(整理)HDPE增韧课题.

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

添加纳米刚性粒子增韧改性HDPE

使用无机刚性粒子对高分子材料进行增韧,是近年来高分子材料科学领域出现的一项重要的新技术,目前对刚性无机粒子增韧的基本条件初步认识有三条:1、刚性粒子与树脂基体之间要有良好的界面粘接力,使应力更容易通过界面传递,界面粘接的好坏与粒子的冷拉有直接影响;2、被增韧基体本身应具有一定韧性。基体的韧性使得它在共混合金受力时易于屈服形变,产生对刚性粒子的静压力,并使其发生塑性形变以吸收更多的冲击能量;3、刚性粒子要有恰当的尺寸,刚性粒子粒径要小且浓度要达到一定值才能增韧。

从复合材料的观点分析,若粒子刚硬,且粒子与数值界面结合紧密,如粒子经特定的改性剂处理,则助剂粒子也能承受拉应力,起增强改性的作用。在塑料材料中加入无机填料,不仅可以明显降低材料成本,而且还可以适当改善材料的力学模量、耐热性能和表面硬度等材料性能,然而,在塑料材料中加入无机填充材料后一般都会使材料性能变脆,缺口冲击韧性下降,材料的使用性能收到明显影响。故其填充材料的加入量不宜过多一般加入量在10%左右,因此这也限制了该种改性方法的进一步深入发展。如何能在既增加填充量,明显降低塑料材料生产成本的同时,也显著提高其材料的缺口冲击韧性、力学模量和耐热性等,提高塑料材料的使用性能,已经成为近年来人们所关注的热门话题“刚性填料粒子增韧塑料材料”。

添加纳米碳酸钙部分:

通过研究纳米C aco3填充HDPE体系的力学性能和流变性能,发现这种体系的脆韧转变消失,具有良好的加工性能和优良的综合性能。研究表明:a.纳米级碳酸钙即使表面未经过活化处理,对HDPE也有一定的增韧作用;b.纳米级碳

酸钙经适当的表面处理,可是HDPE/C aco3复合材料的冲击强度、断裂伸长率明显提高,复合材料的综合力学性能得到改善;c.在纳米级碳酸钙填充HDPE中,脆韧转变点消失,是冲击强度在纳米级碳酸钙含量为20%~25%之间达到最大值。

为了提高填料与基体界面的相容性,需对其进行表面处理,往往通过添加偶联剂和增溶剂的方法获得。且复合偶联剂处理方法明显优于单一偶联剂处理方法。将刚性粒子添加偶联剂进行表面处理,使得刚性粒子能与基体树脂界面结合度提高,改善两种性质完全不同物质的相容性,但是体系的抗张强度往往降低。刚性粒子的粒径、粒径分布、含量及其试样熔体冷却速率等与其基体的诱导结晶效用及材料韧性间的关系等因素对改性影响很大。使用一种分子量在10,000左右的大分子偶联剂对纳米碳酸钙进行表面改性,结果使填充体系有良好的综合性能,且断裂伸长率显著提高,加工性能也得到极大改善。

深入纳米碳酸钙对HDPE的增强增韧研究结果表明:a.纳米级碳酸钙在未经表面处理的情况下,与HDPE仍具有一定的粘接作用力,对HDPE有增强增韧作用;b.现有表面处理剂对纳米碳酸钙与HDPE相界面粘接作用的改善不大,但能促进碳酸钙粒子在基体中的均匀分散,显著减少碳酸钙增强增韧HDPE的用量。表面处理的碳酸钙在含量为4%~6%时,复合材料的冲击强度即可以提高1倍,同时其屈服强度及模量也均有所提高。研究Caco3/HDPE复合体系时观察到轻质碳酸钙填充HDPE的断口形貌为典型的“带状结构”,重质碳酸钙填充HDPE为“絮状结构”,两者都有利于材料韧性的提高,但“带状结构”吸收的冲击能不一定比“絮状结构”的高。

刚性粒子增韧机理探讨

1.ROF增韧机理

目前主要有两种机理,即适用于相容性较好体系的“冷拉机理”和适用于相容性不佳体系的“空穴增韧机理”。

1.1冷拉机理

1984年Kurauchi和Ohta在研究PC/ABS和PC/AS共混物的力学性能时,首先提出了有机刚性粒子增韧塑料的新思想,并且提出了有机刚性粒子增韧塑料的新思想,并用“冷拉概念”解释了共混物韧性提高的原因。经典经观察样品拉伸前后的形态变化发现:拉伸前,ABS和AS都以球型微粒分散在PC基体中,粒径大约是2μm和1μm;拉伸后,PC/ABS和PC/AS共混物中无银纹结构,但分散相的球状结构都发生伸长变形,变形的幅度大于100%,因协同应变使其周围的PC基体也产生了同样大小的形变,因而在受力时吸收了更多的能量,而使共混物的韧性得以提高。共混物能量吸收的增加被认为是刚性球粒在基体的高静压下变韧,拉伸时变韧的刚性粒子因受拉导致在赤道面位置受到大的压应力作用而产生伸长,并协调连续相基体产生同样的变化,这就是有机刚性粒子增韧的冷拉机理。

1.2空穴增韧机理

a.体系相容性较差时,分散相ROF以规整的球状均匀分散在HDPE基体连续相中,两相间有明显的界面,甚至分散相粒子周围存在着空穴。

b.受冲击时,界面易脱粒而形成微小的空穴,这些微小的空穴易产生剪切面吸收能量,也可引发银纹吸收能量,从而提高材料的冲击强度。

RIF增韧机理

一般认为刚性无机粒子的增韧机理为:a.在变形中,刚性无机粒子的存在产生应力集中效应,引起粒子周围的树脂基体屈服(空化、银纹、剪切带),这种

基体的屈服将吸收大量变形功,产生增韧。b.刚性粒子的存在能阻碍裂纹的扩展或钝化,终止裂纹。粒子钝化或终止裂纹的原因在于两相界面的部分脱粘形成空化,使裂纹钝化,不至于发展成破坏性裂缝。C.随着填料的微细化,粒子的比表面积增大,填料与基体的接触面积增大,材料受到冲击时,产生更多的微开裂,吸收更多的冲技能。但若填料用量过大,微裂纹易发展成宏观开裂,体系性能变差。

根据以上机理,实现增韧的要求是:基体要有适当的韧性,基体与粒子间要有适宜的结合力,故要求对无机粒子表面要进行适当的活性处理。

影响RF增韧效果的因素

1)基体韧性

刚性粒子对HDPE的增韧是通过促进基体发生屈服和塑性形变吸收能量来实现的,因而要求基体具有一定的初始韧性。一般而言,HDPE集体的初始韧性越大,则增韧的效果越明显。

2)界面粘结力

冷拉机理认为,界面的粘结性越好,则增韧的效果越好。而空穴机理认为,界面粘结性太好时,不利于冲击强度的提高。实际上两方面都存在一定的片面性,它们分别对应着材料受拉伸作用和断裂韧性两种情况。

3)粒径大小

一般大粒径粒子易在基体内产生缺陷,尽管能提高体系的硬度和刚性,却损害了强度和韧性。随着粒径的减小,粒子的比表面积增大,粒子与基体的接触面积增大,材料受冲击时,产生更多的屈服,吸收更多的冲击能。但如粒径太小,颗粒间作用太强,易团聚,也不利于材料韧性的提高,因此RF离子的

相关文档
最新文档