高考数学复习点拨 归纳推理与类比推理异同点比较
高考数学推理与证明疑难知识点辨析
高考数学推理与证明疑难知识点辨析一、基础知识总结与归纳1.推理一般包括合情推理和演绎推理。
2.。
合情推理:根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程。
归纳、类比是合情推理常用的思维方法。
3.。
归纳推理:根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理。
4.。
归纳推理的一般步骤:⑴通过观察个别情况发现某些相同性质;⑵从已知的相同性质中推出一个明确表达的一般性命题(猜想)。
5.类比推理:根据两类不同事物之间具有某些类似性,推出其中一类事物具有另一类事物类似的性质的推理。
6.类比推理的一般步骤:⑴找出两类事物之间的相似性或一致性;⑵从一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想)。
7.演绎推理:根据一般性的真命题导出特殊性命题为真的推理。
8.分析法:从原因推导到结果的思维方法。
9.综合法:从结果追溯到产生这一结果的原因的思维方法。
与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。
金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。
”于是看,宋元时期小学教师被称为“老师”有案可稽。
清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。
可见,“教师”一说是比较晚的事了。
如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。
辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。
10.反证法:判定非q为假,推出q为真的方法。
教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。
如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。
应用反证法证明命题的一般步骤:⑴分清命题的条件和结论;⑵做出与命题结论相矛盾的假定;⑶由假定出发,应用正确的推理方法,推出矛盾的结果;⑷间接证明命题为真。
归纳推理、类比推理
归纳推理、类比推理第三周归纳推理、类比推理一、归纳推理(一)归纳推理:以个别或特殊性知识为前提,推出一般性结论的推理。
它包括完全归纳和不完全归纳,两者的区别在于前者考察了一类中的每一个对象,而后者只考察了一类中的部分对象。
其逻辑结构:S1是(不是)P S1是(或不是)PS2是(不是)P S2是(或不是)PS3是(不是)P S3是(或不是)P…………Sn是(不是)P Sn是(或不是)PS1、S2、S3……Sn是S类的全部对象S1、S2、S3……Sn是S类的部分对象所以,所有的S是(不是)P 所以,所有的S都是(或不是)P根据前提中是否考察了事物对象与其属性之间的内在联系,不完全归纳推理分为简单枚举法和科学归纳法。
1.简单枚举归纳推理又叫做简单枚举法,它是根据一类事物对象中部分对象具有(或不具有)某种属性,推出该类对象全体都具有(或不具有)这种属性的推理。
其逻辑形式是:S1是(不是)PS2是(不是)PS3是(不是)P……Sn是(不是)P(S1、S2、S3……Sn是S类的部分对象,并且没有出现反例)———————————————————————————所以,所有的S是(不是)P2.科学归纳法科学归纳推理又叫做科学归纳法,它是根据一类对象中的部分对象与其属性之间的联系具有必然性,推出该类对象的全部都具有这种属性的推理逻辑结构式S1是PS2是PS3是P……Sn是P(S1、S2、S3……Sn是S类的部分对象,并且S与p之间有必然联系)——————————————————所以,所有的S是P(二)因果联系:事物之间引起和被引起的关系。
因果联系的特征有:不能颠倒的先因后果、一个原因可以引起多个结果、一个结果也可以由不同原因引起。
求因果方法:五种基本方法。
1.求同法,即寻求被研究的事物现象出现在若干不同场合,是否具有某种共同原因的方法,其特点是异中求同。
形式结构:场合先行情况被研究现象(1) A、B、C a(2) A、D、E a(3) A、F、G a………………………————————————————所以,A与a有因果联系。
高考数学复习点拨归纳推理与类比推理异同点比较
归纳推理与类比推理异同点比较合情推理是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式.在解决问题的过程中,合情推理具有猜侧和发表结论,探索和提供思路的作用.有利于创新意识的培养.在能力高考的要求下,推理方法就显得更加重要.在复习中要把推理方法形成自己的解决问题的意识,使得问题的解决有章有法,得心应手.合情推理包括归纳推理和类比推理.一.归纳推理和类比推理的联系:归纳推理与类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理.由这两种推理得到的结论都不一定正确,其正确性有待进一步证明.二.归纳推理和类比推理的区别:(一) 归纳推理1.归纳推理定义: 由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体、由个别到一般的推理.说明:归纳推理的思维过程大致如下:2.归纳推理的特点:(1)归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象,该结论超越了前提所包容的范围.(2)由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实践检验.因此,它不能作为数学证明的工具.(3)归纳推理是一种具有创造性的推理.通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题.归纳推理是从个别事实中概括出一般原理的一种推理模型,归纳推理包括不完全归纳法和完全归纳法.3.归纳推理的一般步骤:①通过观察个别情况发现某些相同本质;②从已知的相同性质中推出一个明确表达的一般性命题.说明:归纳推理基于观察和实验,像“瑞雪兆丰年”等农谚一样,是人们根据长期的实践经验进行归纳的结果.物理学中的波义耳—马略特定律、化学中的门捷列夫元素周期表、天文学中开普勒行星运动定律等,也都是在实验和观察的基础上,通过归纳发现的.(二).类比推理(以下简称类比)1.类比推理定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理.2. 类比推理的一般步骤:①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).3.说明:类比推理的思维过程大致如下图所示:类比推理是在两类不同的事物之间进行对比,找出若干相同或相似点之后,推测在其他方面也可以存在相同或相似之处的一种推理模式.类比推理不象归纳推理那样局限于同类事物, 同时,类比推理比归纳推理更富于想像,因而也就更具有创造性. 人类在科学研究中建立的不少假说和教学中许多重要的定理,公式都是通过类比提出来的,工程技术中许多创造和发明也是在类比推理的启迪下而获得的.因此,类比推理已成为人类发现发明的重要工具.例1. 如图,①,②,③,…是由花盆摆成的图案,根据图中花盆摆放的规律,第n个图形中的花盆数a n=.【答案】a n=3n2-3n+1.【解析】仔细观察发现:图案①的花盆数为:1个, a1=1; 图案②的花盆中间数为3,上下两行都是2个, a2=2+3+2; 图案③的花盆中间数为5,上面两行由下到上分别递减1个,而且关于中间行上下对称, a3=3+4+5+4+3;……;可以猜想:第n个图形中的花盆中间数为2n-1,上面每行由下到上分别递减1个,最上面有n个,而且关于中间行上下对称,因此a n=n+(n+1)+…+(2n-1)+…+(n+1) + n=3n2-3n+1.【评析】上例是利用归纳推理解决问题的.归纳推理分为完全归纳和不完全归纳,由归纳推理所得的结论虽然未必是可靠的,但它由特殊到一般,由具体到抽象的认识功能,对科学的发现是十分有用的.观察、实验,对有限的资料作归纳整理,提出带有规律性的说法,乃是科学研究的最基本的方法之一.例2.如图,过四面体V-ABC的底面上任一点O分别作OA1∥VA,OB1∥VB,OC1∥VC,A1,B1,C1分别是所作直线与侧面交点.求证:++为定值.分析考虑平面上的类似命题:“过△ABC(底)边 AB上任一点O分别作OA1∥AC,OB1∥BC,分别交BC、AC于A1、B1,求证+为定值”.这一命题利用相似三角形性质很容易推出其为定值1.另外,过A、O分别作BC垂线,过B、O 分别作AC垂线,则用面积法也不难证明定值为1.于是类比到空间围形,也可用两种方法证明其定值为1.证明:如图,设平面OA1VA∩BC=M,平面OB1VB∩AC=N,平面OC1VC∩AB=L,则有△MOA1∽△MAV,△NOB1∽△NBV,△LOC1∽△ LCV.得++=++。
归纳推理和类比推理
第三,就结论与其前提旳联络情况而论, 归纳推理(完全归纳推理除外)旳结论与其前 提间只具有或然性旳联络,而演绎推理有效式 旳前提与结论间具有蕴涵关系即必然性旳联络。
其形式可用公式表达为: S1是P, S2是P, ……, Sn是P; S1,S2,……,Sn是S类旳部分对象; 而且,没有遇到反例。 所以,全部S都是P。
2.简朴枚举法旳特征
简朴枚举法旳结论所断定旳范围超出 了前提所断定旳范围,前提与结论之间 旳联络是或然旳,而且,其结论旳推出 依赖于没有遇到反例,没有遇到反例并 不等于反例不存在,一旦发觉反例,结 论立即被推翻,所以,它具有猜测旳性 质。
6.2完全归纳推理
6.2.1什么是完全归纳推理 完全归纳推理是根据某类事物中每一对象都具
有某种属性,推出该类事物对象都具有某种属性旳推 理。
例如: 北京市旳人口总数超出900万, 天津市旳人口总数超出900万 , 上海市旳人口总数超出900万, 重庆市旳人口总数超出900万; 北京、天津、上海、重庆是中国旳四个直辖市。 所以, 中国全部旳直辖市旳人口总数都超出了900 万。
了,有旳是必然旳、本质旳,有旳是偶尔旳、非本质
旳,两类事物之间有某些相同旳属性,并不必然表白
其他属性也会相同。类比推理仅仅根据局部旳简朴比
较进行推理,并不详细分析属性之间旳联络旳性质,
不能精确掌握属性间旳关系,所以推理旳结论经常是
不一定可靠,是或然旳,就是说,它旳前提不必然地 制约着它旳结论。
6.4.3怎样提升类比推理结论旳ห้องสมุดไป่ตู้靠性
演绎推理,归纳推理,类比推理的联系和区别
演绎推理,归纳推理,类比推理的联系和区别古今中外,推理一直是重要的智力活动,可以从多个角度分析事物本质,并做出合理的判断。
演绎推理、归纳推理、类比推理是三种最常用的推理方法,它们之间有着内在的关联,也存在着明显的区别。
首先,演绎推理和归纳推理是比较对立的两种推理方式。
演绎推理是从一般性原理出发,推断出特殊性结果的推理方法,它是比较常用的推理,比如,根据生物学原理推断出某种特定的生物性状。
另一方面,归纳推理是从特定的事例中吸取普遍的结论,即将特定的事例概括为一般的原理的推理方法。
比如,尝试的推测出一般的动物特征。
其次,类比推理是从两个不同的事例中找出相似之处,然后把它们之间的相似之处用于推理的方法。
类比推理的特点是,不仅要根据已有的知识,还要融合思维,引出一些新的结论。
比如,从一个犯罪事件中,类比出另一个犯罪事件,从而发现新的犯罪行为。
最后,演绎推理、归纳推理、类比推理之间存在着明显的关联。
演绎推理是从一般性原理出发,推断出特殊性结果;归纳推理是从特定的事例中提炼出一般的原则;类比推理是从两个不同的事例中发现相似之处,进行推理。
三种推理方法子间关系密切,演绎推理是归纳推理的前提,归纳推理在类比推理中也发挥重要作用。
总之,演绎推理、归纳推理、类比推理是推理中最重要的三种方法,它们不仅有着内在的关联,更有着一定的差异性。
在做出判断时,需要根据事实,选择不同的推理方式,以解决实际问题。
- 1 -。
高考数学推理与证明疑难知识点辨析-最新教育文档
高考数学推理与证明疑难知识点辨析
一、基础知识总结与归纳
1.推理一般包括合情推理和演绎推理。
2.。
合情推理:根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程。
归纳、类比是合情推理常用的思维方法。
3.。
归纳推理:根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理。
4.。
归纳推理的一般步骤:⑴通过观察个别情况发现某些相同性质;⑵从已知的相同性质中推出一个明确表达的一般性命题(猜想)。
5.类比推理:根据两类不同事物之间具有某些类似性,推出其中一类事物具有另一类事物类似的性质的推理。
6.类比推理的一般步骤:⑴找出两类事物之间的相似性或一致性;⑵从一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想)。
7.演绎推理:根据一般性的真命题导出特殊性命题为真的推理。
8.分析法:从原因推导到结果的思维方法。
9.综合法:从结果追溯到产生这一结果的原因的思维方法。
10.反证法:判定非q为假,推出q为真的方法。
应用反证法证明命题的一般步骤:⑴分清命题的条件和结论;⑵做出与命题结论相矛盾的假定;⑶由假定出发,应用正确的推理方法,推出矛盾的结果;⑷间接证明命题为真。
归纳与类比
n
例3.有三根针和套在一根针上的若干金属片.按下 列规则,把金属片从一根针上全部移到另一根针上. 1.每次只能移动一个金属片; 2.较大的金属片不能放在较小的金属片上面. 试推测:把n个金属片从1号针移到3号针,最少需要 移动多少次?
2
1
3
n=1时,
f (1) 1
2
1
3
f (1) 1 n=2时, f (2) 3
1.完全归纳推理
(1)完全归纳推理的形式 根据一类事物中每一个对象都具有(或 不具有)某种属性,推出该类事物都具有(或 不具有)这种属性的归纳推理。 我的血型是A型; 我儿子的血型是A型; 我先生的血型是A型; 我家就这三口人; 所以,我家人都是A型血。
(2)完全归纳推理的逻辑要求
两个要求: ①前提所考察的对象是某类思维对象的 全部,无一遗漏; ②前提对每一对象的考察都是真实的。
类比推理的含义
类比推理是根据两个或者两类思维对象 在某些属性上相同或相似,从而推出它们在 其它属性上也相同或相似的推理。 它是一种非必然推理,其结论是或然的。 但它是人们常用的推理。 鲁班发明锯子就运用了一个类比推理:
2
(1)
(2)
(3)
(4)
(5)
小结
1.什么是归纳推理(简称归纳)? 部分 整体
个别
一般
2.归纳推理的一般步骤: (1)通过观察个别情况发现某些相同性质; (2)从已知的相同性质中推出一个明确表达的 一般性命题(猜想).
1.工匠鲁班类比带齿的草叶和蝗虫的牙齿,发明 了锯 2.仿照鱼类的外型和它们在水中沉浮的原理,发 明了潜水艇.又比如武术 3.科学家对火星进行研究,发现火星与地球有许 多类似的特征: 1)火星也绕太阳运行、饶轴自转的行星; 2)有大气层,在一年中也有季节变更; 3)火星上大部分时间的温度适合地球上某些 已知生物的生存,等等. 科学家猜想;火星上也可能有生命存在. 4.利用平面向量的基本定理类比得到空间向量 的基本定理.
归纳推理及类比推理
二、差异法(求异法)
1、含义:如果在不同的场合,只有一个情况是不同的,其他的情况完全相
同,那么这个惟一不同的情况就同被研究现象有因果关系。 2、用公式表示为:
场合 相关情况ห้องสมุดไป่ตู้被研究现象
(1) (2) A、B、C B、C a —
所以,A与a之间有因果关系
三、求同求异并用法(契合差异并用 法)
1、含义:如果被研究现象出现的若干场合(正事例组)中,只 有一个共同的情况,而在被研究现象不出现的若干场合(负事 例组)中,却没有这个情况,那么这个情况就与被研究现象之 间有因果联系。 2、用公式表示为: 场合 相关情况 被研究现象 (1) A,B,C,F a (2) A,D,E,Q a (3) A,F,Q,C a …… …… …… (11) ﹁ A,B,C,F ﹁ a (22) ﹁ A,D,E,Q ﹁ a (33) ﹁ A,F,Q,D ﹁ a 所以,A与a 之间有因果关系
归纳推理、类比推理及假说
一、什么叫归纳推理:
就是以若干个个别性或特殊性知识作为前 提,推出一个一般性知识作为结论的推理。 简单说就是从个别推出一般结论的推理。 由于它的结论的知识超出了前提知识的范 围,所以,归纳推理是一种或然性推理。
二、归纳推理与演绎推理的关系
1、区别:
1)从思维过程的方向看,演绎是从一般到个 别,归纳是从个别到一般
2)从前提和结论的性质看,演绎推理的结论 不超出前提所断定的范围,即前提真,形式正 确,结论必真,而归纳推理的结论却超出了前 提所断定的范围,其前提和结论的关系不是必 然的 ,而具有或然性,即前提真结论假是可 能的,即使前提都真,也不能保证结论必然真。 2、联系:它们互相依赖、补充。演绎推理的 大前提是由归纳推理提供的,归纳推理离不开 演绎推理
归纳推理与类比推理
求异法可用以下形式表示: 先行情况 被研究现象 正面场合 A、B、C —— a 反面场合 — B、C —— — 所以,A是a的原因(或结果)。 特点为“同中求异”,注意正反面场合差异的唯一性。
归纳推理与类比推理
3、求同求异并用法(略) 4、共变法
共变法可用以下形式表示: 场合 先行情况 被研究现象 ⑴ A1、B、C —— a1、b、c ⑵ A2、B、C —— a2、b、c ⑶ A3、B,C —— a3、b、c 所以,A是a的原因(或结果)。 特点:“果随因变”,注意除因果共变,其它情况不变。
归纳推理与类比推理
2、不完全归纳推理
定义与性质:不完全归纳推理是根据一类中的部分对象 具有某属性,推出该类全部都具有该属性的推理。不完 全归纳推理的结论不必然为真。(错误“以偏概全”) 结构式: S1是(或不是)P; S2是(或不是)P; S3是(或不是)P; „„ Sn是(或不是)P; S1、S2、S3 „„Sn是S类的部分对象; 所以,所有S都是(或不是)P。
第5章 归纳推理
5、剩余法
剩余法可用公式表示为: 复合先行情况 复合被研究现象 A、B、C —— a、b、c B —— b C —— c 所以,剩余部分a的原因(或结果)是A。 特点:“从余果推余因”,注意A和a必须是唯一剩余因素。
归纳推理与类比推理
三、溯因推理
定义:溯因推理是根据已知事实结果和有关规律性认识, 推断出产生这一结果的原因的推理。 推理公式: 如果A,那么B B 所以,A可能真 特点:由于推理使用了充分条件假言推理的肯定后件式 (无效式),所以当溯因推理前提为真时,其结论不必 然为真。溯因推理主要用于假说的提出和论证,也用于 日常事物可能原因的推测。
高中数学 第三章 推理与证明 3.1 归纳与类比 3.1.2 类
3.1.2类比推理学习目标1.理解类比推理的意义;了解类比推理的特点;2.掌握运用类比推理的一般步骤。
会进行简单的类比推理。
3.了解归纳推理与类比推理的异同;4.理解合情推理的含义,了解所得结果不一定正确;5.了解合情推理在科学实验和创造中的价值,增强在数学学习中自觉运用合情推理的意识。
提高归纳、类比联想的能力。
重难点剖析重点:掌握类比推理的特点与步骤;难点:在类比推理的运用中发现两类对象间相似性质潜在的关联性;学习过程一.问题情境从一个传说说起:春秋时代鲁国的公输班(后人称鲁班,被认为是木匠业的祖师)一次去林中砍树时被一株齿形的茅草割破了手,这桩倒霉事却使他发明了锯子.他的思路是这样的:茅草是齿形的;茅草能割破手. 我需要一种能割断木头的工具;它也可以是齿形的.这个推理过程是归纳推理吗?二.数学活动我们再看几个类似的推理实例。
例1、试根据等式的性质猜想不等式的性质。
等式的性质:猜想不等式的性质:(1) a=b⇒a+c=b+c; (1) a>b⇒a+c>b+c;(2) a=b⇒ ac=bc; (2) a>b⇒ ac>bc;(3) a=b⇒a2=b2;等等。
(3) a>b⇒a2>b2;等等。
问:这样猜想出的结论是否一定正确?例2、试将平面上的圆与空间的球进行类比.圆的定义:平面内到一个定点的距离等于定长的点的集合.球的定义:到一个定点的距离等于定长的点的集合.圆 球 弦←→截面圆 直径←→大圆 周长←→表面积 面积←→体积☆上述两个例子均是这种由两个(两类)对象之间在某些方面的相似或相同,推演出他们在其他方面也相似或相同;或其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理. 类比推理的一般步骤:⑴ 找出两类对象之间可以确切表述的相似特征;⑵ 用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想; ⑶ 检验猜想,即例3如图,已知点O 是ABC ∆内任意一点,连结,,,CO BO AO 并延长交对边于111,,C B A ,则1111111=++CC OC BB OB AA OA (Ⅰ)类比猜想,对于空间四面体BCD V -,存在什么类似的结论 (Ⅱ)?并用证明(Ⅰ)时类似的方法给出证明。
“归纳”与“类比”
解:观察下列等式: 左边是:从1开始的依次的自然数的那么 多个奇数的和, 右边是:依次的自然数的平方.
有1 3 5 2n 1 n2
n项
2 2 1 1
2 3 4 32 3 4 5 6 7 52 4 5 6 7 8 9 10 7 2 5 6 7 8 9 10 11 12 13 92
2
2
n 1 n 2 即, 1 2 3 n 2
6 2011 陕西 文 观察下列等式 11 23 4 9 3 4 5 6 7 25 4 5 6 7 8 9 10 49
那么N点的坐标一定是 m, n ,设点P的坐标为 x, y ,则k PM 与k PN 的值 存在的情况下 可以表示出来,求两者的积,整理、化简即可 得结论. x2 y 2 解: 1 类似的性质:若M , N 是双曲线 2 2 1上关于原点对称的 a b 两点,点P是双曲线上任意一点,若直线PM , PN的斜率存在,
步骤 P30中间虚框阴影部分:
1.找出两类事物之间的相似性或一致性; 2.用一类事物的性质去推测另一类事物的性质,得出一个明 确的命题 猜想 .
注:书上“两个表格中的内容” 自看
题型1.类比推理在数列中的应用
11.根据等差数列的性质,利用类比推理写出等比数列的性质 等差数列an , 公差d 则 am a n a p a q 若m n 2 p , 则 am a n 2 a p ak , ak m , ak 2 m 构成公差为md 的等差数列 am an m n d 若m n p q m, n, p , q N *
高考数学一轮复习知识点与练习 合情推理和演绎推理
1.合情推理(1)归纳推理①定义:从个别事实中推演出一般性的结论,称为归纳推理(简称归纳法).②特点:归纳推理是由部分到整体、由个别到一般的推理.(2)类比推理①定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,像这样的推理通常称为类比推理(简称类比法).②特点:类比推理是由特殊到特殊的推理.(3)合情推理:合情推理是根据已有的事实、正确的结论、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程.归纳推理和类比推理都是数学活动中常用的合情推理.2.演绎推理(1)演绎推理:一种由一般性的命题推演出特殊性命题的推理方法称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.()(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.()(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.()(4)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.()(5)一个数列的前三项是1,2,3,那么这个数列的通项公式是a n=n(n∈N*).()(6)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( )1.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=________.2.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是________.①使用了归纳推理;②使用了类比推理; ③使用了“三段论”,但推理形式错误; ④使用了“三段论”,但小前提错误.3.(2014·福建)已知集合{a ,b ,c }={0,1,2},且下列三个关系:①a ≠2,②b =2,③c ≠0有且只有一个正确,则100a +10b +c =________.4.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为__________.5.(教材改编)在等差数列{a n }中,若a 10=0,则有a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N *)成立,类比上述性质,在等比数列{b n }中,若b 9=1,则b 1b 2b 3b 4…b n =________________.题型一 归纳推理命题点1 与数字有关的等式的推理 例1 (2015·陕西)观察下列等式: 1-12=12, 1-12+13-14=13+14, 1-12+13-14+15-16=14+15+16,…, 据此规律,第n 个等式可为_______________.命题点2 与不等式有关的推理例2 已知x ∈(0,+∞),观察下列各式:x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3,x +27x 3=x 3+x 3+x 3+27x 3≥4,…,类比得x +ax n ≥n +1(n ∈N *),则a =________.命题点3 与数列有关的推理例3 古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2,五边形数N (n,5)=32n 2-12n ,六边形数N (n,6)=2n 2-n………………………………………可以推测N (n ,k )的表达式,由此计算N (10,24)=____________.命题点4 与图形变化有关的推理例4 某种平面分形图如下图所示,一级分形图是由一点出发的三条线段,长度均为1,两两夹角为120°;二级分形图是在一级分形图的每条线段的末端出发再生成两条长度为原来13的线段,且这两条线段与原线段两夹角为120°,…,依此规律得到n 级分形图.(1)n 级分形图中共有________条线段; (2)n 级分形图中所有线段长度之和为________.思维升华 归纳推理问题的常见类型及解题策略(1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解. (2)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解.(3)与数列有关的推理.通常是先求出几个特殊现象,采用不完全归纳法,找出数列的项与项数的关系,列出即可.(4)与图形变化有关的推理.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.(1)观察下图,可推断出“x ”处应该填的数字是________.(2)如图,有一个六边形的点阵,它的中心是1个点(算第1层),第2层每边有2个点,第3层每边有3个点,…,依此类推,如果一个六边形点阵共有169个点,那么它的层数为________.题型二 类比推理例5 已知数列{a n }为等差数列,若a m =a ,a n =b (n -m ≥1,m ,n ∈N *),则a m +n =nb -man -m.类比等差数列{a n }的上述结论,对于等比数列{b n }(b n >0,n ∈N *),若b m =c ,b n =d (n -m ≥2,m ,n ∈N *),则可以得到b m +n =________.思维升华 (1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.(2)类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等.在平面上,设h a ,h b ,h c 是三角形ABC 三条边上的高,P 为三角形内任一点,P 到相应三边的距离分别为P a ,P b ,P c ,我们可以得到结论:P a h a +P b h b +P ch c =1.把它类比到空间,则三棱锥中的类似结论为______________________.题型三 演绎推理例6 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N *).证明: (1)数列⎭⎬⎫⎩⎨⎧n S n 是等比数列; (2)S n +1=4a n .思维升华 演绎推理是由一般到特殊的推理,常用的一般模式为三段论,演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,若大前提不明确时,可找一个使结论成立的充分条件作为大前提.某国家流传这样的一个政治笑话:“鹅吃白菜,参议员先生也吃白菜,所以参议员先生是鹅.”结论显然是错误的,是因为________.①大前提错误;②小前提错误;③推理形式错误;④非以上错误.10.高考中的合情推理问题典例(1)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n},将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n},可以推测:①b2 014是数列{a n}的第________项;②b2k-1=________.(用k表示)(2)设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(1)T={f(x)|x∈S};(2)对任意x1,x2∈S,当x1<x2时,恒有f(x1)<f(x2).那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是________.①A=N*,B=N;②A={x|-1≤x≤3},B={x|x=-8或0<x≤10};③A={x|0<x<1},B=R;④A=Z,B=Q.温馨提醒(1)解决归纳推理问题,常因条件不足,了解不全面而致误.应由条件多列举一些特殊情况再进行归纳.(2)解决类比问题,应先弄清所给问题的实质及已知结论成立的缘由,再去类比另一类问题.[方法与技巧]1.合情推理的过程概括为从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想2.演绎推理是从一般的原理出发,推出某个特殊情况的结论的推理方法,是由一般到特殊的推理,常用的一般模式是三段论.数学问题的证明主要通过演绎推理来进行. [失误与防范]1.合情推理是从已知的结论推测未知的结论,发现与猜想的结论都要经过进一步严格证明. 2.演绎推理是由一般到特殊的证明,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.3.合情推理中运用猜想时不能凭空想象,要有猜想或拓展依据.A 组 专项基础训练 (时间:40分钟)1.下列推理是归纳推理的是________.①A ,B 为定点,动点P 满足P A +PB =2a >AB ,则P 点的轨迹为椭圆; ②由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式; ③由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x 2a 2+y 2b2=1的面积S =πab ;④科学家利用鱼的沉浮原理制造潜艇.2.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理________. ①结论正确; ②大前提不正确; ③小前提不正确; ④全不正确.3.平面内有n 条直线,最多可将平面分成f (n )个区域,则f (n )的表达式为f (n )=__________.4.给出下列三个类比结论:①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n ;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β; ③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a ·b +b 2. 其中正确结论的个数是________.5.若数列{a n }是等差数列,则数列{b n }(b n =a 1+a 2+…+a n n )也为等差数列.类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为__________. ①d n =c 1+c 2+…+c nn②d n =c 1·c 2·…·c nn③d n = n c n 1+c n 2+…+c nnn④d n =n c 1·c 2·…·c n6.观察下列不等式: 1+122<32, 1+122+132<53, 1+122+132+142<74,…… 照此规律,第五个不等式为________________________.7.若P 0(x 0,y 0)在椭圆x 2a 2+y 2b 2=1(a >b >0)外,过P 0作椭圆的两条切线的切点为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0y b 2=1,那么对于双曲线则有如下命题:若P 0(x 0,y 0)在双曲线x 2a 2-y 2b 2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点为P 1,P 2,则切点弦P 1P 2所在直线的方程是________________.8.已知等差数列{a n }中,有a 11+a 12+…+a 2010=a 1+a 2+…+a 3030,则在等比数列{b n }中,会有类似的结论:______________________.9.设f (x )=13x+3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并给出证明.B 组 专项能力提升 (时间:30分钟)11.已知①正方形的对角线相等;②矩形的对角线相等;③正方形是矩形.根据“三段论”推理出一个结论.则这个结论是________.(填序号)12.在平面几何中有如下结论:正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14,推广到空间可以得到类似结论:已知正四面体P —ABC 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=________.13.如图(1)若从点O 所作的两条射线OM 、ON 上分别有点M 1、M 2与点N 1、N 2,则三角形面积之比1122OM N OM N S S ∆∆=OM 1OM 2·ON 1ON 2.如图(2),若从点O 所作的不在同一平面内的三条射线OP 、OQ 和OR 上分别有点P 1、P 2,点Q 1、Q 2和点R 1、R 2,则类似的结论为__________________.14.已知等差数列{a n }的公差d =2,首项a 1=5. (1)求数列{a n }的前n 项和S n ;(2)设T n =n (2a n -5),求S 1,S 2,S 3,S 4,S 5;T 1,T 2,T 3,T 4,T 5,并归纳出S n 与T n 的大小规律.15.已知函数f (x )=-aa x +a (a >0,且a ≠1).(1)证明:函数y =f (x )的图象关于点(12,-12)对称;(2)求f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)的值.。
归纳推理和类比推理课件
利用等差数列性质类比等比数列性质
等差数列 定义
a n a n 1 d( n 2 )
等比数列
a n : a n 1 q( n 2 )
a n a 1 ( n 1 )d
通项公式
a n a1q
n 1
a n a m ( n m )d
n( a1 an )
有人对33×108以内且大过6之偶数一一进行验 算,哥德巴赫猜想(a)都成立。
200年过去了,没有人证明它。哥德巴赫猜想 由此成为数学皇冠上一颗可望不可及的“明珠”。 到了20世纪20年代,才有人开始向它靠近。 1920年,挪威的布朗证明了“9+9”。
1924年,德国的拉特马赫证明了“7 + 7”。
(1)
(2)
(3)
(4)
(5)
(2005年广东)设平面内有n条直线(n≥3),其中有且仅 有两条直线互相平行,任意三条直线不过同一点.若 用f(n)表示这n条直线交点的个数,则f(4)=
1
5 ,当
n>4时,f(n)=
( n 2 )( n 1 )
2
.(用n表示)
f (4) f (3) 3 f (5) f (4) 4
前提为真时,结论可能为真的推理,叫 做合情推理。
合情推理
归纳推理
类比推理
世界近代三大数学难题之一
哥德巴赫猜想
1742年,哥德巴1和它本身整除 的数)之和。如6=3+3,12=5+7等等。猜想 (a) 任何一个≥6之偶数,都可以表示成两个奇 质数之和。 (b) 任何一个≥9之奇数,都可以表示成三个奇 质数之和。
例3.有三根针和套在一根针上的若干金属片.按下 列规则,把金属片从一根针上全部移到另一根针上. 1.每次只能移动一个金属片; 2.较大的金属片不能放在较小的金属片上面. 试推测:把n个金属片从1号针移到3号针,最少需要 移动多少次?
归纳推理和类比推理
练习5
• 地球和月球相比,有许多共同属性,如它们都属 太阳系星体,都是球形的,都有自转和公转等。 既然地球上有生物存在,因此,月球上也很可能 有生物存在。
以下哪项如果为真,则最能削弱上述推论的可靠 性?( ) A.地球和月球大小不同 B.月球上同一地点温度变化极大,白天可以上升 到128℃,晚上又降至零下180℃ C.月球距地球很远,不可能有生物存在 D.地球和月球生成时间不同
• A、师大附中与学生家长订了协议,如果孩子的学习成 绩的名次没有排在前二十名,双方共同禁止学生玩滚轴 溜冰。
• B、玩滚轴溜冰能够锻炼身体,保证学习效率的提高。
• C、玩滚轴溜冰的同学受到了学校有效的指导,其中一 部分同学才不至于因此荒废学业。
• D、玩滚轴溜冰有助于智力开发,从而提高学习成绩。
练习4
C.20年前这些企业的总经理的平均年龄,仅是个 近似数
D.题干中的信息,仅仅基于有20年以上历史的企 业
练习3
• 最近举行的一项调查表明,师大附中的学生对滚轴溜冰 的着迷程度远远超过其他任何游戏,同时调查发现经常 玩滚轴溜冰的学生的平均学习成绩相对其他学生更好一 些。看来,玩滚轴溜冰可以提高学生的学习成绩。 以 下哪项如果为真,最能削弱上面的推论?( )
统计归纳推理:男孩女孩出生比例。
典型归纳推理:医学解剖。
“人生思维归纳始”。尖尖的 玻璃扎破手,疼;尖尖的钉 子扎破手,疼;打针时,尖 尖的针头扎进肉里,疼…… 于是得出结论:凡是尖尖的 东西扎着了,都会疼。这是 归纳推理。然后就可以以此 为大前提,进行演绎推理。
“不要碰倒暖瓶,要不烫着 你,很疼。”“跟打针一 样疼?”“比 所有的人有两只眼,所以,苏格拉底有两只眼。
归纳推理: 张三有两只眼,所以,所有的人都有两只眼。
归纳推理与类比推理的差异
学法指津数学X U X F A Z H I J I N一、归纳推理1.归纳推理的定义由一系列有限的特殊事例得出一般结论的推理方法叫归纳推理.它是由部分到整体,由个别到一般的推理;包括不完全归纳法和完全归纳法.归纳推理基于观察和实验,是人们根据长期的实践经验进行归纳的结果.2.归纳推理的一般步骤①观察个别情况,发现规律;②提出猜想;③检验猜想.3.归纳推理的思维过程实验、观察概括、推广猜测一般性结论例1已知数列{}a n的首项a1=1且a n+1=a n1+a n()n=1,2,3,⋅⋅⋅.(1)写出数列{}a n的前5项;(2)试归纳出该数列的通项公式.分析分别令n=1,2,3,4,利用a n+1与a n之间的递推关系,进而求出a2,a3,a4,a5,再观察、分析、归纳,推测出a n的表达式.解(1)∵a n+1=a n1+a n()n=1,2,3,⋅⋅⋅,∴令n=1时,a2=a11+a1,又∵a1=1,∴a2=1 2.同理,可求得:a3=13,a4=14,a5=15.(2)依据(1)中数列前5项,归纳猜想:a n=1n.验证:由猜想知:a n+1=1n+1,又∵a n1+a n=1n1+1n=1n+1,∴a n+1=a n1+a n.所以猜想结论正确,即a n=1n.点拨在数列中常用归纳推理猜测数列的通项公式或前n项和的公式.常规思路:对前几项结果的观察、归纳和提出猜想,再探究和发现问题,最后证明猜想结论的正确性.注意:在得出前几项的结果后,要统一它们的表达式的结构形式,以便寻找规律.例2凸n()n≥4边形有多少条对角线?分析先从几个特殊的数值入手,再根据给出的数值进行归纳猜想.解设:凸n()n≥4边形的对角线有f()n条(1)n=4时,凸四边形有2条对角线,即:f()4=2;n=5时,凸五边形有5条对角线,比凸四边形多3条,即:f()5=5=2+3;n=6时,凸六边形有9条对角线,比凸五边形多4条,即:f()6=9=2+3+4;n=7时,凸七边形有14条对角线,比凸六边形多5条,即:f()7=14=2+3+4+5;与类比推理的水能载舟,亦能覆舟。
高中数学:关于推理与证明的知识点总结
高中数学:关于推理与证明的知识点总结一、高三数学推理与证明考点(限考)概要:1、推理:(1)合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,称为合情推理。
①归纳推理:定义:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。
特点:*归纳是依据特殊现象推断一般现象,因而,由归纳所得的结论超越了前提所包容的范围;*归纳是依据若干已知的、没有穷尽的现象推断尚属未知的现象,因而结论具有猜测性;*归纳的前提是特殊的情况,因而归纳是立足于观察、经验和实验的基础之上;*归纳是立足于观察、经验、实验和对有限资料分析的基础上,提出带有规律性的结论。
步骤:*对有限的资料进行观察、分析、归纳整理;*提出带有规律性的结论,即猜想;*检验猜想。
②类比推理:定义:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。
特点:*类比是从人们已经掌握了的事物的属性,推测正在研究的事物的属性,是以旧有的认识为基础,类比出新的结果;*类比是从一种事物的特殊属性推测另一种事物的特殊属性;*类比的结果是猜测性的不一定可靠,单它却有发现的功能。
步骤:*找出两类对象之间可以确切表述的相似特征;*用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想;*检验猜想。
(2)演绎推理:①定义:从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。
②演绎推理是由一般到特殊的推理;③“三段论”是演绎推理的一般模式,包括:大前提——已知的一般结论;小前提——所研究的特殊情况;结论——根据一般原理,对特殊情况得出的判断。
④“三段论”推理的依据,用集合的观点来理解:若集合M的所有元素都具有性质P,S是M的一个子集,那么S 中所有元素也都具有性质P。
类比推理和归纳推理的相同点
类比推理和归纳推理的相同点
类比推理和归纳推理是两种常用于根据观察和证据得出结论或做出预测的推理。
虽然它们有一些相似之处,但它们也有一些重要的区别。
类比推理和归纳推理之间的一个相似之处在于,两者都涉及使用观察和证据来得出结论或做出预测。
在类比推理中,这是通过比较两个或多个相似的情况或对象并使用相似性得出关于其中一个的结论来完成的。
在归纳推理中,这是通过观察一组观察中的模式或趋势并使用模式或趋势对未来观察进行概括或预测来完成的。
类比推理和归纳推理之间的另一个相似之处是两者都涉及逻辑和批判性思维的使用。
在这两种类型的推理中,结论或预测都是基于考虑所有相关观察和证据的逻辑论证。
尽管有这些相似之处,类比推理和归纳推理之间也有一些重要的区别。
主要区别之一是结论或预测的范围。
在类比推理中,结论仅限于所考虑的特定情况或对象,而在归纳推理中,结论或预测旨在更普遍,适用于更广泛的情况或对象。
类比推理和归纳推理之间的另一个区别是对结论或预测的置信度。
在类比推理中,结论通常基于少量观察或示例,并且可能不如通过归纳推理得出的结论可靠或确定,归纳推理基于大量观察或示例。
总之,类比推理和归纳推理是两种类型的推理,用于根据观察和证据得出结论或做出预测。
两者都涉及逻辑和批判性思维的使用,并涉及使用观察和证据来支持结论或预测。
但是,两者之间也有一些重要的区别,包括结论或预测的范围以及对结论或预测的置信度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
归纳推理与类比推理异同点比较
合情推理是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式.在解决问题的过程中,合情推理具有猜侧和发表结论,探索和提供思路的作用.有利于创新意识的培养.在能力高考的要求下,推理方法就显得更加重要.在复习中要把推理方法形成自己的解决问题的意识,使得问题的解决有章有法,得心应手.合情推理包括归纳推理和类比推理.
一.归纳推理和类比推理的联系:
归纳推理与类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理.由这两种推理得到的结论都不一定正确,其正确性有待进一步证明.
二.归纳推理和类比推理的区别:
(一) 归纳推理
1.归纳推理定义: 由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体、由个别到一般的推理.
说明:归纳推理的思维过程大致如下:
2.归纳推理的特点:
(1)归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象,该结论超越了前提所包容的范围.
(2)由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实践检验.因此,它不能作为数学证明的工具.
(3)归纳推理是一种具有创造性的推理.通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题.
归纳推理是从个别事实中概括出一般原理的一种推理模型,归纳推理包括不完全归纳法和完全归纳法.
3.归纳推理的一般步骤:
①通过观察个别情况发现某些相同本质;
②从已知的相同性质中推出一个明确表达的一般性命题.
说明:归纳推理基于观察和实验,像“瑞雪兆丰年”等农谚一样,是人们根据长期的实践经验进行归纳的结果.物理学中的波义耳—马略特定律、化学中的门捷列夫元素周期表、天文学中开普勒行星运动定律等,也都是在实验和观察的基础上,通过归纳发现的.
(二).类比推理(以下简称类比)
1.类比推理定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理.
2. 类比推理的一般步骤:
①找出两类事物之间的相似性或一致性;
②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).
3.说明:类比推理的思维过程大致如下图所示:
类比推理是在两类不同的事物之间进行对比,找出若干相同或相似点之后,推测在其他方面也可以存在相同或相似之处的一种推理模式.类比推理不象归纳推理那样局限于同类事物, 同时,类比推理比归纳推理更富于想像,因而也就更具有创造性. 人类在科学研究中建立的不少假说和教学中许多重要的定理,公式都是通过类比提出来的,工程技术中许多创造和发明也是在类比推理的启迪下而获得的.因此,类比推理已成为人类发现发明的重要工具.
例 1. 如图,①,②,③,…是由花盆摆成的图案,根据图中花盆摆放的规律,第n 个图形中的花盆数a n= .
【答案】 a n=3n2-3n+1.
【解析】仔细观察发现:图案①的花盆数为:1个, a1=1; 图案②的花盆中间数为3,上下两行都是2个, a2=2+3+2; 图案③的花盆中间数为5,上面两行由下到上分别递减1个,而且关于中间行上下对称, a3=3+4+5+4+3;……;可以猜想: 第n个图形中的花盆中间数为2n-1,上面每行由下到上分别递减1个,最上面有n个,而且关于中间行上下对称,因此a n=n+(n+1)+…+(2n-1)+…+(n+1) + n=3n2-3n+1.
【评析】上例是利用归纳推理解决问题的.归纳推理分为完全归纳和不完全归纳,由归纳推理所得的结论虽然未必是可靠的,但它由特殊到一般,由具体到抽象的认识功能,对科学的发现是十分有用的.观察、实验,对有限的资料作归纳整理,提出带有规律性的说法,乃是科学研究的最基本的方法之一.
例2.如图,过四面体V-ABC的底面上任一点O分别作OA1∥VA,OB1∥VB,OC1∥VC,A1,
B1,C1分别是所作直线与侧面交点.求证:++为定值.
分析考虑平面上的类似命题:“过△ABC(底)边 AB上任一点O分别作
OA1∥AC,OB1∥BC,分别交BC、AC于A1、B1,求证+为定值”.这一
命题利用相似三角形性质很容易推出其为定值1.另外,过A、O分别作BC垂线,过B、O 分别作AC垂线,则用面积法也不难证明定值为1.于是类比到空间围形,也可用两种方法证明其定值为1.
证明:如图,设平面OA1VA∩BC=M,平面OB1VB∩AC=N,平面OC1VC∩AB=L,
则有△MOA1∽△MAV,△NOB1∽△NBV,△LOC1∽△ LCV.得
++=++。
在底面△ABC中,由于AM、BN、CL交于一点O,用面积法易证得:
++=1。
∴++=1。
【知识小结】类比推理是根据两个对象有一部分属性类似,推出这两个对象的其他属性亦类似的一种推理方法,例如我们拿分式同分数来类比,平面几何与立体几何中的某些对象类比等等.我们必须清楚类比并不是论证,它可以帮助我们发现真理.
通俗地说,合情推理是指“合乎情理”的推理.数学研究中,得到一个新结论之前,合情推理常常能帮助我们猜测和发现结论;证明一个数学结论之前,合情推理常常能为我们提供证明的思路和方向.。