光学谐振腔的基本知识

合集下载

第二章 光学谐振腔基本理论

第二章   光学谐振腔基本理论

第二章光学谐振腔基本概念 (1)2.1光学谐振腔 (1)2.2非稳定谐振腔及特点 (1)2.3光学谐振腔的损耗 (2)2.4减小无源稳定腔损耗的途径 (2)反射镜面的种类对损耗的影响 (2)腔的结构不同,损耗不同 (2)第二章光学谐振腔基本概念2.1光学谐振腔光学谐振腔是激光器的基本组成部分之一,是用来加强输出激光的亮度,调节和选定激光的波长和方向的装置。

光线在两镜间来回不断反射的腔叫光学谐振腔。

由平面镜、凹面镜、凸面镜的任何两块镜的组合,构成各类型光学谐振腔。

光学谐振腔的分类方式很多。

按照工作物质的状态可分为有源腔和无源腔。

虽有工作物质,但未被激发从而无放大作用的谐振腔称之为无源谐振腔;而有源腔则是指经过激发有放大作用的谐振腔。

2.2非稳定谐振腔及特点非稳定谐振腔的反射镜可以由两个球面镜构成也可由一个球面镜和一个平面镜组合而成。

若R1和R2为两反射镜曲率半径,L为两镜间距离,对于非稳腔则g1,g2:满足g1*g2<O或g1*g2>l 非稳腔中光在谐振腔内经有限次往返后就会逸出腔外,也就是存在着固有的光能量可以横向逸出而损耗掉,所以腔的损耗很大。

在高功率激光器中,为了获得尽可能大的模体积和好的横模鉴别能力,以实现高功率单模运转,稳定腔不能满足这些要求,而非稳腔是最合适的。

与稳定腔相比,非稳腔有如下几个突出优点:1.大的可控模体积在非稳腔中,基模在反射镜上的振幅分布式均匀的,它不仅充满反射镜,而且不可避免地要向外扩展。

非稳腔的损耗与镜的大小无关,这一点是重要的,因此,只要把反射镜扩大到所需的尺寸,总能使模大致充满激光工作物质。

这样即使在腔长很短时也可得到足够大的模体积,故特别适用于高功率激光器的腔型。

2.可控的衍射耦合输出一般稳定球面腔是用部分透射镜作为输出耦合镜使用的,但对非稳腔来说,以反射镜面边缘射出去的部分可作为有用损耗,即从腔中提取有用衍射输出。

3.容易鉴别和控制横模对于非稳腔系统,在几何光学近似下,腔内只存在一组球面波型或球面一平面波型,故可在腔的一端获得单一球面波型或单一平面波型(即基模),从而可提高输出光束的定向性和亮度。

第3章光学谐振腔理论

第3章光学谐振腔理论



凹面向着腔内, R>0,相当于凸薄透镜 f>0;
凸面向着腔内时,R<0,相当于凹薄透镜 f<0。
2、对于同样的光线传播次序,往返矩阵T、Tn与初始坐 标(r0,0)无关;
3、当光线传播次序不同时,往返矩阵不同,但(A+D)/2 相同。
23
例:环形腔中的像散-对于“傍轴”光线 对于平行于x,z平面传输的光线(子午光线),其焦距
k0 2 L'
2
0
2 L' q 2
q为整数
(2.1.1)
0—真空中的波长;L’—腔的光学长度
0 q 2 L' q
L' q
0q
q
L' L
q q
c
c
2
0q
2L
c q 2 L
( 2.1.4)
为腔内介
质折射率
Lq
q
2
定义无源腔内,初始光强I0往返一次后光腔衰减为I1,则
I1 I 0e
2
I0
I1
9
1 I0 ln 2 I1
对于由多种因素引起的损耗,总的损耗因子可由各损耗因子相 加得到
i 1 2 3
损耗因子也可以用 来定义, 当损耗很小时,两种定义方式是一致的
20
A B 1 T 1 C D f 1
L A 1 f2
0 1 L 1 1 1 0 1 f2
L B L 2 f2 L D f1
0 1 L 1 0 1
3
二、腔的模式
腔的模式:光学谐振腔内可能存在的电磁场的本征态 谐振腔所约束的一定空间内存在的电磁场,只能存在于一 系列分立的本征态 腔内电磁场的本征态 因此: 腔的具体结构 腔内可能存在的模式(电磁场本征态) 麦克斯韦方程组

17 光学谐振腔基本知识

17 光学谐振腔基本知识

(二)横模:指可能存在于腔内的每一种横向场分布,用 模序数m和n描述。 激光横模式的特征与谐振腔的几何结构紧密相连,知 道了腔的几何参数,如腔长、两个反射镜面的孔径尺寸和 曲率半径,就可以确定腔内可能存在的各种激光模式的性 质,例如场的横向分布、谐振频率、单程衍射损耗率、远 场发散角等。 二、无源腔损耗 激光工作物质被泵浦源激发后,对发光的放大作用主 要表现在他们补偿激光模式的能量损耗,使之满足振荡的 阈值条件,从而形成并维持激光模式的振荡。它对光场的 空间分布、谐振频率。损耗、发散角等模式特征的影响是 次要的。
c v q 2 L
同样长度的谐振腔,固体激光器的本征纵模频率间隔 要小于气体激光器,而同种激光工作物质的激光器,谐振 腔越短,本征纵模的频率间隔就越大。
五、菲涅耳数 在描述光学谐振腔的工作特性时,经常用到菲涅尔数这 个概念,它的定义为:
a2 F L
式中:a——反射镜线度
菲涅耳数的物理意义可以有多种不同的解释,下边我 们分别简单说明: 1. 衍射光的腔内的最大往返次数 ; 2. 从一面镜子的中心看另一面镜子的菲涅耳半波带数;
若腔内各种损耗所引起的腔寿命分别为 τci,则腔的总寿 命为: 1 1 (1-7-31) c i ci (三)腔Q值 与LC谐振电路相似,光学谐振腔与可以用品质因数Q来描 述(1-7-32)
式中:E——储存在腔内的总能量 P——单位时间所损耗的能量 ν——腔内电磁场的振荡频率
(1-7-38)
三、无源腔本征纵模线宽 由于无源腔存在损耗模式的腔内本征纵模的光场振幅 随时间按指数规律衰减。又频谱分析理论可知,这种光场 的谱线有一定的线宽。下面我们来简要推导一下: 因为光强与光场振幅的平方成正比,可以写出光场振 幅随时间的变化规律为:

环形光学谐振腔

环形光学谐振腔

环形光学谐振腔环形光学谐振腔是一种可用于实现非线性光学效应的重要器件。

它允许光在环形光路中多次反射,并在中间介质和介质之间来回传播。

这种腔体可以增加光的光程长度,从而增强非线性效应。

本文将介绍环形光学谐振腔的基本原理、应用、制备和优化方法。

1.基本原理环形光学谐振腔是由一段光纤弯曲成圆环形状制成的,两个端面上包含高反射率和低反射率衬底的半反射镜。

当光从光纤传到环形腔中,它将多次自我匹配,形成一个纵向模式。

该谐振腔的光学腔长与波长比是整数倍。

因此,当光线在腔中传播时,它将被放大和稳定,从而导致许多有趣的非线性光学效应。

2.应用环形光学谐振腔广泛应用于光学传感器、光频梳、量子计算等领域。

例如,在光学传感器中,通过改变腔长来改变环形光学谐振腔周围介质的折射率可以确定环境中的折射率,从而实现对气体、液体或固体的检测。

此外,该谐振腔还可以用于测量非线性光学介质中的精细结构、制备光量子态、增强非线性光学效应和产生新颖的非线性光学现象。

3.制备在制备环形光学谐振腔时,首先要从一个通常为光纤的单模光纤制备出间断环的光纤构架。

为了使制备的环形光学谐振腔具有足够的机械强度和耐用性,通常先要在光纤弯曲区域施加一层保护套管。

接下来,使用微切割器和腐蚀剂在光纤的表面上制作微小凸台和凹槽。

最后,通过双面刻蚀技术在光纤末端制作半反射镜,将其形成环形光学谐振腔。

这种方法可以制备出Miniaturized和高度集成的环形光学谐振腔,具有较高的革新性和灵活性。

4.优化方法为了优化环形光学谐振腔的性能,一些非常有效的方法已经被提出。

其中的一个方法是通过使用二分频技术和最佳化二分频晶体的尺寸来增加谐振腔的带宽,从而使它更适用于广域非线性效应。

另一个优化方法包括使用波导耦合全反射和自动相位控制系统来优化谐振腔的耦合和微调。

此外,通过使用具有较高对称性的环形光学谐振腔,也可以优化非线性光学效应的表现,这是因为具有足够高的对称性可以减少过渡辐射流,从而增强非线性光学过程发生的可能性。

光学谐振腔基本概念

光学谐振腔基本概念
T = T4T T2T 3 1
1 L T = T3 = 1 0 1
1 T2 = 2 − R 2 0 1
1 T4 = 2 − R 1
0 1
R1 ④
① ③
② R2
L
1 T = 2 − R 1
01 L 1 2 0 1 − R 1 2
2、实例 (1)单程传播L (1)单程传播L距离 单程传播 证
θ1 r1 θ2 r2 L
1 ∴T = 0 L 1 1 T = 0 L 1
r2=r1+Lθ1 +Lθ θ2= θ1
(2)球面反射镜 (2)球面反射镜
1 0 T = 2 − 1 R
θ2 = i
r α≈ F r r =2 F R
o i F α F
R
θ2 r
R = 2F
1 0 T = 0 1 →
r2 r = 1 θ θ 2 1

R=∞ 或 F =∞
即平面镜的反射定律
θ1
θ2 θ1
2、非稳定腔
(1)g >1(2) (2)g <0(3) =0或 =0(4) (3)g (4)g (1)g1g2>1(2)g1g2<0(3)g1=0或g2=0(4)g1g2=1 =∞,平行平面腔, 如g1=g2=1, 即R1=R2=∞,平行平面腔,则
F
讨论 (1)若r =0,θ 任意 (1)若 1=0,θ1
r2 1 = 1 θ − 2 F 0 0 0 = 1θ1 θ1
θ2 θ1
过光心的 光线不改 变方向
-θ2 θ2
(2)若 任意, (2)若r1任意, θ1=0

第2章 光学谐振腔理论

第2章 光学谐振腔理论

/

I (z) I I1 I
0
0
e
z
e
2 l
吸 l
2.2.2、光子在腔内的平均寿命 • 光在腔内通过单位距离后光强衰减的百分数
dI Idz I1 I 0 I0 2L
/


L
/
• 在谐振腔内
dI Idt
dz c dt
/


c
L
/
c
L
/

⑵衍射损耗
a
2
L
取决于腔的菲涅耳数、腔的几何参数和横模阶次
⑶输出腔镜的透射损耗
取决于输出镜的透过率
⑷非激活吸收、散射等其他损耗
描述 单程损耗因子 • 定义:光在腔内单程渡越时光强的平均衰减百分数
2 I 0 I1 I0

I 0 I1 2I0
指数定义形式
I1 I 0e

0
I 1 I 0 r1 r2

/

1 2
ln
I
0
I1
r
1 2
ln r1 r2
当 r 1=1,T <<1(r2= r ≈1)
r
1 2 ln r 1 2 (1 r ) T 2
四、吸收损耗
介质对光的吸收作用
通过单位长度介质后光强衰减的百分数
dI
I I dI Idz
2
D D
2L 1 2m

L
2D
二、衍射损耗
平腔内的往返传播,等效孔阑传输线中的单向传播 当光波穿过第一个圆孔向第2个圆孔传播时,由于衍 射的作用一部分光将偏离原来的传播方向,射到第2 个圆孔之外,造成光能的损失 假设中央亮斑内的光强是均匀的 孔外面积与中央亮斑总面积的比

第9讲 光学谐振腔的基本概念

第9讲 光学谐振腔的基本概念
ቤተ መጻሕፍቲ ባይዱ
9.3 光学谐振腔的光波模式
驻波概念简要回顾
驻波,也称为稳态波,是由同频率、同振幅、传播方向 相反的两列波叠加而成的一种波形。 通常,一列波是另一列的反射波。
例如,
y1 y0 sin(kx t),

y2

y0
sin(kx
t),
9.3 光学谐振腔的光波模式
迭加后形成的驻波场为:
9.1 光学谐振腔的类型
平行平面腔 平凸腔
平凹腔 凹凸腔
双凹腔 双凸腔
9.1 光学谐振腔的类型
激光器的基本结构示意图
全反射镜
光学谐振腔 输出反射镜
工作物质
激光输出
泵浦
9.2 光学谐振腔的作用
光学谐振腔的作用
提供轴向正反馈; 通过谐振腔镜面的反射,光波可在腔内往返传播,多次 通过激活介质而使受激辐射不断放大,形成自激振荡。
9.3 光学谐振腔的光波模式
这种经过一次往返传播后能“自再现”的稳定场分布通常 称为自再现模,也称为横模。
自再现条件的公式表示
第9讲 光学谐振腔的基本概念
教学内容
9.1 光学谐振腔的类型 9.2 光学谐振腔的作用 9.3 光学谐振腔的光波模式
9.1 光学谐振腔的类型
光学谐振腔的基本结构
通常的谐振腔是由两块相对的球面或平面反射镜组成, 这两块反射镜光轴重合,这样的谐振腔称为共轴球面腔, 它是光学谐振腔的基本结构。
共轴球面腔的常见构型
控制振荡光束模式特性。 通过采用不同的结构参数,可实现对光波模式的控制。
9.3 光学谐振腔的光波模式
什么是腔模
根据麦克斯韦电磁理论,在具有一定边界条件的空腔内, 电磁场只能存在于一系列分立的本征状态中,场的每种本 征状态将具有一定的振荡频率和空间分布。通常将谐振腔 内可能存在的电磁场本征态称为腔的模式,简称腔模。 腔模可分为纵模(与振荡频率有关)和横模(与空间分布有关)。

光学谐振腔理论

光学谐振腔理论
光学谐振腔理论
目录
• 光学谐振腔的基本概念 • 光学谐振腔的原理 • 光学谐振腔的设计与优化 • 光学谐振腔的实验研究 • 光学谐振腔的发展趋势与展望
01 光学谐振腔的基本概念
定义与特性
定义
光学谐振腔是由两个反射镜或一个反 射镜和一个半透镜构成的封闭空间, 用于限制光波的传播方向和模式。
特性
具有高反射率和低损耗的特性,能够 使光波在腔内多次反射并形成共振, 从而增强光波的强度和相干性。
光的衍射是指光波在传播过程中遇到 障碍物时,光波发生弯曲绕过障碍物 的现象。
光学谐振腔的共振条件
光学谐振腔是一种具有特定边界条件的封闭空间,光波在其中传播时会形成共振 现象。
光学谐振腔的共振条件是光波在腔内传播的相位差为2π的整数倍,即光波在腔内来 回反射的相位相同。
光学谐振腔的品质因数
品质因数(Q值)是衡量光学谐振腔性能的重要参数,表示 光波在腔内振荡的次数与能量损耗的比值。
振动稳定性分析
分析谐振腔在振动情况下的稳定性,确保其性能不受 振动影响。
老化稳定性分析
评估光学谐振腔在使用过程中的性能变化,确保其长 期稳定性。
04 光学谐振腔的实验研究
实验设备与环境
高精度光学元件
如反射镜、透镜、分束器等,用于构建光学谐振腔。
激光器
作为光源,提供单色光束。
光谱仪和探测器
用于测量光束的波长和强度。
实验得到的共振光谱与理论预测相符, 验证了理论模型的正确性。
品质因子
通过实验测量了光学谐振腔的品质因 子,与理论计算值进行比较。
腔损耗
实验分析了光学谐振腔的腔损耗,包 括反射镜的反射率、透镜的透射率等 因素。
稳定性分析
实验研究了光学谐振腔在不同环境条 件下的稳定性,如温度、振动等。

第二章光学谐振腔

第二章光学谐振腔

实际情况下,谐振腔的截面是受腔中的其他光阑限制的, 67页的图2-2-5给出了孔阑传输线的自再现模的形成
2009
湖北工大理学院
23
激光模式的测量方法
横模的测量方法:在光路中放置一个光屏;拍照;
小孔或刀口扫描方法获得激光束的强度分布,确定激 光横模的分布形状
纵模的测量方法:法卜里-珀洛F-P扫描干涉仪
1.5803106
q 1.5 10 9 Hz 5 310 8 Hz
2009
湖北工大理学院
28
例:相邻纵模的波长差异
已知:He-Ne激光器谐振腔长50 [cm],若模式m的波长 为 632.8 [nm];计算:纵模 m+1 的波长;
解答: 纵模的频率间隔为:
由:m = 0.6328000*10-6 [m] 可以得到:
2L/ 2L
2 • 2L q • 2
光腔中的驻波
驻波条件(光波波长和平行平面腔腔长):
L
q

2
q•
q
2
谐振频率(频率和平行平面腔腔长):
q
q•
C
2L
2009
湖北工大理学院
9
纵模-纵向的稳定场分布
激光的纵模(轴模):由整数q所表征的腔内纵向稳定场分布 整数q称为纵模的序数,驻波系统在腔的轴线上零场强度的数目
3
稳定腔和非稳定腔
看在腔内是否存在稳定振荡的高斯光束
2009
湖北工大理学院
4
R1+R2=L
双凹球面镜腔:由两 块相距为L,曲率半 径分别为R1和R2的凹 球面反射镜构成
R1=R2=L
由两块相距09
由两个以上的 反射镜构成 平凹腔和凹凸 与双凸腔图22-1书中58页

光学谐振腔原理

光学谐振腔原理

光学谐振腔原理一、引言光学谐振腔是一种光学器件,利用反射镜将光束反复地来回传播,形成驻波场,从而增强光的强度。

它广泛应用于激光器、光纤通信等领域。

本文将详细介绍光学谐振腔的原理。

二、基本结构光学谐振腔由两个反射镜组成,其中一个镜子是半透明的,可以将一部分光线透过去。

当激光器发出一束单色激光时,它被反射镜反射回来,在两个反射镜之间来回传播,并在其中形成驻波场。

三、驻波场的形成当激光束从一个反射镜进入谐振腔时,它被反射回来,并在另一个反射镜上发生多次反射。

如果两个镜子之间的距离是整数倍的波长,则会形成一个驻波场。

在这个场中,电磁波的振幅和相位都是固定不变的。

四、增益介质为了使谐振腔中的激光能够不断地增强,需要在腔内加入一个增益介质。

增益介质是一种能够放大光信号的物质,如激光晶体、半导体等。

当激光通过增益介质时,它会被放大,并在反射镜上反射回来。

五、谐振条件为了使光学谐振腔正常工作,需要满足一定的谐振条件。

首先,两个反射镜之间的距离必须是整数倍的波长。

其次,增益介质必须具有足够的增益,以补偿光损失。

六、应用领域光学谐振腔广泛应用于激光器、光纤通信等领域。

在激光器中,它可以使激光输出更加稳定和强大。

在光纤通信中,它可以使信号传输更加远距离和高速。

七、总结本文详细介绍了光学谐振腔的原理和基本结构,以及驻波场的形成、增益介质、谐振条件和应用领域等方面。

通过深入了解这些知识点,我们可以更好地理解光学谐振腔的工作原理,为实际应用提供更加有效的支持。

第五节光学谐振腔【实用资料】

第五节光学谐振腔【实用资料】

cos ky x
kx k cos
cos kz x
在谐振的情况下,沿腔的x,y,z三个方向都应出现完整的驻波,即沿 腔各边的相位变化都应是 的整数倍。
kxa m
kx
m
a
kyb n
kz
q
l
m, n, q =0, 1, 2 ,…. 叫做振荡模的波指数,它表明腔中的对应方向 上出现完整驻波的个数.相应的振荡模式TEmnq, TMmnq 由于边界条件的要求,各模式的传输方向叫是不连续的,只有在方向 余玄满足下式的那些波才能在腔中存在。
纵模频率间隔 fq=c/(2nl)等间隔的。
二 .金属闭腔近似(理想导体近似)
介质光学谐振腔与具有理想导电壁的金属谐振腔有类似之处。金 属腔各壁的反射系数都为1,电磁波在理想导体界面处发生全发射, 介质腔两端的全反膜有接近1的反射系数,光在这里产生全发射, 另外由于光学腔的折射指数较高,因此在侧面上很容易发生全反射。 如果只注意那些与腔的轴线夹角不大,以致在侧面上的入射角大于 临界角的光束是,则腔的侧面也可以当作闭合的金属腔来近似处理。
对于傍轴光,m,n, 为小整数,q为大整数,波的传播方向主要由m , n 决定, m , n 越小,传播方向越靠近Z轴,发散角越小。
2. 谐振频率
k
2
= 2 k
2
( 真空中的波长)
( m )2 ( n )2 ( q )2
abl
mnq r
2 r
( 谐振波长)
( m )2 ( n )2 ( q )2
第五节光学谐振腔
A. 谐振频率与谐振波长
foq
oq 2 nl
=2nl oq q
q为模指数
B .纵模
L=qoq/2n= qq/2 q 介质中波长在谐振情况下,腔长是介质 中波长的整数倍,(q个半驻波,对应与不同的q值,得到不同的纵 向分布,形成不同的腔的模式。由于这种场分布发生在场的纵向, 所以称为纵模。

光学谐振腔

光学谐振腔

光学谐振腔光学谐振腔的基本原理光学谐振腔是借助反射和透射来实现对光的反复强度调制的一种微型机械装置。

它利用反射实现光的来回反复传播,因而出现的各种光学现象。

它的工作原理主要包括:一个光源将一定的能量投入,通过反射、衍射和透射进入一个包含玻璃物体的空间,玻璃物体内安装一个能使光束在光路上循环传播的反射面,当光束在空间中循环传播时,空间中的玻璃物体可吸收和折射一部分光能,而另一部分光能被反射,反射的光与玻璃物体的位置有关。

光路的反复传播使其能量发生振荡现象,使光能聚焦到一个点,最后经过空间的一个特定的点附近反射,从而产生特定的光现象。

光学谐振腔的优点1、密封可行:光学谐振腔具有优越的密封性能,能有效防止外界未经控制的特定污染物例如水雾及其他有害气团进入到腔体内部。

2、低成本:光学谐振腔制造制造或者说版印型可以使用相对便宜的材料进行制作,使其可以在短时间内达到高性能的目的。

3、调节准确:光学谐振腔具有完善的调节系统,能够有效地分辨控制和调节光的调节强度,从而达到定位的精度。

4、可扩展性:光学谐振腔凭借其优秀的可扩展性可以灵活的适用不同类型的光学仪器上,并能使其仪器在设计上更加紧凑。

1、激光技术:光学谐振腔可以用来调整激光器发出的波长,获得更好的激光光斑,进而改变激光器发出的光强度。

2、微小型位置测量:光学谐振腔可以用来测量外部物体精确的位置关系,因此可以实现精确的微小型位置测量,使其可以应用于电子产品的测试和实验。

3、光学分析技术:可以利用光学谐振腔对光的性质进行测量和分析,例如利用光学谐振腔来测量光的衍射角度,反射率等参数,进而了解光源的特性。

4、显微镜:光学谐振腔可以用在显微镜中,可以将光源里边射入空气,或者将聚焦光线通过接口腔体传送到显微镜的眼睛,从而使显微镜具有更强的光学放大能力。

光学谐振腔原理

光学谐振腔原理

光学谐振腔原理引言光学谐振腔是光学研究中的重要实验装置,其原理基于光的干涉现象。

通过将光束限制在一个封闭的空间中来增强干涉效应,可以实现光的长程传输和增强。

光学谐振腔的基本原理1.光学谐振腔是由两个或多个反射镜构成的封闭空间。

其中一个镜子是半透明的,允许部分光线通过。

2.光从半透明镜子进入谐振腔后,会在镜子之间来回多次反射,形成驻波模式。

3.反射次数越多,光在腔内的传播距离越长,干涉效应越强。

谐振腔的性质1. 良好的光束模式光学谐振腔可以选择特定的模式,如基本模式、高斯光束等。

这些模式具有良好的光束质量和光强分布。

2. 谐振频率选择性谐振腔只对特定频率的光具有选择性透过性,对其他频率的光具有反射性。

这种频率选择性可以用来实现光的滤波功能。

3. 谐振增益在谐振腔中,光线多次来回反射,与介质发生交互作用。

如果在腔中加入带有激发能级的介质,可以实现光增益,即光信号的放大。

4. 谐振腔的失谐当谐振腔的频率与输入光的频率不完全匹配时,会出现失谐现象。

失谐会影响光的输出强度和相位。

典型谐振腔结构1. Fabry-Perot腔Fabry-Perot腔是最简单的谐振腔结构,由两个平行的反射镜构成。

光从一个反射镜进入,经过多次来回反射后透过另一个反射镜出射。

2. 球面腔球面腔是两个曲面反射镜构成的谐振腔。

曲面反射镜可以使光具有更高的反射效率和光束质量。

3. 圆柱腔圆柱腔是两个平行平面和一个曲面反射镜构成的谐振腔。

圆柱腔常用于气体激光器和光纤激光器。

谐振腔中的光学效应1. 空腔增强谐振腔可以将光束在腔内进行多次来回反射,使干涉效应加强。

这种空腔增强效应可以增加光的传播距离和光程。

2. 良好的相干性谐振腔中的光在多次反射后,相位关系得到保持,具有良好的相干性。

3. 良好的波长选择性谐振腔对特定波长的光具有选择透过性,可以实现波长选择性的光学元件。

应用领域1. 激光器光学谐振腔是激光器的核心部件,可以实现激光放大和模式选择。

新激光ppt课件第二章 光学谐振腔理论

新激光ppt课件第二章 光学谐振腔理论

光线在腔内往返传播n次
式中
rn An C n n
Bn r1 Dn 1
二、共轴球面腔的稳定性条件
1.稳定腔条件
光线在腔内往
A n、B n、 C n、D n
对任意n有限
Φ 为实数
返多次不逸出
且φ ≠kπ
引人g参数则得稳定性条件
平平腔 N>>1
谐振条件: 以Δ Φ 表示均匀平面波在腔内往返
一周时的相位滞后,则
若腔内介质分段均匀 若腔内介质非均匀 谐振条件:
L
L
i
i i
L dL ( z )dz
0


L
2 L q q c q q 2 L
分立

腔的本征模式: 在平平腔中满足 q q c
一定类型的积分方程。 腔的具体结构 振荡模的特征
3.模的基本特征

电磁场分布(特别是在腔的横截面内的场分布); 谐振频率; 在腔内往返一次经受的相对功率损耗; 激光束的发散角
4.纵模和横模
腔内电磁场的空间分布
沿传播方向(腔轴方向)的分布
垂直于传播方向的横截面内的分布 (1)纵模

纵模 横模
(1)(2)两种损耗为选择损耗,因为不同模式的几何 损耗与衍射损耗各不相同。(3)(4)两种损耗称为非 选择损耗,在一般情况下它们对各个模式都一样。
2.平均单程损耗因子
I 0 I1 2I 0 1 I0 ln 2 I1
光在腔内单程渡越时光强的平均衰减百分数 指数单程损耗因子
β
3.总损耗


1.曲率半径R1>0,R2<0的腔能否成为稳定腔,如果能, 请求出其稳定性条件。

新激光第二章 光学谐振腔理论(2)

新激光第二章 光学谐振腔理论(2)

自由空间的光线变换矩阵:
r2
r1 L1 2 1
TL
1 0
L 1
θ2
r1 θ1
r2
z
L
球面反射镜的光线变换矩阵:
2
r2 r1
2
r1 R
1
凹R>0 凸R<0
TR
1 2
0 1
R
薄透镜的光线变换矩阵:
2
r2 r1
r1 f
1
(r1θ1) (r2θ2)
Tf
1 1
f
0 1
dI I1 I0
Idz I0 2L L dz cdt
ct
I(t)I0e L
I0etR
式中:
R
L c
就为腔的寿命,也叫腔的时间常数。
2. 物理意义:
3.腔内光子的平均寿命就等于腔的时间常数:
证明:
I(t)n(t)hv,I(t)I0etR
t
n(t) n0e R
平均寿命:
1 n0
t(dn)1
腔的具体结构
振荡模的特征
3.模的基本特征
电磁场分布(特别是在腔的横截面内的场分布);
谐振频率; 在腔内往返一次经受的相对功率损耗; 激光束的发散角
4.纵模和横模
腔内电磁场的空间分布
沿传播方向(腔轴方向)的分布
垂直于传播方向的横截面内的分布 (1)纵模 ➢ 谐振条件:
以ΔΦ表示均匀平面波在腔内往返 一周时的相位滞后,则
二、共轴球面腔的稳定性条件 1.稳定腔条件
光线在腔内往 返多次不逸出
An、Bn、Cn、Dn 对任意n有限
Φ为实数 且φ≠kπ
引人g参数则得稳定性条件
2.非稳腔条件

激光原理-第二章光学谐振腔理论(1)

激光原理-第二章光学谐振腔理论(1)

第一节 光学谐振腔的基本知识
2. 作用 光学谐振腔的作用主要有两方面: ① 提供轴向光波模的光学正反馈; 通过谐振腔镜面的反射,轴向光波模可在腔内往 返传播,多次通过激活介质而得到受激辐射 放大, 从而在腔内建立和维持稳定的自激振 荡。光腔的这种光学反馈作用主要取决于 腔镜的反射率、几何形状以及之间的组合 方式。这些因素的改变将引起光学反馈作 用的变化,即引起腔内光波模损耗的变化。
光学谐振腔理论研究的基本问题是: 光频电磁场在腔内的传输规律 从数学上讲是求解电磁场方程的本征函数和 本征值。 由于开放式光腔侧面不具有确定的边界,一般 情况下不能在给定边界条件下对经典电磁场理 论中的波动方程严格求解。因此,常采用一些 近似方法来处理光腔问题。
概述
常用的近似研究方法包括: 1.几何光学分析方法 在几何光学近似下,光的波动性不起主要作用,可将 光看成光线用几何光学方法来处理。 对于光学谐振腔来说,当腔的菲涅耳数远大于1时,光在 其中往返传播时横向逸出腔外的几何损耗远大于由 于腔镜的有限尺寸引起的衍射损耗。此时可用几何 光学的方法来处理腔的模式问题。 这种方法的优点是简便、直观,主要缺点在于不能得 到腔的衍射损耗和腔模特性的深入分析。
2
q
2L ' q 2 L ' ni Li
第一节 光学谐振腔的基本知识
对于非均匀介质: L ' dL ' 0 n( z)dz 2L' cq 所以: q = q
q 2L'
L
平面腔中沿轴向传播的平面波的谐振条件。λq 称为腔 的谐振波长,νq 称为腔的谐振频率。平面腔中的谐振 频率是分立的。 可以将F—P腔中满足的平面驻波场称为腔的本征模式。 其特点是:在腔的横截面内场分布是均匀的,而沿腔的 轴线方向(纵向)形成驻波,驻波的波节数由q决定。通常 将由整数q所表征的腔内纵向场分布称为腔的纵模。不同 的q值相应于不同的纵模。q称为纵模序数。

2光学谐振腔

2光学谐振腔

由两块相距上、平行放置的平面反射镜构成3)平面—凹面镜腔。

相距为4)特殊腔。

如由凸面反射镜构成的双凸腔、平凸腔、凹凸腔等,在某些特殊激光器中,3、谐振腔的作用提供光学正反馈作用)变成(x1,θ1),则两者间关系为而由光路可逆2当光线在腔内经过n次往返后,其参数变换矩阵可表示为三.谐振腔的稳定性1、稳定腔的概念1 物理意义镜面上任一点发出的近轴光线,往返无限次而不逸出2 数学意义Tn各元素当n →∞时,保持有界2、稳定性条件(证明略)(1) 稳定腔1 0<g1g2<12 g1=g2=0(2) 非稳定1 g1g2>12 g1g2<03 g1=0或g2=04 g1g2=13、稳区图4、g与R的符号关系以两块反射镜的曲率半径为直径做相应反射镜面的两个内切圆(对于凸面反射镜为外,则谐振腔稳定,缘故。

4. 横模的形成机理自再现模或横模:经过足够多次的往返传播之后,腔内形成这样一种稳态场,它的相对分布不再受衍射影响,它在腔内往返一次后能够“自再现”出发时的场分布。

这种稳态场经一次往返后唯一可能的变化,仅是镜面上各点的场振幅按同样的比例衰减,各点的相位发生同样大小的滞后。

●这种在腔反射镜面上经过一次往返传播后能“自再现”的稳定场分布称为在实际情况中,谐振腔的截面是受腔中的其它光阑所限制如气体激光器,放电管孔径就是谐振腔的限制孔。

为了形象地理解开腔中自再现模的形成过程,把平行平面谐振腔中光波来回反射的传播过程,等效于光波在光阑传输线中的传播。

这种光阑传输线如下图所示,它由一系列间距为L、直径为2a的同轴孔径构成,这些孔径开在平行放置无限大、完全吸收的屏上。

5、激光模式的测量方法1)横模的测量方法:不同横模的光强在横截面上有不同的分布。

●对连续可见波段的激光器,只须在光路中放置一个光屏,即可观察激光的横模光斑形状,可粗略地给以判别;●或者利用拍照的方法,小孔或刀口扫描方法也可直接扫描出激光束的强度分布从而确定激光横模的分布形状。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两点的线段AB,如图5.1.2所示。由AB线段所对应的坐标值范
围就可找到曲率半径的范围是: 。最大曲率半径可以取 ,
这是平行平面腔;最小取
,即共心腔。
三、稳定图的应用
举例
2) 给定稳定腔的一块反射镜,要选配另一块反射镜的 曲率半径,确定其取值范围。
根据已有反射镜的数据,如R1=2L ,求出g1=1-L/R1=0.5 , 在稳定图的g1 轴上找出相应的C点,如图5.1.3(a)所示,过C点 作一直线平行于 g2轴,此直线落在稳定区域内的线段CD,就是所 要求的另一块反射镜曲率半径的取值范围。由CD上任一点所对 应的 R2值都能与已有的反射镜配成稳定腔。R2可用凹面镜,也 可用凸面镜。 若用凹面镜,则取值范围为: 若用凸面镜,则取值范围为:
优点:是可以连续地改变输出光的功率,在某些特 殊情况下能使光的准直性、均匀性比较好。
二、共轴球面腔的稳定图以及分类
3 非稳腔
区分稳定腔与非稳腔在制造和使用激光器时有很重要的实际 意义,由于在稳定腔内傍轴光线能往返传播任意多次而不逸出腔 外,因此这种腔对光的几何损耗(指因反射而引起的损耗)极小。 一般中小功率的气体激光器(由于增益系数G小)常用稳定腔,它 的优点是容易产生激光。
b) 平凹稳定腔,由一个平面镜和一个凹面镜组成。 其中,凹面镜 ,它对应图中AC、AD 段。
二、共轴球面腔的稳定图以及分类
c)平凹凸稳定腔。由一个凹面镜和一个凸面镜组成。满足 条件:
图中5区
图中6区
d)共焦腔。R1=R2=L ,因而 g1=0,g2=0 ,它对应图中的 坐标原点。因为任意傍轴光线均可在共焦腔内无限往返而不 逸出腔外,所以它是一种稳定腔。但从稳区图上看,原点邻 近有非稳区,所以说它是一种很特殊的稳定腔。 e)半共焦腔。由一个平面镜和一个 R=2L的凹面镜组成的腔。 它对应图中E和F点。
(5.1.1)
一、共轴球面谐振腔的稳定性条件
讨 论
对于共振球面腔的稳定性条件:
不等式成立的条件等价于(1-L/R1) 和(1-L/R2) 同时为正或同时为负,这就要求两镜面的曲率半径 为正时必须同时大于腔长或同时小于腔长。
如果镜面的曲率半径同时为负,尽管上式左边 成立,右边的不等式却不成立。如果镜面的曲率半 径一正一负,则需要具体讨论。
图中画有斜线的阴影区为不稳定区; 在稳定区和非稳区的边界上是临界区。对工作 在临界区的腔,只有某些特定的光线才能在腔内往 返而不逸出腔外。
二、共轴球面腔的稳定图以及分类
1 稳定腔
利用稳定条件可将球面腔进一步分类如下。 双凹稳定腔、平凹稳定腔、凹凸稳定腔、 共焦腔、 半共焦腔
a) 双凹稳定腔,由两个凹面镜组成。其中R1>L, R2>L的腔对应图中1区; R1<L,R2<L以及 R1+R2>L的腔对应图中2、3和4区。
二、共轴球面腔的稳定图以及分类
共轴球面腔的稳定图
以 g1为横轴,g2为纵 轴建立直角坐标系,画出 g1*g2=1 的两条双曲线。 由g1、g2 轴和g1*g2=1 的 两条双曲线可以区分出式 ( 5.1.2 ) ~ 式 ( 5.1.3 ) 所 限定的区域,如图5.1.2所 示。
图5.1.2 共轴球面腔的稳定图
二、共轴球面腔的稳定图以及分类
稳定图来表示共轴球面腔的稳定条件 • 定义参数:
共轴球面谐振腔的稳定性条件(式5.1.1)可改.1.2) (5.1.3) (5.1.4)
二、共轴球面腔的稳定图以及分类
备 注:
图中没有斜线的部分是谐振腔的稳定工作区, 其中包括坐标原点;
一、共轴球面谐振腔的稳定性条件
共振球面腔的结构
图5.1.1所示,共轴球面腔的结构可用三个参数来表示:
两个球面反射镜的曲率 半径R1、R2 ,和腔长即 与光轴相交的反射镜面 上的两个点之间的距离L。
图5.1.1 共轴球面腔结构示意图
如果规定凹面镜的曲率半径为正,凸面镜的曲率 半径为负,可以证明,共轴球面腔的稳定性条件是:
2 临界腔
特别是:R1=R2=R=L/2时,为对称共心腔它对应图中B点。如果 R1和R2异号,且R1+R2=L公共中心在腔外,称为虚共心腔。由于 g1>0,g2>0,g1*g2=1,它对应图中第一象限的 g1*g2=1的双曲线。
c) 半共心腔。由一个平面镜和一个凹面镜组成。凹面镜半径 R=L,因而g1=1,g2=0,它对应图中C点和D点。
以下将会看到,整个激光稳定腔的模式理论是建立在对称共 焦腔的基础上的,因此,对称共焦腔是最重要和最有代表性的一 种稳定腔。
三、稳定图的应用
有了稳定图,选取光学谐振腔的腔长或反射镜 的曲率半径就很方便
举例
1) 要制作一个腔长为L的对称稳定腔,确定反射镜曲 率半径的取值范围。
在稳定(图5.1.2)中,对称腔对应于区域1、2中连接A、B
谐振腔的基本理论与 高斯光束
§5.1 谐振腔结构与稳定性
一、共轴球面谐振腔的稳定性条件
光学谐振腔:由相隔一定距离的两块反射镜组成的。
无论是平面镜还是球面镜,无论是凸面镜还是凹 面镜,都可以用“共轴球面”的模型来表示。
因为只要把两个反射镜的球心连线作为光轴,整 个系统总是轴对称的,两个反射面可以看成是“共轴 球面”。平面镜是半径为无穷大的球面镜。如果其中 一块是平面镜,可以用通过另一块球面镜球心与平面 镜垂直的直线作为光轴。平行平面腔的光轴则可以是 与平面镜垂直的任一直线。当然两个平面镜不平行不 能产生谐振,不在讨论之列。
实共心腔内有一个光束会聚点,会引起工作物质的破坏,半 共心腔的光束会聚点在平面镜上,会引起反射镜的破坏。因此, 有实际价值的临界腔只有平行平面腔和虚共心腔。
二、共轴球面腔的稳定图以及分类
3 非稳腔 对应图中阴影部分的光学谐振腔都是非稳腔。非
稳腔,因其对光的几何损耗大,不宜用于中小功率的 激光器。但对于增益系数G大的固体激光器,也可用 非稳定腔产生激光。
二、共轴球面腔的稳定图以及分类
2 临界腔
a) 平行平面腔。因g1= g2=1,它对应图中的A点。只有 与腔轴平行的光线才能在腔内往返而不逸出腔外。 b) 共心腔。满足条件R1+R2=L的腔称为共心腔。如果,
公共中心在腔内,称为实共心腔。这时:
它对应图中第三象限的g1*g2=1的双曲线
二、共轴球面腔的稳定图以及分类
相关文档
最新文档