高分子的凝聚态结构
高分子凝聚态结构
高分子凝聚态结构
高分子凝聚态结构是指高分子化合物在固态或结晶态下的结构形态。
高分子凝聚态结构的研究涉及到高分子链的排列、堆砌、折叠和结晶等行为,以及由此产生的物理和化学性质。
具体来说,高分子凝聚态结构的研究内容包括以下几点:
1.高分子链的构象:高分子链在固态或结晶态下的形态,包括链的折叠、扭
曲和伸展等。
2.高分子链的堆砌:高分子链在晶体或非晶体中的排列方式,包括密堆积和
松堆积等。
3.高分子链的结晶度:高分子链在结晶态下的结晶程度,结晶度的高低会影
响材料的性能。
4.高分子链的取向:高分子链在材料中的取向程度,包括各向异性、各向同
性等。
5.高分子链的交联:高分子链之间的交联程度和交联方式,交联程度的高低
会影响材料的力学性能。
总之,高分子凝聚态结构是指高分子化合物在固态或结晶态下的结构形态,包括高分子链的构象、堆砌、结晶度、取向和交联等方面。
这些结构特征对高分子材料的物理和化学性质有着重要的影响,因此研究高分子凝聚态结构对于材料科学和化学等领域的发展具有重要意义。
何曼君《高分子物理》(第3版)笔记和课后习题(含考研真题)详解 第5章 聚合物的非晶态【圣才出品】
第5章聚合物的非晶态5.1复习笔记一、高分子的凝聚态结构高分子的凝聚态结构:分子链之间的几何排列和堆砌结构,包括非晶态结构、晶态结构、液晶态结构、取向态结构和共混聚合物的织态结构等。
高分子链结构是决定聚合物基本性质的内在因素,凝聚态结构随着形成条件的变化而变化,是直接决定聚合物本体性质的关键因素。
二、非晶态聚合物的结构模型目前对非晶态高聚物结构的争论交点,主要集中在完全无序还是局部有序。
1.无规线团模型(1)1949年,Flory从统计热力学理论出发推导出“无规线团模型”。
该模型认为:在非晶态聚合物中,高分子链无论在 溶剂或者是本体中,均具有相同的旋转半径,呈现无扰的高斯线团状态。
(2)实验证据①橡胶弹性理论;②在非晶聚合物的本体和溶液中,分别用高能辐射使高分子发生交联。
未发现本体体系中发生分子内交联的倾向比溶液中大;③用X光小角散射测定含有标记分子的聚苯乙烯本体试样中聚苯乙烯分子的旋转半径,与在溶液中聚苯乙烯分子的回转半径相近。
2.两相球粒模型(1)1972年,Yeh 提出两相球粒模型。
该模型认为:非晶态聚合物存在着一定程度的局部有序。
包含粒子相和粒间相两个部分,一根分子链可以通过几个粒子和粒间相。
(2)支持该模型的事实①橡胶弹性的回缩力;②聚合物的非晶和结晶密度比为96.0~85.0/≈c a ρρ,按分子链成无规线团形态的完全无序的模型计算65.0/<c a ρρ,实际密度比偏高;③聚合物结晶速度很快;④某些非晶态聚合物缓慢冷却或热处理后密度增加,球粒增大。
二、非晶态聚合物的力学状态和热转变图5-1非晶态聚合物温度形变曲线“三态两区”:玻璃态、高弹态、黏流态、玻璃化转变(玻璃态与高弹态之间的转变)、粘流转变(高弹态与黏流态之间的转变)。
玻璃态:键长和键角的运动,形变小,模量大。
外力除去后,形变立刻回复,是普弹性。
玻璃化转变:链段开始发生运动,模量下降。
对应的转变温度T g为玻璃化温度。
高分子物理 第二章:高分子的凝聚态结构
*结晶对物理性质的影响 非晶高分子材料一般是透明的,而结晶高分子材料一般都
是不透明或半透明的。 *结晶高分子材料的透明性与球晶的尺寸有关:
当球晶的尺寸大于入射光的半波长时,在晶相和非 晶相界面发生折射和反射,材料不透明;
当球晶的尺寸小于入射光的半波长时,在晶相和非 晶相界面不发生折射和反射,材料透明。 * 球晶尺寸与材料的力学性能的关系:
球晶尺寸越大力学性能越差,因为球晶的边界会有 更大的裂缝成为力学薄弱环节。
3、2 高聚物晶体的结构: 一、晶格、晶胞和晶胞参数
当物质内部的质点(可是原子、分子、离子)在三维 空间呈周期性的重复排列时,该物质称为晶体。
晶态高聚物通常由许多晶粒所组成,x射线衍射分析可 知,每一晶粒内部具有三维远程有序的结构。但是,由于 高分子链是长链分子,所以呈周期排列的质点是大分子链 中的链节,而不是原子、整个分子或离子。这种结构特征 可以仿照小分子晶体的 基本概念与晶格参数来描述。
晶格——晶体具有的空间点阵,点阵的排列使高聚物具 有一定的几何形状,称为结晶格子,简称晶格。
晶胞——晶体的最小重复单元。 把晶格划分为晶胞,晶胞原子结构确定后,就可确
定晶体结构。
晶胞参数:
用平行六面体来表示晶胞
六个晶胞参数
c
三个晶轴 : a,b,c
βα γ
三个晶角: α,β,γ
b
见书上57页表2-4
聚集态
气态 液态 固态
相态
气相 液相 晶相
注意:高聚物无气态,这是因为高聚物的分子量很大分 子间作用力很大,此分子间作用力大于分子中化学键的 键能,高聚物在气化以前早以分解了,所以无气态。
因而研究单个高分子的行为都是在稀溶液中进行。
高聚物的聚集态
纤维结构主要包括高分子链的结构和高分子的凝聚态结构
1.纤维结构主要包括高分子链的结构和高分子的凝聚态结构(又称聚集态结构、超分子结构)及其形态结构。
2.单基(链节):构成纤维大分子的基本化学结构单元。
3.聚合度n :构成纤维大分子的单基的数目,或一个大分子中的单基重复的次数。
1.结晶度:纤维内部结晶区体积占纤维总体积的百分率。
结晶度对纤维性能的影响:结晶度↑: 纤维的拉伸强度、初始模量、硬度、尺寸稳定性、密度↑;纤维的吸湿性、染料吸着性、润胀性、柔软性、化学活泼性↓。
结晶度↓:纤维的吸湿性、染色性↑;拉伸强度较小,变形较大,纤维较柔软,耐冲击性,弹性有所改善,密度较小,化学反应性比较活泼。
2.取向度--大分子排列方向与纤维轴平行(或符合)的程度。
取向度与纤维性能间的关系:取向度大时,大分子可能承受的轴向拉力也大,纤维拉伸强度较大,伸长较小,模量较高,各向异性明显。
3.结晶度大的取向度不一定高。
4.(3)锯齿棉:用锯齿轧花机加工的皮棉(利用高速旋转的圆盘锯片通过肋条间隙钩拉棉花纤维,使之与棉子分离的机械。
)纺纱用棉多为锯齿棉。
5.天然转曲使棉纤维具有一定的抱合力,有利于纺纱工艺的进行和成纱质量的提高。
6.②主体长度Lm:一批棉样中含量最多的纤维的长度,Lm ≈Lh。
根数Lm:纤维中根数最多的那部分纤维的长度重量Lm:纤维中重量最重的那部分纤维的长度(即主体长度落在重量最大的一组中)。
常采用重量主体长度。
7.棉不耐酸,利用该性质可生产涤棉烂花布。
涤棉烂花布:涤棉包芯纱织物通过与有花纹的酸滚筒接触后制得的半透明织物。
8.木棉纤维是目前天然生态纤维中最轻(木棉0.29g/cm3,棉1.53 g/cm3)、中空度最高、最保暖的纤维材质。
它的细度仅有棉纤维的1/2,中空率却达到86%以上,是一般棉纤维的2-3倍。
9.羊毛粗有髓质层细无10.丝鸣干燥的精炼长丝(或丝织物)相互摩擦时所发出的清晰的声音。
它是蚕丝特有的音响,使蚕丝产品具有高贵感,经醋酸或酒处理后,可增加它的丝鸣效果。
第二章 高分子的聚集态结构详解
晶体结构=空间点阵+结构单元
点阵
Polymer Physics (Yu CAO)
直线点阵——分布在同一直线上的点阵 平面点阵——分布在同一平面上的点阵
空间点阵——分布在三维空间的点阵
晶胞
Polymer Physics (Yu CAO)
晶胞和晶系
1,晶胞:空间格子中划出的大小和形状完全一样 的平行六面体,以代表晶格结构的基本重复单元, 这种在三维空间中具有周期性排列的最小单位 2,晶胞参数:a,b,c 和 ,, 3,晶系:七种晶胞类型构成晶系
结晶聚合物的重 要实验证据
X射线衍射曲线
Inte ns ity (cps )
1000 500 0 10 20 30 40 50 Polar angle (degree)
Polymer Physics (Yu CAO)
2.2.1 晶体结构的基本概念
晶体:物质内部的质点三维有序周期性排列
把组成晶体的质点抽象成为几何点,由这些等同的几何点的集 合所以形成的格子,称为空间格子,也称空间点阵。 点阵结构中,每个几何点代表的是具体内容,称为晶体的结构 单元。
氢键:≦40kJ/mol
小分子间相互作用能 < 共价键键能
2.1.2高分子间的相互作用非常大
高分子的特点:大 其中的链单元数:103~105 链单元间的相互作用
Polymer Physics (Yu CAO)
小分子间的相互作用
高分子间相互作用能 》共价键键能
高聚物无气态
高聚物气化所需的能量 》破坏化学键所需的能量
Polymer Physics (Yu CAO)
内聚能密度—衡量高分子间相互作用力的大小
高聚物 CED(J/cm3) 高聚物 CED(J/cm3)
高分子物理课件第二章
2、同质多晶现象
聚乙烯的稳定晶系是斜方晶系,拉伸时可形成 三斜或单斜晶系。
同质多晶现象:由于结晶条件的变化,引起分 子链构象的变化或者堆积方式的改变,一种聚合 物可以形成几种不同的晶型。
形成的晶型不同,聚合物所表现出来的性能 也不相同。
3、 聚丙烯的晶胞结构
基于内聚能的加和性,即原子或基团摩尔吸引力常 数Gi的加和
CED
Gi
i
M0
CED与高聚物物理性质之间的关系
a. CED < 300 J/cm3时(70cal/cm3) 聚合物都是非极性的,分子间作用力主要是色散力,比较 弱,分子链属于柔性链,具有高弹性,作橡胶使用。 b. CED > 400 J/cm3时(100cal/cm3) 聚合物都是极性的,由于分子链上有强的极性基团或分子 间能形成氢键,分子间作用力较强,加上易于结晶和取向, 作纤维使用 c. 300 J/cm3 < CED < 400 J/cm3时(70-100cal/cm3) 聚合物的分子间作用力居中,适宜作塑料使
但是在用X射线研究聚合物的凝聚态结构时,人们 发现:聚合物内部确实存在着三维有序的规整结构。
结晶聚合物最重要的实验证据为:
x射线衍射花样(图)——一系列同心圆(德拜环) (非晶聚合物—弥散环或称无定形晕) 衍射曲线—尖锐的衍射峰 (非晶聚合物—很钝的衍射峰)
实验证明:如果高分子链本身具有必要 的规整结构,同时给予适宜的条件(温度等), 就会发生结晶,形成晶体。
纤维(>100)
解释PE的 CED < 300J/cm3 却作为塑料使用,Why? PE分子链的结构非常规整,很容易结晶, 从而使材料具有一定的强度,作为塑料使用。
高分子物理第二章—高分子凝聚态结构
高分子链本身具有必要的规整结构 适宜的条件
结晶聚合物最重要的实验数据:X射线衍射花样和衍射曲线
例 PS
非晶态无规PS 弥散环(无定形晕)
211 220
晶态等规PS 德拜环(同心圆)
410
强 222 度 421
311
C
D
E
300 BA
2θ
3
2.1.1 基本概念
晶体
物质内部的质点(原子、分子、离子)在三维空间成周期性地重复 排列。 聚合物晶体中呈三维有序周期性排列的质点是分子链中的结构单 元 (蛋白质晶体除外)。
采用共聚:破坏链的均一性和规 整性,生成较小球晶。
外加成核剂:可获得较小的球晶。
15
2.1.3 聚合物的结晶形态和研究方法: 结晶温度较低;溶液浓度较大;分子量较大。
a
16
2.1.3 聚合物的结晶形态和研究方法
纤维状晶体和串晶
生成条件: 存在流动场时,高分子链伸展,并沿着流动方向平行排列;高分 子溶液在温度较低时,边搅拌边结晶。
= 0.939g/cm3
9
2.1.2 聚合物的晶体结构和研究方法
同质多晶现象
结晶条件的变化会引起分子链构象的变化以及分子链堆砌方式的变化, 从而使同一种聚合物在不同结晶条件下可能形成完全不同晶型的晶
体——同质多晶现象。
聚乙烯——稳定晶型是斜方(正交)晶型,但在拉伸条件下可以形 成三斜或单斜晶型。 全同聚丙烯——除了α 晶型(单斜)外,在不同的结晶条件下还可以 形成β晶型(六方)、γ 晶型(三斜)、δ 晶型(拟六方晶型)。 形成的晶型不同,聚合物表现出来的性能也不相同。
聚乙烯串晶结构
中心脊纤维
折叠链附晶
串晶结构示意图
高分子物理第2章
衍射线 入射线 试样
照相底片
照相底片上的德拜环
非晶态PS的衍射花样
晶态等规PS
可以看出,等规立构PS既有清晰的衍射环(同心圆 ——德拜环),又有弥散环,而无规立构PS仅有弥 散环或称无定形晕
由什么事实可证明结晶高聚物中有非晶态结构?
(1)从结晶聚合物大角X射线图上衍射花样 和弥散环同时出现 (2)一般测得的结晶聚合物的密度总是低于由 晶胞参数计算的完全结晶的密度。如PE实测 0.93~0.96,而从晶胞参数计算出为 1.014g/cm3,可见存在非晶态。
如:聚乙烯的稳定晶型是正交晶系,拉伸时则可形成三斜或单斜晶系
2.1 晶态聚合物结构
2.1.3 聚合物的结晶形态(晶体的外形)
——与结晶条件有密切关系 (1) 单晶—极稀溶液中缓慢生长(0.01%),单层片晶 分子链垂直于晶面,规则折叠排列,折叠链模型
聚乙烯PE—菱 形片晶
聚甲醛 POM— 六角形
尼龙6—菱形片晶
材料的性能
预定材料性能
1.1分子间作用力
范德华力(静电力、诱导力、色散力)和氢键。 静电力:极性分子间的引力。 诱导力:极性分子的永久偶极与它在其他原子上引起的诱 导偶极之间的相互作用力。 色散力:分子瞬时偶极之间的相互作用力。 氢键(hydrogen bond) :是极性很强的X-H键上的原子, 与另外一个键上的电负性很大的原子 Y上的孤对电子相互吸 引而形成的一种键 (X-H…Y)
聚4—甲基1 —戊烯 四方形片晶
PE 的TEM和电子衍射照片
2.1.3 聚合物的结晶形态
0.1%<浓度<1%, 多层片晶 为减小表面能,单晶沿螺旋位错中心盘旋生长变厚
聚甲醛POM单晶螺旋生长SEM照片
高分子的凝聚态和聚集态
高分子的凝聚态和聚集态引言高分子是由成千上万个重复单元组成的大分子化合物,其分子量往往非常大。
高分子材料在现代科技和工业中扮演着重要的角色。
在不同的条件下,高分子可以出现不同的凝聚态和聚集态。
本文将介绍高分子的凝聚态和聚集态的概念、特点以及相关的应用。
一、高分子的凝聚态高分子的凝聚态是指高分子在无外界作用力下,在固定温度下保持稳定的结构状态。
在凝聚态下,高分子分子间保持着一定的有序性和排列规律。
1.晶体态晶体态是高分子的一种凝聚态,其特点是高分子链在立体空间有规则地排列,形成高度有序的晶体结构。
高分子晶体具有高度结晶度、透明度和硬度等特点,广泛应用于塑料、纤维和电子材料领域。
2.玻璃态玻璃态是高分子的另一种凝聚态,其特点是高分子链呈无规则排列,形成非晶态结构。
高分子玻璃具有高强度、耐高温等优点,在包装、建筑和航空航天等领域有广泛的应用。
二、高分子的聚集态高分子的聚集态是指高分子在外界作用力下,分子间呈现出聚集、堆积的状态。
在聚集态下,高分子分子间相互作用较强。
1.胶体态胶体态是高分子的一种聚集态,其特点是分散相微粒的大小在1~1000纳米之间。
高分子胶体具有分散性好、介电常数大等特点,广泛应用于涂料、纸张和医药等领域。
2.凝胶态凝胶态是高分子的另一种聚集态,其特点是高分子在某种溶剂中形成三维网络结构,并具有可逆的溶胀性。
高分子凝胶具有大孔结构、储存能力强等特点,在制备人工器官和药物控释等方面具有重要应用价值。
三、高分子的应用高分子材料的凝聚态和聚集态在众多领域中都具有广泛的应用。
1.材料领域高分子晶体被广泛应用于塑料、纤维和电子材料领域。
高分子玻璃在包装、建筑和航空航天等领域具有重要应用。
高分子胶体被用于涂料、纸张和医药等领域。
高分子凝胶在制备人工器官和药物控释等方面具有重要作用。
2.生物医学领域高分子凝胶在生物医学领域中具有广泛的应用,如用于人工器官的制备、药物控释系统的设计以及组织工程领域的研究。
高分子物理 第2章 聚合物的凝聚态结构ppt课件
法方
熔体结晶 玻璃体结晶 溶液结晶
例如: PE、PP、PVC、PS、PAN
高分子链可以从熔体结晶,从玻璃体结晶,也可以
从溶液结晶。 ---------三种结晶方式
结晶聚合物最重要的实验证据为X射线衍射花样和 衍射曲线。
---------实验测定方法
结晶聚合物的晶体结构,结晶程度,结晶形态对其 力学性能,电学性能,光学性能都有很大影响。
★ CED=300 — 400J/cm3聚合物,为塑料。
192 4
例1 : 根据高聚物的分子结构和分子间作用能,定性地讨 论表中所列各高聚物的性能。
高聚物 聚乙烯 聚异丁烯 天然橡胶 聚丁二烯 丁苯橡胶 聚苯乙烯
内聚能密度 高聚物
259
聚甲基丙烯酸甲酯
272
聚醋酸乙烯酯
280
聚氯乙烯
276
聚对苯二甲酸乙二酯
--------研究晶体结构等的目的
结晶聚合 物的重要 实验证据
X射线衍射花样 X-ray patterns
Intensity (cps)
X射线衍射曲线 X-ray diffraction
1000
500
0 10 20 30 40 50
Polar angle (degree)
192 4
X射线衍射 (X-ray instrument) 1924 狭缝
为什么?
例2: 将下列三组聚合物的结晶难易程度排列成序: (1) PE,PP,PVC,PS,PAN; (2) 聚己二酸乙二酯, (3) 聚间苯二甲酸乙二酯, 聚对苯二甲酸乙二酯; (3) PA 66,PA 1010.
解:结晶难易程度为: (1)PE >PAN >PP >PVC >PS (2)聚己二酸乙二酯 > PET >聚间苯二甲酸乙二酯 (3)尼龙66 > 尼龙1010
高分子凝聚态结构及聚合物性能概述
THANKS FOR WATCHING
感谢您的观看
动态热机械分析
利用动态热机械分析仪测定聚合物在 交变应力作用下的动பைடு நூலகம்力学性能和阻 尼特性。
光学性能评估手段
透光率测试
通过透光率测试仪测定 聚合物的透光率,评估 其透明度和光学质量。
折射率测定
利用折射仪测定聚合物 的折射率,研究其光学
性质和光传播行为。
光泽度评估
通过光泽度计测定聚合 物的光泽度,评估其表 面光洁度和反射性能。
其他相互作用
如离子键、金属配位键等, 也可在特定高分子体系中 存在。
结晶、非晶与取向结构
结晶结构
高分子链在三维空间中有序排列形成 的结构,具有明确的晶胞和晶格参数。
非晶结构
取向结构
高分子链在一定方向上优先排列形成的结构 ,如纤维状和片状结构等。这种结构对高分 子材料的力学性能和光学性能等具有重要影 响。
纤维材料具有优良的力学性能、化学稳定性和耐磨性,部分 纤维还具有较好的耐热性和电绝缘性。
应用领域
纤维材料广泛应用于纺织、造纸、复合材料等领域,如聚酯 纤维(PET)用于制作衣物、床上用品等,碳纤维(CF)用于制作 高性能复合材料、体育器材等。
05 聚合物加工过程中结构与 性能关系
加工工艺对聚合物结构影响
多尺度研究方法的融合
将宏观、介观和微观尺度的研究方 法相结合,揭示高分子凝聚态结构 和性能关系的多尺度特征。
跨学科的交叉融合
高分子科学与物理学、化学、生物 学等学科的交叉融合将推动高分子 凝聚态结构及聚合物性能研究向更 深层次发展。
功能导向的高分子材料设计
根据特定应用场景的需求,设计具 有特定功能的高分子材料,如自修 复、形状记忆、智能响应等。
高分子物理-第二章-高分子凝聚态ppt课件.ppt
Row nucleation
(4) 串晶 Shish-kebab structure
较低温度下, 边结晶边搅拌
PE
i-PS
(5) 伸直链晶
聚合物在高压 和高温下结晶 时,可以得到 厚度与其分子 链长度相当的 晶片
Extended chain crystal of PE Needle-like extended chain crystal of POM
球晶结构示意图
环带球晶
聚乙烯
偏光显微镜下球晶的生长
聚乙烯在125℃等温结晶
球晶的生长过程
控制球晶大小的方法
球晶的大小对性能有重要影响:球晶大透明性差、 力学性能差,反之,球晶小透明性和力学性能好。
(1) 控制形成速度:将熔体急速冷却,生成较小 的球晶;缓慢冷却,则生成较大的球晶。 (2)采用共聚的方法:破坏链的均一性和规整性, 生成较小球晶。 (3)外加成核剂:可获得小甚至微小的球晶。
《2》折叠链模型 (50年代 A。Keller提出)
实验现象:电子显微镜观察到几十微米范围的PE单晶 测得晶片厚度约为100A,且与分子量无关 X衍射还证明分子主链垂直晶片平面
提出模型:分子链规则地折叠形成厚100A的晶片 晶片再堆砌形成片晶
可以解释:片晶、球晶的结晶形态 不能解释:单晶表面密度比体密度低
nl = 2dhklsinq
n=1, 2, 3, …称为衍射级数
q为衍射角
多晶样品的衍射花样
样品
铝箔的X-射线和电子射线衍射花样
X-射线衍射花样
电子射线衍射花样晶体样品的 Nhomakorabea射曲线2.1.2 聚合物在晶体中的构象
等同周期(或称纤维周期):高分子晶体中, 在 c 轴方向化学结构和几何结构重复单元 的距离。
高分子物理第二章 高分子的凝聚态结构
范德华力
诱导力:极性分子的永久偶极与它在邻近分子上引起的诱导 偶极之间的相互作用力。6~13KJ/mol
色散力:是分子瞬间偶极之间的相互作用。是一切分子中, 电子在诸原子周围不停的旋转着,原子核也不停的振动着, 在某一瞬间,分子的正负电荷中心不相重合,便产生了瞬间 的偶极。色散力存在于一切分子中,是范德华力最普遍的一 种。0.8~8KJ/mol
立方晶系
六方晶系
四方晶系
三方晶系
正交晶系
单斜晶系
三斜晶系
第二章 高分子的凝聚态结构
2.1.1 晶体结构的基本概念
(3)晶面和晶面指数
结晶格子内所有的格子点全部集中在相互平行的等间 距的平面群上,这些平面叫做晶面
第二章 高分子的凝聚态结构
2.1.1 晶体结构的基本概念
晶面指数 从不同的角度去观察某一晶体,将会见到不同的晶面, 所以需要标记,一般常以晶面指数(Miller指数)来 标记某个晶面
2.1.1 晶体结构的基本概念
(1)空间格子(空间点阵):把组成晶体的质点抽象成 几何点,有这些等同的几何点的集合所形成的格子, 点阵中每个质点代表的具体内容为晶体的结构单元。
晶体结构
= 空间点阵 + 结构基元(重复单元) 第二章 高分子的凝聚态结构
2.1.1 晶体结构的基本概念
(2)晶胞和晶系
第二章 高分子的凝聚态结构
高分子的结构
高分子的结构
高分子链的结构
近程结构 (一次结构)
化 学 组 成 分 子 构 造
共 聚 物 序 列 结 构
远程结构 (二次结构)
构 型
大 小
柔 顺 性
高 分( 子三 聚次 集结 态构 结) 构
第二章 高分子的凝聚态结构
高分子材料凝聚态结构
⾼分⼦材料凝聚态结构第三节⾼分⼦材料凝聚态结构凝聚态,指由⼤量原⼦或分⼦以某种⽅式(结合⼒)聚集在⼀起,能够在⾃然界相对稳定存在的物质形态。
普通物质在标准条件下存在固(晶)、液、⽓三态。
从空间拓扑结构来看,固态材料的原⼦或分⼦的空间排列呈三维远程有序状;液态则只有近程有序,⽽⽆远程有序;⽓态既⽆近程有序,也⽆远程有序。
与普通材料相⽐,⾼分⼦材料只有固、液两态⽽⽆⽓态(未曾加热到汽化已先⾏分解),但由于⼤分⼦链状分⼦结构的特殊性,其存在状态远⽐⼩分⼦材料更加丰富多彩,并更具特⾊。
⾼分⼦凝聚态结构也称超分⼦结构,其研究尺度⼤于分⼦链的尺度。
主要研究分⼦链因单键内旋转和(或)环境条件(温度、受⼒情况)⽽引起分⼦链构象(Conformation)的变化和聚集状态的改变。
在不同外部条件下,⼤分⼦链可能呈⽆规线团构象,也可能排列整齐,呈现伸展链、折叠链及螺旋链等构象。
由此形成⾮晶态(包括玻璃态、⾼弹态),结晶态(包括不同晶型及液晶态)和粘流态等聚集状态。
这些状态下,因分⼦运动形式、分⼦间作⽤⼒形式及相态间相互转变规律均与⼩分⼦物质不同,结构、形态有其独⾃的特点。
这些特点也是决定⾼分⼦材料性能的重要因素。
按现代凝聚态物理的观点,⾼分⼦材料属于软物质(soft matter)或复杂流体(complex fluids),所谓软物质是指相对于弱的外界影响,⽐如施加给物质瞬间的或微弱的刺激,能作出显著响应和变化的那类凝聚态物质。
从结构看,软物质在其柔软的外观下存在着复杂的相对有序的结构,其结构常介于固体与液体之间。
⼀⽅⾯从宏观尺度看,它不象⼩分⼦晶体那样有严格的周期性结构,有时可能是完全⽆序的;另⼀⽅⾯在介观(mesoscopic)尺度下,它⼜存在⼀些规则的受约束结构,如结晶和取向,其晶态和⾮晶态常常是共存的。
⾼分⼦材料另⼀个软物质特征是常常因结构的细微变化⽽引起体系宏观性质的巨⼤变异,如天然橡胶树汁是⼀种液态胶乳,在树汁分⼦中,只要平均每200个碳原⼦中有⼀个与硫发⽣反应(硫化),流动的胶汁就变成固态的具有⾼强度的橡胶材料,表现出奇异的⾼弹性质,这在低分⼦材料是不可思议的。