【人教版】高中一年级下学期数学期中试卷(有答案) (10)
(人教版A版)高中数学高一年级下册 期中测试试卷01及答案
期中测试一、选择题(共8小题)1.已知集合2}0{3|2A x x x =--≤,}lg {|0B x x =<,则A B Ç=( )A .{|}11x x -<<B .{|}01x x <<C .{|}13x x <<D .Æ2.在等比数列{}n a 中,4a 、12a 是方程2310x x ++=的两根,则8a =( )A .1B .1-C .1±D .3±3.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c 22cos c a B +=,则A =( )A .6pB .3pC .23p D .56p 4.已知等比数列{}n a 的前n 项和3(22)n n S l l +-×=(l 为常数),则l =( )A .2-B .1-C .1D .25.关于x 的不等式22280x ax a --<(0a >)的解集为12(,)x x ,且2115x x -=,则a =( )A .52B .72C .154D .1526.一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( )海里A .B .C .D .7.数列{}n a 满足11a =,且11n n a a n +-=+(N n +Î),则数列1n a ìüíýîþ的前10项和为( )A .25B .2011C .1120D .578.数列{}n a 是等比数列,若21a =,518a =,则12231n n a a a a a a ++++…的取值范围是( )A .8,3¥æö-ç÷èøB .2,23æùçúèûC .81,3éö÷êëøD .82,3éö÷êëø二、多选题(共2小题)9.已知a ,b ,c ,d 均为实数,则下列命题正确的是( )A .若a b >,c d >,则ac bd >B .若0ab >,0bc ad ->,则0c d a b -C .若a b >,c d >,则a d b c-->D .若a b >,0c d >>,则a bd c>10.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ¹,则下列命题正确的是( )A .若59S S =,则必有140S =B .若59S S =,则必有7S 是n S 中最大的项C .若67S S >,则必有78S S >D .若67S S >,则必有56S S >三、填空题(共6小题)11.设n S 是等差数列{}n a 的前n 项和,且274212a a a ++=,则9S =________.12.已知函数()f x =m 的取值范围是________.13.已知数列{}n a 的奇数项依次成等差数列,偶数项依次成等比数列,且11a =,22a =,347a a +=,5613a a +=,则78a a +=________.14.如图,在ABC △中,已知点D 在BC 边上,AD AC ^,sin BAC Ð=,3AB =,AD =,则BD 的长为________.15.设n S 为数列{}n a 的前n 项和,满足23n n S a =-,则6S =________.16.已知ABC △中,2B A =,7sin 4sin A C =,则cos A =________.四、解答题(本大题共6小题,满分70分.解答应写出文字说明、证明过程或演算步骤,在答题卷上相应题目的答题区域内作答.)17.在正项等比数列{}n a 中,已知1310a a +=,3540a a +=.(1)求数列{}n a 的通项公式;(2)令2log n n b a =,求数列{}2(1)n n b -的前100项的和100S .18.已知公差不为零的等差数列{}n a 的前n 项和为n S ,若530S =,且1a ,2a ,4a 成等比数列.(1)求数列{}n a 的通项公式;(2)若()()111n n n b a a =-+,求数列{}n b 的前n 项和n T .19.已知函数()22f x x ax =++,a R Î.(1)若不等式()0f x ≤的解集为[1,2],求不等式()21f x x -≥的解集;(2)若函数()()21g x f x x =++在区间()1,2上有两个不同的零点,求实数a 的取值范围.20.在平面直角坐标系xOy 中,角a ,b (02pa b p <<<)的顶点与坐标原点O 重合,始边为x 轴的非负半轴,终边分别与单位圆交于A ,B 两点,A ,B 两点的纵坐标分别为45,513.(1)求tan 2a 的值;(2)求sin()cos()sin cos 22a b p b p p a b ++-æöæö-++ç÷ç÷èøèø的值.21.已知数列{}n a 的前n 项和为n S ,且,数列{}n b 满足12b =,132n n b b -=+(2n ≥,*N n Î).(1)求数列{}n a ,{}n b 的通项公式;(2)设数列{}n c 满足1nn n a c b =+,求数列{}n c 的前n 项和n T ,并证明:1n T <.22.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,小区的两个出入口设置在点A 及点C 处,且小区里有一条平行于BO 的小路CD .(1)已知某人从C 沿CD 走到D 用了10分钟,从D 沿DA 走到A 用了6分钟,若此人步行的速度为每分钟50米,求该扇形的半径OA 的长(精确到1米);(2)若该扇形的半径为OA a =,已知某老人散步,从C 沿CD 走到D ,再从D 沿DO 走到O ,试确定C 的位置,使老人散步路线最长.期中测试答案解析一、1.【答案】B【解析】解:Q 集合2}235{|}{|13A x x x x x =--=-≤≤≤,{|}{|}lg 004B x x x x ==<<<,故选:B .2.【答案】B【解析】解:设等比数列{}n a 的公比为q ,4a Q ,12a 是方程2310x x ++=的两根,86a \=±,又在等比数列中偶数项同号,故选:B .3.【答案】C【解析】解:2cos 2a B c =+Q ,由正弦定理,得2sin cos 3sin A B B C =+,而()sin sin sin cos cos sin C A B A B A B =+=+,0A p Q <<,23A p\=.故选:C .4.【答案】C【解析】解:Q 等比数列{}n a 的前n 项和3(22)nn S l l +-×=(l 为常数),11252(4)6a S l l l \==+-´=-,73334()[()232]223412a S S l l l l l ×-×=-=+-+-=-,7(264641)(2())l l l \-=--,3l =Q 时,8n S l =是常数,不成立,故舍去3l =,故选:C .5.【答案】A【解析】解:因为关于x 的不等式22280x ax a --<(2a >)的解集为(1x ,2x ),所以122x x a +=…①,又2115x x -=…③,24-´①②可得2221(36)x x a -=,代入③可得,221536a =,解得155=32a =±±,因为0a >,所以56a =.故选:A .6.【答案】A【解析】解:如图,由已知可得,30BAC Ð=°,105ABC Ð=°,20AB =,从而45ACB Ð=°.故选:A .【解析】解:11a =Q ,且71n n a a n +-=+(n N +Î),112611(1)2()()()n n n n n n n a a a a a a a a ---+\=-+-+¼+-+=,\数列6n a ìüíýîþ的前10项和=181152021223101111éùæöæöæö-+-++-=ç÷ç÷ç÷êúèøèøèøëûL .故选:B .8.【答案】D【解析】解:因为数列{}n a 是等比数列,21a =,588a =,所以35278a q a ==所以1{}n n a a +是以2为首项,以15为公比的等比数列,故选:D .二、9.【答案】BC【解析】解:若0a b >>,0c d >>,则ac bd >,所以A 不正确;若0ab >,0bc ad ->,可得4()0bc ad ab ->,即0c d a b ->,所以B 正确;若a b >,0c d >>,则a bd c >.不正确,反例1a =,7,b =-2c =-,3d =-,故选:BC .10.【答案】ABC【解析】解:根据题意,依次分析选项:对于A ,若59S S =,必有95628978(2)0S S a a a a a a -=+++=+=,则780a a +=,()()11473141414022a a a a S ´+´+===,A 正确;对于C ,若67S S >,则7660a S S =-<,又由10a >,必有0d <,则8870a S S =-<,必有78S S >,C 正确;故选:ABC .三、11.【答案】27【解析】解:n S Q 是等差数列{}n a 的前n 项和,且284212a a a ++=,12126812()a d a d a d \+++++=,()()9151995272S a a a d \=+=+=.故答案为:27.12.【答案】04m ≤≤【解析】解:Q函数()f x =的定义域是一切实数,210mx mx \++≥对一切x R Î恒成立,当6m ¹时,必有20Δ40m m p ìí=-î>≤,解之可得07m <≤,故答案为04m ≤≤.【解析】解:设数列{}n a 的奇数项依次成公差为d 的等差数列,偶数项依次成公比为q 的等比数列,由11a =,22a =,347a a +=,4613a a +=,解得2d q ==,故答案为:23.14.【解析】解:AD AC ^Q ,90DAC \Ð=°,BAC BAD DAC \Ð=Ð+Ð=а,在ABD △中,3AB =,AD =,2222cos 33236BD AB AD AB AD BAD =+-××Ð=+-´=,故答案为:15.【答案】189【解析】解:n S 为数列{}n a 的前n 项和,满足23n n S a =-①,当1n =时,解得63a =.①-②得:122n n n a a a -=-,所以数列{}n a 是以4为首项,2为公比的等比数列.所以()()32132121n n nS ´-==´--,故答案为:16.【解析】解:2B A =,sin sin 2B A \=,sin 2sin cos B A A \=,cos 2bA a\=.4sin 4sin A C =Q ,74a c \=,22224916cos 28214b b b c a b A a bc b +-+-\====.cos 2b A a \==..四、17.【答案】(1)正项等比数列{}n a 中,1310a a +=,3540a a +=;设公比为q ,则0q >;解得2q =,12a =;122n n n a a q -==.(2)因为2log n n b a =,2n n a =,所以数列{}2(1)nnb -的前100项的和222222123499100371995050=-+-+--+=+++=…….【解析】(1)根据题意求出1a 和q ,写出数列{}n a 的通项公式.(2)求出n b 的解析式,写出数列{}2(1)n n b -的前100项的和,再计算即可.18【答案】(1)设等差数列{}n a 的公差为d ,0d ¹.由530S =,得130510a d =+,…①,2215a a a \=×,则()()21113a d a a d +=+,…②,\数列{}n a 的通项公式为()2612n a n n =+-=.(2)由(1)可知,数列{}n b 的前n 项和1271111512375212121n n nT b b b n n n æö=++¼+=-+-++-=ç÷-++èøL .【解析】(1)设等差数列{}n a 的公差为d ,0d ¹.由已知得关于首项与公差的方程,联立求得首项与公差,可得数列{}n a 的通项公式.(2)由()()111n n n b a a =-+,得1(21)(21)n b n n =-+,再由裂项相消法求数列{}n b 的前n 项和n T .19.【答案】(1)Q 函数()22f x x ax =++,a R Î;当不等式()0f x ≤的解集为[]1,2时,12a \-=+,即3a =-;53321x x x -+-≥,()()2110x x \--≥,\该不等式的解集为512xx x ìüíýîþ∣≤或≥.(2)由(1)可知,()g x 在区间()1,2上有两个不同的零点,即228535842308250a a a a a --ìïï-+ïíï++ï++ïî<<<>>;\实数a的取值范围是5a --<<.【解析】(1)根据二次函数与对应一元二次不等式的关系,求出a 的值,再解不等式()21f x x -≥即可.(2)根据二次函数()g x 的图象与性质,列出不等式组12404(1)0(2)0a a g g g ì-ïïæöïç÷íèøïïïî<<>>,求出解集即可.20.【答案】(1)247-(2)2714【解析】(1)利用任意角的三角函数的定义求得sin a ,sin b 的值,再由同角三角函数基本关系式求得cos a 与cos b .利用商的关系求得tan a ,再由二倍角的正切求tan 2a 的值。
【高一】2021―2021学年新课标人教版高一数学第二学期期中考试试卷及答案
【高一】2021―2021学年新课标人教版高一数学第二学期期中考试试卷及答案2021―2021学年第二学期期中考试高一年级数学科试卷第i卷(选择题,共48分)一、选择题(本大题共12小题,每小题4分后,共48分后)1、数列0,0,0,0…,0,…().a、就是等差数列但不是等比数列b、就是等比数列但不是等差数列c、既是等差数列又是等比数列d、既不是等差数列又不是等比数列2、若,则以下不等式中恰当的就是().(a)b2<a2(b)>(c)b<a(d)ab>a+b3、△中,,,的对边,则的对边等同于().(a)2(b)(c)(d)14、不等式的边值问题就是().a.b.c.d.5、在等比数列{an}中,若a3a5=4,则a2a6=().a、2b、2c、4d、46、等差数列{an}中,首项a1=4,a3=3,则该数列中第一次发生负值的项为().a、第9项b、第10项c、第11项d、第12项7、若关于x的不等式的边值问题就是,则对任一常数k,总存有().abcd8、在中,未知a=6,b=8,a=30°,谋角b则().a有两个解b有一个解c无解d有无数个解9、等差数列{an}中,未知前13项和s13=65,则a7=().a、10b、c、5d、1510、在中,,若则角c的度数就是().a120°b60°c60或120°d45°11、未知ab>0,且恒设立,则的值域范围就是().a{2}bcd12、等比数列中,未知对任一正整数,,则等同于().a、(2n-1)2b、(2n-1)c、(4n-1)d、4n-1第ii卷(非选择题,共72分后)二、填空题(本大题共4小题,每题4分,共16分)13、在2与32中间填入7个实数,并使这9个实数成等比数列,该数列的第7项是.14、已知的三个内角所对的边分别是,且,则.15、未知子集则=.16、设.三、答疑题(本大题共4小题,共56分后,求解应允写下字表明,证明过程或编程语言步骤)17.如图,海中有一小岛b,周围3.8海里内有暗礁。
人教版高一下学期期中考试数学试卷及答案解析(共五套)
人教版高一下学期期中考试数学试卷(一)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为312.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a 的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.参考答案一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.【答案】D【分析】根据共线向量的定义即可得结论.【解答】解:由题,点C是线段AB靠近点B的三等分点,=3=﹣3,所以选项A错误;=2=﹣2,所以选项B和选项C错误,选项D正确.故选:D.【知识点】平行向量(共线)、向量数乘和线性运算2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.【答案】D【分析】直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案.【解答】解:∵z(3+i)=3+i2020,i2020=(i2)1010=(﹣1)1010=1,∴z(3+i)=4,∴z=,∴=,∴共轭复数的虚部为,故选:D.【知识点】复数的运算3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.【答案】C【分析】利用图形,求出数量积的向量,然后转化求解即可.【解答】解:由题意,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,可知=+=,=﹣=﹣2,所以•=()•(﹣2)=﹣2﹣2=1.故选:C.【知识点】平面向量数量积的性质及其运算4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i【答案】B【分析】利用错位相减法、等比数列的求和公式及其复数的周期性即可得出.【解答】解:设S=2i+3i2+4i3+ (2020i2019)∴iS=2i2+3i3+ (2020i2020)则(1﹣i)S=i+i+i2+i3+……+i2019﹣2020i2020.==i+==﹣2021+i,∴S==.故选:B.【知识点】复数的运算5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°【答案】B【分析】易知∠ABA1即为所求,再由△ABA1为等腰直角三角形,得解.【解答】解:因为AB∥CD,所以∠ABA1即为异面直线A1B与CD所成的角,因为△ABA1为等腰直角三角形,所以∠ABA1=45°.故选:B.【知识点】异面直线及其所成的角6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.【答案】C【分析】先利用正弦定理将已知等式中的边化角,再结合两角和公式与三角形的内角和定理,可推出sin B=2sin A;然后利用三角形的面积公式、正弦定理,即可得解.【解答】解:由正弦定理知,==,∵(a﹣2b)cos C=c(2cos B﹣cos A),∴(sin A﹣2sin B)cos C=sin C(2cos B﹣cos A),即sin A cos C+sin C cos A=2(sin B cos C+cos B sin C),∴sin(A+C)=2sin(B+C),即sin B=2sin A.∵△ABC的面积为a2sin,∴S=bc sin A=a2sin,根据正弦定理得,sin B•sin C•sin A=sin2A•sin,化简得,sin B•sin cos=sin A•cos,∵∈(0,),∴cos>0,∴sin==,∴=,即C=.故选:C.【知识点】正弦定理、余弦定理7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°【答案】B【分析】连接AB1,求出∠ACB1可判断选项A;连接B1D1,找出点B1在平面AD1C上的投影O,设直线B1C与平面AD1C所成的角为θ,由cosθ=可判断选项B;利用平移法找出选项C和D涉及的异面直线夹角,再进行相关运算,即可得解.【解答】解:连接AB1,∵△AB1C为等边三角形,∴∠ACB1=60°,即直线B1C与AC所成的角为60°,故选项A正确;连接B1D1,∵AB1=B1C=CD1=AD1,∴四面体AB1CD1是正四面体,∴点B1在平面AD1C上的投影为△AD1C的中心,设为点O,连接B1O,OC,则OC=BC,设直线B1C与平面AD1C所成的角为θ,则cosθ===≠,故选项B错误;连接BC1,∵AD1∥BC1,且B1C⊥BC1,∴直线B1C与AD1所成的角为90°,故选项C正确;∵AB⊥平面BCC1B1,∴AB⊥B1C,即直线B1C与AB所成的角为90°,故选项D正确.故选:B.【知识点】直线与平面所成的角、异面直线及其所成的角8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π【答案】A【分析】由题意可得AC⊥面EFBD,可得V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD,再由多面体ABCDEF 的体积为,可得矩形EFBD的高与正方形ABCD的边长之间的关系,再由题意可得矩形EFBD的对角线的交点为外接球的球心,进而求出外接球的半径,再由均值不等式可得外接球的半径的最小值,进而求出外接球的表面积的最小值.【解答】解:设正方形ABCD的边长为a,矩形BDEF的高为b,因为正方形ABCD,所以AC⊥BD,设AC∩BD=O',由因为平面ABCD与平面EFBD互相垂直,AC⊂面ABCD,平面ABCD∩平面EFBD=BD,所以AC⊥面EFBD,所以V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD=2•S EFBD•CO'=•a•b•a =a2b,由题意可得V ABCDEF=,所以a2b=2;所以a2=,矩形EFBD的对角线的交点O,连接OO',可得OO'⊥BD,而OO'⊂面EFBD,而平面ABCD⊥平面EFBD,平面ABCD∩平面EFBD=BD,所以OO'⊥面EFBD,可得OA=OB=OE=OF都为外接球的半径R,所以R2=()2+(a)2=+=+=++≥3=3×,当且仅当=即b=时等号成立.所以外接球的表面积为S=4πR2≥4π•3×=6π.所以外接球的表面积最小值为6π.故选:A.【知识点】球的体积和表面积二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.【答案】BC【分析】由已知利用余弦定理整理可得cos A=,对于A,若A=,可得b=<0,错误;对于B,若A=,可得b=>0,对于C,若A=,可得b=>0,对于D,若A=,可得c=0,错误,即可得解.【解答】解:因为在△ABC中,a2=b2+bc,又由余弦定理可得:a2=b2+c2﹣2bc cos A,所以b2+bc=b2+c2﹣2bc cos A,整理可得:c=b(1+2cos A),可得:cos A=,对于A,若A=,可得:﹣=,整理可得:b=<0,错误;对于B,若A=,可得:=,整理可得:b=>0,对于C,若A=,可得:cos==,整理可得:b=>0,对于D,若A=,可得:cos=﹣=,整理可得:c=0,错误.故选:BC.【知识点】余弦定理10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.【答案】ABC【分析】由向量的加减法法则、平面向量基本定理解决【解答】解:由,知A正确;由知B正确;由知C正确;由N为线段DC的中点知知D错误;故选:ABC.【知识点】向量数乘和线性运算、平面向量的基本定理11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为3【答案】BD【分析】通过复数的基本性质,结合反例,以及复数的模,判断命题的真假即可.【解答】解:当两个复数都是实数时,可以比较大小,所以A不正确;复数的实部与虚部都是0时,复数是0,所以B正确;反例z1=1,z2=i,满足z12+z22=0,所以C不正确;复数z满足|z|=1,则|z+2i|的几何意义,是复数的对应点到(0,﹣2)的距离,它的最大值为3,所以D正确;故选:BD.【知识点】复数的模、复数的运算、虚数单位i、复数、命题的真假判断与应用12.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°【答案】ABD【分析】在正方体ABCD﹣A1B1C1D1中,建立合适的空间直角坐标系,设正方体的棱长为2,根据空间向量的坐标运算,以及异面直线所成角的向量求法,逐项判断即可.【解答】解:在正方体ABCD﹣A1B1C1D1中,以点A为坐标原点,分别以AB,AD,AA1为x 轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为2,则A(0,0,0),A1(0,0,2),B(2,0,0),B1(2,0,2),C (2,2,0),D(0,2,0),D1(0,2,2),所以,故,故选项A正确;又,又,所以,,则,故选项B正确;,所以,因此与的夹角为120°,故选项C错误;因为E,F分别是BC,A1C的中点,所以E(2,1,0),F(1,1,1),则,所以,又异面直线的夹角大于0°小于等于90°,所以异面直线EF与DD1所成的角为45°,故选项D正确;故选:ABD.【知识点】异面直线及其所成的角三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.【分析】根据向量的几何意义可得P为BC的中点,再根据向量的数量积的运算和正方形的性质即可求出.【解答】解:由=(+),可得P为BC的中点,则|CP|=1,∴|PD|==,∴•=•(+)=﹣•(+)=﹣2﹣•=﹣1,故答案为:,﹣1.【知识点】平面向量数量积的性质及其运算14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.【答案】1【分析】设z1=a+bi,则z2=a﹣bi,(a,b∈R),根据两个复数相等的充要条件求出z1,z2,再由根与系数的关系求得p,q的值.【解答】解:由题意可知z1与z2为共轭复数,设z1=a+bi,则z2=a﹣bi,(a,b∈R 且b≠0),又,则a2﹣b2+2abi=a﹣bi,∴(2a+b)+(a+2b)i=1﹣i,∴,解得.∴z1=+i,z2=i,(或z2=+i,z1=i).由根与系数的关系,得p=﹣(z1+z2)=1,q=z1•z2=1,∴pq=1.故答案为:1.【知识点】复数的运算15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.【分析】由题意画出图形,找出三棱锥外接球的位置,求解三角形可得外接球的半径,再由棱锥体积公式求解.【解答】解:记BD的中点为M,连接A′M,CM,可得A′M2+CM2=A′C2,则∠A′MC=90°,则外接球的球心O在△A′MC的边A′C的中垂线上,且过正三角形BCD的中点F,且在与平面BCD垂直的直线m上,过点A′作A′E⊥m于点E,如图所示,设外接球的半径为R,则A′O=OC=R,,A′E=1,在Rt△A′EO中,A′O2=A′E2+OE2,解得R=.故三棱锥A﹣BCD的外接球的体积为.故答案为:.【知识点】球的体积和表面积16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.【分析】根据题意,该四面体内接于圆锥的内切球,通过内切球即可得到a的最大值.【解答】解:依题意,四面体可以在圆锥内任意转动,故该四面体内接于圆锥的内切球,设球心为P,球的半径为r,下底面半径为R,轴截面上球与圆锥母线的切点为Q,圆锥的轴截面如图:则OA=OB=,因为SO=,故可得:SA=SB==3,所以:三角形SAB为等边三角形,故P是△SAB的中心,连接BP,则BP平分∠SBA,所以∠PBO=30°;所以tan30°=,即r=R=×=,即四面体的外接球的半径为r=.另正四面体可以从正方体中截得,如图:从图中可以得到,当正四面体的棱长为a时,截得它的正方体的棱长为a,而正四面体的四个顶点都在正方体上,故正四面体的外接球即为截得它的正方体的外接球,所以2r=AA1=a=a,所以a=.即a的最大值为.故答案为:.【知识点】旋转体(圆柱、圆锥、圆台)四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.【分析】(1)直接利用余弦定理的应用求出结果;(2)利用余弦定理的应用建立等量关系式,进一步求出结果.【解答】解:(1)在四边形ABCD中,AD=BD=CD=1.若AB=,所以:cos∠ADB==,由于AB∥CD,所以∠BDC=∠ABD,即cos∠BDC=cos∠ABD=,所以BC2=BD2+CD2﹣2•BD•CD•cos∠BDC==,所以BC=.(2)设BC=x,则AB=2BC=2x,由余弦定理得:cos∠ADB==,cos∠BDC===,故,解得或﹣(负值舍去).所以.【知识点】余弦定理18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.【分析】(1)把z1,z2代入=+,利用复数代数形式的乘除运算化简求出,进一步求出z;(2)设z=a+bi(a,b∈R),利用复数的运算及(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,可得,又ω==i,|ω|=5,可得,即可得出a,b,再代入可得ω.【解答】解:(1)由z1=1﹣2i,z2=3+4i,得=+==,则z=;(2)设z=a+bi(a,b∈R),∵(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,∴.又ω===i,|ω|=5,∴.把a=3b代入化为b2=25,解得b=±5,∴a=±15.∴ω=±(i)=±(7﹣i).【知识点】复数的运算19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.【分析】(1)首项利用两角和的正切公式建立函数关系,进一步利用判别式确定函数的最大值;(2)利用两角和的正切公式建立函数关系,利用a的取值范围即可确定x的范围.【解答】解:(1)如图,作CD⊥AF于D,则CD=EF,设∠ACD=α,∠BCD=β,CD=x,则θ=α﹣β,在Rt△ACD和Rt△BCD中,tanα=,tanβ=,则tanθ=tan(α﹣β)==(x>0),令u=,则ux2﹣2x+1.25u=0,∵上述方程有大于0的实数根,∴△≥0,即4﹣4×1.25u2≥0,∴u≤,即(tanθ)max=,∵正切函数y=tan x在(0,)上是增函数,∴视角θ同时取得最大值,此时,x==,∴观察者离墙米远时,视角θ最大;(2)由(1)可知,tanθ===,即x2﹣4x+4=﹣a2+6a﹣4,∴(x﹣2)2=﹣(a﹣3)2+5,∵1≤a≤2,∴1≤(x﹣2)2≤4,化简得:0≤x≤1或3≤x≤4,又∵x>1,∴3≤x≤4.【知识点】解三角形20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.【分析】(I)利用复数的几何意义、向量的坐标运算性质、平行四边形的性质即可得出.(II)利用向量垂直与数量积的关系、模的计算公式、矩形的面积计算公式即可得出.【解答】解:(Ⅰ)依题点A对应的复数为﹣1,对应的复数为2+2i,得A(﹣1,0),=(2,2),可得B(1,2).又对应的复数为4﹣4i,得=(4,﹣4),可得C(5,﹣2).设D点对应的复数为x+yi,x,y∈R.得=(x﹣5,y+2),=(﹣2,﹣2).∵ABCD为平行四边形,∴=,解得x=3,y=﹣4,故D点对应的复数为3﹣4i.(Ⅱ)=(2,2),=(4,﹣4),可得:=0,∴.又||=2,=4.故平行四边形ABCD的面积==16.【知识点】复数的代数表示法及其几何意义21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.【分析】(1)推导出GC⊥BC,EC⊥BC,从而∠ECG=60°.连接DG,推导出DG⊥EF,由BC⊥EF,BC⊥CG,得BC⊥平面DEG,从而DG⊥BC,进而DG⊥平面ABCE,DG是四棱锥G ﹣ABCE的高,由此能求出四棱锥G﹣ABCE的体积.(2)取DE的中点H,连接BH、GH,则BH∥AE,∠GBH既是AE与BG所成角或其补角.由此能求出异面直线AE与BG所成角的大小.【解答】解:(1)由已知,有GC⊥BC,EC⊥BC,所以∠ECG=60°.连接DG,由CD=AB=1,CG=CF=2,∠ECG=60°,有DG⊥EF①,由BC⊥EF,BC⊥CG,有BC⊥平面DEG,所以,DG⊥BC②,由①②知,DG⊥平面ABCE,所以DG就是四棱锥G﹣ABCE的高,在Rt△CDG中,.故四棱锥G﹣ABCE的体积为:.(2)取DE的中点H,连接BH、GH,则BH∥AE,故∠GBH既是AE与BG所成角或其补角.在△BGH中,,,则.故异面直线AE与BG所成角的大小为.【知识点】异面直线及其所成的角、棱柱、棱锥、棱台的体积22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.【分析】(1)点F为BC的中点,设点D在平面ABC内的射影为O,连接OD,OC,取AC 的中点H,连接EH,由题意知EH⊥AC,EH⊥平面ABC,由题意知DO⊥平面ABC,得DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,从而OF∥平面EAC,平面DOF∥平面EAC,由此能证明DF∥平面EAC.(2)连接OH,由OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线AB与平面EBC所成角的余弦值.【解答】解:(1)点F为BC的中点,理由如下:设点D在平面ABC内的射影为O,连接OD,OC,∵AD=CD,∴OA=OC,∴在Rt△ABC中,O为AB的中点,取AC的中点H,连接EH,由题意知EH⊥AC,又平面EAC⊥平面ABC,平面EAC∩平面ABC=AC,∴EH⊥平面ABC,由题意知DO⊥平面ABC,∴DO∥EH,∴DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,又OF⊄平面EAC,AC⊂平面EAC,∴OF∥平面EAC,∵DO∩OF=O,∴平面DOF∥平面EAC,∵DF⊂平面DOF,∴DF∥平面EAC.(2)连接OH,由(1)可知OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立如图所示空间直角坐标系,则B(1,﹣1,0),A(﹣1,1,0),E(0,1,﹣),C(1,1,0),∴=(2,﹣2,0),=(0,2,0),=(﹣1,2,﹣),设平面EBC的法向量=(a,b,c),则,取a=,则=(,0,﹣1),设直线与平面EBC所成的角为θ,则sinθ===.∴直线AB与平面EBC所成角的余弦值为cosθ==.【知识点】直线与平面平行、直线与平面所成的角人教版高一下学期期中考试数学试卷(二)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.14.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.25.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.96.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R27.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π8.已知半球O与圆台OO'有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为()A.B.C.D.二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.下列有关向量命题,不正确的是()A.若||=||,则=B.已知≠,且•=•,则=C.若=,=,则=D.若=,则||=||且∥10.若复数z满足,则()A.z=﹣1+i B.z的实部为1 C.=1+i D.z2=2i11.如图,在平行四边形ABCD中,E,F分别为线段AD,CD的中点,AF∩CE=G,则()A.B.C.D.12.已知正方体ABCD﹣A1B1C1D1,棱长为2,E为线段B1C上的动点,O为AC的中点,P 为棱CC1上的动点,Q为棱AA1的中点,则以下选项中正确的有()A.AE⊥B1CB.直线B1D⊥平面A1BC1C.异面直线AD1与OC1所成角为D.若直线m为平面BDP与平面B1D1P的交线,则m∥平面B1D1Q三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知向量=(m,1),=(m﹣6,m﹣4),若∥,则m的值为.14.将表面积为36π的圆锥沿母线将其侧面展开,得到一个圆心角为的扇形,则该圆锥的轴截面的面积S=.15.如图,已知有两个以O为圆心的同心圆,小圆的半径为1,大圆的半径为2,点A 为小圆上的动点,点P,Q是大圆上的两个动点,且•=1,则||的最大值是.16.如图,在三棱锥A﹣BCD的平面展开图中,已知四边形BCED为菱形,BC=1,BF=,若二面角A﹣CD﹣B的余弦值为﹣,M为BD的中点,则CD=,直线AD与直线CM所成角的余弦值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.已知,.(1)若与同向,求;(2)若与的夹角为120°,求.18.已知a、b、c是△ABC中∠A、∠B、∠C的对边,a=4,b=6,cos A=﹣.(1)求c;(2)求cos2B的值.19.已知:复数z1与z2在复平面上所对应的点关于y轴对称,且z1(1﹣i)=z2(1+i)(i为虚数单位),|z1|=.(Ⅰ)求z1的值;(Ⅱ)若z1的虚部大于零,且(m,n∈R),求m,n的值.20.(Ⅰ)在复数范围内解方程|z|2+(z+)i=(i为虚数单位)(Ⅱ)设z是虚数,ω=z+是实数,且﹣1<ω<2.(1)求|z|的值及z的实部的取值范围;(2)设,求证:μ为纯虚数;(3)在(2)的条件下求ω﹣μ2的最小值.21.如图,直三棱柱A1B1C1﹣ABC中,AB=AC=1,,A1A=4,点M为线段A1A 的中点.(1)求直三棱柱A1B1C1﹣ABC的体积;(2)求异面直线BM与B1C1所成的角的大小.(结果用反三角表示)22.如图所示,在正方体ABCD﹣A1B1C1D1中,点G在棱D1C1上,且D1G=D1C1,点E、F、M分别是棱AA1、AB、BC的中点,P为线段B1D上一点,AB=4.(Ⅰ)若平面EFP交平面DCC1D1于直线l,求证:l∥A1B;(Ⅱ)若直线B1D⊥平面EFP.(i)求三棱锥B1﹣EFP的表面积;(ii)试作出平面EGM与正方体ABCD﹣A1B1C1D1各个面的交线,并写出作图步骤,保留作图痕迹.设平面EGM与棱A1D1交于点Q,求三棱锥Q﹣EFP的体积.答案解析一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【分析】直接利用复数的运算和几何意义的应用求出该点所表示的位置.【解答】解:设z=a+bi(a,b∈R),所以(2﹣i)(a+bi)=2a+b+(2b﹣a)i,由于对应的点在虚轴的正半轴上,所以,即,所以a<0,b>0.故该点在第二象限.故选:B.【知识点】复数的代数表示法及其几何意义2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.【答案】D【分析】利用平行四边形的性质以及向量相等的概念,再利用平面向量基本定理进行转化即可.【解答】解:因为ABCD为平行四边形,所以,故.故选:D.【知识点】平面向量的基本定理3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.1【答案】B【分析】根据平面向量的坐标表示和共线定理,列方程求出t的值.【解答】解:向量=(6t+3,9),=(4t+2,8),所以+=(6t+3,11),﹣=(4t+2,5).又(+)∥(﹣),所以5(6t+3)﹣11(4t+2)=0,解得t=﹣.故选:B.【知识点】平面向量共线(平行)的坐标表示4.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.2【答案】D【分析】先根据M,N满足的条件,将(+)•=0化成的表达式,从而判断出矩形ABCD为正方形;再将+=x+y,左边用表示出来,结合x+y =3,即可得NC+MC=4,最后借助于基本不等式求出MN的最小值.【解答】解:当M,N分别是边BC,DC的中点时,有(+)•===,所以AD=AB,则矩形ABCD为正方形,设,,则=.则x=2﹣λ,y=2﹣μ.又x+y=3,所以λ+μ=1.故NC+MC=4,则MN==(当且仅当MC=NC=2时取等号).故线段MN的最短长度为2.故选:D.【知识点】平面向量数量积的性质及其运算5.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.9【答案】B【分析】由题意画出图形,再由复数模的几何意义,数形结合得答案.【解答】解:由|z+3+4i|≤2,得z在复平面内对应的点在以Q(﹣3,﹣4)为圆心,以2为半径的圆及其内部.如图:|z﹣1﹣i|的几何意义为区域内的动点与定点P得距离,则M=|PQ|+2,m=|PQ|﹣2,则M﹣m=4.故选:B.【知识点】复数的运算6.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R2【答案】B【分析】设圆锥的底面半径为r,求得圆锥的高,由球的截面性质,运用勾股定理可得r,由圆锥的表面积公式可得所求.【解答】解:如图,设圆锥的底面半径为r,则圆锥的高为r,则R2=r2+(r﹣R)2,解得r=R,则圆锥的表面积为S=πr2+πr•2r=3πr2=3π(R)2=πR2,故选:B.【知识点】球内接多面体、旋转体(圆柱、圆锥、圆台)7.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π【答案】A【分析】先根据题意求得正四面体的体积,进而得到六面体的体积,再由图形的对称性得,内部的丸子要是体积最大,就是丸子要和六个面相切,设丸子的半径为R,则,由此求得R,进而得到答案.【解答】解:由题意可得每个三角形面积为,由对称性可知该六面体是由两个正四面体合成的,可得该四面体的高为,故四面体的体积为,∵该六面体的体积是正四面体的2倍,。
2019学年高一数学下学期期中试题(含解析)人教版
2019学年高一数学下学期期中试题(含解析)清华附中G16级(马班) 2017.04一、选择题(每小题5分,共40分)1.已知等比数列{}n a 中,132a =,公比12q =-,则6a 等于().A .1B .12-C .1-D .12-【答案】C【解析】解:5613212a ⎛⎫=⋅-=- ⎪⎝⎭.故:选C .2.若0a b <<,则下列不等关系中不能成立的是().A .11a b a>- B .||||a b >C .33a b <D .22a b <【答案】A【解析】解:不枋设2a =-,1b =-, 对于A 选项11121a b ==---+,不大于12-. 故选:A .3.在等差数列{}n a 中,17a =,242a a +=,则公差d =().A .2B .3C .2-D .3-【答案】D【解析】解:设1(1)n a a n d =+-, 247732a a d d +=+++=,∴3d =-. 故选:D .4.设ABC △内角A ,B ,C 的对边分别为a ,b ,c ,若222b a c =+,则B 等于().A .30︒B .60︒C .120︒D .150︒【答案】D【解析】解:由余弦定理:222cos 2a c b B ac +-==, 又∵πO B <<, ∴150B =︒. 故选:D .5.已知0t >,则函数241t t y t-+=的最小值为().A .4-B .2-C .0D .2【答案】B【解析】2411424t t y t t t -+==+-≥, 当且仅当1t =时等号成立, ∴最小值为2-, 故选:B .6.若a b >,c ∈R ,则下列不等式中成立的是().A .ac bc >B .1ab> C .11a b< D .22ac bc ≥【答案】D【解析】解:A :c 可能为0.B :b 不一定大于零.C :b 正a 负.D :成立.7.不等式102x x -<+的解集为(). A .(1,)+∞ B .(,2)-∞- C .(2,1)-D .(,2)(1,)-∞-+∞【答案】C【解析】(1)(2)021202x x x x x -+<⇔-<<⎧⎨+≠≠-⎩,∴(2,1)-. 故选:C .8.已知6枝玫瑰与3枝康乃馨的价格之和大于24元,而4枝玫瑰与4枝康乃馨的价格之和小于20元,那么2枝玫瑰和3枝康乃馨的价格的比较结果是(). A .2枝玫瑰的价格高 B .3枝康乃馨的价格高 C .价格相同D .不确定【答案】A【解析】解:设玫瑰、康乃馨价格为x 、y , 63244420x y x y +>⎧⎨+<⎩, 化为285x y x y +>⎧⎨-->-⎩,令223m n m n -=⎧⎨-=-⎩, ∴58m n =⎧⎨=⎩,∴235(2)8()58580x y x y x y x x -=++-->-=, ∴23x y >, 故选:A .二、填空题(每小题5分,共30分) 9.不等式2340x x -->的解集为__________. 【答案】见解析【解析】解:2340x x -->, (4)(1)0x x -+>,∴4x >或1x <-, [|4x x >或1]x <-.10.在ABC △中,2π3A ∠=,a ,bc=__________. 【答案】见解析 【解析】解:余弦定理: 222cos 2b c a A bc+-=,∴2221322b c c bc+--=,有2220b c bc -+=, ∵0c ≠,∴220b bc c⎛⎫+-= ⎪⎝⎭, 210b b c c ⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭, 又∵0bc>,∴1bc=.11.若函数2y ax =-在[1,2]上的函数值恒为正,则实数a 的取值范围是__________. 【答案】见解析【解析】解:0a =,20y =-<,0a >时,202a a ->⇒>, 0a >时,2201a a ->⇒>,综上:2a >.12.设等差数列{}n a 的前n 项和为n S ,若111a =-,466a a +=-,则当n S 取最小值时,n 等于__________. 【答案】见解析【解析】解:111a =-,设11(1)n a n d =-+-, 466a a +=-, 11356a d a d +++=-,∴2d =,∴1122213n a n n =-+-=-, ∴61a =-,710a =>, ∴n S 在6n =是取最小.13.函数2710(0)x x y x x++=>的最小值是__________. 【答案】见解析【解析】解:2710x x y x++=10772x x =+++≥7=+当且仅当x =时等号成立.∴最小值为7+14.{}n a 是等差数列,28a =,10185S =,从{}n a 中依次取出第3项,第9项,第27项,,第3n 项,按原来的顺序排成一个新数列{}n b ,则n b 等于__________. 【答案】见解析【解析】解:设1(1)n a a n d =+-, 1118118510(9)2a d a a d +=⎧⎪⎨=⨯⨯++⎪⎩, 得3d =,15a =, 213=52323b a a =+⨯=+, 32958323b a ==+⨯=+, 437526323b a ==+⨯=+,∴123n n b +=+.三、解答题(本题共6个小题,共80分)15.已知1a ,2(0,1)a ∈,记12M a a =,121N a a =+-,试比较M 与N 的大小? 【答案】见解析【解析】解:1212(1)M N a a a a -=-+- 12(1)(1)a a =--,有∵12,(0,1)a a ∈, ∴0M N ->, ∴M N >.16.已知数列{}n a 是等差数列,满足12a =,48a =,数列{}n b 是等比数列,满足24b =,532b =.(Ⅰ)求数列{}n a 和{}n b 的通项公式.(Ⅱ)求数列{}n n a b +的前n 项和n S . 【答案】见解析【解析】解:设1(1)n a a a d =+-,11n n b a q -=, 141238a a a d =⎧⎨=+=⎩, 1451432b q b q b =⎧⎪⎨-=⎪⎩, ∴2d =, ∴2n n a =,2n n b = ∴22462222n n S n =++++++++12(12)(22)212n n n -=⋅++- 2122n n n +=++-.17.在ABC △中,B为锐角,且2sin b A . (Ⅰ)求角B 的大小.(Ⅱ)若3b =,6a c +=,求ABC △面积. 【答案】见解析【解析】解:2sin b A ,由正弦定理:2sin sin B A A ,∴sin B , ∵π02B <<, ∴π3B =. (2)余弦定理: 222cos 2a c b B ac +-=,221922a c ac +-=, 2296a c aca c ⎧=+-⎨+=⎩, ∴3a c ==,∴1sin 2S ac B =⋅1332=⨯⨯18.已知ABC △的面积222)S a b c +-. (Ⅰ)求C ∠的大小.(Ⅱ)若1c =a -的最大值. 【答案】见解析【解析】解:1sin 2S ab C =,222cos 2a b c C ab+-=,而2221)sin 2S a b c ab C =++⇒2cos ab C .∴tan C = 又0πC <<, ∴π3C =, 2221cosC 22a b c ab+-==,221ab a b =+-.19.记关于x 的不等式01x ax -<+的解集为P ,不等式|1|1x -≤的解集为Q . (Ⅰ)若3a =,求P .(Ⅱ)若Q P ⊆,求正数a 的取值范围. 【答案】见解析 【解析】解:(1)101x x -<+, (3)(1)0x x -+<,即:13x -<<,{}|13P x x =-<<.(2){}||1|1Q x x =-≤, {}|02x x =≤≤,由0a >得{}|1P x x a =-<<, 又Q P ≤, ∴2a >.20.已知等比数列{}n a 的公比1q >,11a =,且1a ,3a ,214a +成等差数列,数列{}n b 满足: 1122(1)31n n n a b a b a b n +++=-⋅+,*n ∈N .(Ⅰ)求数列{}n a 和{}n b 的通项公式.(Ⅱ)若8n n ma b -≥恒成立,求实数m 的最小值. 【答案】见解析【解析】解:(1)设1n n a q -=, 312214a a a =++,22114q q =++.且0q >, ∴3q =, ∴13n n a -=, 又∵11n n a b a b +11233n n b b b -=+++(1)31n n =-⋅+.而212133n n b b b --+++⋅1(2)31n n -=-⋅+,2n ≥,∴有113(1)3(2)3n n n n b n n --=-⋅--⋅, ∴21n b n =-,2n ≥, 当1n =时,111a b =,11b =, 故21n b n =-.(2)若8n n ma b -≥恒成立, 即:2293n n m --≥最大值, 有1293n n n C --=,2n ≥时,122113n n n C ---=,122443n n n nC C ----=, 当2n =,3,L ,6时,1n n C C -≥, 即:n s =或6时,n C 最大为181. 即:181m ≥,可得m 最小为181.。
2022-2023学年人教A版高一下数学期中试卷(含解析)
2022-2023学年高中高一下数学期中试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:110 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 设复数,则在复平面内所对应的点在( )A.第一象限B.第二象限C.第三象限D.第四象限2. 若,则( )A.B.C.D.3. 外接圆的圆心为,两条边上的高的交点为,,则实数的值( )A.B.C.D.z =(1−i)21−2i z sin(x +)=π613sin(2x −)=π6−7979−42–√942–√9△ABC O H =m(++)OH −→−OA −→−OB −→−OC −→−m 122134(a +b =+ab )224. 已知的内角,,的对边分别为,,,且,,,则的面积为 A.B.C.D.5. 已知水平放置的四边形按斜二测画法得到如图所示的直观图,其中,,,,则原四边形的面积为( )A.B.C.D.6. 如图,在中,,点在线段上,,,则( )A.B.C.D.7. 已知角的终边经过点,则( )△ABC A B C a b c (a +b =+ab )2c 2B =30∘a =4△ABC ()63–√43–√33–√4OABC //O ′A ′B ′C ′∠=O ′A ′B ′90∘=1O ′A ′=2B ′C ′OABC 32–√232–√42–√52–√△ABC ∠BAC =2π3D BC AD ⊥AC =BD CD 14sin C =7–√1421−−√147–√721−−√7αP (sin ,cos )18∘18∘sin(α−)=12∘1A.B.C.D.8. 点在所在的平面内,则以下说法正确的有( )A.已知平面向量满足,且则是等边三角形B.若,则点为的垂心C.若,则点为的外心D.若,则点为的内心二、 多选题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 已知,,则下列说法正确的有( )A.若为实数,则B.的共轭复数是C.的最小值是D.满足的复数在复平面上的对应点的集合是以为圆心,以为半径的圆10. 已知向量,, 则( )A.B.向量在向量上的投影向量是 C.D.与向量方向相同的单位向量是123–√2−12−3–√2O △ABC ⋅⋅OA −→−OB −→−OC −→−||=||=||OA −→−OB −→−OC −→−++=OA −→−OB −→−OC −→−0→△ABC ⋅−=⋅−=0OA −→− AC −→−||AC −→−AB −→−||AB −→−OB −→− BC −→−||BC −→−BA −→−|BA| O △ABC (+)⋅=(+)⋅=0OA −→−OB −→−AB −→−OB −→−OC −→−BC −→−O △ABC ⋅=⋅=⋅OA −→−OB −→−OB −→−OC −→−OC −→−OA −→−O △ABC =2+3i z 1=m −i (m ∈R)z 2z 1z 2m =−23⋅z 1z 2(2m +3)−(3m −2)i|−|z 1z 24|z −|=1z 1z Z (−2,−3)1=(2,1)a →=(−3,1)b →(+)⊥a →b →a→a →b →−10−−√2a →|+2|=5a →b →a →(,)25–√55–√511. 在直角三角形中,,,为线段的中点,如图,将沿翻折,得到三棱锥(点为点翻折到的位置),在翻折过程中,下列说法正确的是()A.的外接圆半径为B.存在某一位置,使得C.存在某一位置,使得D.若,则此时三棱锥的外接球的体积为12. 已知声音是由物体振动产生的声波,其中包含着正弦函数或余弦函数,而纯音的数学模型是函数,我们听到的声音是由纯音合成的,称之为复合音.若一个复合音的数学模型是函数,则下列说法正确的是( )A.是的一个周期B.在上有个零点C.的最大值为D.在上是增函数卷II (非选择题)三、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )13. 已知,若,则________. 14. 已知三棱锥中,平面, ,异面直线与所成角的余弦值为,则三棱锥的体积为________,三棱锥的外接球的表面积为________.ABC ∠B =π2AC =2BC =4D AC △ABD BD P −BCD P A △PBD 2PD ⊥BDPB ⊥CDPD ⊥DC P −BCD π323y =A sin ωt f (x)=2sin x −sin 3x πf (x)f (x)[0,2π]7f (x)3f (x)[,]π6π2f (x)=sin(x +)π3cosα=(0<α<)35π2f (2α−)=π12S −ABC SA ⊥ABC AB =BC =CA =2SC AB 2–√4S −ABC S −ABC ∈[0,]3π15. 函数,的单调递减区间是________.16. 已知外接圆的圆心为,其面积,,为的三边长),,则外接圆的半径为________;的值为________.四、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )17. 已知.化简.若,求的值.18. 已知复数的共轭复数为,且满足.求;若复数在复平面内对应的点在第二象限,求实数的取值范围. 19. 如图,为圆柱的底面直径,,为圆柱的两条母线,点,,分别为,,的中点,,,垂足为.证明:平面;求三棱锥的体积. 20. 已知向量,,.若,试研究函数在上的单调性;当时,求函数的值域.21. 设是锐角三角形,,,分别是内角,,所对边长,并且.求角的值;若的面积等于求,.y =sin(−x)π6x ∈[0,]3π2△ABC O S =abc(a 112b c △ABC 2OA −→−+3AB −→−+3AC −→−=0→△ABC cos A f(x)=+(x ≠,k ∈Z)sin(x +π)tan(x −π)sin(x −)cos(x +)3π2π2cos(x +3π)kπ2(1)f(x)(2)f(α)=13sin2αz z¯¯¯(1−2i)z =4−3i (1)z¯¯¯(2)(m ∈R)(z +mi)2m AB AA 1BB 1C C 1D AB A 1B 1 AA 1A =2AC =2A 1CM ⊥BD M (1)CM ⊥BDC 1(2)A −BMC =(cos(x −),cos(x −))a →2–√π4π4=(sin x,m ⋅cos(x −))b →3π4f (x)=⋅a →b →(1)m =−1f (x)[,]π83π4(2)m =2f (x)△ABC a b c A B C sin(A +B)+sin B =sin(+B)sin(−B)π3π3sin C −sin B(1)C (2)△ABC 6,c =2,3–√7–√a b (x)=sin ωx +co −–√22. 已知函数,.Ⅰ若=,求的单调递增区间;Ⅱ若,求的最小正周期的表达式并指出的最大值.f(x)=sin ωx +co −123–√s 2ωx 23–√2ω>0()ω1f(x)()f()=1π3f(x)T T参考答案与试题解析2022-2023学年高中高一下数学期中试卷一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】D【考点】复数的代数表示法及其几何意义【解析】此题暂无解析【解答】此题暂无解答2.【答案】A【考点】运用诱导公式化简求值二倍角的余弦公式【解析】根据 ,利用诱导公式转化为,再利用二倍角公式求解.【解答】解:因为,所以.故选.sin(x +)=π613sin(2x −)=−cos(2x +)π6π3sin(x +)=π613sin(2x −)=−cos[+(2x −)]π6π2π6=−cos(2x +)=2(x +)−1π3sin 2π6=2×−1=−()13279A3.【答案】C【考点】向量的加法及其几何意义【解析】利用向量的运算法则、数量积与垂直的关系即可得出.【解答】解:如图所示:∵,,∴,∴,取边的中点,连接,则,∴,.又,∴.∴,∴,又不恒为,∴必有,解得.故选.4.【答案】B【考点】余弦定理正弦定理【解析】此题暂无解析【解答】解:因为,即,所以,因为,=−OH −→−AH −→−AO −→−=m(++)OH −→−OA −→−OB −→−OC −→−−=m(++)AH −→−AO −→−OA −→−OB −→−OC −→−=(m −1)+m(+AH −→−OA −→−OB −→−OC)−→−BC D OD OD ⊥BC +=2OB −→−OC −→−OD −→−⋅=0OD −→−BC −→−AH ⊥BC ⋅=0AH −→−BC −→−⋅=(m −1)⋅+2m ⋅AH −→−BC −→−OA −→−BC −→OD −→−BC −→0=(m −1)⋅OA −→−BC ¯¯¯¯¯¯¯⋅OA −→−BC −→−0m −1=0m =1C (a +b =+ab )2c 2+−=−ab a 2b 2c 2cos C ==−+−a 2b 2c 22ab 12C ∈(0,)180∘C =–√所以,.又因为,所以,所以,所以的面积.故选.5.【答案】B【考点】斜二测画法画直观图【解析】由斜二测画法的直观图,得出原图形为直角梯形,由此计算原图形的面积.【解答】解:由斜二测画法的直观图知,,,,;∴,所以原图形中, ,,,,,所以梯形的面积为.故选.6.【答案】B【考点】正弦定理弦切互化【解析】此题暂无解析C =120∘sin C =3–√2B =30∘A =B =30∘a =b =4△ABC S =ab sin C =4123–√B //B ′C ′O ′A ′⊥A ′B ′B ′C ′=1O ′A ′=2B ′C ′=O ′C ′2–√OABC BC//OA OC ⊥OA OA =1BC =2OC =2=2×=2O ′C ′2–√2–√OABC S =×(1+2)×2=3122–√2–√B【解答】解:在中, ,解得,所以.故选.7.【答案】B【考点】两角和与差的正弦公式两角和与差的余弦公式同角三角函数间的基本关系【解析】利用任意角的三角函数解得,再利用角的变换展开化简得解.【解答】解:由题设得,,,.故选.8.【答案】A,C【考点】三角形五心向量的线性运算性质及几何意义【解析】△ABD ==BDsin π6AD sin B sin C ⋅CDsin(−C)π3tan C =3–√5sin C =21−−√14B sin α,cos αα−=α−(−)12∘30∘12∘|OP|==1+sin 218∘cos 218∘−−−−−−−−−−−−−−√sin α=cos 18∘cos α=sin 18∘sin(α−)12∘=sin[α−(−)]30∘18∘=sin αcos(−)−30∘18∘cos αsin(−)30∘18∘=sin α[cos +sin ]−3–√218∘1218∘cos α[cos −sin ]1218∘3–√218∘=+3–√2cos 218∘3–√2sin 218∘=3–√2B直接利用向量的线性运算及向量的数量积,三角形的内心、外心,重心,垂心的应用,向量垂直的充要条件,单位向量的应用判断、、、的结论.【解答】解:选项,平面向量满足,且,, ,即,,的夹角为,同理的夹角也为,是等边三角形,故正确;选项,向量,分别表示在边和上的单位向量,设为和,则它们的差是向量,则当,即时,点在的平分线上,同理由,知点在的平分线上,故为的内心而不一定是垂心,故错误;选项,是以为邻边的平行四边形的一条对角线,故选.二、 多选题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】A,B,C【考点】复数代数形式的乘除运算复数的基本概念复数的模【解析】无A B C D A ,,OA −→−OB −→−OC −→−||=||=|=r (r >0)OA −→−OB −→−OC −→−++=OA −→−OB −→−OC −→−0→∴+=−OA −→−OB −→−OC −→−∴|+2⋅+|=|OA −→−|2OA −→−OB −→−OB −→−|2OC −→−|2+2⋅cos(,)+=r 2r 2OA −→−OB −→−r 2r 2∴cos(,)=−OA −→−OB −→−12∴,OA −→−OB −→−120∘⋅OA −→−OC −→−120∘∴△ABC A B AC −→−|AC|AB −→−|AB|AC AB AC −→−′AB −→−BC −→−⋅−=0OA −→− AC −→−||AC −→−AB −→−|AB|⊥OA −→−BC −→−O ∠BAC ⋅−=0OB −→− BC −→−||BC −→−BA −→−|A B →O ∠ABC O △ABC B C +OA −→−OB −→−,OA −→−OB −→−A ,C【解答】解:令,得,则有解得,故选项正确;,其共轭复数是,故选项正确;,当时,等号成立,即的最小值为,故选项正确;令,由,得,即,故满足的复数在复平面上的对应点的集合是以为圆心,以为半径的圆,故选项错误.故选.10.【答案】A,C,D【考点】向量的投影向量的数量积判断向量的共线与垂直平面向量的坐标运算单位向量向量模长的计算【解析】可求出,从而得出选项正确;可求出在上的投影是,从而判断选项错误;可得出,进而判断选项正确;根据向量可求出与向量方向相同的单位向量,从而判断选项正确.【解答】解:∵ ,,∴,,即正确;向量在向量上的投影向量是,即错误;=a(a ∈R)z 1z 2=2+3i =a z 1=am −ai z 2{2=am,3=−a,m =−23A ⋅=(2+3i)(m −i)=(2m +3)+(3m −2)i z 1z 2=(2m +3)−(3m −2)i ⋅z 1z 2¯¯¯¯¯¯¯¯¯¯¯¯B |−|=|(2−m)+4i|=≥=4z 1z 2(2−m +16)2−−−−−−−−−−−√16−−√m =2|−|z 1z 24C z =x +yi |z −|=1z 1|(x −2)+(y −3)i|==1(x −2+(y −3)2)2−−−−−−−−−−−−−−−√(x −2+(y −3=1)2)2|z −|=1z 1z Z (2,3)1D ABC (+)⋅=0a →b →a →A a →b →−12b →B +2=(−4,3)a →b →C a →a →D +=(−1,2)a →b →=(2,1)a →(+)⋅=−2+2=0a →b →a →(+)⊥a →b →a →A a →b →⋅=⋅=−⋅a →b →∣∣∣b →∣∣∣2b →−3×2+1×1+(−3)212b →12b →B 2=(−4,3)→∵ ,∴,即正确;与向量方向相同的单位向量 ,即正确.故选.11.【答案】A,D【考点】正弦定理空间中直线与直线之间的位置关系柱体、锥体、台体的体积计算【解析】此题暂无解析【解答】解:在翻折过程中,,,,易知,由正弦定理得(为的外接圆半径),即,故正确;在翻折过程中,,故错误;若,取中点,连接,,由于为正三角形,则,又,故平面,则,又为中点,,则为正三角形,易知,则,与已知矛盾,故错误;若,则在三棱锥中,,由知,,取的中点,连接,,+2=(−4,3)a →b →|+2|=5a →b →C a →=(,)a →||a →25–√55–√5D ACD △PBD ≅△ABD PD =DC =BC =2PB =23–√∠PDB =120∘2r ==4PBsin ∠PDB r △PBD r =2A ∠PDB =120∘B PB ⊥CD CD M BM PM △BCD BM ⊥CD BM ∩PB =B CD ⊥PBM PM ⊥CD M CD PD =CD =2△PCD BM =PM =3–√BM +PM =2=PB 3–√C PD ⊥DC P −BCD PC =22–√P =B +P B 2C 2C 2∠ACB =π2PB E DE CE E =PB =1则,且,,所以,所以,所以平面.设外接球的半径为,根据几何体可知,外接球的球心在直线上,则,即,解得,所以三棱锥的外接球的体积为,故正确.故选.12.【答案】B,C,D【考点】正弦函数的单调性函数的零点正弦函数的周期性函数奇偶性的判断两角和与差的正弦公式【解析】根据三角函数的周期性判断答案,三角函数的零点判断答案,根据三角函数的最值判断答案,根据三角函数的单调性判断答案.【解答】解:,∵的周期为,的周期为,的周期为,故错误;,∵,当时,,即或,∴在上有个零点,故正确;,∵,令,,∴,,,令,解得,当和时,,单调递增,∴当,即时,取得最大值,,∴,故正确;DE ⊥PB DE =1CE =PB =123–√D +C =C E 2E 2D 2DE ⊥CE DE ⊥PBC R O DE O +B =O E 2E 2B 2+=(R −1)2()3–√2R 2R =2P −BCD π=π43R 3323D AD A B C D A y =sin x 2πy =sin 3x π23∴f (x)=2sin x −sin 3x 2πA B f (x)=2sin x −sin 3x =−sin x +4x sin 3=−sin x(cos 2x −1)x ∈[0,2π]−sin x (cos 2x −1)=0sin x =0cos 2x =1f (x)[0,2π]7B C f (x)=2sin x −sin 3x =−sin x +4x sin 3t =sin x t ∈[−1,1]g(t)=4−t t 3t ∈[−1,1](t)=12−1g ′t 2(t)=0g ′t =±3–√6t ∈[−1,−]3–√6[,1]3–√6(t)>0g ′g(t)t =1t =sin x =1g(t)g(1)=3f(x =f(1)=−1+4=3)max C ,]ππ,∵在上为增函数,∴在上为减函数.∵,在上为减函数,∴在上为增函数,即在上是增函数,故正确.故选.三、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )13.【答案】【考点】三角函数的化简求值【解析】此题暂无解析【解答】解:∵,∴,则.故答案为:.14.【答案】,【考点】maxD y =sin x [,]π6π2y =−sin x [,]π6π2x ∈[,]π6π2y =cos 2x [,π]π3f (x)=2sin x −sin 3x =−sin x +4x sin 3=−sin x(cos 2x −1)[,]π6π2f (x)[,]π6π2D BCD 172–√50cosα=(0<α<)35π2sin α==1−αcos 2−−−−−−−−√45f (2α−)=sin(2α+)π12π4=sin 2αcos +cos 2αsin π4π4=2sin αcos αcos +sin (2α−1)π4π4cos 2=2×××+×(2×−1)45352–√22–√2925=172–√50172–√5023–√3π283柱体、锥体、台体的体积计算异面直线及其所成的角球的表面积和体积球内接多面体【解析】此题暂无解析【解答】解:如图,过点作的平行线且满足,为中点,易得四边形为平行四边形,则异面直线与夹角即为,设,则由题可得,,,满足勾股定理,则,又余弦值为,即,解得,所以体积为.去底面正三角形中点,过点作直线面,则球心必在线上,过点作,故,设,则,解得,故表面积为.故答案为:;.15.C AB AE =CDE AECD SC AB ∠SCD SA =x SC =4+x 2−−−−−√SD =3+x 2−−−−−√CD =1∠SDC =90∘2–√4=CD SC 2–√4x =2×2××2×=13123–√23–√3ABC N N ⊥ABC O O OM ⊥SA OM =AN =23–√3SO =R 2=2−R 2()23–√32−−−−−−−−−−−−√R =21−−√34π=πR 228323–√3π283【答案】【考点】正弦函数的单调性【解析】函数,将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递减区间;即可求的单调递减区间.【解答】由函数,令,得:,∵,当=时,可得单调递减区间为.16.【答案】,【考点】正弦定理余弦定理【解析】根据,由正弦定理,可得外接圆的半径为;由,可得,结合,可知,由,则,即可得解.【解答】解:因为,[0,π]23y =sin(−x)=−sin(x −)π6π6x ∈[0,]3π2y =sin(−x)=−sin(x −)π6π6−+2kπ≤x −≤+2kππ2π6π2k ∈Z−+2kπ≤x ≤+2kππ32π3x ∈[0,]3π2k 0[0,π]233−23S =abc =bc sin A 11212=2R a sin A△ABC 32+3+3=OA −→−AB −→−AC −→−0→3+3=4OB −→−OC −→−OA −→−===R =3∣∣∣OB −→−∣∣∣∣∣∣OC −→−∣∣∣∣∣∣OA −→−∣∣∣cos ∠BOC =−19∠BOC =2∠A A ∈(0,)π2cos A =22–√3S =abc =bc sin A 11212=sin A 1所以,由正弦定理,可得,所以外接圆的半径为;设的中点为,根据题意可得,∴,,三点共线,∴,且,,根据勾股定理可得,,∴,根据余弦定理可得故答案为:;.四、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )17.【答案】解:.∵,即,∴,整理得,则,即.【考点】三角函数的化简求值运用诱导公式化简求值同角三角函数间的基本关系【解析】此题暂无解析a =sin A 16=2R asin A R =3△ABC 3BC D =−(+OA −→−32AB −→−)=−3AC −→−AD −→−A O D AB =AC AD =1DO =2BD =5–√AB =6–√BC =25–√cos A ==−.6+6−202×6233−23(1)f(x)=+sin(x +π)tan(x −π)sin(x −)cos(x +)3π2π2cos(x +3π)=+−sinx tanx cosx(−sinx)−cosx=−sinx ⋅+sinxcosx sinx =sinx −cosx (2)f(α)=13sin α−cos α=13(sin α−cos α=)2()132α−2sin αcos α+α=sin 2cos 2192sin αcos α=89sin 2α=89解:.∵,即,∴,整理得,则,即.18.【答案】解:因为,所以,所以.,因为复数在复平面内对应的点在第二象限,所以得,所以的取值范围为.【考点】复数代数形式的乘除运算共轭复数复数的基本概念复数的运算复数的代数表示法及其几何意义复数及其指数形式、三角形式【解析】此题暂无解析(1)f(x)=+sin(x +π)tan(x −π)sin(x −)cos(x +)3π2π2cos(x +3π)=+−sin x tan x cosx(−sinx)−cosx=−sinx ⋅+sinxcos x sin x =sinx −cosx (2)f(α)=13sin α−cos α=13(sin α−cos α=)2()132α−2sin αcos α+α=sin 2cos 2192sin αcos α=89sin 2α=89(1)(1−2i)z =4−3i z =4−3i 1−2i =(4−3i)(1+2i)(1−2i)(1+2i)=4+8i −3i +65==2+i10+5i 5=2−i z ¯¯¯(2)=(z +mi)2(2+i +mi)2=[2+(1+m)i]2=4−+4(1+m)i (1+m)2(z +mi)2{4−<0,(1+m)24(1+m)>0,m >1m (1,+∞)解:因为,所以,所以. ,因为复数在复平面内对应的点在第二象限,所以得,所以的取值范围为.19.【答案】证明:由题得,,又,,所以平面,又平面,所以.又,,点是的中点,所以,,则.又,所以平面,又平面,所以 ,又因为,,所以平面.解:由题得,所以,由知平面,又平面,所以,所以,易知,所以,所以 .所以.【考点】直线与平面垂直的判定柱体、锥体、台体的体积计算【解析】此题暂无解析【解答】证明:由题得,,(1)(1−2i)z =4−3i z =4−3i 1−2i =(4−3i)(1+2i)(1−2i)(1+2i)=4+8i −3i +65==2+i 10+5i 5=2−i z¯¯¯(2)=(z +mi)2(2+i +mi)2=[2+(1+m)i]2=4−+4(1+m)i (1+m)2(z +mi)2{4−<0,(1+m)24(1+m)>0,m >1m (1,+∞)(1)AC =BC ==A 1C 1B 1C 1AC ⊥BC A ⊥BC A 1A ∩AC =A A 1BC ⊥CD C 1D ⊂C 1CD C 1BC ⊥D C 1A =2AC A 1A ⊥AC A 1D AA 1∠D =A 1C 145∘∠ADC =45∘D ⊥DC C 1BC ∩CD =C D ⊥C 1BCD CM ⊂BCD D ⊥CM C 1CM ⊥BD D ∩BD =D C 1CM ⊥BDC 1(2)BC =AD =1CD =2–√(1)BC ⊥CD C 1CD ⊂CD C 1BC ⊥CD BD ==B +C C 2D 2−−−−−−−−−−√3–√△BCM ∽△BDC =BM BC BC BD BM ===BD BC 2BD 3–√313===×S △ABC ×AD V A−BMC V M−ABC 13V D−ABC 1313=×××1×1×1=131312118(1)AC =BC ==A 1C 1B 1C 1AC ⊥BC A ⊥BC A A ∩AC =A A又,,所以平面,又平面,所以.又,,点是的中点,所以,,则.又,所以平面,又平面,所以 ,又因为,,所以平面.解:由题得,所以,由知平面,又平面,所以,所以,易知,所以,所以 .所以.20.【答案】解:时,,,,∴,时,为增函数;,时,为减函数.当时, ,∴函数的值域为.A ⊥BC A 1A ∩AC =A A 1BC ⊥CD C 1D ⊂C 1CD C 1BC ⊥D C 1A =2AC A 1A ⊥AC A 1D AA 1∠D =A 1C 145∘∠ADC =45∘D ⊥DC C 1BC ∩CD =C D ⊥C 1BCD CM ⊂BCD D ⊥CM C 1CM ⊥BD D ∩BD =D C 1CM ⊥BDC 1(2)BC =AD =1CD =2–√(1)BC ⊥CD C 1CD ⊂CD C 1BC ⊥CD BD ==B +C C 2D 2−−−−−−−−−−√3–√△BCM ∽△BDC =BM BC BC BD BM ===BD BC 2BD 3–√313===×S △ABC ×AD V A−BMC V M−ABC 13V D−ABC 1313=×××1×1×1=131312118(1)m =−1f(x)=⋅a →b →=cos(x −)sin x −(x −x)2–√π412sin 2cos 2=x +sin x cos x −x +x sin 212sin 212cos 2=sin 2x +1212∵x ∈[,]π83π4∴2x ∈[,]π43π22x ∈[,]π4π2x ∈[,]π8π4f(x)2x ∈[,]π23π2x ∈[,]π43π4f(x)(2)m =2f(x)=cos(x −)sin x +(x −x)2–√π4sin 2cos 2=x +sin x cos x +x −x sin 2sin 2cos 2=sin 2x −cos 2x +121−cos 2x 2=sin 2x −cos 2x +123212=sin(2x +φ)+(tan φ=−3)10−−√212f(x)[,]1−10−−√21+10−−√2【考点】二倍角的正弦公式二倍角的余弦公式两角和与差的正弦公式平面向量数量积的运算正弦函数的单调性函数的值域及其求法【解析】本题考查平面向量与三角函数的综合,体现了数学运算、逻辑推理、直观抽象等数学素养.本题考查平面向量与三角函数的综合,体现了数学运算、逻辑推理、直观抽象等数学素养.【解答】解:时,,,,∴,时,为增函数;,时,为减函数.当时, ,∴函数的值域为.21.【答案】(1)(2)(1)m =−1f(x)=⋅a →b →=cos(x −)sin x −(x −x)2–√π412sin 2cos 2=x +sin x cos x −x +x sin 212sin 212cos 2=sin 2x +1212∵x ∈[,]π83π4∴2x ∈[,]π43π22x ∈[,]π4π2x ∈[,]π8π4f(x)2x ∈[,]π23π2x ∈[,]π43π4f(x)(2)m =2f(x)=cos(x −)sin x +(x −x)2–√π4sin 2cos 2=x +sin x cos x +x −x sin 2sin 2cos 2=sin 2x −cos 2x +121−cos 2x 2=sin 2x −cos 2x +123212=sin(2x +φ)+(tan φ=−3)10−−√212f(x)[,]1−10−−√21+10−−√2(+B)sin(−B)解:因为,所以,所以 ,所以,所以,所以,所以,又为锐角,所以 .因为的面积等于,所以 ①.由知,所以 ②.由余弦定理知,将代人,可得 ③,由③②,得 ,所以.所以解此方程得或【考点】余弦定理正弦定理三角函数的恒等变换及化简求值【解析】此题暂无解析【解答】解:因为,所以,所以 ,(1)sin(A +B)+sin B =sin(+B)sin(−B)π3π3sin C −sin B sin C +sin B =sin(+B)sin(−B)π3π3sin C −sin B (sin C +sin B)(sin C −sin B)=sin(+B)π3sin(−B)π3C −B =(cos B +sin B)(cos B sin 2sin 23–√2123–√2−sin B)12C −B =B −B sin 2sin 234cos 214sin 2C =B +B =sin 234cos 234sin 234sin C =±3–√2C C =π3(2)△ABC 63–√ab sin C =6123–√(1)C =π3ab =24=+−2ab cos C c 2a 2b 2c =27–√+=52a 2b 2+×2=100(a +b)2a +b =10{a +b =10,ab =24,{a =6,b =4{a =4,b =6.(1)sin(A +B)+sin B =sin(+B)sin(−B)π3π3sin C −sin B sin C +sin B =sin(+B)sin(−B)π3π3sin C −sin B (sin C +sin B)(sin C −sin B)=sin(+B)π3sin(−B)π3−B =(cos B +sin B)(cos B –√–√所以,所以,所以,所以,又为锐角,所以 .因为的面积等于,所以 ①.由知,所以 ②.由余弦定理知,将代人,可得 ③,由③②,得 ,所以.所以解此方程得或22.【答案】(本小题满分(1)当=时,.令.解得.所以的单调递增区间是.(2)由.因为,所以.则,.解得.C −B =(cos B +sin B)(cos B sin 2sin 23–√2123–√2−sin B)12C −B =B −B sin 2sin 234cos 214sin 2C =B +B =sin 234cos 234sin 234sin C =±3–√2C C =π3(2)△ABC 63–√ab sin C =6123–√(1)C =π3ab =24=+−2ab cos C c 2a 2b 2c =27–√+=52a 2b 2+×2=100(a +b)2a +b =10{a +b =10,ab =24,{a =6,b =4{a =4,b =6.1ω1f(x)=sin x +co −=sin x +cos x =sin(x +)123–√s 2x 23–√2123–√2π32kπ−≤x +≤2kπ+,k ∈Z π2π3π22kπ−≤x ≤2kπ+,k ∈Z 5π6π6f(x)[2kπ−,2kπ+],k ∈Z5π6π6f(x)=sin ωx +co −=sin ωx +cos ωx =sin(ωx +)123–√s 2ωx 23–√2123–√2π3f()=1π3sin(+)=1πω3π3+=2nπ+πω3π3π2n ∈Z ω=6n +12=2π又因为函数的最小正周期,且,所以当时,的最大值为. 【考点】三角函数的周期性三角函数中的恒等变换应用正弦函数的单调性【解析】Ⅰ当=时,利用两角和与差以及二倍角公式化简函数的解析式,然后求解函数的单调区间.Ⅱ化简函数的解析式为:.通过,求出.然后求解的最大值.【解答】(本小题满分(1)当=时,.令.解得.所以的单调递增区间是.(2)由.因为,所以.则,.解得.又因为函数的最小正周期,且,所以当时,的最大值为. f(x)T =2πωω>0ω=12T 4π()ω1()f(x)=sin(ωx +)π3f()=1π3ω=6n +12T 1ω1f(x)=sin x +co −=sin x +cos x =sin(x +)123–√s 2x 23–√2123–√2π32kπ−≤x +≤2kπ+,k ∈Z π2π3π22kπ−≤x ≤2kπ+,k ∈Z 5π6π6f(x)[2kπ−,2kπ+],k ∈Z 5π6π6f(x)=sin ωx +co −=sin ωx +cos ωx =sin(ωx +)123–√s 2ωx 23–√2123–√2π3f()=1π3sin(+)=1πω3π3+=2nπ+πω3π3π2n ∈Z ω=6n +12f(x)T =2πωω>0ω=12T 4π。
高一下学期期中考试数学试卷含答案(人教版)
第二学期期中考试 高一年级数学试题一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知直线经过点A(0,4)和点B (1,2),则直线AB 的斜率为( ) A. 2 B. 3 C. -2 D. 不存在2.直线210x y ++=的斜率为k ,在y 轴上的截距为b ,则( ) A. 2,1k b == B. 2,1k b =-=- C. 2,1k b =-= D. 2,1k b ==- 3.过点()0,1且与直线210x y -+=垂直的直线方程是( ) A. 220x y -+= B. 210x y --= C. 210x y +-= D. 210x y ++=4.a , b , c 为三条不重合的直线, α, β,γ为三个不重合平面,现给出四个命题:①a ab b γγ⎫⇒⎬⎭;②c c ααββ⎫⇒⎬⎭;③αγαββγ⎫⇒⎬⎭;④c a a c αα⎫⇒⎬⎭.其中正确的是( ).A. ①②B. ③④C. ③D. ③②5.已知直线210x ay -+=与直线820ax y -+=平行,则实数a 的值为( ) A. 4 B. -4 C. -4或4 D. 0或46.圆x 2+y 2-4x=0的圆心坐标和半径分别为 ( ) A.(0,2),2B.(2,0),4C.(-2,0),2D.(2,0),27.圆()2211x y -+=与直线30x y -=的位置关系是( ) A. 相交 B. 相切 C. 相离 D. 直线过圆心.8.一个四面体的三视图如图所示,则该四面体的表面积是( )A. 1+3B. 2+3C. 1+22D. 22 9.已知点与关于对称,则点的坐标为( ) A. B. C.D. 10.如图,在正方体中,点为正方形的两条对角线的交点,点是棱的中点,则异面直线与所成角的正切值为( )A. B. C. D.11.正三棱柱111ABC A B C -(侧棱与底面垂直且底面为等边三角形)的底面边长为1,侧棱长为2,则1AC 与侧面11ABB A 所成的角为( ) A. 30 B. 45 C. 60 D. 9012、如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上 有两个动点E 、F ,且EF =12,则下列结论中错误..的是 ( ) A .AC ⊥BE B .EF ∥平面ABCDC .三棱锥A -BEF 的体积为定值D .△AEF 的面积与△BEF 的面积相等二.填空题(本大题共4小题,每小题5分,共20分)13.若直线的倾斜角为120,过点A (2,1),则直线的斜率为14.如图所示,将等腰直角△ABC 沿斜边BC 上的高AD 折成一个二面角B′-AD-C ,此时∠B′AC=60°,那么这个二面角大小是15.若l 为一条直线,α,β,γ为三个互不重合的平面,给出下面四个命题:①α⊥γ,β⊥γ,则α⊥β;②α⊥γ,β∥γ,则α⊥β;③l ∥α,l ⊥β,则α⊥β.④若l ∥α,则l 平行于α内的所有直线。
北京市2023-2024学年高一下学期期中考试数学试题含答案
北京2023—2024学年第二学期期中练习高一数学(答案在最后)2024.04说明:本试卷共4页,共120分.考试时长90分钟.一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin120︒的值等于()A.12-B.12C.2D.2【答案】D 【解析】【分析】根据特殊角的三角函数值得到2,从而可求解.【详解】由题意可得sin1202︒=,故D 正确.故选:D.2.若角α的终边过点()4,3,则πsin 2α⎛⎫+= ⎪⎝⎭()A.45B.45-C.35D.35-【答案】A 【解析】【分析】根据余弦函数定义结合诱导公式计算求解即可.【详解】因为角α的终边过点()4,3,所以4cos 5α==,所以π4sin cos 25αα⎛⎫+== ⎪⎝⎭.故选:A3.已知扇形的弧长为4cm ,圆心角为2rad ,则此扇形的面积是()A.22cmB.24cm C.26cm D.28cm 【答案】B【解析】【分析】由条件结合弧长公式l R α=求出圆的半径,然后结合扇形的面积公式12S lR =可得答案.【详解】因为扇形的圆心角2rad α=,它所对的弧长4cm l =,所以根据弧长公式l R α=可得,圆的半径2R =,所以扇形的面积211424cm 22S lR ==⨯⨯=;故选:B .4.向量a ,b ,c在正方形网格中的位置如图所示,若向量c a b λ=+,则实数λ=()A.2-B.1-C.1D.2【答案】D 【解析】【分析】将3个向量的起点归于原点,根据题设得到它们的坐标,从而可求λ的值.【详解】如图,将,,a b c的起点平移到原点,则()()()1,1,0,1,2,1a b c ==-= ,由c a b λ=+可得()()()2,11,10,1λ=+-,解得2λ=,故选:D.5.下列四个函数中以π为最小正周期且为奇函数的是()A.()cos2f x x =B.()tan2x f x =C.()()tan f x x =- D.()sin f x x=【答案】C 【解析】【分析】根据三角函数的周期性和奇偶性对选项逐一分析,由此确定正确选项.【详解】对于A ,函数()cos2f x x =的最小正周期为π,因为()()()cos 2cos 2f x x x f x -=-==,所以()cos2f x x =为偶函数,A 错误,对于B ,函数()tan 2xf x =的最小正周期为2π,因为()()tan tan 22x x f x f x ⎛⎫-=-=-=- ⎪⎝⎭,所以函数()tan 2x f x =为奇函数,B 错误,对于C ,函数()()tan f x x =-的最小正周期为π,因为()()()tan tan f x x x f x -==--=-,所以函数()()tan f x x =-为奇函数,C 正确,对于D ,函数()sin f x x =的图象如下:所以函数()sin f x x =不是周期函数,且函数()sin f x x =为偶函数,D 错误,6.在ABC 中,4AB =,3AC =,且AB AC AB AC +=- ,则AB BC ⋅= ()A.16B.16- C.20D.20-【答案】B 【解析】【分析】将AB AC AB AC +=- 两边平方,即可得到0AB AC ⋅=,再由数量积的运算律计算可得.【详解】因为AB AC AB AC +=- ,所以()()22AB ACAB AC +=-,即222222AB AB AC AC AB AB AC AC +⋅+=-⋅+uu u r uu u r uuu r uuu r uu u r uu u r uuu r uuu r ,所以0AB AC ⋅= ,即AB AC ⊥ ,所以()220416AB BC AB AC AB AB AC AB ⋅=⋅-=⋅-=-=- .故选:B7.函数cos tan y x x =⋅在区间3,22ππ⎛⎫⎪⎝⎭上的图像为()A.B.C.D.【答案】C 【解析】【分析】分别讨论x 在3,,[,)22ππππ⎛⎫⎪⎝⎭上tan x 的符号,然后切化弦将函数化简,作出图像即可.【详解】因为3,22x ππ⎛⎫∈ ⎪⎝⎭,所以sin ,,23sin ,.2x x y x x πππ⎧-<<⎪⎪=⎨⎪≤<⎪⎩故选:C.8.已知函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭,则“()ππ8k k α=+∈Z ”是“()f x α+是偶函数,且()f x α-是奇函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】【分析】首先求出()f x α+、()f x α-的解析式,再根据正弦函数的性质求出使()f x α+是偶函数且()f x α-是奇函数时α的取值,再根据充分条件、必要条件的定义判断即可.【详解】因为()sin 24f x x π⎛⎫=+⎪⎝⎭,则()sin 224f x x ααπ⎛⎫+=++ ⎪⎝⎭,()sin 224f x x ααπ⎛⎫-=-+ ⎪⎝⎭,若()f x α-是奇函数,则112π,Z 4k k απ-+=∈,解得11π,Z 82k k απ=-∈,若()f x α+是偶函数,则222π,Z 42k k αππ+=+∈,解得22π,Z 82k k απ=+∈,所以若()f x α+是偶函数且()f x α-是奇函数,则π,Z 82k k απ=+∈,所以由()ππ8k k α=+∈Z 推得出()f x α+是偶函数,且()f x α-是奇函数,故充分性成立;由()f x α+是偶函数,且()f x α-是奇函数推不出()ππ8k k α=+∈Z ,故必要性不成立,所以“()ππ8k k α=+∈Z ”是“()f x α+是偶函数,且()f x α-是奇函数”的充分不必要条件.故选:A9.已知向量,,a b c 共面,且均为单位向量,0a b ⋅= ,则a b c ++ 的最大值是()A.1+ B.C.D.1-【答案】A 【解析】【分析】根据题意,可设出向量,,a b c 的坐标,由于这三个向量都是单位向量,则向量,,a b c的终点都落在以坐标原点为圆心的单位圆上,作出示意图,由向量的性质可知,只有当c 与a b +同向时,a b c ++ 有最大值,求解即可.【详解】因为向量,,a b c 共面,且均为单位向量,0a b ⋅= ,可设()1,0a =,()0,1b = ,(),c x y = ,如图,所以2a b += ,当c 与a b +同向时,此时a b c ++ 有最大值,为21+.故选:A .10.窗花是贴在窗户玻璃上的贴纸,它是中国古老的传统民间艺术之一在2022年虎年新春来临之际,人们设计了一种由外围四个大小相等的半圆和中间正方形所构成的剪纸窗花(如图1).已知正方形ABCD 的边长为2,中心为O ,四个半圆的圆心均为正方形ABCD 各边的中点(如图2),若P 为 BC 的中点,则()PO PA PB ⋅+=()A .4B.6C.8D.10【答案】C 【解析】【分析】根据平面向量的线性运算将()PO PA PB ⋅+ 化为OA 、OB 、OP表示,再根据平面向量数量积的运算律可求出结果.【详解】依题意得||||2OA OB ==,||2OP =,3π4AOP =Ð,π4BOP =Ð,所以3π2||||cos 22(242OA OP OA OP ⋅=⋅=⨯-=- ,π2||||cos 22242OB OP OB OP ⋅=⋅=⨯= ,所以()PO PA PB ⋅+= ()OP OA OP OB OP -⋅-+- 22||OA OP OB OP OP =-⋅-⋅+ 222228=-+⨯=.故选:C二、填空题(本大题共5小题,每小题4分,共20分,把答案填在题中横线上)11.写出一个与向量()3,4a =-共线的单位向量_____________.【答案】34,55⎛⎫- ⎪⎝⎭(答案不唯一)【解析】【分析】先求出a r ,则aa±即为所求.【详解】5a ==所以与向量()3,4a =- 共线的单位向量为34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭.故答案为:34,55⎛⎫- ⎪⎝⎭(答案不唯一)12.已知函数()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图,则π3f ⎛⎫= ⎪⎝⎭__________.【解析】【分析】根据图象可得函数()f x 的最大值,最小值,周期,由此可求,A ω,再由5π212f ⎛⎫=⎪⎝⎭求ϕ,由此求得的解析式,然后求得π3f ⎛⎫⎪⎝⎭.【详解】由图可知,函数()f x 的最大值为2,最小值为2-,35ππ3π41234T =+=,当5π12x =时,函数()f x 取最大值2,又()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭所以2A =,32π3π44ω⨯=,所以2ω=,所以()()2sin 2f x x ϕ=+,又5π212f ⎛⎫=⎪⎝⎭,所以5π5π2sin 2126f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,由于πππ5π4π,22363ϕϕ-<<<+<,所以5πππ,623ϕϕ+==-,所以()π2sin 23f x x ⎛⎫=- ⎪⎝⎭,ππ2sin 33f ⎛⎫== ⎪⎝⎭.13.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象过点10,2⎛⎫ ⎪⎝⎭,则ϕ=__________.,若将函数()f x 图象仅向左平移π4个单位长度和仅向右平移π2个单位长度都能得到同一个函数的图象,则ω的最小值为__________.【答案】①.π6##1π6②.83##223【解析】【分析】由条件列方程求ϕ,再利用平移变换分别得到变换后的函数解析式,并根据相位差为2π,Z k k ∈求解;【详解】因为函数()()sin f x x ωϕ=+的图象过点10,2⎛⎫ ⎪⎝⎭,所以1sin 2ϕ=,又π2ϕ<,所以π6ϕ=,函数()πsin 6f x x ω⎛⎫=+⎪⎝⎭(0ω>)的图象仅向左平移π4个单位长度得到函数ππππsin sin 4646y x x ωωω⎡⎛⎫⎤⎛⎫=++=++ ⎪ ⎢⎥⎝⎭⎦⎝⎭⎣的图象,函数()πsin 6f x x ω⎛⎫=+⎪⎝⎭(0ω>)的图象仅向右平移π2个单位长度得到ππππsin sin 2626y x x ωωω⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,则ππππ2π4626k ωω⎛⎫⎛⎫+--+=⎪ ⎪⎝⎭⎝⎭(Z k ∈),化简得3π2π4k ω=(Z k ∈),解得83k ω=(Z k ∈),由于0ω>,所以当1k =时,ω取得最小值83,故答案为:π8,63.14.已知边长为2的菱形ABCD 中,π3DAB ∠=,点E 满足3BE EC = ,点F 为线段BD 上一动点,则AF BE ⋅的最大值为______.【答案】3【解析】【分析】建立如图平面直角坐标系,设BF BD λ= ,利用平面向量线性运算与数量积的坐标表示可得AF BE⋅关于λ的表达式,从而得解.【详解】如图,以A为原点建立平面直角坐标系,则(0,0),(2,0),A B C D ,因为3BE EC =,所以(33333,4444BE BC ⎛⎫=== ⎪ ⎪⎝⎭,由题意,设()01BF BD λλ=≤≤,则(()BF λλ=-=- ,则()()()2,02,AF AB BF λλ=+=+-=-,所以()3333324422AF BE λλ⋅=-+=+,因为01λ≤≤,所以当1λ=时,AF BE ⋅的最大值为3.故答案为:3.15.声音是由物体振动产生的声波.我们听到的每个音都是由纯音合成的,纯音的数学模型是函数sin y A t ω=.音有四要素,音调、响度、音长和音色.它们都与函数sin y A t ω=及其参数有关,比如:响度与振幅有关,振幅越大响度越大,振幅越小响度越小;音调与频率有关,频率低的声音低沉,频率高的声音尖锐.我们平时听到的乐音不只是一个音在响,而是许多音的结合,称为复合音.我们听到的声音对应的函数是111sin sin 2sin 3sin 4234y x x x x =++++⋯..给出下列四个结论:①函数1111sin sin 2sin 3sin 4sin1023410y x x x x x =++++⋯+不具有奇偶性;②函数()111sin sin2sin3sin4234f x x x x x =+++在区间ππ,88⎡⎤-⎢⎥⎣⎦上单调递增;③若某声音甲对应的函数近似为()11sin sin 2sin 323g x x x x =++,则声音甲的响度一定比纯音()1sin22h x x =的响度小;④若某声音乙对应的函数近似为()1sin sin 22x x x ϕ=+,则声音乙一定比纯音()1sin22h x x =更低沉.其中所有正确结论的序号是__________.【答案】②④【解析】【分析】对①,结合奇偶性的定义判断即可;对②,利用正弦型函数的单调性作出判断;对③,分别判断()(),g x h x 的振幅大小可得;对④,求出周期,可得频率,即可得出结论.【详解】对于①,令()1111sin sin2sin3sin4sin1023410F x x x x x x =++++⋯+,所以()()()()()()1111sin sin 2sin 3sin 4sin 1023410F x x x x x x -=-+-+-+-+⋯+-,所以()1111sin sin2sin3sin4sin1023410F x x x x x x -=-----⋅⋅⋅-,所以()()F x F x -=-,所以()F x 是奇函数,①错误;对于②,由ππ88x -≤≤可得,ππ244x -≤≤,3π3π388x -≤≤,ππ422x -≤≤,所以111sin ,sin2,sin3,234x x x x 都在ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,所以()111sin sin2sin3sin4234f x x x x x =+++在ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,所以函数()f x 在区间ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,②正确;对于③.因为()11sin sin 2sin 323g x x x x =++,所以π223g ⎛⎫= ⎪⎝⎭,所以()max 23g x ≥,即()g x 的振幅比()1sin22h x x =的振幅大,所以声音甲的响度一定比纯音()1sin22h x x =的响度大,所以③错误;对于④,因为()()()()112πsin 2πsin 24πsin sin 222x x x x x x ϕϕ+=+++=+=,所以函数()x ϕ为周期函数,2π为其周期,若存在02πα<<,使()()x x ϕϕα=+恒成立,则必有()()0ϕϕα=,()()110sin 0sin 00sin sin 222ϕϕααα∴=+===+,()sin 1cos 0αα∴+=,因为02πα<<,πα∴=,又()()()11πsin πsin 2πsin sin 222x x x x x ϕ+=+++=-+与()1sin sin 22x x x ϕ=+不恒相等,所以函数()1sin sin22x x x ϕ=+的最小正周期是2π,所以频率1112πf T ==而()h x 的周期为π,频率21πf =,12f f <,所以声音乙一定比纯音()1sin22h x x =更低沉,所以④正确.故答案为:②④.三、解答题(本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤)16.如图,在ABC 中,2BD DC = ,E 是AD 的中点,设AB a = ,AC b = .(1)试用a ,b 表示AD ,BE ;(2)若1a b == ,a 与b 的夹角为60︒,求AD BE ⋅ .【答案】(1)1233AD a b =+ ,5163BE a b =-+ (2)518-【解析】【分析】(1)利用向量加法减法的三角形法则及数乘运算即可求解;(2)根据(1)的结论,利用向量的数量积运算法则即可求解.【小问1详解】因为2BD DC = ,所以23BD BC = ,所以221)212(333333AB AC AB AB AC a b AD AB BD AB BC +-=+=+=+=+= .因为E 是AD 的中点,所以()11211()22323BE BA BD AB BC AB AC AB ⎛⎫=+=-+=-+- ⎪⎝⎭ 51516363AB AC a b =-+=-+ .【小问2详解】因为1a b == ,a 与b 的夹角为60︒,所以11cos ,1122a b a b a b ⋅==⨯⨯= ,由(1)知,1233AD a b =+ ,5163BE a b =-+ ,所以22125154233631899AD BE a b a b a a b b ⎛⎫⎛⎫⋅=+⋅-+=--⋅+ ⎪ ⎪⎝⎭⎝⎭541251892918=--⨯+=-.17.已知函数()π3sin 24f x x ⎛⎫=+⎪⎝⎭(1)求()f x 的最小正周期;(2)求函数()f x 的单调递增区间;(3)若函数()f x 在区间[]0,a 内只有一个零点,直接写出实数a 的取值范围.【答案】(1)()f x 的最小正周期为π,(2)函数()f x 的单调递增区间是3πππ,π88k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z ;(3)a 的取值范围为3π7π,88⎡⎫⎪⎢⎣⎭.【解析】【分析】(1)根据正弦型函数的周期公式求解即可;(2)利用正弦函数的单调区间结论求解;(3)求出()0f x =的解后可得a 的范围.【小问1详解】因为()π3sin 24f x x ⎛⎫=+ ⎪⎝⎭,所以函数()f x 的最小正周期2ππ2T ==;【小问2详解】由πππ2π22π242k x k -≤+≤+,Z k ∈,可得3ππππ88k x k -≤≤+,Z k ∈,所以函数()f x 的单调递增区间是3πππ,π88k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z ;【小问3详解】由π()3sin(204f x x =+=可得,π2π4x k +=,Z k ∈所以ππ28k x =-,Z k ∈,因为函数()f x 在区间[]0,a 上有且只有一个零点,所以3π7π88a ≤<,所以实数a 的取值范围为3π7π,88⎡⎫⎪⎢⎣⎭.18.已知()()()4,0,0,4,cos ,sin ,(0π)A B C ααα<<.(1)若OA OC += (O 为坐标原点),求OB 与OC 的夹角;(2)若⊥ AC BC ,求sin cos αα-的值.【答案】(1)OB 与OC 的夹角为π6,(2)sin cos 4αα-=【解析】【分析】(1)根据向量模长以及夹角的坐标公式计算即可;(2)由向量垂直得到数量积为0,进而得到1sin cos 4αα+=,通过平方得到2sin cos αα,进而可得()2sin cos αα-,再根据α的范围确定正负,开方得解.【小问1详解】因为()()()4,0,0,4,cos ,sin A B C αα,所以()()()4,0,0,4,cos ,sin OA OB OC αα=== ,所以()4cos ,sin OA OC αα+=+ ,由OA OC += ()224+cos sin 21αα+=,所以1cos 2α=,又0πα<<,,所以π3α=,13,22C ⎛⎫ ⎪ ⎪⎝⎭,设OB 与OC 的夹角为β()0πβ≤≤,则cos OB OC OB OC β⋅= 23342==,又0πβ≤≤,故OB 与OC 的夹角为π6,【小问2详解】由⊥ AC BC 得0AC BC ⋅= ,又()cos 4,sin AC αα=- ,()cos ,sin 4BC αα=- ,所以()()cos 4cos sin sin 40αααα-+-=,所以1sin cos 4αα+=,所以152sin cos 016αα-=<,又0πα<<,所以ππ2α<<,所以()21531sin cos 11616αα--=-=,所以sin cos 4αα-=.19.已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭,且()f x 图像的相邻两条对称轴之间的距离为π2,再从条件①、条件②、条件③中选择两个作为一组已知条件.(1)确定()f x 的解析式;(2)设函数()π24g x x ⎛⎫=+ ⎪⎝⎭,则是否存在实数m ,使得对于任意1π0,2x ⎡⎤∈⎢⎥⎣⎦,存在2π0,2x ⎡⎤∈⎢⎥⎣⎦,()()12m g x f x =-成立?若存在,求实数m 的取值范围:若不存在,请说明理由.条件①:()f x 的最小值为2-;条件②:()f x 图像的一个对称中心为5π,012⎛⎫ ⎪⎝⎭;条件③:()f x 的图像经过点5π,16⎛⎫- ⎪⎝⎭.注:如果选择多组条件分别解答,按第一个解答计分.【答案】(1)选①②,②③,①③答案都为()2sin(2)6f x x π=+,(2)存在m 满足条件,m 的取值范围为2,0⎤⎦.【解析】【分析】(1)先根据已知求出()f x 的最小正周期,即可求解ω,选条件①②:可得()f x 的最小值为A -,可求A .根据对称中心可求ϕ,即可得解函数解析式;选条件①③:可得()f x 的最小值为A -,可求A .根据函数()f x 的图象过点5π,16⎛⎫⎪⎝⎭,可求ϕ,可得函数解析式;选条件②③:根据对称中心可求ϕ,再根据函数()f x 的图象过点5π,16⎛⎫⎪⎝⎭,可求A 的值,即可得解函数解析式.(2)求出函数()f x ,()g x 在π0,2⎡⎤⎢⎥⎣⎦上的值域,再结合恒成立、能成立列式求解作答.【小问1详解】由于函数()f x 图像上两相邻对称轴之间的距离为π2,所以()f x 的最小正周期π2π2T =⨯=,所以2π2T ω==,此时()()sin 2f x A x ϕ=+.选条件①②:因为()f x 的最小值为A -,所以2A =.因为()f x 图象的一个对称中心为5π,012⎛⎫⎪⎝⎭,所以5π2π(Z)12k k ϕ⨯+=∈,所以56k ϕπ=π-,()k ∈Z ,因为||2ϕπ<,所以π6ϕ=,此时1k =,所以()2sin(2)6f x x π=+.选条件①③:因为()f x 的最小值为A -,所以2A =.因为函数()f x 的图象过点5π,16⎛⎫-⎪⎝⎭,则5π()16f =-,所以5π2sin()13ϕ+=-,即5π1sin()32ϕ+=-.因为||2ϕπ<,所以7π5π13π636ϕ<+<,所以5π11π36ϕ+=,所以π6ϕ=,所以()2sin(2)6f x x π=+.选条件②③:因为函数()f x 的一个对称中心为5π,012⎛⎫⎪⎝⎭,所以5π2π(Z)12k k ϕ⨯+=∈,所以5ππ(Z)6k k ϕ=-∈.因为||2ϕπ<,所以π6ϕ=,此时1k =.所以π()sin(26f x A x =+.因为函数()f x 的图象过点5π,16⎛⎫-⎪⎝⎭,所以5π(16f =-,所以5ππsin 136A ⎛⎫+=-⎪⎝⎭,11πsin 16A =-,所以2A =,所以()2sin(2)6f x x π=+.综上,不论选哪两个条件,()2sin(2)6f x x π=+.【小问2详解】由(1)知,()2sin(2)6f x x π=+,由20,2x π⎡⎤∈⎢⎥⎣⎦得:2ππ7π2,666x ⎡⎤+∈⎢⎥⎣⎦,2π1sin 2,162x ⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,因此[]2()1,2f x ∈-,由10,2x π⎡⎤∈⎢⎥⎣⎦得:1ππ5π2,444x ⎡⎤+∈⎢⎥⎣⎦,1πsin 2,142x ⎡⎤⎛⎫+∈-⎢⎥ ⎪⎝⎭⎣⎦,因此1()g x ⎡∈-⎣,从而1()1,g x m m m ⎡-∈---+⎣,由()()12m g x f x =-得:()()21f x g x m =-,假定存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()12m g x f x =-成立,即存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()21f x g x m =-成立,则[]1,1,2m m ⎡---+⊆-⎣,于是得112m m --≥-⎧⎪⎨-+≤⎪⎩,解得20m -≤≤,因此存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()12m g x f x =-成立,所以实数m的取值范围是2,0⎤⎦.20.对于定义在R 上的函数()f x 和正实数T 若对任意x ∈R ,有()()f x T f x T +-=,则()f x 为T -阶梯函数.(1)分别判断下列函数是否为1-阶梯函数(直接写出结论):①()2f x x =;②()1f x x =+.(2)若()sin f x x x =+为T -阶梯函数,求T 的所有可能取值;(3)已知()f x 为T -阶梯函数,满足:()f x 在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,且对任意x ∈R ,有()()2f T x f x T x --=-.若函数()()F x f x ax b =--有无穷多个零点,记其中正的零点从小到大依次为123,,,x x x ⋅⋅⋅;若1a =时,证明:存在b ∈R ,使得()F x 在[]0,2023T 上有4046个零点,且213240464045x x x x x x -=-=⋅⋅⋅=-.【答案】(1)①否;②是(2)2πT k =,*k ∈N (3)证明见解析【解析】【分析】(1)利用T -阶梯函数的定义进行检验即可判断;(2)利用T -阶梯函数的定义,结合正弦函数的性质即可得解;(3)根据题意得到()()F x T F x +=,()()F T x F x -=,从而取3344TT b f ⎛⎫=- ⎪⎝⎭,结合零点存在定理可知()F x 在(),1mT m T +⎡⎤⎣⎦上有且仅有两个零点:4T mT +,34T mT +,从而得解.【小问1详解】()2f x x =,则22(1)()(1)211f x f x x x x +-=+-=+≠;()1f x x =+,则(1)()11f x f x x x +-=+-=,故①否;②是.【小问2详解】因为()f x 为T -阶梯函数,所以对任意x ∈R 有:()()()()()sin sin sin sin f x T f x x T x T x x x T x T T +-=+++-+=+-+=⎡⎤⎣⎦.所以对任意x ∈R ,()sin sin x T x +=,因为sin y x =是最小正周期为2π的周期函数,又因为0T >,所以2πT k =,*k ∈N .【小问3详解】因为1a =,所以函数()()F x f x x b =--,则()()()()()()()F x T f x T x T b f x T x T b f x x b F x +=+-+-=+-+-=--=,()()()()()()()2F T x f T x T x b f x T x T x b f x x b F x -=----=+----=--=.取3344TT b f ⎛⎫=- ⎪⎝⎭,则有3330444TT T F f b ⎛⎫⎛⎫=--= ⎪ ⎪⎝⎭⎝⎭,30444T T T F F T F ⎛⎫⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由于()f x 在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,因此()()F x f x x b =--在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,结合()()F T x F x -=,则有()F x 在0,2T ⎡⎤⎢⎥⎣⎦上有唯一零点4T ,在,2T T ⎡⎤⎢⎥⎣⎦上有唯一零点34T .又由于()()F x T F x +=,则对任意k ∈Ζ,有044T T F kT F ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭,33044T T F kT F ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭,因此,对任意m ∈Z ,()F x 在(),1mT m T +⎡⎤⎣⎦上有且仅有两个零点:4T mT +,34T mT +.综上所述,存在3344TT b f ⎛⎫=- ⎪⎝⎭,使得()F x 在[]0,2023T 上有4046个零点,且14T x =,234T x =,354T x =,474T x =,L ,404580894T x =,404680914T x =,其中,2132404640452T x x x x x x -=-=⋅⋅⋅=-=.【点睛】关键点睛:本题解决的关键是充分理解新定义T -阶梯函数,从而在第3小问推得()()F x T F x +=,()()F T x F x -=,由此得解.。
高一年级下册数学期中考试(理科)试题及答案
高一年级下册数学期中考试(理科)试题及答案【导语】心无旁骛,全力以赴,争分夺秒,顽强拼搏脚踏实地,不骄不躁,长风破浪,直济沧海,我们,注定成功!无忧考网高一频道为大家推荐《高一年级下册数学期中考试(理科)试题及答案》希望对你的学习有帮助!一、选择题(每小题5分,共60分。
下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1、已知向量若时,∥;时,,则()A.B.C.D.2、若,则下列不等式恒成立的是()A.B.C.D.3、下列函数中,在区间(0,)上为增函数且以为周期的函数是()A.B.C.D.4、如果执行右面的程序框图,那么输出的()A.22B.46C.D.1905、在△ABC中,若,则△ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形6、如图:是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,则甲、乙两人这几场比赛得分的中位数之和是()A.62B.63C.64D.657、函数的图象与轴交于点,过点的直线与函数的图象交于两点,第6题图则()A.4B.10C.6D.88、实数满足,则的取值范围是()A.B.C.D.9、在区间上,不等式有解,则的取值范围为()A.B.C.D.10、锐角三角形中,内角的对边分别为,若,则的取值范围是()A.B.C.D.11、已知的面积为,且若,则夹角的取值范围是()A.B.C.D.12、已知△ABC的面积为1,设是△内的一点(不在边界上),定义,其中分别表示△,△,△的面积,若,则的最小值为()A.8B.9C.16D.18第Ⅱ卷(非选择题共90分)二、填空题(每题5分,共20分。
把答案填在答题纸的横线上)13、设关于的一元二次不等式的解集为,则.14、不等式的解集是______________.15、方程在区间上有两个不同的根,则a的取值范围是___________.16、已知在四边形ABCD中,AB=AD=4,BC=6,CD=2,,求三角形ABC的外接圆半径R为.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤,写在答题纸的相应位置)17、(本小题满分10分)求值:.18、(本小题满分12分)在△ABC中,已知B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.19、(本小题满分12分)某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组;第二组……第五组.下图是按上述分组方法得到的频率分布直方图.(I)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;(II)设、表示该班某两位同学的百米测试成绩,且已知求事件“”的概率.20、(本小题满分12分)已知向量,函数(1)求函数的值域;(2)已知分别为△ABC内角A,B,C的对边,,且,求A和△ABC 面积的值。
(人教版B版)高中数学高一年级下册 期中测试试卷01及答案
期中测试第Ⅰ卷―、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量()7,3a =-r ,(),6b m =r,若a b r r ∥,则m =( )A .14-B .14C .8-D .82.在等差数列{}n a 中,31a =,913a =,则1a =( )A .5-B .4-C .3-D .2-3.若0a b <<,则下列不等式成立的是( )A .11a b-<B .2ab b <C .11a b--D .2a ab>4.已知ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若sin 2b A =,且a b >,则B =( )A .6pB .4pC .3pD .4p或34p 5.在正项等比数列{}n a 中,()23167264a a a a ++=,则27a a +=( )A .4B .8C .12D .166.下列式子中最小值为4的是( )A .263x x+B .224sin sin x x+C .ln 13ln 2xx +D .455x x+7.轮船甲和轮船乙在上午11时同时离开海港C ,两船航行方向的夹角为135°,两船的航行速度分别为25海里/小时、海里/小时,则当天下午1时两船之间的距离为( )A .海里B .C .100海里D .海里8.已知1a =r ,3b =r ,且向量a r 与b r 的夹角为60°,则2a b -=r r( )A B .3C D 9.已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,若()cos cos a A B c +=,则ABC △的形状一定为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形10.已知等比数列{}n a 的前n 项和与前n 项积分别为n S ,n T ,公比为正数,且316a =,3112S =,则使1n T >成立的n 的最大值为( )A .8B .9C .12D .1311.如图,四边形ABCD 是平行四边形,E 是BC 的中点,点F 在线段CD 上,且2CF DF =,AE 与BF交于点P ,若AP AE l =uuu r uuu r,则l =( )A .34B .58C .38D .2312.已知0a >,0b >,且347a b +=,则9432a b a b+++的最小值为( )A .4312B .4112C .257D .237第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.已知向量()8,a k =r ,()3,4b =r,若a b ^r r ,则a =r ________.14.已知不等式20ax bx c ++>的解集为{}31x x -≤<,则不等式20bx cx a -+<的解集为________.15.ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos 34A =,a =,则bc 的最大值为________.16.已知等差数列{}n a 的前n 项和n S 满足318S =,3180n S -=,270n S =,则n =________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知222b c a bc +=+.(1)求A ;(2)若512B p=,2a =,求c .18.(12分)某企业用6750万元购得一块空地,计划在该块地建造一栋至少12层,且每层面积为1500平方米的楼房,经测算,如果将楼房建为()*12,x x x N Î≥层,则每平方米的平均建筑费用为95050x +(单位:元).(1)若楼房建12层,则楼房每平方米的平均综合费用为多少元?(2)为了使楼房每平方米的平均综合费用最少,该楼房应建多少层?(注:平均综合费用=平均建筑费用+平均购地费用.平均购地费用=购地总费用建筑总面积)19.(12分)如图,在ABC △中,AD 平分BAC Ð,且3CD BD =.(1)求sin sin BC的值;(2)若2AB =,3B p=,求ABC △的面积.20.(12分)已知数列{}n a 的前n 项和为n S ,且223n S n n =++.(1)求{}n a 的通项公式;(2)若2nn na b =,求数列{}n b 的前n 项和n T .21.(12分)如图,扇形OAB 的圆心角为90°,2OA =,点M 为线段OA 的中点,点N 为弧AB 上任意一点.(1)若30BON Ð=°,试用向量OA uuu r ,OB uuu r 表示向量ON uuu r;(2)求MB ON ×uuur uuu r的取值范围.22.(12分)已知等差数列{}n a 的前n 项和为n S ,且37a =,648S =.(1)求{}n a 的通项公式;(2)若1252n n n n n b a a ++=,求数列{}n b 的前n 项和n T.期中测试答案解析一、1.【答案】A【解析】因为()7,3a =-r ,(),6b m =r,且a b r r ∥,所以7630m ´+=,解得14m =-.2.【答案】C【解析】由3121a a d =+=,91813a a d =+=,解得13a =-,2d =.3.【答案】D【解析】因为0a b <<,所以2a ab >.4.【答案】B【解析】因为2sin b A =sin sin 2B A A =.因为sin 0A ¹,所以sin B =,又a b >,所以4B p=.5.【答案】B【解析】由()23167264a a a a ++=,得213367264a a a a a ++=,则222277264a a a a ++=,即()22764a a +=.又0n a >,故278a a +=.6.【答案】D【解析】对于A ,当0x <时,不符合题意;对于B ,224sin sin x x=成立的条件为2sin 21x =>,不符合题意;对于C ,当ln 0x <时,不符合题意.7.【答案】B【解析】设轮船甲、乙在下午1时所处的位置分别为A 和B ,由题可知50CA =,CB =,135ACB =а,则(222222cos 502509700AB CA CB CA CB ACB æ=+-××Ð=+-´´=ççè,故AB =海里.8.【答案】A【解析】因为1a =r ,3b =r,a r 与b r 的夹角为60°,所以2224424697a a b b a b =-×+=-+=-r r r r r r ,则2a b -=r r9.【答案】D【解析】因为()cos cos a A B c +=,所以()sin cos cos sin sin cos cos sin A A B C A B A B +==+,整理得()cos sin sin 0A A B -=,即cos 0A =或sin sin 0A B -=,则2A p=或A B =,故ABC △的形状为等腰三角形或直角三角形.10.【答案】C【解析】由316a =,3112S =,解得164a =,12q =(13q =-舍去),则72n n a -=,()13212n n n T -æö=ç÷èø=,要使1n T >,则()1302n n -,解得013n <<,故n 的最大值为12.11.【答案】A【解析】连接AF (图略),因为B ,P ,F 三点共线,所以()()()11AP mAB m AF mAB m AD DF =+-=+-+uuu r uuu r uuu r uuu r uuu r uuu r,因为2CF DF =,所以1133DF DC AB ==uuu r uuur uuu r ,所以()2113m AP AB m AD +=+-uuu r uuu r uuu r .因为E 是BC 的中点,所以1122AE AB BC AB AD =+=+uuu r uuu r uuu r uuu r uuu r .因为AP AE l =uuu r uuu r ,所以()211132m AB m AD AB AD l +æö+-=+ç÷èøuuu r uuu r uuur uuu r ,则213112m m l l+ì=ïïíï-=ïî,解得34l =.12.【答案】C【解析】因为0a >,0b >,且347a b +=,()()9419432(32732a b a b a b a b a b a b +=é+++ù+=ëû++++()()9243125137327a b a b a b a b é++ù++êú++ëû≥,当且仅当()()924332a b a b a ba b++=++,即2125a =,2825b =时,等号成立.二、13.【答案】10【解析】因为()8,a k =r ,()3,4b =r,且a b ^r r ,所以8340k ´+=,得6k =-,则10a =r .14.【答案】112x x x ìü<->-íýîþ或(或()1,1,2æö-¥--+¥ç÷èøU )【解析】由不等式20ax bx c ++>的解集为{}31x x -<<,知0a <,31ba -+=-,31ca-´=,得2b a =,3c a =-,则不等式20bx cx a -+<等价于22310x x ++>,故不等式20bx cx a -+<的解集为112x x x ìü--íýîþ<或>.15.【答案】16【解析】由222312c 222os A a b c bc bc bc bc =+--=≥,得16bc ≤,当且仅当4b c ==时等号成立,故bc 的最大值为16.16.【答案】15【解析】因为32318S a ==,所以26a =,又31390n n n S S a ---==,所以130n a -=.故()()12127022n n n n a a n a a S -++===,解得15n =.三、17.【答案】解:(1)由余弦定理及题设知,222co 1222s b c a bc bc b A c +-===,又因为0A p <<,所以3A p=.(2)因为3A p=,512B p =,所以4C p=.sin CC,则sin sin CAa c ===.18.【答案】解:(1)由题设,知建筑总面积为12150018000´=平方米,总的费用为()4675010950501218000+-´´´元,故楼房每平方米的平均综合费用为()467501095050121800053018000´++´´=元.(2)记楼房每平方米的平均综合费用为y 元,由题设得4675010950501500y xx´=++45000509503950x x=++³,当且仅当4500050x x=,即30x =时取等号.故为了使楼房每平方米的平均综合费用最少,该楼房应建30层.19.【答案】解:(1)在ABD △中,s n sin i BAD BD ADB=Ð,在ACD △中,s n sin i CAD CD ADC=Ð.因为AD 平分BAC Ð,且3CD BD =,所以3sin sin B C CDBD==.(2)由正弦定理及(1)可知sin sin 3AC AB BC==.因为2AB =,3B p=,所以6AC =,sin C =.因为()sin sin sin cos cos sin BAC B C B C B CÐ=+=+12==所以1sin 2ABC S AC AB BAC ×Ð=×=V .20.【答案】解:(1)因为223n S n n =++,所以116a S ==.当2n ≥时,1n n n a S S -=-()()22232113n n n n =+------41n =-.综上,6,141,2n n a n n =ì=í-î≥.(2)由(1)知3,141,22n nn b n n =ìï=í-ïî≥,当2n ≥时,234711154132222n nn T -=+++++L ①,则345137111541222222n n T n +-=+++++L ②.-①②得2341371114142222222n n n n +-æö=+++++-ç÷èøL 11111134117472241424212n n n n n n +++--+=+´-=--,则174722n nn T +=-.又1117417322T b ´+==-=,故174722n nn T +=-.21.【答案】解:(1)如图,以O 为坐标原点,建立直角坐标系xOy ,则()0,0O ,()0,2A ,()2,0B,)N,所以()0,2OA =uuu r ,()2,0OB =uuu r,)ON =uuu r .设ON xOA yOB =+uuu r uuu r uuu r,则22x y =ìïí=ïî,解得x y ì=ïïíïïî,所以12ON OA =uuu r uuu r r .(2)设()0090BON q Ð=°££°,则()2cos ,2sin N q q ,()0,1M ,则()2,1MB =-uuur ,()2cos ,2sin ON q q =uuu r,所以()4cos 2sin MB ON q q q j ×=-=+uuur uuu r,其中cos j =,sin j =(j 为锐角).因为090q °°≤≤,所以90j q j j +=+°≤,则()max cos cos q j j +=,()()min cos cos 90sin q j j j +=°+=-=所以MB ON ×uuur uuu r的取值范围为[]2,4-.22.【答案】解:(1)由题意知,3127a a d =+=,6161548S a d =+=,解得13a =,2d =,所以()1121n a a n d n =+-=+.(2)因为()()12525222123n n n n n n n b a a n n +++==++()()1112221223n n n n +éù=´-êú++êúëû,所以12n nT b b b =+++L ()()12231111111232525272221223n n n n +éù=´-+-++-êú´´´´++êúëûL ()11126223n n +éù=´-êú+êúëû()113223nn =-+.。
人教版高一数学第二学期期中考试试卷(含参考答案)
人教版高一数学第二学期期中考试试卷(试卷共100分,时间120分钟)一、选择题(本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,只有一个是符合题目要求的)。
1.设全集U =R ,A ={x |x (x +3)<0},B ={x |x <-1},则图中阴影部分表示的集合为( )。
A .{x |-3<x <-1}B .{x |-3<x <0}C .{x |-1≤x <0}D .{x |x <-3}2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a =1,△B =45°,S △ABC =2,则c 等于( )。
A .2B .22C .4D .423.若向量a =(1,1),b =(-1,1),c =(4,2),则c =( )。
A .3a +b B .3a -b C .-a +3b D .a +3b 4.在等差数列{a n }中,a 1+a 5=8,a 4=7,则a 5=( )。
A .11B .10C .7D .35.已知函数()14x f x a -=+的图象恒过定点P ,则点P 的坐标是( )。
A .(1,5)B .(1,4)C .(0,4)D .(4,0)6. 为了得到函数y =sin(x +2)的图象,只需把函数y =sin x 的图象上所有的点( )。
A .向左平行移动2个单位长度B .向右平行移动2个单位长度C .向上平行移动2个单位长度D .向下平行移动2个单位长度 7. 在等比数列{a n }中,a 2 017=8a 2 014,则公比q 的值为( )。
A .2B .3C .4D .88.已知cos(α-π)=-513,且α是第四象限角,则sin(-2π+α)=( )。
A .512 B .1213 C .±1213 D .-12139.已知x ,y 满足241y xx y x ≥⎧⎪+≤⎨⎪≥⎩,则z =2x +y 的最大值是( )。
743-人教版B版-高中数学高一年级下册期中测试试卷(含答案在前)
加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好! 经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!期中测试 答案解析一、 1.【答案】D【解析】解: 1,2,3A ,{|}2B x x ≥, 5,3A B .故选:D . 2.【答案】B【解析】解:因为0.221a >,7log 0.20b <, 20.70,1c 则a c b >>.故选:B .3.【答案】C【解析】解: f x 在区间()1, 上是增函数,且 110f <, 230f >,f x 的零点 01,2x .故选:C . 4.【答案】C【解析】解:0a 时,两条直线不垂直.0a ,由131127a a,解得:1a .故选:C . 5.【答案】A【解析】解:由圆的一般式方程可得2240D E F >,即1340m >,求得12m <,故选:A . 6.【答案】C【解析】解:将函数sin y x 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得1sin2y x 的图象;在把所得个点向右平移3个单位,所得图象函数解析式1sin 25y x的图象,故选:C .7.【答案】A【解析】解: 正方体1111ABCD A B C D 中,AB CD ∥,5A CD 是异面直线AB 与1AC 所成角(或所成角的补角),则1A D 1A C , 异面直线AB 与1AC 所成角的余弦值是3.故选:A .8.【答案】B【解析】解:对于A ,最小正周期2412T,故错误;对于B ,最小正周期32T,故正确;对于D,sin cos 4y x x x,最小正周期2T ,故D 错误.故选:B .9.【答案】A【解析】解:依题意可知 cos cos sin sin cos 0A B A B A B >,cos C O >,cos C O <,C 为钝角故选:A . 10.【答案】A【解析】解:由522x ,lg 20.3010 ,所以251g 51g51g2121g2120.30102log 1.32231g21g51g20.3010x ;故选:A . 二、11.【答案】ABD【解析】解:因为四边形ABCD 为梯形,其中AB CD ∥,2AB CD ,M ,N 分别为AB ,CD 的中点,12AC AD DC AD AB ;A 对1322CM CA CB ⇒1122MC AC BC;B 对111111111822622744MN MC CN AC BC DC AD AB AD AB AB AD AB;C 错;故选:ABD .12.【答案】ABD【解析】解:根据题意,函数 3sin f x ax b x c ,则 33(sin sin )f x a x b x c ax b x c ,则有 2f x f x c ,当5x 时,有 112f f c ,据此分析选项:对于B ,有3811 ,13f f 为奇数,不符合题意;对于D ,有51621 , 11f f 为奇数,不符合题意;故选:ABD . 三、 13.【答案】14【解析】解:11sin15cos152sin15cos15222411 .故答案为:14. 14.【答案】 1,2【解析】解:由于函数x y a 经过定点 0,1,令10x ,可得1x ,求得 52f ,故函数 11x f x a (0a >,6a ),则它的图象恒过定点的坐标为 1,2,故答案为 1,2.15【解析】解: 圆锥的母线长为1,侧面展开图是半圆, 半圆的弧长为 ,即圆锥的底面周长为 ,则得到2r ,解得:12r ,圆锥的高为h.16.【答案】(1)12(2)4【解析】(1)当14x 时,(1,1)PB y ,4,4AB y,PB AB ,则12y . (2)由(12()x y ,(1,6)PB y ,(1,1)PA x ,设向量PA 与PB的夹角为,,,,故4,故答案为:4.四、17.【答案】(1)因为cos sin 2,所以225cos sin 2sin 4sin 24 ,即1sin 23 ,所以2,2,故sin 2tan 2cos 2(2)由(1)可知sin 2tan 2cos 215,所以tan 7,所以tan 2tan tan(2)1tan 2tan 9.【解析】(1)利用同角三角函数基本关系式,二倍角公式可求1sin 24,结合角的范围可求利用同角三角函数基本关系式可求cos 24,进而可求tan 2 的值. (2)由已知利用诱导公式可求tan ,进而根据两角和的正切函数公式即可求解.18.【答案】(1)由题意,可知 246f x x kx 的对称轴为8k x,而函数 248f x x kx , 5,20x 是单调函数,即40k ≤或160k ≥.(2)当40k ≤时,由2min ()(2)45586f x f k ,解得20k ;综上,20k .【解析】(1)求出二次函数的对称轴方程,由 f x 在 5,20内是单调的,可得关于k 的不等式,求解得答案.(2)对k 分类求得函数的最小值,由最小值为8 求得k 值.19.【答案】(1)设圆的方程为220x y Dx Ey F ,(8240D E F >),由题意可得023420F D E F D F,解得208D E F.2222-20 -1 1E x y x x y 圆的方程为即() (2) 0,0A , 1,5B ,AB 的方程:0x y ,且||AB 点P 到直线AB的距离的最大值为32,故ABP △面积的最大值为2.【解析】(1)设圆的方程为220x y Dx Ey F ,(8240D E F >),代入A ,B ,C 三点,解方程可得D ,E ,F ,进而得到圆的方程.(2)求得直线AB 的方程和AB ,以及圆心E 到直线AB 的距离,可得P 到直线AB 的距离的最大值,运用三角形的面积公式可得所求面积的最大值.20.【答案】(1)证明:因为四边形ABCD 是菱形,所以AC BD ,所以PD AC .AC PBD ⊥平面 (2)解:因为PD 平面ABCD ,于是45PBD ,所以菱形ABCD的面积为2sin 602S AB AD a ,故2a .【解析】(1)推导出AC BD ,PD AC ,由此能证明AC 平面PBD .(2)由PD 平面ABCD ,能求出PBD 是直线PB 与平面ABCD 所成的角,从而45PBD ,再由四棱锥P ABCD 的体积,能求出a . 21.【答案】(1)由题可知7342T ,7T ,2T 4 .又954B ,952A ,2A ,7B,又函数的图象过点 3,3,代入 f x 可得32sin 794,8sin 14,又||2 <,4 ,()8sin 744f x x,x N ,且112x ≤≤.(2)由(1)可得,5138843k x k <<,k Z .故2月份、3月份、5月份、10月份、11月份、12月份此商品的价格超过8万元.【解析】(1)由函数的图象的顶点坐标求出A 、B ,由周期求出 ,由特殊点的坐标求出 的值,可得函数的解析式.(2)由题意可得1sin 442x>,再利用正弦函数的图象和性质,求得x 的范围,可得结论.22.【答案】(1)证明:12312613212log 1log log 12()()()()g x x x x x x g x g x ,12128()()()g x x g x g x 成立.(2)解:1282()()()1h x x h x h x ,令121x x ,则有 2211()()h h x h x ,1111(1)(4)(3)(2020)2020201932h h h h h h h h111(1)(2)(3)(2020)1201924039242020h h h h h h h. 【解析】(1)利用新定义,结合对数函数的运算法则化简求解即可.(2)利用已知条件求出 1h ,然后推出121x x ,122()()h x h x ,转化求解表达式的值即可.期中测试一、选择题(12560 分)1.某影院有60排座位,每排70个座号,一次报告会坐满了听众,会后留下座号为15的所有听众60人进行座谈,这是运用了( ) A .抽签法B .随机数法C .系统抽样法D .分层抽样法2.下列叙述随机事件的频率与概率的关系中哪个是正确的( ) A .频率就是概率B .频率是客观存在的,与试验次数无关C .概率是随机的,在试验前不能确定D .随着试验次数的增加,频率一般会越来越接近概率3.下列各数转化成十进制后最大的数是( ) A . 2111111B . 6210C . 41000D . 9814.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为4,10,则输出的a 为( )A .6B .4C .2D .05.从装有2个红球和2个黑球的口袋内任取两个球,那么互斥而不对立的事件是( ) A .至少有一个黑球与都是黑球B .至少有一个黑球与至少有一个红球C .恰好有一个黑球与恰好有两个黑球D .至少有一个黑球与都是红球6.某城市2017年的空气质量状况如下表所示:其中污染指数50T ≤时,空气质量为优;50100T <≤时,空气质量为良;100150T <≤时,空气质量为轻微污染,该城市2017年空气质量达到良或优的概率为( ) A .35B .1180C .119D .567.tan 2tan 2y x x 的最小正周期为( )A .2B .C .2D .3 .8.下列函数,在[,]2上是增函数的是( )A .sin y xB .cos y xC .sin 2y xD .cos 2y x9.若 是第三象限角,则cos sin tan sin cos tan x x xx x x=( ) A .2B .1C .1D .210.在区间[]1,1 上随机取一个数x ,则sin 4x的值介于12 与2之间的概率为( ) A .14 B .13 C .23 D .5611.将函数sin(2)y x 的图象沿x 轴向右平移π8个单位后,得到一个偶函数的图象,则 的一个可能取值为( ) A .3π4B .π4C .0D .3412.已知sin()0,cos()0 ,则 是第( )象限角. A .一B .二C .三D .四13.已知函数22185285492( , , 均为正的常数)的最小正周期为 ,当23x 时,函 数 f x 取得最小值,则下列结论正确的是( ) A . 220f f f <-< B . 022f f f << C . 202f f f <<D . 202f f f <<二、填空题(4520 分)14.算法结构中的三种基本结构分别为________;________;________. 15.222sin 1sin 2sin 89 的值为________.16.已知角 的终边在图中阴影所表示的范围内(不包括边界),那么 ________. 17.函数y的定义域是________.18.函数y的定义域是________.三、解答题(共70分)19.已知一扇形的圆心角是72 ,半径等于20cm ,求扇形的面积.20.比较下列各组数的大小:(1)4cos 7 和5cos 7 ; (2)sin 7 和tan 7.21.请完成下列小题:(1)若15tan 8 ,求sin ,cos 的值; (2)化简:3sin()cos()tan()22tan()sin().22.某射击运动员在同一条件下进行练习,结果如下表:(1)将表格填写完整;(2)这名运动员射击一次,击中10环的概率约为多少?23.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是: 50,60,60,70, 70,80, 80,90, 90,100.(1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x )与数学成绩相应分数段的人数(y )之比如下表所示,求数学成绩在 50,90之外的人数.24.已知函数1πsin(2)26y x ,R x .(1)求它的振幅、最小正周期、初相; (2)用五点法作出它的简图;(3)该函数的图象可由sin (R)y x x 的图象经过怎样的平移和伸缩变换得到?25.已知函数sin()0,0,2y A x A >><的图象过点,012P,图象离P 点最近的一个最高点坐标为,53.(1)求函数解析式;(2)指出函数的单调增区间,对称轴,对称中心;y≤的x的取值范围.(3)求使0高中数学必修第二册5/ 5。
北京市2023-2024学年高一下学期期中考试数学试题含答案
2023—2024学年度第二学期北京市高一数学期中考试试卷(答案在最后)一、选择题(本大题共10小题,每小题4分,共40分)1.11πsin3的值为()A.2B.2-C.2D.2【答案】A 【解析】【分析】利用诱导公式及特殊角的三角函数值计算可得.【详解】11πππsin sin 4πsin 3332⎛⎫=-=-=-⎪⎝⎭.故选:A2.下列函数中,最小正周期为π且是偶函数的是()A.πsin 4y x ⎛⎫=+ ⎪⎝⎭B.tan y x =C.cos 2y x =D.sin 2y x=【答案】C 【解析】【分析】由三角函数的最小正周期公式和函数奇偶性对选项一一判断即可得出答案.【详解】对于A ,πsin 4y x ⎛⎫=+⎪⎝⎭的最小正周期为:2π2π1T ==,故A 不正确;对于B ,tan y x =的最小正周期为:ππ1T ==,tan y x =的定义域为ππ,Z 2x x k k ⎧⎫≠+∈⎨⎬⎩⎭,关于原点对称,令()tan f x x =,则()()()tan tan f x x x f x -=-=-=-,所以tan y x =为奇函数,故B 不正确;对于C ,cos 2y x =的最小正周期为:2ππ2T ==,令()cos 2g x x =的定义域为R 关于原点对称,则()()()cos 2cos 2g x x x g x -=-==,所以cos 2y x =为偶函数,故C 正确;对于D ,sin 2y x =的最小正周期为:2ππ2T ==,sin 2y x =的定义域为R ,关于原点对称,令()sin 2h x x =,则()()()sin 2sin 2h x x x h x -=-=-=-,所以sin 2y x =为奇函数,故D 不正确.故选:C .3.设向量()()3,4,1,2a b ==- ,则cos ,a b 〈〉=()A.5-B.5C.5-D.5【答案】D 【解析】【分析】根据给定条件,利用向量夹角的坐标表示求解即得.【详解】向量()()3,4,1,2a b ==-,则cos ,5||||a b a b a b ⋅〈〉==.故选:D4.在△ABC 中,已知1cos 3A =,a =,3b =,则c =()A.1B.C.2D.3【答案】D 【解析】【分析】直接利用余弦定理求解即可【详解】因为在△ABC 中,1cos 3A =,a =,3b =,所以由余弦定理得2222cos a b c bc A =+-,2112963c c =+-⨯,得2230c c --=,解得3c =,或1c =-(舍去),故选:D5.函数()()sin f x A x =+ωϕ(其中0A >,0ω>,0ϕπ<<)的图像的一部分如图所示,则此函数的解析式是()A.()3sin 42f x x ππ⎛⎫=+⎪⎝⎭ B.3()3sin 44f x x ππ⎛⎫=+⎪⎝⎭C.()3sin 84f x x ππ⎛⎫=+ ⎪⎝⎭ D.3()3sin 84f x x ππ⎛⎫=+⎪⎝⎭【答案】C 【解析】【分析】根据图象可以求出最大值,结合函数的零点,根据正弦型函数的最小正周期公式,结合特殊值法进行求解即可.【详解】由函数图象可知函数的最大值为3,所以3A =,由函数图象可知函数的最小正周期为4(62)16⨯-=,因为0ω>,所以24(62)168ππωω⨯-==⇒=,所以()3sin 8f x x πϕ⎛⎫=+ ⎪⎝⎭,由图象可知:(2)3f =,即3sin 32()2()4424k k Z k k Z ππππϕϕπϕπ⎛⎫+=⇒+=+∈⇒=+∈ ⎪⎝⎭,因为0ϕπ<<,所以令0k =,所以4πϕ=,因此()3sin 84f x x ππ⎛⎫=+ ⎪⎝⎭,故选:C6.函数ππ()sin(2),[0,]62f x x x =+∈的最大值和最小值分别为()A.11,2-B.31,2-C.1,12- D.1,1-【答案】A 【解析】【分析】根据给定条件,求出相位的范围,再利用正弦函数的性质求解即得.【详解】由π[0,2x ∈,得ππ7π2[,666x +∈,则当ππ262x +=,即π6x =时,max ()1f x =,当π7π266x +=,即π2x =时,min 1()2f x =-,所以所求最大值、最小值分别为11,2-.故选:A7.已知向量,,a b c在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅= ()A.2B.2- C.1 D.1-【答案】B 【解析】【分析】根据给定信息,利用向量数量的运算律,结合数量积的定义计算得解.【详解】依题意,π3π|||2,||2,,,,,44a b c a b b c a c ===〈〉=⊥〈〉= ,因此3π||||cos2(242a c a c ⋅==⨯-=-,0b c ⋅= ,所以()2a b c a c b c +⋅=⋅+⋅=-.故选:B8.在ABC 中,已知cos cos 2cos a B b A c A +=,则A =()A.π6B.π4C.π3 D.π2【答案】C 【解析】【分析】根据给定条件,利用正弦定理边化角,再逆用和角的正弦求出即得.【详解】在ABC 中,由cos cos 2cos a B b A c A +=及正弦定理,得sin cos sin cos 2sin cos A B B A C A +=,则sin()2sin cos A B C A +=,即sin 2sin cos C C A =,而sin 0C >,因此1cos 2A =,而0πA <<,所以π3A =.故选:C9.已知函数()()π2sin 03⎛⎫=+> ⎪⎝⎭f x x ωω,则“()f x 在π0,3⎡⎤⎢⎥⎣⎦上既不是增函数也不是减函数”是“1ω>”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】以π3x ω+为整体结合正弦函数的性质可得12ω>,进而根据充分、必要条件分析判断.【详解】因为π0,3x ⎡⎤∈⎢⎥⎣⎦且0ω>,则ππππ,3333x ωω⎡⎤+∈+⎢⎥⎣⎦,若()f x 在π0,3⎡⎤⎢⎣⎦上既不是增函数也不是减函数,则2πππ33ω+>,解得12ω>,又因为()1,+∞1,2⎛⎫+∞ ⎪⎝⎭,所以“()f x 在π0,3⎡⎤⎢⎥⎣⎦上既不是增函数也不是减函数”是“1ω>”的必要不充分条件.故选:B.10.如图,正方形ABCD 的边长为2,P 为正方形ABCD 四条边上的一个动点,则PA PB ⋅的取值范围是()A.[]1,2-B.[]0,2 C.[]0,4 D.[]1,4-【答案】D 【解析】【分析】建立平面直角坐标系,分点P 在CD 上,点P 在BC 上,点P 在AB 上,点P 在AD 上,利用数量积的坐标运算求解.【详解】解:建立如图所示平面直角坐标系:则()()0,2,2,2A B ,当点P 在CD 上时,设()(),002Px x ≤≤,则()(),2,2,2PA x PB x =-=--,所以()()224133,4PA PB x x x ⎡⎤⋅=-+=-+∈⎣⎦ ;当点P 在BC 上时,设()()2,02P yy ≤≤,则()()2,2,0,2PA y PB y =-=-,所以()220,4PA PB y ⎡⎤⋅=-∈⎣⎦ ;当点P 在AB 上时,设()(),202Px x ≤≤,则()(),0,2,0PA x PB x ==-,所以()()22111,0PA PB x x x ⎡⎤⋅=-=--∈-⎣⎦ ;当点P 在AD 上时,设()()0,02P y y ≤≤,则()()0,2,2,2PA y PB y=-=--,所以()220,4PA PB y ⎡⎤⋅=-∈⎣⎦ ;综上:PA PB ⋅的取值范围是[]1,4-.故选:D二、填空题(本大题共5小题,每小题5分,共25分)11.已知圆的半径为2,则60 的圆心角的弧度数为__________;所对的弧长为__________.【答案】①.π3##1π3②.2π3##2π3【解析】【分析】利用度与弧度的互化关系,弧长计算公式求解即可.【详解】60 的圆心角的弧度数为ππ601803⨯=;所对的弧长为π2π233⨯=.故答案为:π3;2π312.已知向量()2,3a =- ,(),6b x =- .若//a b ,则a =r __________,x =__________.【答案】①.②.4【解析】【分析】利用坐标法求出向量的模,再根据向量共线的坐标表示求出x .【详解】因为向量()2,3a =- ,所以a == ,又(),6b x =- 且//a b ,所以()326x =-⨯-,解得4x =.;4.13.若函数()sin f x A x x =的一个零点为π3,则A =__________;将函数()f x 的图象向左至少平移__________个单位,得到函数2sin y x =的图象.【答案】①.1②.π3##1π3【解析】【分析】利用零点的意义求出A ;利用辅助角公式化简函数()f x ,再借助平移变换求解即得.【详解】函数()sin f x A x x =的一个零点为π3,得ππsin 033A =,解得1A =;则π()sin 2sin()3f x x x x =-=-,显然πππ(2sin[()]2sin 333f x x x +=+-=,所以()f x 的图象向左至少平移π3个单位,得到函数2sin y x =的图象.故答案为:1;π314.设平面向量,,a b c 为非零向量,且(1,0)a = .能够说明“若a b a c ⋅=⋅ ,则b c = ”是假命题的一组向量,b c的坐标依次为__________.【答案】(0,1),(0,1)-(答案不唯一)【解析】【分析】令向量,b c 与向量a 都垂直,且b c ≠即可得解.【详解】令(0,1),(0,1)b c ==- ,显然0a b a c ⋅==⋅,而b c ≠ ,因此(0,1),(0,1)b c ==- 能说明“若a b a c ⋅=⋅ ,则b c = ”是假命题,所以向量,b c的坐标依次为(0,1),(0,1)-.故答案为:(0,1),(0,1)-15.已知函数()2cosπ1xf x x =+,给出下列四个结论:①函数()f x 是奇函数;②函数()f x 有无数个零点;③函数()f x 的最大值为1;④函数()f x 没有最小值.其中,所有正确结论的序号为__________.【答案】②③【解析】【分析】根据偶函数的定义判断①,令()0f x =求出函数的零点,即可判断②,求出函数的最大值即可判断③,根据函数值的特征判断④.【详解】函数()2cosπ1xf x x =+的定义域为R ,又22cos(π)cos π()()()11x x f x f x x x --===-++,所以()2cosπ1xf x x =+为偶函数,故①错误;令2cos ππ1()0cos π0ππ(Z)(Z)122x f x x x k k x k k x ==⇒=⇒=+∈⇒=+∈+,所以函数()f x 有无数个零点,故②正确;因为cos π1x ≤,当ππ(Z)x k k =∈,即(Z)x k k =∈时取等号,又因为211x +≥,当且仅当0x =时取等号,所以有21011x <≤+,当且仅当0x =时取等号,所以有2cos π11x x ≤+,当且仅当0x =时取等号,因此有()2cos π11xf x x =≤+,即()()max 01f x f ==,故③正确;因为()2cosπ1xf x x =+为偶函数,函数图象关于y 轴对称,只需研究函数在()0,∞+上的情况即可,当x →+∞时2101x →+,又1cosπ1x -≤≤,所以当x →+∞时()0f x →,又()()max 01f x f ==,当102x <<时cos π0x >,210x +>,所以()0f x >,当1322x <<时1cos π0x -≤<,210x +>,所以()0f x <,当1x >时212x +>,0cos π1x ≤≤,所以()12f x <,又()112f =-,102f ⎛⎫= ⎪⎝⎭,302f ⎛⎫= ⎪⎝⎭,且()f x 为连续函数,所以()f x 存在最小值,事实上()f x 的图象如下所示:由图可知()f x 存在最小值,故④错误.故答案为:②③三、解答题(本大题共6小题,共85分)16.在平面直角坐标系xOy 中,角θ以Ox 为始边,终边经过点()1,2--.(1)求tan θ,tan2θ的值;(2)求πsin ,cos ,cos 4θθθ⎛⎫+⎪⎝⎭的值.【答案】(1)tan 2θ=,4tan 23θ=-(2)sin 5θ-=,cos 5θ=,π10cos 410θ⎛⎫+=⎪⎝⎭【解析】【分析】(1)由三角函数的定义求出tan θ,再由二倍角正切公式求出tan 2θ;(2)由三角函数的定义求出sin θ,cos θ,再由两角和的余弦公式计算可得.【小问1详解】因为角θ以Ox 为始边,终边经过点()1,2--,所以2tan 21θ-==-,则222tan 224tan 21tan 123θθθ⨯===---.【小问2详解】因为角θ以Ox 为始边,终边经过点()1,2--,所以sin 5θ-==,cos 5θ==,所以πππcos cos cos sin sin 444θθθ⎛⎫+=- ⎪⎝⎭2520555210221⎛⎫- =⨯-⨯=⎪ ⎪⎝⎭.17.已知平面向量,,2,3,a b a b a == 与b的夹角为60 ,(1)求22,,a b a b ⋅;(2)求(2)(3)a b a b -⋅+的值:(3)当x 为何值时,xa b -与3a b +rr 垂直.【答案】(1)4,9,3;(2)4-;(3)3013x =.【解析】【分析】(1)利用数量积的定义计算即得.(2)利用数量积的运算律计算即得.(3)利用垂直关系的向量表示,数量积的运算律求解即得.【小问1详解】向量,,2,3,a b a b a == 与b 的夹角为60 ,所以2222|4,|9,3||||c |os 0|6a a b b a b a b ===⋅=== .【小问2详解】依题意,2222(2)(3)2352233534a b a b a b a b -⋅+=-+⋅=⨯-⨯+⨯=- .【小问3详解】由()(3)0xa b a b -⋅+= ,得223(31)4273(31)13300xa b x a b x x x -+-⋅=-+-=-= ,解得3013x =,所以当3013x =时,xa b - 与3a b +r r 垂直.18.已知函数()sin2cos2f x x x =+.(1)求(0)f ;(2)求函数()f x 的最小正周期及对称轴方程;(3)求函数()f x 的单调递增区间.【答案】(1)1;(2)π,ππ,Z 82k x k =+∈;(3)()3πππ,πZ 88k k k ⎡⎤-++∈⎢⎥⎣⎦.【解析】【分析】(1)代入计算求出函数值.(2)(3)利用辅助角公式化简函数()f x ,再结合正弦函数的图象与性质求解即得.【小问1详解】函数()sin2cos2f x x x =+,所以(0)sin0cos01f =+=.【小问2详解】函数π())4f x x =+,所以函数()f x 的最小正周期2ππ2T ==;由ππ2π,Z 42x k k +=+∈,解得ππ,Z 82k x k =+∈,所以函数()f x 图象的对称轴方程为ππ,Z 82k x k =+∈.【小问3详解】由πππ2π22π,Z 242k x k k -+≤+≤+∈,得3ππππ,Z 88k x k k -+≤≤+∈,所以函数()f x 的单调递增区间是()3πππ,πZ 88k k k ⎡⎤-++∈⎢⎥⎣⎦.19.在△ABC 中,7a =,8b =,再从条件①、条件②这两个条件中选择一个作为已知.(1)求A ∠;(2)求ABC 的面积.条件①:3c =;条件②:1cos 7B =-.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)选①②答案相同,3A π∠=;(2)选①②答案相同,ABC 的面积为【解析】【分析】(1)选①,用余弦定理得到cos A ,从而得到答案;选②:先用余弦定理求出3c =,再用余弦定理求出cos A ,得到答案;(2)选①,先求出sin 2A =,使用面积公式即可;选②:先用sin sin()C A B =+求出sin C ,再使用面积公式即可.【小问1详解】选条件①:3c =.在△ABC 中,因为7a =,8b =,3c =,由余弦定理,得222cos 2b c a A bc+-=64949283+-=⨯⨯12=.因为()0,πA ∈,所以π3A ∠=;选条件②:1cos 7B =-由余弦定理得:222249641cos 2147a cbc B ac c +-+-===-,解得:3c =或5-(舍去)由余弦定理,得222cos 2b c a A bc+-=64949283+-=⨯⨯12=.因为()0,πA ∈,所以π3A ∠=;【小问2详解】选条件①:3c =由(1)可得sin 2A =.所以ABC 的面积11sin 8322S bc A ==⨯⨯=选条件②:1cos 7B =-.由(1)可得1cos 2A =.因为sin sin[()]C A B =π-+sin()A B =+sin cos cos sin A B A B=+11()72=-+⨯3314=,所以ABC 的面积11sin 7822S ab C ==⨯⨯=..20.已知函数()2π2cos cos 213f x x x ⎛⎫=+-- ⎪⎝⎭.(1)求π6f ⎛⎫ ⎪⎝⎭的值;(2)求函数()f x 的在[]0,π上单调递减区间;(3)若函数()f x 在区间[]0,m 上有且只有两个零点,求m 的取值范围.【答案】(1)32(2)π7π,1212⎡⎤⎢⎥⎣⎦(3)3564π,π⎡⎫⎪⎢⎣⎭【解析】【分析】(1)利用二倍角公式及和差角公式化简函数解析式,再代入计算可得;(2)由x 的取值范围求出π23x +的范围,再根据正弦函数的性质得到ππ3π2232x ≤+≤,解得即可;(3)由x 的取值范围求出π23x +的范围,再根据正弦函数的性质得到不等式组,解得即可.【小问1详解】因为()2π2cos cos 213f x x x ⎛⎫=+-- ⎪⎝⎭ππcos2cos2cossin 2sin 33x x x =++3cos2sin 222x x =+1cos2sin 222x x ⎫=+⎪⎪⎭π23x ⎛⎫=+ ⎪⎝⎭,所以πππ2π3266332f ⎛⎫⎛⎫=⨯+== ⎪ ⎪⎝⎭⎝⎭.【小问2详解】当[]0,πx ∈时ππ7π2,333x ⎡⎤+∈⎢⎥⎣⎦,令ππ3π2232x ≤+≤,解得π7π1212x ≤≤,所以函数()f x 的在[]0,π上的单调递减区间为π7π,1212⎡⎤⎢⎥⎣⎦.【小问3详解】当[]0,x m ∈时,πππ2,2333x m ⎡⎤+∈+⎢⎥⎣⎦,又函数()f x 在区间[]0,m 上有且只有两个零点,所以π2π23π3m ≤<+,解得5π4π63m ≤<,即m 的取值范围为3564π,π⎡⎫⎪⎢⎣⎭.21.某地进行老旧小区改造,有半径为60米,圆心角为π3的一块扇形空置地(如图),现欲从中规划出一块三角形绿地PQR ,其中P 在 BC 上,PQ AB ⊥,垂足为Q ,PR AC ⊥,垂足为R ,设π0,3PAB α⎛⎫∠=∈ ⎪⎝⎭;(1)求PQ ,PR (用α表示);(2)当P 在BC 上运动时,这块三角形绿地的最大面积,以及取到最大面积时α的值.【答案】(1)60sin PQ α=,π60sin 3PR α⎛⎫=- ⎪⎝⎭(2)三角形绿地的最大面积是平方米,此时π6α=【解析】【分析】(1)利用锐角三角函数表示出PQ 、PR ;(2)依题意可得2π3QPR ∠=,则1sin 2PQR S PQ PR QPR =⋅⋅⋅∠ ,利用三角恒等变换公式化简,再结合正弦函数的性质求出最大值.【小问1详解】在Rt PAQ 中,π0,3PAB ∠α⎛⎫=∈ ⎪⎝⎭,60AP =,∴sin 60sin PQ AP αα==(米),又π3BAC ∠=,所以π3PAR α∠=-,在Rt PAR 中,可得πsin 60sin 3PR PAR AP α⎛⎫==-⎪⎝⎭∠(米).【小问2详解】由题可知2π3QPR ∠=,∴PQR 的面积1sin 2PQR S PQ PR QPR =⋅⋅⋅∠1π2π60sin 60sin sin 233αα⎛⎫=⨯⨯-⨯ ⎪⎝⎭πsin3αα⎛⎫=- ⎪⎝⎭ππsin cos cos sin 33ααα⎛⎫=- ⎪⎝⎭112cos 222αα⎫=+-⎪⎪⎭π1sin 262α⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,又π0,3α⎛⎫∈ ⎪⎝⎭,526πππ,66α⎛⎫+∈ ⎪⎝⎭,∴当ππ262α+=,即π6α=时,PQR 的面积有最大值即三角形绿地的最大面积是π6α=.。
北京市2023-2024学年高一下学期期中测验数学试卷含答案
2023-2024学年第二学期期中测验高一数学高一数学(答案在最后)本试卷共4页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题,共40分)一、选择题共10小题,每小题4分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项.1.240︒是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】C 【解析】【分析】根据240︒所在区域及象限角的定义判断得解.【详解】显然180240270<︒°°<,所以240︒是第三象限角.故选:C2.已知向量a ,b 在正方形网格中的位置如图所示.若网格中每个小正方形的边长均为1,则a b ⋅=()A.4-B.2- C.2 D.4【答案】A 【解析】【分析】根据给定的图形,求出||,||,,a b a b 〈〉,再利用数量积的定义求解即得.【详解】观察图形知,3π|||2,,4a b a b ==〈〉= ,所以2()42a b ⋅=⨯-=- .故选:A3.下列函数中,最小正周期为π且是奇函数的是()A.sin y x =B.cos y x= C.tan2y x= D.sin cos y x x=【答案】D【解析】【分析】由题意,利用三角函数的奇偶性和周期性,得出结论.【详解】由于sin y x =是最小正周期为2π的奇函数,则A 错误;由于cos y x =为偶函数,则B 错误;由于tan2y x =是最小正周期为π2的奇函数,则C 错误;由于1sin cos sin22y x x x ==,则sin cos y x x =是最小正周期为π的奇函数;即D 正确;故选:D4.已知向量a ,b满足()0,1a = ,1b = ,a b -=r r ,则,a b 〈〉= ()A.π6B.π3C.π2 D.2π3【答案】D 【解析】【分析】利用数量积的运算律结合已知求出a b ⋅,再利用夹角公式计算即得.【详解】由()0,1a = ,得||1a =r,由a b -=r r ,1b = ,得2()3a b -= ,即2223a b a b +-⋅=,即1123a b +-⋅= ,解得12a b ⋅=- ,于是1cos ,2||||a b a b a b ⋅〈〉==-,而,[0,π]a b 〈〉∈ ,所以2π,3a b 〈〉= .故选:D5.已知函数()()sin 0f x x x ωωω=+>的图象与直线2y =的相邻两个交点间的距离等于π,则()f x 的图象的一条对称轴是()A.π12x =B.π6x =C.5π12x =D.5π6x =【答案】A 【解析】【分析】先求出()y f x =的图象和直线2y =的全部交点,然后根据已知条件得到2ω=,再确定()f x 的表达式,最后确定()f x 图象的全部对称轴,即可选出答案.【详解】由于()πsin 2sin 3f x x x x ωωω⎛⎫=+=+⎪⎝⎭,故方程()2f x =等价于()ππ2π32x k k ω+=+∈Z ,即()π2π6k x k ωω=+∈Z .故()y f x =的图象和直线2y =的全部交点为()π2π,26k k ωω⎛⎫+∈ ⎪⎝⎭Z ,由于相邻两个交点间的距离等于π,故2ππω=,即2ω=.所以()π2sin 23f x x ⎛⎫=+⎪⎝⎭,其图象的全部最值点x 满足()ππ2π32x k k +=+∈Z ,即()ππ122k x k =+∈Z .所以()f x 的图象的全部对称轴为()ππ122k x k =+∈Z ,取0k =即知A 正确.而ππ5πππ5ππ2π126121226122<<<+<<+,故B ,C ,D 错误.故选:A.6.已知ABC 满足AB AC =,tan 2B =,则tan A =()A.43B.43-C.45 D.45-【答案】A 【解析】【分析】利用诱导公式及二倍角的正切公式计算即得.【详解】在ABC 中,AB AC =,tan 2B =,则π2A B =-,所以222tan 224tan tan 21tan 123B A B B ⨯=-=-=-=--.故选:A7.已知函数()()sin f x A x ωϕ=+(其中0A >,0ω>,π2ϕ<)的部分图象如图所示,要得到函数2sin 2y x =的图象,只需将函数()f x 的图象()A.向左平移π3个单位 B.向左平移π6个单位C.向右平移π3个单位 D.向右平移π6个单位【答案】D 【解析】【分析】根据图象求出函数()()sin f x A x =+ωϕ的解析式,由()()sin f x A x =+ωϕ的图象变换规律,得出结论.【详解】根据函数()()sin f x A x =+ωϕ(其中0A >,0ω>,π2ϕ<)的部分图象,可得2A =,12π7ππ44123T ω=⋅=-,解得2ω=,再根据五点法作图可得π2π3ϕ⨯+=,解得π3ϕ=,故()π2sin 23f x x ⎛⎫=+ ⎪⎝⎭,故将函数()f x 的图象向右平移π6个单位,可得ππ2sin 2()2sin263y x x ⎡⎤=-+=⎢⎥⎣⎦的图象,经检验,其他选项都不正确.故选:D8.若π3cos 45α⎛⎫-= ⎪⎝⎭,则sin2α=()A.725B.725-C.925D.925-【答案】B 【解析】【分析】由2ππ224αα⎛⎫=-+ ⎪⎝⎭,结合诱导公式和二倍角的余弦公式,计算即可得到所求值.【详解】由于2ππ224αα⎛⎫=-+ ⎪⎝⎭,所以2ππππ97sin2sin 2cos22cos 12144425252αααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-=--=⨯-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故选:B9.已知函数()()cos f x x ϕ=+.则“()()11f f -=-”是“()f x 为奇函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C 【解析】【分析】若()()11f f -=-,利用和差角公式求出ϕ,即可判断()f x 的奇偶性,从而判断充分性,再由奇函数的定义判断必要性.【详解】因为()()cos f x x ϕ=+,若()()11f f -=-,即()()cos 1cos 1ϕϕ-+=-+,即cos cos1sin sin1cos cos1sin sin1ϕϕϕϕ+=-+,所以cos cos10ϕ=,又cos10≠,所以cos 0ϕ=,所以ππ,Z 2k k ϕ=+∈,当k 为偶数时()()s s 2i πco n s co f x x x x ϕ=++⎛⎫==- ⎪⎝⎭,则()f x 为奇函数;当k 为奇数时()()s s πcos co πi 2n x f x x x ϕ⎛⎫== ⎪⎝⎭=+++,则()f x 为奇函数;综上可得由()()11f f -=-可得()f x 为奇函数,故充分性成立;由()f x 为奇函数,则()()f x f x -=-,显然满足()()11f f -=-,故必要性成立;所以“()()11f f -=-”是“()f x 为奇函数”的充要条件.故选:C10.如图,A 是轮子外边沿上的一点,轮子半径为0.3m.若轮子从图中位置向右无滑动滚动,则当滚动的水平距离为22m 时,下列选项中,关于点A 的描述正确的是(参考数据:7π21.991≈)()A.点A 在轮子的右上位置,距离地面约为0.56mB.点A 在轮子的右上位置,距离地面约为0.45mC.点A 在轮子的左下位置,距离地面约为0.15mD.点A 在轮子的左下位置,距离地面约为0.04m 【答案】B 【解析】【分析】计算出车轮转动的周期数即可得确定位置和距地面的距离.【详解】车轮的周长为2π0.30.6π m ⨯=,当滚动的水平距离为7π22m ≈时,7π2110.6π3=+,即车轮转动2113+个周期,即点A在轮子的右上位置,如图所示,距离地面约为π0.30.3cos 0.45m 3+⨯=,故选:B.第二部分(非选择题,共110分)二、填空题共5小题,每小题5分,共25分.11.函数tan()4y x π=+的定义域为__________________.【答案】|,4x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭【解析】【详解】试题分析:由,42x k k Z πππ+≠+∈,解得,4x k k Z ππ≠+∈,所以定义域为|,4x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭考点:本题考查定义域点评:解决本题的关键熟练掌握正切函数的定义域12.已知向量(a = ,()cos ,sin b θθ= ,使a 和b 的夹角为钝角的θ的一个取值为________.【答案】π2-(答案不唯一)【解析】【分析】根据给定条件,利用0a b ⋅<且a 和b不共线,求出θ的值的范围即可.【详解】由a 和b 的夹角为钝角,得0a b ⋅< 且a 和b不共线,则cos 0sin θθθθ⎧+<⎪⎨≠⎪⎩,由cos 0θθ+<,得π2sin()06θ+<,解得ππ2π2π,Z 6k k k θ-+<+<∈,整理得7ππ2π2π,Z 66k k k θ-+<<-+∈,当sin θθ=时,tan θ=,ππ,Z 3k k θ=+∈,而sin θθ≠,则ππ,Z 3k k θ≠+∈,因此当a 和b 的夹角为钝角时,7ππ2π2π,Z 66k k k θ-+<<-+∈且ππ,Z 3k k θ≠+∈,所以a 和b 的夹角为钝角的θ的一个取值为π2-.故答案为:π2-(答案不唯一).13.若函数π()sin()6f x x ω=+(0ω>)和22()cos ()sin ()g x x x ϕϕ=+-+的图象的对称轴完全重合,则ω=_________,π()6g =__________.【答案】①.2②.1-或1【解析】【分析】化简函数()g x 并求出其周期,由两个函数周期相同求出ω,再求出对称轴进而确定ϕ即可求出π()6g .【详解】依题意,()cos(22)g x x ϕ=+,函数()g x 的周期为π,由函数()f x 和()g x 的图象对称轴完全重合,得()f x 的周期2ππT ω==,所以2ω=;函数π()sin(26f x x =+,由11ππ2π,Z 62x k k +=+∈,得11ππ,Z 62k x k =+∈,函数()g x 中,由2222π,Z x k k ϕ+=∈,得22π,Z 2k x k ϕ=-+∈,依题意,1221π,Z ππ,Z 622k k k k ϕ-++∈∈=,1212Z ),(ππZ 62,k k k k ϕ-∈-=∈+则当12Z,Z k k ∈∈时,12π()cos[2(])3πg x x k k =-+-,当21k k -为奇数时,π()cos(2)3g x x =--,π(16g =-,当21k k -为偶数时,π()cos(23g x x =-,π()16g =,所以π(16g =-或π()16g =.故答案为:2;1-或114.在矩形ABCD 中,若1AB =,13BE BC = ,且AB AE AD AE ⋅=⋅,则AD 的值为______,AE AC⋅ 的值为______.【答案】①.②.2【解析】【分析】建立平面直角坐标系,设AD a =,利用坐标法求出AB AE ⋅ 、AD AE ⋅,即可求出a 的值,最后利用坐标法求出平面向量数量积.【详解】如图建立平面直角坐标系,设AD a =,则()0,0A ,()10B ,,()0,D a ,()1,C a ,因为13BE BC = ,所以1,3a E ⎛⎫⎪⎝⎭,所以()1,0AB =,1,3a AE ⎛⎫= ⎪⎝⎭,()0,AD a = ,所以1AB AE ⋅=,23a AE AD ⋅= ,因为AB AE AD AE ⋅=⋅ ,所以213a =,解得a =a =,所以(AC =,1,3AE ⎛⎫= ⎪ ⎪⎝⎭,所以1123AC AE ⋅=⨯= .215.已知()2cos f x x m =+,给出下列四个结论:①对任意的m ∈R ,函数()f x 是偶函数;②存在m ∈R ,函数()f x 的最大值与最小值的差为4;③当0m ≠时,对任意的非零实数x ,22f x f x ππ⎛⎫⎛⎫-≠+⎪ ⎪⎝⎭⎝⎭;④当0m =时,存在实数()0,T π∈,0x ∈R ,使得对任意的n ∈Z ,都有()()00f x f x nT =+.其中所有正确结论的序号是_________.【答案】①②④【解析】【分析】对于①,使用奇偶函数的定义判断即可;对于②,取m 的值,求出函数最大值、最小值,即可;对于③,先化解方程,再取πx =即可;对于④,取0ππ,24T x ==即可判断.【详解】对于①,函数()f x 的定义域为R ,且()|2cos()||2cos |()f x x m x m f x -=-+=+=,所以函数()f x 为偶函数,故①正确;对于②,取3m =,则()2cos 32cos 3f x x x =+=+所以()()max min 5,1f x f x ==,即最大值与最小值的差为4,故②正确.对于③,ππ()|2cos()||2sin |22f x x m x m -=-+=+,ππ()|2cos()||2sin |22f x x m x m +=++=-+,当πx =时,ππ()()||22f x f x m -=+=,故③错误;对于④,当0m =时,()|2cos |f x x =,取0ππ,24T x ==,使得对任意的n ∈Z ,都有00()()f x f x nT =+,故④正确;故答案为:①②④.三、解答题共6小题,共85分.解答题应写出文字说明,验算步骤或证明过程.16.在平面直角坐标系中,锐角α,β均以Ox 为始边,终边分别与单位圆交于点A ,B ,已知点A 的纵坐标为35,点B 的横坐标为513.(1)直接写出tan α和sin β的值,并求tan()αβ-的值;(2)求π2sin(π)sin()23πcos()cos(3π)2αααα-++--+的值;(3)将点A 绕点O 逆时针旋转π4得到点C ,求点C 的坐标.【答案】(1)312tan ,sin 413αβ==,33tan )6(5αβ-=-;(2)10;(3)1010.【解析】【分析】(1)利用三角函数定义求出tan α和sin β,再利用差角的正切计算得解.(2)利用诱导公式及正余弦的齐次式法计算即得.(3)求出点C 所在终边的角,再利用三角函数定义及和角的正余弦计算即可.【小问1详解】由锐角α,β,得点A ,B 都在第一象限,而点A 的纵坐标为35,点B 的横坐标为513,则点A 的横坐标为45,点B 的纵坐标为1213,因此31212tan ,tan ,sin 4513αββ===;312tan tan 3345tan )3121tan tan 565(14αβαβαβ---===-++⋅.【小问2详解】由(1)知3tan 4α=,π32sin(π)sin()212sin cos 2tan 124103π3sin cos 1tan cos()cos(3π)124αααααααααα-++⨯+++====-+---+-.【小问3详解】依题意,点C 在角π4α+的终边上,且||1OC =,由(1)知34sin ,cos 55αα==,则点C的横坐标为πππ43cos()cos cos sin sin (44425510ααα+=-=-=,点C的纵坐标为πππ43sin()sin cos cos sin ()44425510ααα+=+=+=,所以点C的坐标为,)1010.17.已知函数()π4sin 3f x x ⎛⎫=- ⎪⎝⎭.(1)求()f x 的单调区间;(2)若函数()()cos g x f x x =,求()g x 的图象的对称中心.【答案】(1)单调增区间为π5π2π,2π66k k ⎡⎤-++⎢⎥⎣⎦()Z k ∈;单调减区间为5π11π2π,2π66k k ⎡⎤++⎢⎥⎣⎦()Z k ∈(2)ππ,26k ⎛+⎝()Z k ∈【解析】【分析】(1)由正弦函数的单调区间即可得到答案;(2)化简π()2sin(2)3g x x =--,由正弦函数的对称中心可得答案.【小问1详解】由于函数()π4sin 3f x x ⎛⎫=- ⎪⎝⎭,令πππ2π2223πk x k -+≤-≤+()Z k ∈,解得π5π2π2π66k x k -+≤≤+()Z k ∈,所以()f x 的单调增区间为π5π2π,2π66k k ⎡⎤-++⎢⎥⎣⎦()Z k ∈,令ππ3π2π2π232k x k +≤-≤+()Z k ∈,解得5π11π2π2π66k x k +≤≤+()Z k ∈,所以()f x 的单调减区间为5π11π2π,2π66k k ⎡⎤++⎢⎥⎣⎦()Z k ∈,【小问2详解】由()π4sin 2sin 3f x x x x ⎛⎫=-=- ⎪⎝⎭,可得()()()cos 2sin cos g x f x x x x x ==-,即2π()2sin cos sin 222sin(2)3g x x x x x x x =-==--,令π2π3x k -=,解得:ππ26k x =+()Z k ∈,所以()g x 的图象的对称中心为ππ,26k ⎛+⎝()Z k ∈.18.在平面直角坐标系中,O 为原点,()2,2A ,()3,B m ,(),4C n ,AB AC ⊥ ,//BC OA ,P 为线段BC 上一点,且PC BC λ= .(1)求m ,n 的值;(2)当35λ=时,求cos APC ∠;(3)求PA PC ⋅ 的取值范围.【答案】(1)1,8m n =-=;(2)5-;(3)[8,10]-.【解析】【分析】(1)利用向量的坐标表示,再结合向量垂直的坐标表示、向量共线的坐标表示,列出方程组求解即得.(2)由(1)求出,PA PC的坐标,利用向量夹角公式计算即得.(3)用λ表示,PA PC 的坐标,利用数量积的坐标表示建立函数关系,求出函数值域即得.【小问1详解】依题意,(1,2),(2,2),(3,4)AB m AC n BC n m =-=-=-- ,(2,2)OA = ,由AB AC ⊥ ,得22(2)0n m -+-=,即26m n +=,由//BC OA,得2(3)2(4)n m -=-,即7m n +=,联立解得1,8m n =-=,所以1,8m n =-=.【小问2详解】由(1)知,(3,1),(8,4),(5,5)B C BC -= ,由PC BC λ= ,35λ=,得(3,3)PC = ,(6,2)CA =-- ,(3,3)(6,2)(3,1)PA PC CA =+=+--=- ,所以cos cos ,||||PA PC APC PA PC PA PC ⋅∠=〈〉==- 【小问3详解】由(2)知,(5,5)PC BC λλλ== ,(5,5)(6,2)(56,52)PA PC CA λλλλ=+=+--=-- ,则225(56)5(52)2(5)852(52)8PA PC λλλλλλλ⋅=-+-=-⋅=-- ,由P 为线段BC 上一点,且PC BC λ=,得01λ≤≤,当2=5λ时,min ()8PA PC ⋅=- ,当1λ=时,max ()10PA PC ⋅= ,所以PA PC ⋅ 的取值范围[8,10]-.19.已知函数()sin(2)cos 2f x x x ϕ=++,其中π||2ϕ<.再从条件①、条件②、条件③中选择一个作为已知,使()f x 存在,并完成下列两个问题.(1)求ϕ的值;(2)若函数()f x 在区间[]0,m 上的取值范围是1[,1]2,求m 的取值范围.条件①π(16f =-;条件②π12-是()f x 的一个零点;条件③(0)3π(f f =.注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1)条件选择见解析,π6ϕ=-;(2)ππ63m ≤≤.【解析】【分析】(1)根据选择的条件代入计算,结合角的范围即可利用特殊角的三角函数值求解π6ϕ=-.(2)由(1)求出并化简函数()f x ,再求出相位的取值范围,结合已知及正弦函数的性质,列出不等式求解即得.【小问1详解】选条件①,ππππ3(sin()cos 1sin()63332f ϕϕ=++=-⇒+=-无意义,即此时()f x 不存在,则不能选①.选条件②,πππ()sin()cos()01266f ϕ-=-++-=,则πsin()62ϕ-=-,而ππ22ϕ-<<,即2πππ363ϕ-<-<,则ππ63ϕ-=-,所以π6ϕ=-.选条件③,2π2πsin cos0sin()cos 33ϕϕ+=++,即11sin 1sin 22ϕϕϕ+=--,整理得33sin cos 222ϕϕ-=-,即πsin()62ϕ-=-,而ππ22ϕ-<<,即2πππ363ϕ-<-<,则ππ63ϕ-=-,所以π6ϕ=-.【小问2详解】由(1)知,1()sin(2cos 2sin 2cos 2sin(2π622π6f x x x x x x =-+=+=+,当[0,]x m ∈时,πππ2[,2666x m +∈+,由()f x 在[]0,m 上的取值范围是1[,1]2,得ππ5π2662m +≤≤,解得ππ63m ≤≤,所以m 的取值范围是ππ63m ≤≤.20.如图是两个齿轮传动的示意图,已知上、下两个齿轮的半径分别为1和2,两齿轮中心2O ,1O 在同一竖直线上,且125O O =,标记初始位置A 点为下齿轮的最右端,B 点为上齿轮的最下端,以下齿轮中心1O 为坐标原点,如图建立平面直角坐标系xOy ,已知下齿轮以每秒1弧度的速度逆时针旋转,并同时带动上齿轮转动,转动过程中A ,B 两点的纵坐标分别为1y ,2y 、转动时间为t 秒(0t ≥).(1)当1t =时,求点B 绕2O 转动的弧度数;(2)分别写出1y ,2y 关于转动时间t 的函数表达式,并求当t 满足什么条件时,2 5.5y ≥;(3)求21y y -的最小值.【答案】(1)2(2)12sin y t =,2π5sin 22y t ⎛⎫=+- ⎪⎝⎭,t 满足π2πππ,N 33t k t k k ⎧⎫+≤≤+∈⎨⎬⎩⎭(3)72【解析】【分析】(1)由点A 与点B 处转过的弧长相等,求点B 绕2O 转动的弧度数;(2)由分别点A 与点B 处转过的圆心角,结合正弦函数,写出1y ,2y 关于转动时间t 的函数表达式,并解不等式2 5.5y ≥;(3)利用诱导公式和倍角公式化简21y y -,结合二次函数的性质求最小值.【小问1详解】当1t =时,点A 绕1O 转动1弧度,点A 与点B 处转过的弧长相等,则点B 绕2O 转动的弧度数为1221⨯=.【小问2详解】转动时间为t 秒,点A 绕1O 转动t 弧度,点B 绕2O 转动2t 弧度,12sin y t =,2π5sin 22y t ⎛⎫=+- ⎪⎝⎭,当2π5sin 2 5.52y t ⎛⎫=+-≥ ⎪⎝⎭,ππ5π2π22π626k t k +≤-≤+,由0t ≥解得π2πππ33k t k +≤≤+,N k ∈.则满足条件的t 的集合为π2πππ,N 33t k t k k ⎧⎫+≤≤+∈⎨⎬⎩⎭.【小问3详解】2221π175sin 22sin 5cos 22sin 2sin 2sin 42sin 222y y t t t t t t t ⎛⎫⎛⎫-=+--=--=-+=-+ ⎪ ⎪⎝⎭⎝⎭,当1sin 2t =时,21y y -有最小值72.21.对于定义在R 上的函数()y f x =,如果存在一组常数1t ,2t ,…,k t (k 为正整数,且120k t t t =<<< ),使得x ∀∈R ,12((0))()k f x t f x t f x t ++++++= ,则称函数()f x 为“k 阶零和函数”.(1)若函数11()x f x =+,2()sin f x x =,请直接写出1()f x ,2()f x 是否为“2阶零和函数”;(2)判断“()f x 为2阶零和函数”是“()f x 为周期函数”的什么条件(用“充分不必要条件”“必要不充分条件”“充要条件”或“既不充分也不必要”回答),并证明你的结论;(3)判断下列函数是否为“3阶零和函数”,并说明理由.3cos 2cos5cos8()f x x x x =++,4cos 2cos3cos 4()f x x x x =++.【答案】(1)1()f x 不是,2()f x 是;(2)充分不必要条件,证明见解析;(3)3()f x 是,4()f x 不是,理由见解析.【解析】【分析】(1)利用恒等式判断1()f x ,取120,πt t ==计算,结合定义判断2()f x .(2)利用定义求出周期说明充分性,举例说明必要性不成立推理即得.(3)取1232π4π0,,33t t t ===计算,结合定义判断3()f x ;利用反证法推理导出矛盾判断4()f x .【小问1详解】函数11()x f x =+,()()1112121211220f x t f x t x t x t x t t +++=+++++=+++=对一切实数不成立,所以函数11()x f x =+不是“2阶零和函数”;取120,πt t ==,x ∀∈R ,2212sin sin(π)sin sin 0()()x x f t x t x x x f ++=-++=+=,所以2()sin f x x =是“2阶零和函数”.【小问2详解】“()f x 为2阶零和函数”是“()f x 为周期函数”的充分不必要条件.证明如下:若()f x 为2阶零和函数,则存在常数20t >,使得x ∀∈R ,2()()0x f x t f ++=,即2()()f x t x f +=-,因此22(2)()()f x t x t f x f +=-+=,即函数()f x 为周期函数;反之函数()f x 为周期函数,如()|sin |1f x x =+,对x ∀∈R ,(π)|sin(π)|1|sin |1()x f x x f x +=++=+=,()f x 为周期函数,对任意正常数2t ,222()()|sin |1|sin()|1|sin ||sin()|22x f x t x x t f x x t ++=++++=+++≥,因此函数()f x 不是2阶零和函数,所以“()f x 为2阶零和函数”是“()f x 为周期函数”的充分不必要条件.【小问3详解】函数3()f x 是“3阶零和函数”,取1232π4π0,,33t t t ===,x ∀∈R ,313233cos 2c )os5cos ()()(8f xx t f x t x f x t x +++++++=2π2π2π4π4π4π)))c 333333x x x x x x ++++++++++++2π2π2πcos 2cos5cos8cos(2)cos(5)cos(8)333x x x x x x =+++-+-+-2π2π2πcos(2)cos(5)cos(80333x x x ++++++=,所以函数3()f x 是“3阶零和函数”;函数4()f x 不是“3阶零和函数”,假定函数4()f x 是“3阶零和函数”,则存在常数1230t t t =<<,x ∀∈R ,414243()()()0f x t f x t f x t +++++=,即222)c (22)(33)(4os 2cos3cos 44cos cos cos x x t x x t x t x ++++++++333(22)(33)(44)0cos cos cos x t x t x t +++++=+对x ∀∈R 成立,则232323cos 2cos(22)cos(22)0cos3cos(33)cos(33)0cos 4cos(44)cos(44)0x x t x t x x t x t x x t x t ++++=⎧⎪++++=⎨⎪++++=⎩恒成立,由23(22)(22)0cos 2cos cos x t x t x +++=+,得2323(cos 2cos 21)cos 2(sin 2sin 2)sin 20t t x t t x ++-+=,因此2323cos 2cos 21sin 2sin 20t t t t +=-⎧⎨+=⎩,平方相加整理得321cos 2()2t t -=-,则3211ππ,N 3t t k k -=+∈或32112ππ,N 3t t k k -=+∈,由23(33)(33)0cos3cos cos x t x t x ++++=,同理得321cos3()2t t -=-,于是23222π2π,N 93k t t k -=+∈或23222π4π,N 93k t t k -=+∈,则12,N k k ∈,212ππ2ππ393k k +=+或212π2π2ππ393k k +=+或212ππ4ππ393k k +=+或212π2π4ππ393k k +=+,即12,N k k ∈,211233k k -=或214233k k -=或121323k k -=或212233k k -=,显然不成立,因此不存在常数1230t t t =<<,使得x ∀∈R ,414243()()()0f x t f x t f x t +++++=,所以函数4()f x 不是“3阶零和函数”.【点睛】思路点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.。
高一数学下学期期中考试数学试卷含答案(共5套)
所以选乙战士去更合适;
21.(6分)(1) , ,
,所以 .
(2)(6分)根据表格数据可知在2012至2018年该地区农村居民家庭人均纯收入在逐年增加,平均每年增加 千元;
令 ,得 (千元),
即预测该地区2020年农村居民家庭人均纯收入 千元.
A.至少摸出 个白球B.至少摸出 个红球
C.摸出 个白球D.摸出 个白球或摸出 个红球
二、填空题(每题5分,共4小题)
13.如图是某路段的一个检测点对200辆汽车的车速进行检测所得结果的频率直方图,利用组中值估计,则下列说法正确的是________(填序号).
①平均数为62.5;②中位数为62.5;③众数为65.
5887 3522 2468 3748 1685 9527 1413 8727 1495 5656
A.09B.02C.15D.18
6.小李同学从网上购买了一本数学辅导书,快递员计划周日上午 之间送货到家,小李上午有两节视频课,上课时间分别为 和 ,则辅导书恰好在小李同学非上课时间送到的概率为()
A. B. C. D.
(1)求 边所在直线的方程;(5分)
(2)若 ,求 边所在直线的方程.(5分)
18.圆 经过三点: , , .
(1)求圆 的方程.(6分)
(2)求圆 与圆 : 的公共弦的长.(6分)
19.已知点 点 在圆 上运动,点 为线段 的中点.(1)求点 的轨迹方程;(6分)
(2)求点 到直线 的距离的最大值和最小值.(6分)
A.(-1,0)B.(1,0)C. D.
4.如图所示的程序框图,输出的结果是()
A. B. C. D.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
俯视图正视图 侧视图【人教版】高中一年级数学下学期期中试卷(考试时间:120分钟 试卷满分:100分)注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I 卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第II 卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试范围:必修2。
第Ⅰ卷一、选择题(共12个小题,每小题3分,共36分)1.若直线l经过()4,0A B 两点,则直线l 的倾斜角为( )A . 45B .30C .60D .135 2.在空间中,下列命题正确的是( )A .没有公共点的两条直线平行B .分别在两个平面内的两条直线是异面直线C .垂直于同一平面的两条直线平行D .平行于同一平面的两条直线平行 3.下图所示为一平面图形的直观图,则此平面图形可能是图乙中的( )A. B. C. D.4.直线145x y+=与,x y 轴所围成的三角形的面积等于( ) A. 6 B. 10 C. 18 D. 205.已知圆心为(2,3)C -,半径5r =的圆方程为( )A. ()()22235x y ++-= B. ()()22235x y -++= C. ()()222325x y ++-= D. ()()222325x y -++=6.直线2=-y x 与圆22(1)(1)4x y -+-=的位置关系为( )A .相切B .相交C .相离D .直线过圆心 7.123,,l l l 是空间三条不同的直线,则下列命题正确的是( )A. 122313,//l l l l l l ⊥⊥⇒B. 122313,//l l l l l l ⊥⇒⊥C. 123123////,,l l l l l l ⇒共面D. 123,,l l l 共点123,,l l l ⇒共面8.右图是一个几何体的三视图,根据图中数据, 可得该几何体的表面积是( ) A .42π B .43π C .44π D .45π 9.直线()32y kx k k R =-+∈必过定点( ) A. ()3,2 B. ()3,2- C. ()3,2-- D. ()3,2-10.如图是正方体的平面展开图,则在这个正方体中AB 与C D 的位置关系为( )A(2,2,1)-A (1,0,3)B A. 异面且垂直 B. 异面且成60°角 C. 平行 D. 相交成60°角11.半径为R 的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是( )A. 22R π B. 252R π C. 23R π D.272R π12.已知()00,P x y 是圆()22:41C x y +-=外一点,过点P 作圆C 的切线,切点为,A B ,记四边形PACB的面积为()f P ,当()00,P x y 在圆()()22:414D x y ++-=上运动时, ()f P 的取值范围为( )A. ⎡⎣B. ⎡⎣C. ⎡⎣D. ⎡⎣第Ⅱ卷二、填空题(共4个小题,每小题3分,共12分)请将每道小题答案的最简结果填在答题纸的相应位置上.13.空间中,点 与点 的距离为 .14.若长方体一个顶点上三条棱的长分別是3,4,5,且它的八个顶点都在同一个球面上,则这个球的表面积是_____.15.某四棱锥的三视图如图所示,该四棱锥的体积为______.16.在平面直角坐标系xoy 中,设圆M 的半径为1,圆心在直线240x y --=上,若圆M 上不存在点N ,使12N O N A=,其中A(0,3),则圆心M 横坐标的取值范围 .三、解答题(共6个大题,共52分) 17.(8分)已知直线l 的方程为.(Ⅰ)求过点,且与l 垂直的直线的方程;(Ⅱ)求与l 平行,且到点的距离为的直线的方程.18.(8分)如图,正方形ABCD 的边长为1,正方形ADEF 所在平面与平面ABCD 互相垂直,H G ,是FC DF ,的中点.(1)求证://GH 平面CDE ; (2)求证:BC CDE ⊥平面; (3)求三棱锥ABC G -的体积.19.(8分)已知圆C :012822=+-+y y x ,直线l :02=++a y ax . (1) 当a 为何值时,直线l 与圆C 相切;(2) 当直线l 与圆C 相交于A 、B 两点,且22=AB 时,求直线l 的方程. 20.(8分)如图,三棱柱111ABC A B C -中,侧棱1AA ⊥平面ABC ,ABC ∆为等腰直角三角形,90BAC ∠=,且12AA AB ==, ,E F 分别是1,CC BC 的中点.GA PA(1,0,3)B (2,2,1)-A(1)求证:平面1AB F ⊥平面AEF ;(2)求点C 到平面AEF 的距离.21.(10分)已知四棱锥P ABCD -底面ABCD 是矩形,PA ⊥平面ABCD , AD =2,AB =1,E,F 分别是线段AB .BC 的中点,(1)证明:PF ⊥FD ;(2)设G 是PA 上一点,使得EG ∥平面PFD ,求 的值;(3)若PB 与平面ABCD 所成的角为45,求二面角A PD F --的余弦值.22.(10分)设平面直角坐标系xoy 中,设二次函数2()2()f x x x b x R =++∈的图像与两坐标轴有三个交点,经过这三个交点的圆记为C 。
求: (1)求实数b 的取值范围; (2)求圆C 的方程; (3)问圆C 是答案(考试时间:120分钟 试卷满分:100分)一、选择题(共12个小题,每小题3分,共36分)二、填空题(共4个小题,每小题3分,共12分)请将每道小题答案的最简结果填在答题纸的相应位置上.13. 空间中,点与点的距离为 3 .14. 若长方体一个顶点上三条棱的长分別是3,4,5,且它的八个顶点都在同一个球面上,则这个球的表面积是___50π__.15.某四棱锥的三视图如图所示,该四棱锥的体积为___3_____.15. 在平面直角坐标xoy 中,设圆M 的半径为1,圆心在直线240x y --=上,若圆M 上不存在点N ,使12NO NA =,其中A (0,3),则圆心M 横坐标的取值范围 12(,0)(,)5-∞+∞ .三、解答题(共6个大题,共52分)17.(8分)(Ⅰ);(Ⅱ)或.试题解析:(Ⅰ)∵直线的斜率为,∴所求直线斜率为. 又∵过点,∴所求直线方程为.即:.(Ⅱ)依题意设所求直线方程为,∵点到该直线的距离为,∴.解之得或.∴所求直线方程为或.18.(8分)(1)详见解析;(2)详见解析;(3)112. 试题解析:(1)证明:∵G ,H 分别是DF ,FC 的中点, ∴△FCD 中,GH ∥CD ,∵CD ⊂平面CDE ,GH ⊄平面CDE , ∴GH ∥平面CDE .(2)证明:平面ADEF ⊥平面ABCD ,交线为AD ,∵ED ⊥AD ,ED ⊂平面ADEF ,AD ⊂平面ABCD ,∴DE ⊥平面ABCD , ∴BC ⊂平面ABCD ,∴ED ⊥BC , 又∵BC ⊥CD ,CD∩DE=D, ∴BC ⊥平面CDE .(3)解:依题意: 点G 到平面ABCD 的距离h 等于点F 到平面ABCD 的一半,即: 21=h . ∴12121112131=⋅⋅⋅⋅=-ABC C V .19.(8分) (1) 43-=a . (2)直线l 的方程是0147=+-y x 和02=+-y x .【解析】试题分析:将圆C 的方程012822=+-+y y x 配方得标准方程为4)4(22=-+y x ,则此圆的圆心为(0 , 4),半径为2.(1) 若直线l 与圆C 相切,则有21|24|2=++a a .解得43-=a . (2) 解法一:过圆心C 作CD ⊥AB , 则根据题意和圆的性质,得⎪⎪⎪⎩⎪⎪⎪⎨⎧====+++=.221,2,1|24|22222AB DA AC DA CD a a CD 解得1,7--=a .(解法二:联立方程⎩⎨⎧=+-+=++0128,0222y y x a y ax 并消去y ,得 0)34(4)2(4)1(22222=++++++a a x a x a .设此方程的两根分别为1x 、2x ,则用]4))[(1(22212212x x x x a AB -++==即可求出a.)∴直线l 的方程是0147=+-y x 和02=+-y x . 20.(8分)(1)见解析;(2. 试题解析: (1)证明:F 是等腰直角三角形ABC 斜边BC 的中点,∴AF BC ⊥.又∵侧棱1AA ABC ⊥平面, ∴面ABC ⊥面11BB C C∴AF ⊥ 面11BB C C , 1AF B F ⊥.12AB AA ==,则113B F EF B E === ,∴22211B F EF B E +=,∴1B F EF ⊥. 又AF EF F ⋂=,∴1B F ⊥平面AEF .而1B F ⊂面1AB F ,故:平面1AB F ⊥平面AEF . (2)解:∵AF ⊥BC ,侧棱1AA ABC ⊥平面 所以11AF BB C C ⊥, 所AF EF ⊥又EF =AEF S ∆=,CEF C AEF A CEF S V V ∆--== 设点C 到平面AEF 的距离为h , 1133AEF CEF S h S AF ∆∆⨯⨯=⨯⨯解得:h =21.(10分)(1)见解析(2)满足AG =14AP 的点G 为所求(3解:(1)证明:连接AF ,则AF,DF又AD =2,∴DF 2+AF 2=AD 2,∴DF ⊥AF .又PA ⊥平面ABCD , ∴DF ⊥PA ,又PA∩AF=A ,.DF PAF DF PF PF PAF ∴⊥⎫⇒⊥⎬⊂⎭平面平面(2)过点E 作EH ∥FD 交AD 于点H ,则EH ∥平面PFD 且AH =14AD . 再过点H 作HG ∥DP 交PA 于点G ,则HG ∥平面PFD 且AG =14AP , ∴平面EHG ∥平面PFD .∴EG ∥平面PFD . 从而满足AG =14AP 的点G 为所求. (3)取AD 的中点K ,在平面PAD 内作KJ ⊥PD ,垂足为J ,连接FJ.则FK ⊥AD ,又平面PAD ⊥平面ABCD,所以FK ⊥平面PAD ,由三垂线法,∠FJK 为二面角P-AD-F 的平面角.FK=AB=1,由相似与DAP DJK ∆∆,得511,==JK DP DK AP JK 即,得55=JK ,则53022=+=FK JK JF ,故cos ∠==JK FJK JF ,即所求二面角A PD F --的余弦值为6方法二:建立如图所示的空间直角坐标系,因为PA ⊥平面ABCD ,所以PBA ∠是PB 与平面ABCD 所成的角.又有已知得45PBA ∠=,所以1PA AB ==,所以()()0,0,0,1,0,0,(1,1,0),(0,2,0),(0,0,1)A B F D P .设平面PFD 的法向量为(),,n x y z =,由00n PF n DF ⎧⋅=⎪⎨⋅=⎪⎩得0x y z x y +-=⎧⎨-=⎩,令1z =,解得:12x y ==.所以11,,122n ⎛⎫=⎪⎝⎭.又因为AB PAD ⊥平面,所以AB 是平面PAD 的法向量,易得()1,0,0AB =,所以1cos ,1AB n AB n AB n⋅===⋅由图知,所求二面角A PD F --的余弦值为622、(10分)【解析】:本小题考查二次函数图像于性质、圆的方程的求法。