文语种】中文【中图分类】P435;P462.4【相关文献】1.IPCC AR4多模式对海河流域气候模拟能力的评估及预估 [J], 方玉;姜彤;翟建青;苏布达;谈丰;李修仓2.IPCC AR4气候模式对长江流域气温和降水的模拟性能评估及未来情景预估 [J], 郝振纯;鞠琴;余钟波;王璐;江微娟3.5个IPCC AR4全球气候模式对东北三省降水模拟与预估 [J], 崔妍;周晓宇;赵春雨;龚强;王颖;李倩;敖雪;房一禾;张海娜4.IPCC AR4中海气耦合模式对中国东部夏季降水及PDO、NAO年代际变化的模拟能力分析 [J], 顾薇;李崇银5.13个IPCC AR4模式对中国区域近40 a气候模拟能力的评估 [J], 刘敏;江志红因版权原因,仅展示原文概要,查看原文内容请购买。
2011-张宏芳-气象科学-21个气候模式对东亚夏季环流模拟的评估:气候态
2011-张宏芳-气象科学-21个气候模式对东亚夏季环流模拟的评估:气候态第31卷第2期气象科学Vo.l31,No.2 2011年4月Journal of the M eteorol og ical Sciences Apri,l2011张宏芳,陈海山.21个气候模式对东亚夏季环流模拟的评估I:气候态.气象科学,2011,31(2):119-128.ZHANG H ong fang,C HEN H a i shan.Eva l uati on o f su mm er circu l a ti on si m ulati on ove r EastA si a by21c li m ate models.Pa rt I:C li m a-to l ogy.Journal o f the M e teo ro log ical Sciences,2011,31(2):119-128.21个气候模式对东亚夏季环流模拟的评估I:气候态张宏芳1,2陈海山1(1南京信息工程大学气象灾害省部共建教育部重点实验室,南京210044;2安康市气象局,陕西安康725000)摘要利用欧洲中期天气预报中心的40a再分析资料(ERA40),评估了参与政府间气候变化专门委员会第四次评估报告(I PCC AR4)的21个全球海气耦合模式对东亚地区夏季大气环流气候态的模拟能力。
结果表明:(1)尽管各模式模拟性能差异较大,但模式对东亚地区海平面气压场(SLP)、850hPa风场及500hPa位势高度场的气候态均有较好模拟;整体来说,500hPa位势高度场模拟效果最好,SLP场模拟相对较差;(2)SLP 在高原上模拟存在明显不足;多数模式能较好模拟850hPa纬向、经向风场的基本特征;500hPa位势高度场各模式模拟偏差一致性的区域性差异不明显;(3)模式对东亚地区夏季两大环流系统模拟整体偏弱,西太平洋副热带高压模拟明显偏弱。
关键词气候模式;大气环流;模式评估分类号P435.2文献标识码AEval uation of su mm er circul ation si m ulation overEastAsia by21cli m ate m odels.Part?:Cli m atologyZHANG H ongfang1,2C HEN H aishan1(1K ey Laboratory of M eteorolog ical D isaster of M inistry of Educati on,N anjing University of Informa tion Science& T echnology,N anjing210044,China;2A nkang M eteorology B ureau,Shaanx i A nkang725000,Ch i na)Abstract Based on European Cen ter forM ed i u m rangeW eather Forecasting(EC MW F)40a rean-alysis data(ERA40),the capabilities o f21Coupled Ocean-A t m osphere General C ircu lation M ode ls (CGC M s)fro m I ntergovernm enta l Panel on C li m ate Change(I PCC)Fourth Assess m ent Report(AR4) to si m ulate the cli m a tology o f su mm er a t m ospheric general circulations in EastA si a have been evaluated.Results sho w tha:t(1)Desp ite lar ge d ifferences a m ong21m odels,the basic spatia l patter ns of the cl-i m ato logy of SLP,U,V w i n d and500hPa geopotential height are w ell si m u l a ted.On the w ho le,t h e si m-u lation o f500hPa po tentia lhe i g h t is the bes,t but the si m ulati o n o fSLP is re lati v e l y poor;(2)The si m-u lated SLP exhi b its evident defic i e ncy.M ost of m odels can si m u late850hPa U,V w ind very w e l,l on the average,the corre lati o n coe fficient of U w ith ERA40is better than that o fV.There are no obv ious differences in t h e si m ulated500hPa geopotential heigh;t(3)On the w ho le,the si m u lated cli m atology of the m ain c ircu lati o n syste m s isw eaker than ERA40,and the si m u l a ted w estern Pac ific sub trop ica l high is syste m atically w eaker than t h e observa ti o n.K ey w ords C li m ate m odels;A t m ospher i c general c irculati o n;M odel evalua ti o n收稿日期(Recei ved):2010-11-06;修改稿日期(Revised):2010-12-09基金项目:国家自然科学基金项目(41075082);江苏省/333高层次人才培养工程0资助项目通讯作者(Corres pond i ng author):陈海山(CH EN H ais han)******************.cn引言自I PCC第三次评估报告以来,全球气候系统模式得到了迅速发展,I PCC第四次评估报告(the Fourth Assess m ent Report of the Intergover nm ental Pane l on C li m ate Change,简称I PCC AR4)集中了23个复杂全球气候系统模式9种不同排放情景下的预估结果,引起了各国学者对有关最新全球模式的模拟和预估能力的关注[1-3]。
区域气候模式对东亚夏季风降水的模拟能力分析
区域气候模式对东亚夏季风降水的模拟能力分析摘要:利用ReGCM3 和WRF模式对东亚季风区域(1980 ~ 1999)年间20年的地表温度和降水进行数值模拟,重点分析模式对我国西北干旱地区和东南地区地表温度和降水的模拟能力,分析中可以看出,在我国地表温度的模拟偏低,尤其在西北地区偏差较大。
WRF模式对地表温度的模拟能力优于ReGCM3模式,能较好的模拟出地表温度的季节变化特征。
而ReGCM3模式对降水的模拟能力在华南地区优于WRF模式,在西北地区差于WRF模式。
关键词: 东亚夏季风,区域气候模式,模拟能力,性能检验引言:我国地处东亚季风区,东亚地区因为独特的地理位置,植被分布和季风环流的影响,是世界上气候变化率最大,最复杂的地区之一。
由于东亚季风年际和年代变化, 我国洪涝干旱等气候灾害和极端气候事件发生频繁, 引起了严重的气候灾害, 尤其是旱涝等重大气候灾害每年造成数百亿公斤的粮食损失和数千亿元以上的经济损失。
降水年际变率的变化是衡量气候变化的一个重要指标, 与未来旱涝灾害的发生有密切联系。
如果未来降水年际变率强度减弱(增强), 则意味着由此而带来的气候异常灾害有可能减少(增多)。
东亚夏季降水具有很强的年际变率, 强度达到气候平均降水的6%~7%, 因而导致东亚地区经常出现严重的旱涝灾害。
因此, 研究东亚季风区降水年际变化率,搞清楚其演变特征和规律对我国生态环境建及更好地理解和治理西北沙漠化过程,减少东部季风区洪涝灾害等均具有重大的现实意义和深远的战略意义。
1.东亚地区区域气候模拟的研究现状:RCMs作为一种信息区域化工具,一方面对东亚地区区域气候状况进行多年模拟,提供有意义的气候统计特征和模式性能评价。
另一方面用来模拟或预测洪水和干旱这类异常气候事件的季节内和年际变化,从而检验不同时间尺度的气候变率,并分析这类事件的起因和机制。
虽然不同模式之间的模拟结果存在较大的差异,且在模拟不同季节时的多个变量各有所长,但大部分RCMs对模式气候态的改进均取得了稳定的发展,结果明显优于目前大多数CGMs 的预报技巧,主要表现在以下几个方面:(1)环流:多数RCMs 都不同程度地模拟出东亚地区季风系统的大尺度环流特征及其爆发、中断、突然跳跃等演变过程,常常冬季系统的模拟优于夏季,对流层中高层天气系统的模拟优于低层。
东亚夏季风强度的多尺度统计预测模型
东亚夏季风强度的多尺度统计预测模型纪忠萍;谷德军;林爱兰【期刊名称】《大气科学》【年(卷),期】2016(040)002【摘要】东亚夏季风强度的变化与中国雨带和旱涝分布密切相关.为了做好东亚夏季风强度的短期气候预测,采用小波分析、Lanczos滤波器、交叉检验等方法,研究了东亚夏季风强度的多尺度变化特征,在年际与年代际尺度上分别寻找了它在前冬海温场、200 hPa纬向风场上的前兆信号,并利用最优子集回归建立了东亚夏季风强度的多尺度统计物理预测模型.结果表明:东亚夏季风强度存在准4年、准13年和准43年的周期振荡.年际尺度上,前冬赤道东太平洋(10°N~10°S,160°W~80°W)海温与东亚夏季风强度有最强的显著负相关,且它与东亚夏季风强度在200hPa纬向风场上的前兆信号有较强的负相关;年代际尺度上,南半球60°S与35°S附近200hPa纬向风之差与东亚夏季风强度有最强的显著正相关,且它与东亚夏季风强度在热带印度洋、低纬度东南太平洋、低纬度南大西洋的海温及亚洲副热带200 hPa纬向风等前兆信号有强的正相关.通过探讨这两个前兆因子对东亚夏季风强度的预测意义,揭示了他们影响东亚夏季风强度年际和年代际变化的可能物理过程.所建立的东亚夏季风强度多尺度最优子集回归预测模型,不仅对东亚夏季风强度的年际变化具有较好的预测能力,而且对异常极值年份也具有一定的预测能力.【总页数】16页(P227-242)【作者】纪忠萍;谷德军;林爱兰【作者单位】广东省气象台,广州510080;中国气象局广州热带海洋气象研究所/广东省区域数值天气预报重点实验室,广州510080;中国气象局广州热带海洋气象研究所/广东省区域数值天气预报重点实验室,广州510080【正文语种】中文【中图分类】P466【相关文献】1.基于多元统计的甘肃永靖黑方台滑坡强度预测模型 [J], 毕俊擘;张茂省;朱立峰;胡炜;程秀娟2.登陆中国的热带气旋强度和频数物理统计预测模型及其应用 [J], 翁向宇;胡丽甜;李晓娟;谢定升;梁健3.东亚冬季风强度指数的统计预测模型初探 [J], 刘实;隋波4.年际―年代际尺度上南海北部SST与东亚夏季风强度的负相关关系 [J], 张会领;余克服;施祺;严宏强;陈特固5.结构陶瓷材料断裂强度统计预测模型 [J], 杨晓光;熊昌炳因版权原因,仅展示原文概要,查看原文内容请购买。
南海季风试验与东亚夏季风
南海季风试验与东亚夏季风南海季风试验与东亚夏季风南海季风试验是指科学家们对南海季风进行的一系列实验和观测研究。
东亚夏季风则是东亚地区盛行的一种季风气候。
两者都是在东亚地区非常重要的季风现象,对该地区的气候、环境和农业生产等方面有着深远的影响。
南海是位于中国大陆东南沿海的一个海域,它东临太平洋,南濒马来半岛和印度尼西亚群岛,西界中国大陆。
南海季风试验的主要目的是通过海上测量和观测,深入了解南海季风的形成和演变机制,为预测和研究南海季风提供科学依据。
南海季风试验始于1979年,迄今已经进行了多个阶段的观测和研究。
南海季风试验主要通过观测海上、海洋温度和盐度等指标来分析和研究季风现象。
海上观测通常采用航行巡查、浮标和浮筒等方法,通过利用这些观测手段,科学家们能够追踪南海季风的路径和强度。
同时,南海季风的影响会导致海水温度和盐度的变化,通过对这些变化的分析和比较,可以更好地了解季风的形成和演变机制。
南海季风与东亚夏季风有着密切的关系。
东亚夏季风指的是在夏季期间,受到西太平洋季风和印度季风影响,会在中国南方沿海地区和东亚大陆上空形成一种季风气候。
它带来的降雨为中国南方的农作物和水资源提供了充足的水源。
而南海则是东亚夏季风形成和发展的关键地区,其季风环流会通过南海向东扩散,最终进入中国东南沿海地区。
通过南海季风试验的观测和研究,科学家们对东亚夏季风的形成和演变机制有了更深入的认识。
他们发现,南海季风和东亚夏季风都受到热带季风和西太平洋季风的共同影响,通过南海和菲律宾地区的相互作用,形成了东亚夏季风的正交分布特征。
南海季风的强度和路径会受到西太平洋季风和印度季风的季节性变化以及海陆热力差异的影响,而这些因素又会直接影响到东亚夏季风的形成和发展。
南海季风试验的研究成果不仅提升了对南海季风和东亚夏季风的认识,也为气象预测和农业生产等方面提供了重要的科学依据。
比如,科学家们通过观测和分析南海季风的强度和变化规律,可以为东亚地区的气象预测提供更准确的数据和信息。
1998年东亚夏季风过程的数值模拟
1998年东亚夏季风过程的数值模拟王世玉;钱永甫【期刊名称】《大气科学进展(英文版)》【年(卷),期】2001(018)002【摘要】利用改进的九层P-σ模式和1998年南海季风试验从5月1日到8月31日共123天的再分析资料对该年的东亚夏季风进行模拟,发现基本的大气环流形势(南亚高压和西太平洋副高)均能模拟出来,但南亚高压模拟偏强,西太平洋副高模拟偏弱。
由时间相关系数分析可以发现,该模式对于短期气候模拟(约2个月)效果较好,对于长期积分,则气候飘移较明显;由空间相关系数分析发现,模拟的较差区域位于青藏高原及其相邻的中南半岛西北部等地区。
降水的模拟是较差的,五、六月份能模拟出雨带的大致移动,七、八月份模拟的降水明显较观测场偏北。
由敏感性试验的分析结果发现,嵌套边界条件的改善对于降水的模拟影响较大%The 1998 East Asian Summer Monsoon is simulated by use of an improvednine-level p-σ model, the boundary forcing is the South China Sea Monsoon Experiment (SCSMEX) reanalysis data from May 1 to August 31, 1998. It is found that basic features of the atmospheric circulation (such as the South Asia high and the West Pacific subtropical high) can be simulated fairly. However the South Asia high is a little stronger than the observed, while the West Pacific subtropical high a little weaker. Seen from variations of the time correlation coefficient, this model is good for the short-time climate simulation (less than two months), while for the long-time simulation, its climate drift is a little obvious. It can be also seen fromthe spatial distribution of correlation coefficient that the worse simulation areas of the model are located in the Tibetan Plateau and the adjacent northwest Indo-China Peninsula. For the simulation of precipitation, the movement of rain belt from May to June can be simulated, but the simulation of July and August precipitation shifts obviously to north of the observed. It is also found from the analysis of sensitive experiment that the improvement of the nested boundary condition has a great impact on the simulation results, especially on the precipitation, so the model and the nesting technique need further improvements.【总页数】16页(P209-224)【作者】王世玉;钱永甫【作者单位】Department of Atmospheric Sciences, Nanjing University,;Department of Atmospheric Sciences, Nanjing University,【正文语种】中文【中图分类】P46因版权原因,仅展示原文概要,查看原文内容请购买。
一个海气耦合模式对东亚夏季气候预测潜力的评估
秦 正坤 孙 照渤 林 朝 晖 陈 红 罗京佳 。
2 0 4 104 102 00 9
1 南京信息工程大学大气科学学 院,南京
2 中国科学院大气物理研究所 国际气候与环境科学中心, 北京
3 F o t r s a c e t r o o a h n e a a e c rMa ieE rhS in ea dTe h oo y Yo o a , a a r n i e rh C n e r e Re f Glb l a g ,J p n Ag n y f r - a t c c n c n lg , k h ma J p n C o n e
关键词
海气耦 合模式
夏季气候异 常 季度预报
预测潜力
P 3 45 文献标识码 A
文章编号 1 0-5 5(0 7 302 —1 0 698 2 0 )0—4 61
中图分类号
Ev l a in o tnta e ca iiy o u a u to n Po e i lPr dit b lt fS mm e i a e r Clm t o e s i y a Ai- e u e o e v r Ea tAsa b n r S a Co pld M d l
QI Z e g Ku , S N h n - n UN h oBo ,LI Z a — u Z a- N h oH i,CHEN n n Ho g ,a dLUO i gJd Jn - i
1 De at e t fAt op ei S i cs p r n m s hrc ce e ,Na igU ies yo n om t nS ine n eh oo y, m o n n nv ri f If r a i cec d T cn l t o a g
东亚夏季风环流系统多时间尺度演变特征
引起南海季风爆发
(Lau, K.M., and S. Yang,1997;Webster, P.J. et. al., 1998; Qian, W., and S. Yang, 2000; Wang, B., and Lin, H., 2002 )注意到,夏季风最早的 爆发通常于5月初在中南半岛西部的南端开始
阴影为Student t检验达到95%显著性水平的区域
冷位相异常年:是指PDO指数小于冷位相期平均值-0.5的年份; 暖位相异常年:是指 PDO指数大于暖位相时期平均值0.6的年份。
冬季的PDO指数对夏季850hPa风距平场的回归系数 阴影为Student t检验达到95%显著性水平的区域
A
C
A
年代际变化 年际变化 季节变化 季节内
亚洲夏季风系统成员
多年平均6-8月200hPa距平风场(年代际)
A
C
多年平均6-8月500hPa高度距平(年代际)
-
+
多年平均6-8月850hPa距平风场(年代际)
C
A
盛夏(7月)东亚高空西风急流位置年代际变化
7月东亚高空西风急流位置指数标准化时间序列
Difference between 1980~1999 and 1951~1971 for Percent of JJA rainfall
夏季降水距平年代际变化(9年滑动平均)
(a)华北17个站
(c)华南15个站
ห้องสมุดไป่ตู้
(b)长江17个站
东亚夏季风年际变率的模拟评估及未来预估的开题报告
东亚夏季风年际变率的模拟评估及未来预估的开题
报告
一、研究背景及意义
夏季风是影响东亚地区气候和生态环境的重要因素之一,其年际变率对于东亚地区的农业、水资源、能源等方面产生了重大影响。
因此,研究夏季风年际变率的模拟评估和未来预估,对于深刻认识夏季风的动力和气候机制,提高对未来气候变化的预测能力具有重要意义。
二、研究内容和方法
1.研究内容
本研究将通过分析观测资料、模式模拟和统计方法,评估夏季风年际变率的模拟效果,并对未来夏季风变化进行预估。
2.研究方法
(1)分析观测资料:利用中国气象局提供的观测资料,对夏季风年际变率进行分析。
(2)模式模拟:采用全球气候模式和区域气候模式对夏季风年际变率进行模拟,评估模式的模拟效果,分析夏季风年际变率的动力和气候机制。
(3)统计方法:利用统计方法对观测资料和模式模拟结果进行分析和对比,评估模拟结果的可靠性和准确性。
三、研究计划及预期结果
1.研究计划
(1)资料收集与整理:收集和整理夏季风年际变率的观测资料、模式模拟结果和统计分析方法。
(2)数据分析与处理:对收集的资料进行分析和处理,评估模拟结果的可靠性和准确性,探究夏季风年际变率的动力和气候机制。
(3)结果展示与讨论:展示研究结果,进行讨论和误差分析,并对夏季风年际变化的未来趋势进行预估。
2.预期结果
(1)评估夏季风年际变率的模拟效果,分析夏季风年际变率的动力和气候机制。
(2)预估未来夏季风的变化趋势,为夏季风的气候预测和防灾减灾提供参考。
(3)发表论文和专著,推广研究成果,为东亚地区气候变化和可持续发展提供科学依据。
东亚夏季风模式跨季预测的EOF-相似误差订正
东亚夏季风模式跨季预测的EOF-相似误差订正程娅蓓;任宏利;谭桂容【期刊名称】《应用气象学报》【年(卷),期】2016(027)003【摘要】利用国家气候中心第2代季节气候预测模式BCC_CSM1.1 (m)的1991-2010年每年2月起报的历史回算资料集,考察模式对于5个夏季风指数的预测能力,并通过发展基于经验正交函数分解与相似分析的EOF-相似误差订正方法,对5个夏季风指数的模式预测进行再修正.交叉检验和独立样本检验结果表明:该模式对1991-2010年东亚夏季风指数与西北太平洋夏季风指数预测技巧较高;EOF-相似误差订正方法适用于模式预测技巧较低的指数,这些指数经订正后预测效果均有不同程度改进,而预测技巧较高的夏季风指数经订正后改进效果不明显;在交叉检验中,线性部分订正多优于非线性部分订正效果,而对于独立试报的年份,非线性部分订正多优于线性部分订正效果,显示出良好的应用前景.【总页数】8页(P285-292)【作者】程娅蓓;任宏利;谭桂容【作者单位】南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心,南京210044;中国气象局国家气候中心气候研究开放实验室,北京100081;中国气象局国家气候中心气候研究开放实验室,北京100081;南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心,南京210044【正文语种】中文【相关文献】1.MRI-CGCM模式对东亚夏季风的模拟评估及订正 [J], 罗连升;段春锋;杨玮;徐敏;程智;丁小俊2.一个ENSO动力-相似误差订正模式及其后报初检验 [J], 孙丞虎;李维京;任宏利;张培群;王冬艳3.风能模式预报的相似误差订正 [J], 徐晶晶;胡非;肖子牛;李军4.BCC_CSM1.1m模式对福建前汛期降水预测的误差订正 [J], 池艳珍;梁潇云;何芬;吴伟杰;唐振飞5.相似误差订正方法在风电短期风速预报中的应用研究 [J], 赵文婧;李照荣;王小勇;李遥;闫晓敏;刘抗;邸燕君;达选芳因版权原因,仅展示原文概要,查看原文内容请购买。
东亚夏季风降雨的可预报性研究
东亚夏季风降雨的可预报性研究刘成璟;章向明;唐佑民【摘要】本文根据CMAP(The Climate Prediction Center Merged Analysis of Precipitation)观测资料,使用相关系数和均方根误差,对CHFP2(Coupled Historical Forecast Project,phase 2)的2个模式对东亚夏季降雨的季节预报技巧作出评价.在完美模式的理论框架下,分别使用基于信噪比的潜在相关系数和基于信息熵的潜在可预报性指标,对该区域主要针对夏季降雨的可预报性作出评价.通过最可预报分量分析(PrCA),得到季节降雨的最可预报型.将最可预报型投影到海温场,得到了降水最可预报型对应的海温分布.研究发现:相关系数所反映的预报和观测的线性相关程度总体上是低纬度海洋区域比高纬度陆地区域高,而均方根误差反映的则是在海洋区域降雨预报偏离实际值的程度较陆地区域大,预报水平与目前降雨的季节预报水平相符.潜在可预报性估计表明,潜在可预报率存在空间上的变化,从低纬度向高纬度、从海洋到内陆,呈衰减趋势.同时,信号和噪音的分析表明,信号成分占主导作用,形成了潜在可预报率的空间分布格局,暗示了海洋外强迫的重要作用;中国大陆缺少像海洋区域那样明显的外强迫,因此降水季节预报技巧相比热带海洋区域非常有限.海温投影的分析表明海洋的外强迫是东亚降雨季节预报的重要来源.尽管厄尔尼诺本身的复杂性,它对东亚夏季风的重要影响及其与东亚降雨预报之间的遥相关揭示了它们内在的联系.【期刊名称】《海洋学研究》【年(卷),期】2015(033)004【总页数】13页(P17-29)【关键词】东亚降雨;季节预报;潜在可预报性;最可预报成分【作者】刘成璟;章向明;唐佑民【作者单位】卫星海洋环境动力学国家重点实验室,浙江杭州310012;国家海洋局第二海洋研究所,浙江杭州310012;卫星海洋环境动力学国家重点实验室,浙江杭州310012;国家海洋局第二海洋研究所,浙江杭州310012;卫星海洋环境动力学国家重点实验室,浙江杭州310012;国家海洋局第二海洋研究所,浙江杭州310012;北不列颠哥伦比亚大学环境科学与工程系,加拿大不列颠哥伦比亚省乔治王子城V2N4Z9【正文语种】中文【中图分类】P456.7东亚夏季降雨受多方面因素的影响,最主要的包括东亚季风、青藏高原以及厄尔尼诺等。
一种经验相似方法在沿海海岛阵风预报中的应用
一种经验相似方法在沿海海岛阵风预报中的应用胡波;杜惠良;俞燎霓;滕代高;黄新晴【期刊名称】《海洋预报》【年(卷),期】2014(031)003【摘要】近地面阵风的精确估算对航海航空临界危险天气确定和防范建筑物和农作物损害等具有重要意义.利用2006-2012年的NCEP/NCAR再分析数据、舟山群岛68个自动站的小时极大风速数据,通过定义大气环流形势相似指数和地面风场相似指数,建立一种阵风经验统计降尺度映射预报模型.利用模型对2012年7-12月一天2次(08时和20时)进行试报,并对比评估其与权重插值法的预报,结果表明,经验预报方法除在ScAn(均值评估)评分与权重插值法接近外,其他评分均占优,尤其ScHi(极值击中率评估)和ScVar(方差评估)评分优势明显,ScDisCen(大风区位置重心)的评分也提高了约10%.说明模型可以在充分发挥了经验统计降尺度技术的优点基础上,结合模式精细化预报,较好的将经验数据映射到预报空间,使预报数据空间分布与地形一致,弥补单纯动力模式的不足.【总页数】8页(P37-44)【作者】胡波;杜惠良;俞燎霓;滕代高;黄新晴【作者单位】浙江省气象台,浙江杭州310017;浙江省气象台,浙江杭州310017;浙江省气象台,浙江杭州310017;浙江省气象台,浙江杭州310017;浙江省气象台,浙江杭州310017【正文语种】中文【中图分类】P732.4【相关文献】1.几种不同方法在舟山海岛阵风预报试验中的对比分析 [J], 胡波;杜惠良;俞燎霓2.一种概率方法在沿海海岛台风阵风预报中的应用试验 [J], 胡波3.相似预报方法在山西省云量预报中的应用 [J], 黄海亮;靳双龙;王式功;陈录元;董春卿4.相似集合预报方法在北京区域地面气温和风速预报中的应用 [J], 王在文; 陈敏; Luca Delle Monache; 卢冰; 张涵斌5.高斯过程回归方法在浙江沿海海岛冬春季阵风预报中的应用试验 [J], 胡波;俞燎霓;滕代高因版权原因,仅展示原文概要,查看原文内容请购买。
东亚夏季风次季节变化研究进展
东亚夏季风次季节变化研究进展
祝从文1) 刘伯奇1) 左志燕1) 袁乃明2) 刘 舸1)
1)(中国气象科学研究院,北京 100081) 2)(中国科学院大气物理研究所,北京 100029)
摘 要
东 亚 夏 季 风 次 季 节 (10~90d)变 化 是 中 国 夏 季 持 续 性 强 降 水 、高 温 热 浪 等 高 影 响 天 气 事 件 的 重 要 环 流 载 体 ,处 于天气预报上限和气候季节预测下限之间的预报过渡区。研究表明:东亚夏季风 次 季 节 变 化 是 东 亚 夏 季 风 的 固 有 物理特征,它和季节进程之间的时间锁相关系是东亚夏季风次季节变化潜在可 预 报 性 的 重 要 来 源。 东 亚 夏 季 风 次 季节变化与 MaddenJulian振荡(MJO)存在显著差异,试图通过 MJO 来预测东亚夏季风次季 节 变 化 的 不 确 定 性 较 大。东亚夏季风次季节预测的另一重要来源是下垫面 外 强 迫,包 括 欧 亚 大 陆 春 季 积 雪、中 国 东 部 春 季 土 壤 湿 度 和 厄 尔 尼 诺南 方 涛 动 (ENSO)事 件 。 此 外 ,去 趋 势 偏交 叉 相 关 分 析 统 计 方 法 能 够 分 析 东 亚 夏 季 风 多 因 子 和 多 时 间 尺 度问题。目前,亟需解决的科学问题包括:东亚夏季风次季节模态的客观定量描 述、造 成 东 亚 夏 季 风 次 季 节 模 态 年 际 变 化 的 关 键 物 理 过 程 、不 同 外 强 迫 因 子 对 东 亚 夏 季 风 次 季 节 模 态 的 共 同 影 响 。 关 键 词 :东 亚 夏 季 风 ;次 季 节 变 化 ;热 带 和 热 带 外 环 流 间 相 互 作 用 ;外 强 迫 因 子 的 共 同 影 响
引 言
东亚夏季风环流系统多时间尺度演变特征_图文
一主分量(
方差贡献率
为34%)
东亚夏季风年代际变异模态, 方差贡献率为34%东亚夏季风年代际变异模态的时间序列
(b) 标准 化的第一主
(标准化),图中虚线为时间系列的3次多项式趋势线 分量的时间
系数
年代际:Decade variations for the rainfall over China
Difference between 1980~1999 and 1951~1971 for Percent of JJA rainfall
中南半岛 对流强, 季风开始 早
南 海 季 风 爆 发 梅雨早早(短) 于 图气1994年亚洲季风区30~122天滤波的OLR逐侯演变图, 4月候第5侯至9月第2侯,其余与图26同 平
1994
东亚夏季风环流年际异常特征
(1)南海夏季风平均5月4候爆发
(2)南海季风爆发晚于气候平均, (爆发偏晚) 东亚夏季风环流偏弱 有利长江流域夏季降水偏多.
C
东亚夏季风降水年代际变异模态正、负异常年风场 的距平合成图, 阴影区表示环流异常的Student t检验超过了0.05的 信度检验。
(C)降水正异常年850hPa风场 (d)降水负异常年850hPa风场
PDO冷、暖位相异常年冬季 SST的距平合成图 (a)为冷位相异常年;(b)为暖 位相异常年,
阴影为Student t检验达到 95%显著性水平的区域
年代际变化 年际变化 季节变化 季节内
亚洲夏季风系统成员
多年平均6-8月200hPa距平风场(年代际)
A
C
多年平均6-8月500hPa高度距平(年代际)
-
+
多年平均6-8月850hPa距平风场(年代际)
基于NCAR Cam3模式的东亚夏季风
基于NCAR Cam3模式的东亚夏季风文章基于NCAR Cam3模式,利用相关分析和功率谱分析方法,数值模拟了自然变率下东亚夏季风的特征。
结果表明:(1)自然变率下东亚夏季风具有明显的年际和年代际变化特点。
(2)自然变率下东亚夏季风存在2-4年左右周期。
(3)自然变率下东亚夏季风与夏季温度相关性最密切。
(4)自然变率下东亚夏季风越强,东北、华北附近温度较平均值偏高,华南附近温度则较平均值偏低,反之亦然。
标签:东亚夏季风;模式;气温;相关季风是一种盛行风向随季节变化的气候现象,它的形成是由于海-陆热力差异导致的[1],它也是全球大气环流中重要的一环。
全球季风区主要有美洲季风区、亚洲-澳大利亚季风区和非洲季风区,其中亚洲-澳大利亚季风区的范围最广。
亚洲季风区是全球季风区风场年际变率最显著的地方,特征主要表现为冬季盛行偏北季风,夏季盛行偏南季风。
众多学者研究证明了季风的重要性以及季风对气候产生的影响[2-4],因此研究季风具有重要意义。
文章将利用NCAR Cam3模式[5],重点研究自然变率下东亚夏季风的特征及其与我国气温异常的关系。
利用该模式,可以消除人为因素等外强迫对大气环流造成的影响,从而得到气候本身的自有的特点。
2.2 自然变率下东亚夏季风的年际变化和年代际变化图1给出控制试验模拟的200年东亚夏季风指数序列,从图中可以看出,该序列具有明显的年际变化。
图中实线为11年滑动平均曲线,可以看出,从长时间看并非直线趋势,而是一种长时间的波动,说明在模拟的200年中,东亚夏季风强、弱交替出现,而且体现了年代际变化的特点。
2.3 自然變率下东亚夏季风的周期特征图2所给出的是功率谱分析。
功率谱分析表明,EAP指数最主要的周期长度在2.4、2.6、3.9年左右,通过90%的信度检验。
3 自然变率下东亚夏季风与我国气温异常的关系3.1 自然变率下东亚夏季风与各季节温度关系东亚夏季风EAP指数与春、秋、冬三个季节的温度场相关系数很小,但与夏季(同期)的相关很好,北半球中高纬大部分地区通过95%的信度检验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
An empirical seasonal prediction model of the east Asiansummer monsoon using ENSO and NAOZhiwei Wu,1,2Bin Wang,2Jianping Li,1and Fei-Fei Jin2Received8January2009;revised2July2009;accepted13July2009;published29September2009.[1]How to predict the year-to-year variation of the east Asian summer monsoon(EASM)is one of the most challenging and important tasks in climate prediction.It has beenrecognized that the EASM variations are intimately but not exclusively linked to thedevelopment and decay of El Nin˜o or La Nin˜a.Here we present observed evidence andnumerical experiment results to show that anomalous North Atlantic Oscillation(NAO)inspring(April–May)can induce a tripole sea surface temperature pattern in the NorthAtlantic that persists into ensuing summer and excite downstream development ofsubpolar teleconnections across the northern Eurasia,which raises(or lowers)the pressureover the Ural Mountain and the Okhotsk Sea.The latter strengthens(or weakens)the eastAsian subtropical front(Meiyu-Baiu-Changma),leading to a strong(or weak)EASM.An empirical model is established to predict the EASM strength by combination of theEl Nin˜o–Southern Oscillation(ENSO)and spring NAO.Hindcast is performed for the1979–2006period,which shows a hindcast prediction skill that is comparable to the14state-of-the-art multimodel ensemble hindcast.Since all these predictors can be readilymonitored in real time,this empirical model provides a real time forecast tool.Citation:Wu,Z.,B.Wang,J.Li,and F.-F.Jin(2009),An empirical seasonal prediction model of the east Asian summer monsoon using ENSO and NAO,J.Geophys.Res.,114,D18120,doi:10.1029/2009JD011733.1.Introduction[2]The poor simulation of the Indian monsoon was noted by many previous studies[e.g.,Sperber and Palmer,1996; Gadgil and Sajani,1998;Wang et al.,2004],yet the east Asian summer monsoon(EASM)has only recently been revealed as a major challenge in numerical simulation[Kang et al.,2002;Wang et al.,2004]and seasonal prediction [e.g.,Chang,2004;Wang et al.,2005;Wu and Li,2008]. The multimodel ensemble(MME)is generally better than any single model prediction[Doblas-Reyes et al.,2000; Palmer et al.,2000;Krishnamurti et al.,1999],providing an effective way to aggregate and synthesize multimodel forecasts[Wang et al.,2008a].However,examination of the ensemble of five state-of-the-art atmospheric general circu-lation models’(AGCMs)20-year(1979–1998)hindcast experiment indicates that the ensemble skill of these models remains very low in forecasting the EASM[Wang et al., 2005].Therefore,determination of the predictability of the EASM and identification of the sources of predictability are of central importance to seasonal prediction of the EASM and associated uncertainties[Wang et al.,2008b].[3]It has been generally recognized that the EASM experiences strong interannual variations associated with the El Nin˜o–Southern Oscillation(ENSO)[e.g.,Fu and Teng,1988;Weng et al.,1999,Wang et al.,2000,2008c; Chang et al.,2000a,2000b;Yang and Lau,2006].In the last30years,the dominant empirical orthogonal function mode indicates that an enhanced east Asian subtropical front and abundant Meiyu occur during the summer when El Nin˜o decays[Wang et al.,2008c].Why is there a ‘‘delayed’’response of the EASM to ENSO in the ensuing summer when sea surface temperature(SST)anomalies disappear in the tropical eastern central Pacific?Wang et al.[2000]pointed out that the interaction between the off-equatorial moist atmospheric Rossby waves and the under-lying SST anomalies in the western Pacific warm pool region can‘‘prolong’’the impacts of ENSO from its mature phase to decaying phase and causes a‘‘delayed’’response of the EASM to ENSO.Nevertheless,since the EASM has complex spatial and temporal structures that encompass tropics,subtropics,and midlatitudes,its variability is influ-enced not only by the variations originated from the tropics (i.e.,ENSO)[e.g.,Chen and Chang,1980;Huang and Lu, 1989;Wu et al.,2000;Ding,2004;Ninomiya,2004;Wu et al.,2006],but also by those from the midlatitudes to high latitudes[e.g.,Enomoto et al.,2003;Wu et al.,2006;He et al.,2006;Ding and Wang,2007].[4]North Atlantic Oscillation(NAO)is a large-scale seesaw in atmospheric mass between the subtropical high and the polar low[e.g.,Walker and Bliss,1932;Bjerknes, 1964;van Loon and Rogers,1978;Wallace and Gutzler, 1981;Barnston and Livezey,1987;Li and Wang,2003]. Trenberth et al.[2005]suggested that the Northern Hemi-sphere annual mode and associated NAO is the third mostJOURNAL OF GEOPHYSICAL RESEARCH,VOL.114,D18120,doi:10.1029/2009JD011733,2009 ClickHereforFullArticle1State Key Laboratory of Numerical Modeling for AtmosphericSciences and Geophysical Fluid Dynamics,Institute of AtmosphericPhysics,Chinese Academy of Sciences,Beijing,China.2Department of Meteorology and IPRC,University of Hawai’i atM a noa,Honolulu,Hawaii,USA.Copyright2009by the American Geophysical Union.0148-0227/09/2009JD011733$09.00important pattern of global atmospheric mass interannual variability.A few studies have already noticed that NAO may affect Asian climate.Chang et al.[2001]suggested that the weakening Indian monsoon rainfall–ENSO rela-tionship since1970s is most likely due to strengthened NAO on the interdecadal time scale.Watanabe[2004] found that NAO signals are relatively confined to the Euro-Atlantic sector in December while it extends toward east Asia and the North Pacific in February on the interannual time scale.[5]Although NAO signals associated with the North Atlantic storm track tend to be weakened from spring to summer[Lau and Nath,1991;Jin et al.,2006a,2006b],it is still not clear whether spring(April–May)NAO can affect variations of the EASM or not.If so,how does it work and to what extent does it contribute to the seasonal prediction of the EASM?In this paper we attempt to answer these questions.[6]In section2,we describe the data sets and the numerical model used in this study.The distinctive rainfall and circulation structures of a strong EASM is briefly described in section3as background information.The statistical relationship among spring NAO,North Atlantic SSTs,and the EASM is manifested in section4.Section5 investigates the possible physical mechanism on how spring NAO affects the EASM variations.In section6,an empir-ical model is established to forecast the strength of the EASM based on ENSO and spring NAO,and a hindcast is performed for the1979–2006period.In section7,the main conclusions are summarized,and some outstanding issues are discussed.2.Data and Model[7]The main data sets employed in this study include (1)monthly precipitation data from the global land pre-cipitation reconstruction over land(PREC/L)data for the 1979–2006period gridded at1.0°Â1.0°resolution[Chen et al.,2002];(2)monthly circulation data,gridded at2.5°Â2.5°resolution,taken from the National Centers for Envi-ronmental Prediction–Department of Energy reanalysis [Kanamitsu et al.,2002];and(3)the Nin˜o3.4SST index calculated from the improved Extended Reconstructed SST Version2(ERSST V2)[Smith and Reynolds,2004].In this study,summer(June,July,and August(JJA))mean anoma-lies are defined by the deviation of JJA mean from the long-term(1979–2006)mean climatology,and spring refers to April–May.[8]All the numerical experiments presented in this paper are based on a dry spectral primitive equation model developed by Hoskins and Simmons[1975].The version used here differs from the original in some details[Simmons and Burridge,1981;Roads,1987;Lin and Derome,1996; Marshall and Molteni,1993;Hall,2000].The resolution used here is triangular31,with10equally spaced sigma levels.An important feature of this model is that it uses a time-averaged forcing calculated empirically from observed daily data.By computing the dynamical terms of the model, together with a linear damping,with daily global analyses and averaging in time,the residual term for each time tendency equation is obtained as the forcing.This forcing, thus,includes all processes that are not resolved by the model’s dynamics such as diabatic heating(including latent heat release related to the transient eddies)and the deviation of dissipative processes from linear damping.The model has no orography,so the forcing also mimics the time mean orographic forcing.Because of its simplicity in physics,it is referred to as a‘‘simple general circulation model’’(SGCM).The advantage of this SGCM model is that dynamical mechanisms are more easily isolated,and since the model used is computationally cheap,many experiments can be performed.The limitation of this approach is that the physical parameterizations present in general circulation models are replaced by empirically derived terms,so some potentially important physical feedback mechanisms may be absent from our analysis.As shown by Hall[2000],this model is able to reproduce remarkably realistic stationary planetary waves and the broad climatological characteristics of the transients are in general agreement with observations.3.Structure of Rainfall and Circulations Associated With a Strong EASM[9]The EASM is a distinctive component of the Asian climate system[Zhu,1934;Tu and Huang,1944;Chen and Chang,1980;Tao and Chen,1987;Lau et al.,1988;Ding, 1992;Wang et al.,2001;Li and Zeng,2002;Wang and Li, 2004]because of unique tectonic forcing,including the huge thermal contrasts between the world’s largest conti-nent,Eurasia,and the largest ocean basin,the Pacific,and strong dynamic and thermodynamic influence of the world’s highest land feature,the Tibetan Plateau.The EASM has characteristic features in both rainfall distribution and asso-ciated large-scale circulation systems[e.g.,Wang et al., 2008c].[10]To quantitatively measure the strength of the EASM,a unified index,namely,the reversed Wang and Fan[1999] index(EASMI),is employed in this study.Wang et al. [2008c]compared25existing EASM indices and found this index has the best performance in capturing the total variance of the precipitation and three-dimensional circula-tion over east Asia,and it is nearly identical to the leading principal component of the EASM.The EASMI is defined by the U850averaged in(22.5–32.5°N,110–140°E)minus U850in(5–15°N,90–130°E)(red boxes in Figure1), where U850denotes the zonal wind at850hPa.[11]Figure1presents JJA regressed precipitation to the EASMI.The rainfall distribution associated with the EASM shows a meridional tripole pattern with dry anomalies over the northern South China Sea(SCS)and Philippine Sea(the intertropical convergence zone or monsoon trough)and enhanced precipitation along the Yangtze River valley to southern Japan(the prevailing subtropical front)and over the Maritime Continent.Note that the EASMI highlights the significance of the Meiyu-Baiu-Changma rainfall in gauging the strength of the EASM because the Meiyu-Baiu-Changma rainfall,which is produced in the primary rain-bearing system,the east Asian subtropical front,better represents the variability of the EASM circulation system [Wang et al.,2008c].As such,the EASMI reverses the traditional Chinese meaning of a strong EASM which corresponds to a deficient Meiyu.The new definition is consistent with the meaning used in other monsoon regions worldwide where abundant rainfall within the major localrain-bearing monsoon system is considered to be a strong monsoon [Wang et al.,2008c].[12]Figure 2displays the anomalous global circulation structure accompanying a strong EASM.At 850hPa,a prominent feature over east Asia is the anomalous subtrop-ical high with enhanced southwesterly winds on its north-west flank prevailing from South China to the middle and lower reaches of the Yangtze River and southern Japan and strengthened easterly anomalies between 5°and 20°N (Figure 2a).A negative geopotential high anomaly belt controls the Meiyu-Baiu-Changma frontal area,which implies a strengthened east Asian subtropical front.A similar feature exists at 500hPa over east Asia (Figure 2b),which is consistent with the suppressed rainfall anomaly over the northern SCS and Philippine Sea and abundant subtropical frontal rainfall (Figure 1).At 200hPa,a large-scale anti-cyclone anomaly covers south China and expands eastward,and a cyclonic anomaly is over the Philippines and extending eastward (Figure 2c).The western Pacific subtropical high basically exhibits a baroclinic structure.[13]It should be emphasized that in Figure 2,an Atlantic-Eurasian wave train of a barotropic structure controls the midlatitudes to high latitudes north of 50°N,extending from the North Atlantic to the Okhotsk Sea.Associated with this wave train pattern,three positive geopotential height anomaly centers are located at the North Atlantic,the Ural Mountains,and the Okhotsk Sea.Many previous studies already noticed that the blocking highs near the UralMountain and the Okhotsk Sea can have important effects on the EASM [e.g.,National Climate Center of China (NCC ),1998;Yang ,2001;Li and Ding ,2004;Ding and Sikka ,2006].This wave train pattern is different from the circumglobal teleconnection wave train pattern documented by Ding and Wang [2005].The latter is associated with Indian summer monsoon.What triggers the Atlantic-Eurasian wave train?We will address this issue in section 5.[14]On the basis of the above results,the EASM may be influenced not only by climate anomalies originated from the tropics but also by those from the midlatitudes to high latitudes in the Northern Hemisphere.4.Spring NAO,North Atlantic SSTs,and EASM[15]To further investigate the relationship between the EASM and spring NAO,we calculated correlation coeffi-cients between the EASMI and the NAO index (NAOI)inFigure 1.Anomalous summer (JJA)mean precipitation rate (color shading,see scale at right)that is regressed to the EASM index (EASMI).The precipitation data used are derived from PREC/L [Chen et al.,2002]for the period of 1979–2006.The EASMI is an inverse Wang-Fan index [Wang and Fan ,1999;Wang et al.,2008c]and is defined as the 850hPa area-averaged zonal wind difference between the two red boxes (the north box minus the southbox).Figure 2.Anomalous summer (JJA)mean geopotential high (H)(contours in units of m),and winds (arrows,see scale at bottom right)that are regressed to the EASMI at (a)850hPa,(b)500hPa,and (c)200hPa,respectively.Only the winds significant at the 95%confidence level are plotted.the six preceding months.The NAOI used in this study is defined as the difference in the normalized monthly sea level pressure (SLP)zonal-averaged over the North Atlantic sector from 80°W to 30°E between 35°N and 65°N [Li and Wang ,2003].Through a systematic comparison of NAO indices,Li and Wang [2003]recommended that this NAOI provides a much more faithful and optimal representation of the spatial-temporal variability associated with the NAO,and it is also very simple.[16]We found that the spring (April–May)NAOI has best correlation with the EASM.Figure 3shows time series of the EASMI and the spring NAOI.The correlation coefficient reaches 0.56for the period of 1979–2006,which is statistically significant at 99%confidence level based on a Student’s t test.Note that for comparison,the sign of the spring NAOI in Figure 3was reversed.The correlationcoefficients between the two indices reach 0.7and 0.52on decadal trend and interannual time scales,respectively,all exceeding 95%confidence level.It indicates that the spring NAO is highly related to the EASM not only on a decadal trend time scale but also on an interannual time scale.[17]Figure 4a displays the correlation pattern between the EASMI and spring SLP,which resembles a similar pattern with that between the spring NAOI and spring SLP (Figure 4b).Their pattern correlation coefficient reaches 0.81,beyond 99%confidence level.Significant negative correlation values are centered along the southeastern coast of North America,extending eastward,while significant positive values prevail in the high latitudes around Iceland.It suggests that anomalously weak spring NAO usually yields a precursory signal for a high EASMI summer and viceversa.Figure 3.Time series of the EASMI and the spring (April–May)North Atlantic Oscillation (NAO)index (NAOI)[Li and Wang ,2003]for the 1979–2006period.For convenience of comparison,the sign of NAOI is reversed.The correlation coefficient (R)between the EASMI and the spring NAOI is0.56.Figure 4.Correlation maps between sea level pressure (SLP)during the preceding spring (April–May)and (a)the JJA EASMI and (b)the spring NAOI.The dark (light)shading areas represent statistically significant positive (negative)correlation at 95%confidence interval.[18]Since the atmosphere (or NAO),on its own,lacks the mechanisms to generate predictable variations,potential predictability of such fluctuations can only arise from coupled mechanisms that involve low boundary forcing such as SST [Namias ,1959,1965;Charney and Shukla ,1981;Shukla ,1998].Figure 5shows SST correlation patterns with the EASMI and the spring NAOI from the preceding spring through the following summer.A pro-nounced feature is that the EASM and the spring NAO share a similar set of SST correlation patterns in the North Atlantic,i.e.,a tripole pattern,which persists from the preceding spring through the following summer.Watanabe et al.[1999]and Pan [2005]found that such a North Atlantic tripole SST pattern is induced by anomalous NAO in boreal winter.According to the result in Figure 5,the tripole pattern is also likely to emerge in boreal spring if NAO anomalies occur.Furthermore,such a pattern is a relevant precursor for the EASM anomalies,which implies that it might contribute to the EASM variations.To quan-titatively depict the tripole pattern during boreal summer,a simple tripole SST index (SSTI)is defined as the difference between the sum of averaged SST in two positive correla-tion boxes and averaged SST in the negative correlation box (positive domain minus negative domain).The tripole SSTIexhibits a nearly consistent variability with the EASMI,their correlation coefficient reaching 0.62beyond 99%confidence level.[19]From the above statistical analysis,the linkage among spring NAO,the North Atlantic SST anomalies,and the EASM may be summarized as the following:spring NAO anomalies are usually associated with a tripole SST anomaly pattern in the North Atlantic which can persist from spring through summer;the summer tripole SST anomalies are significantly correlated to the EASM variations.However,the correlations do not warrant any cause and effect.5.Physical Mechanisms[20]How can spring NAO affect the EASM?To figure out this question,first we need to understand why spring NAO can induce a tripole SST pattern in the North Atlantic.Then,it should be asked what is responsible for the persistence of the tripole SST pattern through summer,in light of the crucial ‘‘bridge’’role the tripole pattern plays in the linkage between spring NAO and the EASM.The last and most important issue is how the tripole SST anomaly pattern in the North Atlantic exerts effects on the EASM.[21]It is generally recognized that NAO is of a baro-tropical structure and a most distinguished featureassociatedFigure 5.(a–c)Correlation maps between the JJA EASMI and North Atlantic sea surface temperature (SST)anomalies from the preceding April through the following JJA.The dark (light)shadings are significant positive (negative)correlation areas exceeding 95%confidence level.(d–f)The same as top except for the spring (April–May)NAOI.For comparison,the sign of NAOI is reversed.with a strong (weak)NAO phase is the poleward (equa-torward)displacement of the North Atlantic storm track [e.g.,Thompson and Wallace ,2000a,2000b;Trenberth et al.,2005].The surface wind speed varies in phase with the high-level jet stream (not shown);weak spring NAO phases are usually associated with high surface wind speed within (30–45°N)and low wind speed within the areas south of 30°N and north of 45°N and vice versa.For high (low)sea surface wind speed often favors cold (warm)SST anomalies by latent heat flux exchange,SST exhibits a similar pattern (positive correlations within poleward and equatorward areas and negative correlations in the middle latitudes)as a response to this tripole surface wind speed pattern.Therefore,the poleward (equatorward)displace-ment of the North Atlantic storm track associated with a strong (weak)NAO phase can account for the North Atlantic tripole SST pattern in spring just the same as it does in winter.[22]Although previous studies found that positive feed-backs between NAO and tripole SST anomalies can sustain a tripole SST pattern in the North Atlantic during winter [Watanabe et al.,1999;Pan ,2005],it is still not clear how the tripole SST pattern can persist from spring through summer.To investigate the relevant mechanism,we take the summer tripole SSTI as a reference and compute the lead-lag correlation with SLP fields.The results are shown in Figure 6.The absolute values of the correlation coefficients reach a maximum at a À2-month lead (Figure 6b),and then it continuously decreases from a 0-month lead (Figure 6d),to a 2-month lead (Figure 6f).The correlated SLP field from a À3-month through a À1-month lead (Figures 6a–6c)shows a NAO-like pattern [e.g.,Thompson and Wallace ,2000a,2000b;Li and Wang ,2003].It indicates that NAO-like atmospheric anomalies are driving the ocean and producing a tripole-like SST anomaly pattern.This is similar to the results in winter [e.g.,Deser and Timlin ,1997;Pan ,2005].However,the NAO-like pattern weakens from a 0-month through a 2-month lead (Figures 6d–6f),illustrating that the tripole SST anomalies do not have a significant positive feedback to summer NAO-like atmosphere anomalies.This is different from the wintertime situation and has not been noticed before.It also implies that the persistence of the tripole SST pattern in summer may be due to the ocean memory effect.[23]The assumption that the ocean memory effect plays a major role in the maintenance of the tripole SST pattern from spring to summer can be further confirmed by com-parison of regressed SST patterns with reference to the summer tripole SSTI between the SST persistent component and the total SST.The persistent component of theSST,Figure 6.The lead-lag correlation patterns between the SLP and the summer tripole SSTI.The tripole SSTI leads the SLP by (a)À3,(b)À2,(c)À1,(d)0,(e)1,and (f)2months.The dark (light)shaded areas denote significant positive (negative)correlation exceeding 95%confidence level.Note that À3months correspond to March–May,À2months correspond to April–June,and so on.SST p ,at time t +1can be calculated according to the following formula [Pan ,2005]:SST p ¼SST t ðÞCov SST t þ1ðÞ;SST t ðÞ½ =Var SST t ðÞ½ ;ð1Þwhere t +1and t denote summer and spring,respectively.Cov and Var represent the covariance and variance,respec-tively.The regressed SST patterns with reference to the summer tripole SSTI for the SST persistent component and the total SST are shown in Figure 7.The dominant pattern of the SST persistent component (Figure 7a)does not changemuch compared to that of the total SST (Figure 7b),with the signal only decreasing slightly by about 10–20%.Thus,the ocean memory effect should be regarded as the crucial factor responsible for the persistence of the tripole SST anomaly pattern from spring to summer.This is different from the wintertime during which the positive feedbacks between the NAO and the underneath tripole SST anomalies are essential for sustaining the tripole SST pattern [e.g.,Pan ,2005].[24]To better understand large-scale circulation features coupled with the North Atlantic tripole SST anomalies during summer,Figure 8presents JJA 200hPawesterlyFigure 7.JJA mean SST anomaly patterns regressed to the tripole SSTI for (a)the persistence component of SST and (b)the total SST.The dark (light)shaded areas represent significant positive (negative)correlation exceeding 95%confidencelevel.Figure 8.The 200hPa westerly jet (color shadings in units of m/s)and H anomalies (contours in units of m)regressed to the tripole SSTI.The westerly jet is obtained through climatological JJA westerlies plus westerly anomalies regressed to the tripole SSTI.jet (color shadings)associated with the tripole SST anoma-lies (the calculation method is shown in Figure 8)and geopotential high anomalies (contours)regressed to the tripole SSTI.A noticeable feature is that a systematic wave train pattern,characterized by three positive height anoma-lies over the North Atlantic,the Ural Mountain and the Okhotsk Sea,and two negative ones over western Europe and Mongolia,prevails along the poleward flank of the westerly jet.This feature is highly consistent with the wave train pattern associated the EASM discussed in section 3(Figure 2c).Such a consistence allows us to interpret it as the impact of the anomalous tripole SST steady forcing on the EASM by inducing downstream development of sub-polar teleconnections across the northern Eurasia.[25]To further elucidate the effects of an anomalous North Atlantic tripole SST forcing on the EASM,we performed numerical experiments with the SGCM described in section 2.To mimic the diabatic heating effects of a high tripole SSTI forcing,we imposed two heating sources and one cooling source;each has an elliptical squared cosine distribution in latitude and longitude with a vertically integrated heating rate of 2.5K/d (Figure 9,right).The vertical heating profile over the extratropical area is distin-guished from that over the tropics as shown in Figure 9(left)[Hall et al.,2001a,2001b;Lin and Derome ,1996].Mimicking a low tripole SSTI forcing is the same as mimicking a high tripole SSTI forcing except for a reversed sign.To do the sensitivity study,we randomly changed the profile within the range between the two red (blue)dashed curves and did 10integrations,with the average profile to be the same as the solid curves with empty circles (Figure 9,left).To make the numerical results more robust,the control run was integrated for 12years and the last 10years’integration was used to derive a reference state.The two sensitivity tests were integrated for 10years each.The10-year integrations were used to construct a 10-member ensemble (arithmetic)mean to reduce the uncertainties arising from differing initial conditions.[26]Under the North Atlantic tripole SST anomaly forc-ing,the simulation basically captures the downstream development of subpolar teleconnections across northern Eurasia,with the pattern correlation coefficient between the observation and the simulation reaching 0.25over the region north of 50°N and exceeding 99.9%confidence level (Figure 10).The downstream development of subpolar teleconnections across northern Eurasia raises (or lowers)the pressure over the Ural Mountain and the Okhotsk Sea.When the North Atlantic is in a high (low)tripole SSTI phase,the corresponding wave train across the northern Eurasia favors enhancement (weakening)of the blocking highs over the Ural Mountain and the Okhotsk Sea.As noted in many previous studies [e.g.,NCC ,1998;Yang ,2001;Li and Ding ,2004;Ding and Sikka ,2006],the blocking highs near the Ural Mountain and the Okhotsk Sea usually facilitate a strengthened (weakened)east Asian subtropical front during summer,leading to a strong (weak)EASM.In such cases,the North Atlantic tripole SST anomalies are tied to the EASM variations.Note that the simulation has large discrepancies in the midlatitudes to low latitudes (south of 50°N),which implies that North Atlantic tripole SST anomalies cannot well interpret the circulation variations in the low latitudes and some other factors may dominate the low-latitude circulations.In fact,circulation variations over the east Asian low-latitude domain are more relevant to ENSO,as documented in details by Wang et al.[2008c].It should be pointed out that we tried to add ENSO heating profiles to see whether the whole circulation can be realistically reproduced,but unfortunately this model has difficulty in depicting the prolonged influence of ENSO in the preceding winter (not shown).However,Wang etal.Figure 9.(left)Specified diabatic heating profiles (curves)and (right)SST anomaly pattern (color shadings)associated with a high tripole SSTI forcing in the numerical experiment with the SGCM.Note that the sign of a vertical profile is reversed for a negative SST anomaly.Maps for a low tripole SSTI forcing are mirror images of the plot shown here.TSST stands for the tripole SST.。