弗兰克赫兹实验报告.docx
北京大学物理实验报告:弗兰克-赫兹实验(docx版)
弗兰克-赫兹实验【实验目的】(1) 了解弗兰克-赫兹实验用伏-安证明原子存在能级的原理和方法(2) 学习用伏-安法测量非线性器件(3) 学习微电流的测量【仪器用具】仪器名参数F-H-II 弗兰克赫兹实验仪∅F-H-II 弗兰克赫兹实验仪微电流放大器10−7档F-H-II 弗兰克赫兹实验仪电源组V F 0~5V2.5级V G1K 0~5V 2.5级V G2P 0~15V2.5级Victor VC9806+数字万用表200 mV档±(0.5%+4)【实验原理】(1)原子的受激辐射玻尔的氢原理理论指出,原子只能较长久地停留在一些稳定状态(称为定态)。
这些定态的能量(称为能级)是不连续分布的,其中能级最低的状态称为基态。
原子在两个定态之间发生跃迁时,要吸收或发射一定的能量,该能量等于两个定态之间的能量差ΔE mn=E m−E n原子在能级之间的跃迁可以通过有一定能量的电子与原子碰撞交换能量来实现。
初速度为零的电子经过电势差U0加速获得能量eU0,当这些电子与稀薄气体(例如汞)发生碰撞,就会发生能量交换。
当电子能量满足eU0=ΔE mn便会使得原子从E n被激发到E m,电子能量被吸收。
(2)弗兰克-赫兹实验图 1 弗兰克-赫兹装置示意图图1是弗兰克-赫兹实验装置示意图。
图中左侧为弗兰克-赫兹管(F-H管),它是一种密封的玻璃管,其中充有稀薄的原子量较大的汞或惰性气体原子。
在这里灯丝用来对阴极K加热,使其发射热电子。
灯丝电压U F越高,阴极K发射的电子流也就越大。
第一栅极G1的主要作用是消除空间电荷对阴极电子发射的影响。
第二栅极G2的作用是在G2和K之间形成对电子加速的静电场。
发射的电子穿过栅极G2达到极板P,形成板流I P。
板流I P的大小由微电流测试仪进行测量。
在板极P 和G2之间加有一反向电压,它对电子减速,使经过碰撞后动能非常低的电子折回。
由热阴极发射的电子初速度为零,受加速电场V G2K作用,V G2K较低时,电子能量小于原子的激发能,电子与汞原子只能发生弹性碰撞。
弗兰克-赫兹实验实验报告
课程名称:大学物理实验(二)
实验名称:弗兰克-赫兹实验
图2.1 弗兰克-赫兹管原理图
设氩原子的基态能量为E1,第一激发态的能量为E2
E2−E1。
初速度为零的电子在电位差为U的加速电场作用下具有能量则电子与氩原子只能发生弹性碰撞,二者之间几乎没有能量转移。
子与氩原子就会发生非弹性碰撞,氩原子将从电子的能量中吸收相当于从基态跃迁到第一激发态,而多余的部分仍留给电子。
位差为U0则
eU0=E2−E1
图3.1弗兰克-赫兹仪实物图
对应的V G2是内部的锯齿电压,作用是急速电压自动变化。
对应于示波器观测模
I P(×10-8A)
U G2(×
图6.1 加速电压与电流的关系图
可以发现电流随电子的能量呈现有规律的周期性变化,且两相邻谷点(或峰尖)即为氩原子的第一激发电位值。
同时,可以读出峰谷的横坐标值。
峰的横坐标值如下表:
表6.1 加速电压与电流的关系图的峰横坐标记录表
第二个峰X3第三个峰X5第四个峰X7第五个峰X9
2.90 4.08 5.25 6.46
表6.2 加速电压与电流的关系图的锋横坐标记录表
第二个谷X4第三个谷X6第四个谷X8第五个谷X10
3.52
4.66
5.84 7.04
算出氩原子的第一激发电位。
弗兰克赫兹效应实验报告
一、实验目的1. 通过弗兰克-赫兹实验,了解并掌握原子能级的存在和量子化的概念。
2. 熟悉实验仪器和操作方法,提高实验技能。
3. 培养分析实验数据、处理实验结果的能力。
二、实验原理1. 原子能级与量子化根据量子理论,原子只能处在一系列不连续的能量状态,称为定态。
相应的定态能量称为能级。
原子的能量要发生变化,必须在两个定态之间以跃迁的方式进行。
当基态原子与带一定能量的电子发生碰撞时,可以使原子从基态跃迁到高能态。
2. 弗兰克-赫兹效应弗兰克-赫兹实验采用慢电子与稀薄气体中原子碰撞的方法,证实了原子能级的存在。
实验中,电子由阴极发出,经电压加速后趋向板极,途中与气体原子发生碰撞。
若电子能量足以克服减速电压,则能穿过栅极到达板极形成电流。
当电子与原子碰撞时,部分能量会传递给原子,使原子从基态跃迁到激发态或电离态。
实验结果表明,电子的能量与原子激发态之间的能量差是量子化的。
三、实验仪器与设备1. 弗兰克-赫兹实验仪2. 数字电压表3. 数字电流表4. 氩气瓶5. 阴极灯丝加热电源6. 磁铁四、实验步骤1. 连接实验仪器,调整实验装置。
2. 加热阴极灯丝,使电子发射。
3. 调节加速电压,使电子能量逐渐增加。
4. 观察并记录不同加速电压下的板极电流。
5. 分析实验数据,绘制电子能量与板极电流的关系曲线。
6. 根据实验数据,计算氩原子的第一激发能。
五、实验结果与分析1. 实验数据根据实验数据,绘制电子能量与板极电流的关系曲线,如图所示。
2. 结果分析从实验结果可以看出,当加速电压逐渐增加时,板极电流先增大后减小,形成一个峰值。
峰值对应的电压即为氩原子的第一激发电位。
实验结果与理论值基本相符,验证了原子能级的存在。
六、实验结论1. 通过弗兰克-赫兹实验,验证了原子能级的存在,加深了对量子化概念的认识。
2. 实验结果表明,氩原子的第一激发电位为16.5V,与理论值基本相符。
3. 实验过程中,注意了实验仪器的正确使用和实验数据的准确记录,提高了实验技能。
弗兰克赫兹实验报告模板
一、实验名称弗兰克-赫兹实验二、实验目的1. 通过实验测量氩原子的第一激发电势,验证原子能级的存在。
2. 加深对量子化概念的理解。
3. 掌握电子与原子碰撞的微观过程与宏观物理量相结合的实验设计方法。
三、实验原理1. 根据量子理论,原子只能处于一系列不连续的能量状态,即定态。
2. 当基态原子与带一定能量的电子发生碰撞时,可以使原子从基态跃迁到高能态。
3. 电子在加速电压U的作用下获得能量,当其能量等于或大于第一激发态能量E1时,即可实现跃迁。
四、实验器材1. 弗兰克-赫兹实验仪2. 氩气瓶3. 数字电压表4. 数字电流表5. 计时器6. 连接线和导线五、实验步骤1. 检查实验仪器的完整性,确保实验仪正常工作。
2. 打开氩气瓶,调节气体压力至实验要求。
3. 调节加速电压和减速电压,使电子在电场中加速和减速。
4. 逐渐增加加速电压,观察输出电流的变化。
5. 记录输出电流与加速电压的关系曲线。
6. 根据曲线确定氩原子的第一激发电势。
六、实验数据与分析1. 记录实验过程中输出电流与加速电压的关系曲线。
2. 分析曲线,确定氩原子的第一激发电势。
3. 计算实验误差,分析误差来源。
七、实验结果1. 氩原子的第一激发电势为:XXX eV。
2. 实验误差为:XXX %。
八、实验讨论1. 分析实验结果与理论值的差异,探讨误差来源。
2. 讨论实验过程中可能出现的异常现象,分析原因。
3. 总结实验过程中学到的知识,对实验原理进行深入理解。
九、结论1. 通过实验测量,验证了原子能级的存在,加深了对量子化概念的理解。
2. 掌握了电子与原子碰撞的微观过程与宏观物理量相结合的实验设计方法。
十、参考文献1. 王家骐,张洪涛. 基础物理实验[M]. 北京:高等教育出版社,2010.2. 张志敏,刘志勇,陈国良. 基础物理实验教程[M]. 北京:科学出版社,2008.3. 弗兰克-赫兹实验原理及装置介绍[EB/OL]. /frank-hertz.html,2022-10-01.十一、附录1. 实验数据记录表2. 实验曲线图3. 误差分析报告(注:以上模板仅供参考,具体实验内容可根据实际情况进行调整。
弗兰克赫兹实验报告文库
一、实验背景弗兰克-赫兹实验是由德国物理学家W.弗兰克和G.赫兹于1914年进行的,该实验旨在研究电子在电场作用下的运动规律,并证明原子能级的存在。
实验通过测量电子与原子碰撞时的能量交换,揭示了原子内部结构的量子化特性。
二、实验目的1. 测量氩原子的第一激发电势,证明原子能级的存在;2. 加深对量子化概念的认识;3. 学习电子与原子碰撞微观过程与宏观物理量相结合的实验设计方法。
三、实验原理1. 原子能级理论:根据玻尔理论,原子只能长时间地处于一些稳定的状态,称为定态。
原子在这些状态时,不发射或吸收能量;各定态有一定的能量,其数值是彼此分隔的。
原子的能量只能从一个定态跃迁到另一个定态。
2. 电子与原子碰撞:当电子在电场作用下加速时,会获得动能。
当具有一定能量的电子与原子碰撞时,会发生能量交换。
若电子传递给原子的能量恰好等于原子从一个定态跃迁到另一个定态所需的能量,则原子会被激发。
3. 激发电势:原子从一个定态跃迁到另一个定态所需的能量称为激发电势。
在本实验中,测量氩原子的第一激发电势,即从基态跃迁到第一激发态所需的能量。
四、实验装置1. 夫兰克-赫兹管:由阴极、阳极、栅极和充有氩气的真空管组成。
阴极发射电子,阳极接收电子,栅极控制电子流。
2. 加速电压:通过调节加速电压,使电子在电场作用下获得不同动能。
3. 电流计:测量电子流过夫兰克-赫兹管时的电流。
4. 数据采集系统:用于记录电流与加速电压的关系。
五、实验步骤1. 将夫兰克-赫兹管接入实验电路,调整加速电压,使电子获得不同动能。
2. 测量电子流过夫兰克-赫兹管时的电流,记录数据。
3. 改变加速电压,重复步骤2,得到一系列电流与加速电压的关系曲线。
4. 分析数据,确定氩原子的第一激发电势。
六、实验结果与分析1. 实验结果显示,电流与加速电压的关系曲线呈阶梯状。
当加速电压低于第一激发电势时,电流几乎为零;当加速电压等于第一激发电势时,电流出现突变;当加速电压高于第一激发电势时,电流逐渐增大。
弗兰克赫兹实验报告
弗兰克赫兹实验报告姓名: xxx 学号: xxxxxxxxxx 班级:本硕 xxx 班实验日期: xxx 年 10 月 13 日夫兰克-赫兹实验1、测量氩原子的第一激发电势,证明原子能级的存在,从而加深对量子化概念的认识。
2、加深对热电子发射的理解,学习将电子与原子碰撞微观过程与宏观物理量相结合的实验设计方法。
1911 年,卢瑟福根据α 粒子散射实验,提出了原子核模型。
1913 年,玻尔将普朗克量子假说运用到原子有核模型,建立了与经典理论相违背的两个重要概念:原子定态能级和能级跃迁概念。
电子在能级之间迁跃时伴有电磁波的吸收和发射,电磁波频率的大小取决于原子所处两定态能级间的能量差,并满足普朗克频率定则。
随着英国物理学家埃万斯(E.J.Evans)对光谱的研究,玻尔理论被确立。
1914 年,德国科学家夫兰克和他的助手赫兹采用慢电子与稀薄气体中原子碰撞的方法(与光谱研究相独立),简单而巧妙地直接证实了原子能级的存在,并且实现了对原子的可控激发。
1925 年,由于他二人的卓越贡献,他们获得了当年的诺贝尔物理学奖。
夫兰克-赫兹实验至今仍是探索原子内部结构的主要手段之一。
所以,在近代物理实验中,仍把它作为传统的经典实验。
根据玻尔的原子理论,原子只能处于一系列不连续的稳定状态之中,其中每一种状态相应于一定的能量值Ei(i=1,2,3‥),这些能量值称为能级。
最低能级所对应的状态称为基态,其它高能级所对应的态称为激发态。
( h 为普朗克常数)本实验中是利用一定能量的电子与原子碰撞交换能量而实现,并满足能量选择定则:ev=E-E(1) 110E 为第一激发能量(第一激发态是距基态最近的一个能态),E 为基态能量, ev 为该原子第一激发能。
式(1)中, 101 实验原理如图(1)所示:在充氩的夫兰克—赫兹管中,电子由阴极 K 发出,阴极 K 和第一栅极G1 之间的加速电压 VG1K 及与第二栅极 G2 之间的加速电压 VG2K 使电子加速。
实验二十三弗兰克赫兹实验报告
UKg2(V) 7.3 9.0 9.5 10.5 11.4 12.0 12.7 13.3 13.9 14.7 16.7 18.2 18.8 20.0 21.4 22.9 23.4 24.5 26.6 27.2 27.8 28.6 30.0 31.8 32.7 33.4 35.3 36.5
Uout(mV) 9.49 40.93 40.74 23.19 28.30 47.90 74.16 95.57 103.22 57.97 87.24 160.66 147.1 33.26 110.33 197.49 193.60 62.44 154.20 197.50 220.4 189.5 53.0 197.0 238.2 212.4 93.7 196.6
基础物理实验
实验二十三 弗兰克 -赫兹实验 弗兰克实验报告
பைடு நூலகம்
学院: 地球与空间科学学院 学院:地球与空间科学学院 1100012623 张晓晨 姓名: 姓名:1100012623 指导教师: 廖慧敏 时间: 2012 年 12 月 05 日
一、目的要求
1、了解弗兰克-赫兹用伏-安法证明原子存在能级的原理和方法。 2、学习用伏-安法测量非线性元件。 3、学习微电流的测量。
UKg2(V) 37.1 38.1 39.5
Uout(mV) 236.2 245.9 89.2
UKg2(V) 37.3 38.2 40.0
Uout(mV) 244.1 236.0 93.2
UKg2(V) 37.6 38.5
Uout(mV) 252.8 213.0
UKg2(V) 37.7 38.8
Uout(mV) 252.5 170.5
UKg2(V) 37.9 39.2
Uout(mV) 252.3 119.6
弗兰克赫兹实验实验报告
弗兰克赫兹实验实验报告SANY标准化小组#QS8QHHGNHHJ8赫兹实验一实验口的通过测定汞原子的第一激发电位,证明原子能级存在。
二实验原理1激发电势玻尔的原子能级理论(1)原子只能长时间的停留在一些稳定的状态,(简称定态)。
原子在这些状态时,不发射或吸收能量;各定态有一定的能量,其数值是彼此分隔的。
原子的能量不论通过什么方式发生改变,它只能从一个定态跃迁到另一个定态。
(2)原子从一个定态跃迁到了另一个定态而发射或吸收一定的能量,辐射频率是一定的,满足hv=EmE(2)时,汞原子就会从基态跃迁到第一激发态。
相应的电势差称为汞的第一激发电势(中肯电势)。
夫兰克赫兹管第一激发电势的厂Ua曲线在充汞的夫兰克赫兹管中,电子有阴极发出,阴极|K和栅极G仟弹|旳加速电丿土“供电子加速。
在板极A和栅极G之间加有拒斥电压。
尊超餉L匍分布如图2示。
当电子通过KG空间进入GA空间时,如果有较大的能量(MeUQ,就能冲过反向拒斥电场而到达板极形成电流,为微电流计PA检测出。
如果电子在KG空间与汞原子碰撞,把自己的一部分能量给了汞原子而使后者激发的话,电子本身剩余的能量很少,以致功过栅极后不足以克服拒斥电场而被折回到栅极。
这时,通过微电流计的电流将显着的减小。
实验时,观察电流计的电流随逐渐增加时的现象。
如果原子能级确实存在的话,而且基态与第一激发态有确定的能量差,就能观察到如图3示的LUGK曲线。
而各次板极电流下降相对应的阴、栅极电压差U,1A夫兰克5)13.65.939.07.959.012.1121.024.02数据处理(1)根据实验原理可以得到第一激发电势为%=心=久叶一稣H或匕=SUn=你心”谷”,得故(2)不确定度计算A类分量B类不确定度分量合成不确定度(3)第一激发电势为六实验结果及讨论1、山实验图象可以验证了汞原子的能级存在,并根据实验数据计算得到汞原子的第一激发电势为久=帀b=(4.60.3)U,与公认的理论值匕,=4.9V符合的较好。
弗兰克赫兹实验报告
弗兰克赫兹实验报告.doc
弗兰克赫兹实验报告(Frank-Hertz Experiment Report)是一种用于研究原子能级的实验,整个实验过程通过物理和化学的方法来实现。
在实验中,将使用一台X射线机,它将发射出低能量的X射线,然后这些射线会通过一个空气层来到达实验室的金属层,然后将通过对比结果来看出X射线在金属层中发生了什么样的变化。
实验中会使用一种特殊的灯泡,它能够检测X射线在金属层中发生反射所产生的光,这可以帮助我们来确定X 射线在金属层上发生了什么变化。
在实验中,会使用一种特殊的仪器来测量X射线在金属层上发生变化时产生的热量,而且这种仪器还可以测量金属层的温度变化情况。
最后,测量X射线在金属层上发生变化时反射光的光谱,可以进一步深入地研究原子能级的结构,以及X射线在不同的能级上的行为。
通过这种实验,我们可以更好地理解原子能级的结构,从而更好地研究原子的特性。
弗兰克赫兹实验报告
弗兰克赫兹实验报告一、实验目的了解弗兰克赫兹实验的原理和方法,通过实验测量氩原子的第一激发电位,证明原子能级的存在。
二、实验原理弗兰克赫兹实验是用一定能量的电子去轰击原子,通过测量电子与原子碰撞过程中的能量损失,来研究原子的能级结构。
当电子与原子发生非弹性碰撞时,电子损失的能量等于原子的激发能。
在本实验中,电子在加速电场中获得能量,然后与氩原子碰撞。
如果电子的能量小于氩原子的第一激发能,碰撞为弹性碰撞,电子能量几乎不变。
当电子能量达到氩原子的第一激发能时,会发生非弹性碰撞,电子损失能量,导致电流下降。
通过测量电流随加速电压的变化,可以得到氩原子的第一激发电位。
三、实验仪器弗兰克赫兹实验仪,包括充氩的弗兰克赫兹管、加热炉、微电流放大器、电压扫描电源等。
四、实验步骤1、连接实验仪器,打开电源,预热仪器一段时间。
2、调节加热炉温度,使弗兰克赫兹管中的氩气达到合适的工作状态。
3、调节电压扫描电源,设置起始电压、终止电压和扫描步长。
4、观察微电流放大器的示数,记录电流随加速电压的变化数据。
5、改变扫描步长,重复实验,获取多组数据。
五、实验数据及处理以下是一组实验测量得到的电流 I 随加速电压 U 的变化数据:|加速电压 U(V)|电流 I(μA)||::|::|| 10 | 20 || 20 | 35 || 30 | 50 || 40 | 70 || 50 | 85 || 60 | 60 || 70 | 45 || 80 | 75 || 90 | 60 || 100 | 40 |以加速电压 U 为横坐标,电流 I 为纵坐标,绘制电流电压曲线。
从曲线中可以明显看到电流出现多次下降,相邻两次下降对应的电压差值近似相等,这个差值即为氩原子的第一激发电位。
通过对数据的分析和计算,得到氩原子的第一激发电位约为_____V。
六、实验误差分析1、温度的影响:实验中弗兰克赫兹管的温度对氩原子的状态有影响,如果温度不稳定或偏离最佳值,可能导致实验结果的偏差。
弗兰克赫兹实验实验报告
弗兰克赫兹实验实验报告
实验名称:弗兰克赫兹实验
实验目的:通过研究气体的导电特性,探究众多气体的带电粒子性质等规律。
实验器材:真空管,放电极,荧光屏,高压电源,振荡器等。
实验原理:弗兰克赫兹实验利用了电离气体与电场、荧光屏的相互作用,其中,荧光屏的作用是显示电子活动的位置。
通过在气体中建立电场,在真空中产生气体的离子化(电离),并测定带电粒子与电场作用下的方向、速度、轨迹等特征,可以推测出气体离子(电离)性质以及离子与电场的相互作用规律。
实验过程:利用真空管将空气抽空,给电极加高压电信号,使气体电离,产生气体放电现象。
接下来,让离子穿过两个极板的电场区域,在荧光屏上观察带电粒子离子与电场作用后的荧光显示。
通过改变气体类型和气体压力等实验条件,观察荧光屏上的显示差异,实验数据测定。
实验结果:弗兰克赫兹实验得出气体的导电机制与性质、电子的分布密度、电场对电子的俘获等规律等,该实验也为粒子物理学、原子物理学研究提供了启示。
结论:弗兰克赫兹实验提供了重要的原理和实验数据,描述了气体电离、电子漂移、荧光及偏極化等现象,对于研究原子物理学、粒子物理学等领域具有重要意义。
实验小结:通过本次实验,我深刻地体会到了科学实验的重要性,同时也更加明确了物理学研究的意义和方向。
希望在今后的学习中,能够更深地认识该领域的知识和相关实验,为我国科学技术的发展贡献自己的力量。
福兰克赫兹实验报告
一、实验背景及目的1. 实验背景1914年,德国物理学家W.弗兰克和G.赫兹共同完成了一项经典的物理实验——弗兰克-赫兹实验。
该实验旨在验证玻尔提出的原子能级理论,即原子能量是量子化的,电子在能级间跃迁时会吸收或发射特定频率的电磁波。
2. 实验目的(1)验证玻尔原子能级理论,即原子能量是量子化的;(2)测量氩原子的第一激发电位,进一步研究原子能级结构;(3)加深对量子化概念的理解,提高实验操作技能。
二、实验原理1. 原子能级理论玻尔提出的原子能级理论认为,原子内部存在一系列分立的能级,电子在这些能级间跃迁时会吸收或发射特定频率的电磁波。
原子能量量子化意味着能量只能取离散值,即E = nhν,其中E为能量,n为量子数,h为普朗克常数,ν为频率。
2. 实验原理弗兰克-赫兹实验通过观察电子与氩原子碰撞后能量变化,验证了玻尔原子能级理论。
实验装置包括:(1)电子枪:产生慢速电子,电子能量可调;(2)氩气室:充入低压氩气,形成稀薄气体;(3)偏置电压:施加在电子枪和氩气室之间,使电子加速;(4)微电流计:测量通过氩气室的电流;(5)示波器:观察电子与氩原子碰撞后能量变化。
实验过程中,当电子能量达到氩原子第一激发电位时,电子与氩原子发生碰撞,将能量转移给氩原子,使氩原子从基态跃迁到第一激发态。
此时,电子能量减小,导致通过氩气室的电流减小。
通过测量电流变化,可以确定氩原子的第一激发电位。
三、实验装置及操作1. 实验装置(1)电子枪:提供加速电压,使电子获得能量;(2)氩气室:充入低压氩气,形成稀薄气体;(3)偏置电压:施加在电子枪和氩气室之间,使电子加速;(4)微电流计:测量通过氩气室的电流;(5)示波器:观察电子与氩原子碰撞后能量变化。
2. 实验操作(1)连接实验装置,检查各部分连接是否牢固;(2)打开电子枪电源,调节加速电压,使电子能量可调;(3)充入低压氩气,观察氩气室中电流变化;(4)调节偏置电压,使电子与氩原子发生碰撞;(5)观察示波器,记录电子与氩原子碰撞后能量变化;(6)调节加速电压,重复实验,记录数据。
实验报告弗兰克赫兹实验报告内容_0833文档
2020实验报告弗兰克赫兹实验报告内容_0833文档EDUCATION WORD实验报告弗兰克赫兹实验报告内容_0833文档前言语料:温馨提醒,教育,就是实现上述社会功能的最重要的一个独立出来的过程。
其目的,就是把之前无数个人有价值的观察、体验、思考中的精华,以浓缩、系统化、易于理解记忆掌握的方式,传递给当下的无数个人,让个人从中获益,丰富自己的人生体验,也支撑整个社会的运作和发展。
本文内容如下:【下载该文档后使用Word打开】(1)实验装置使用220V交流单相电源,电源进线中的地线要接触良好,以防干扰和确保安全。
(2)函数记录仪的X输入负端不能与Y输入的负端连接,也不能与记录仪的地线(⊥)连接,否则要损坏仪器。
(3)实验过程中若产生电离击穿(即电流表严重过载现象)时,要立即将加速电压减少到零。
以免损坏管子。
(4)加热炉外壳温度较高,移动时注意用把手,导线也不要靠在炉壁上,以免灼伤和塑料线软化。
1.熟悉实验装置,掌握实验条件。
该实验装置由F-H管、恒温加热电炉及F-H实验装置构成,其装置结构如下图所示:C:DocumentsandSettingsAdministrator.EUPMS_1.000桌面3.jpgF-V管中有足够的液态汞,保证在使用温度范围内管内汞蒸气总处于饱和状态。
一般温度在100ºC至250ºC。
并且由于Hg对温度的灵敏度高,所以温度要调好,不能让它变化太大。
灯丝电压控制着阴极K发射电子的密度和能量分布,其变化直接影响曲线的形状和每个峰的位置,是一个关键的条件。
2.测量Hg的第一激发电位。
1)起动恒温控制器,加热地F-H管,使炉温稳定在157ºC,并选择合适的灯丝电压,VG1K=2.5V,VG2p=1.5V,Vf=1.3V。
2)改变VG2k的值,并记录下对应的Ip值上(每隔0.2V记录一个数据)。
3)作数据处理,作出对应的Ip-VG2k图,并求出Hg的第一激发电位(用逐差法)。
弗兰克赫兹实验实验报告
一、实验目的1. 测量氩原子的第一激发电势,验证原子能级的存在。
2. 加深对量子化概念的理解。
3. 掌握原子碰撞激发和测量的方法。
二、实验原理弗兰克-赫兹实验基于玻尔的原子能级理论。
根据该理论,原子只能长时间地停留在一些稳定的能级上,称为定态能级。
当电子从低能级跃迁到高能级时,需要吸收一定的能量,这个能量等于两能级之间的能量差。
通过实验测量电子与原子碰撞时能量的交换情况,可以证明原子能级的存在。
实验中,我们采用慢电子与稀薄气体中原子碰撞的方法。
实验装置包括弗兰克-赫兹管、加热炉、温控装置、电源组、扫描电源和微电流放大器等。
三、实验步骤1. 将弗兰克-赫兹管置于加热炉中,调节炉温至实验要求。
2. 调节灯丝电压、第一栅极电压和第二栅极电压,使管内保持一定的汞蒸气饱和蒸气压。
3. 打开电源,调节扫描电源,使电子在加速电压作用下获得足够的能量。
4. 逐渐增加加速电压,观察输出电流的变化。
5. 记录输出电流与加速电压的关系,分析实验数据。
四、实验结果与分析实验结果显示,当加速电压逐渐增加时,输出电流也随之增加。
当加速电压达到一定值时,输出电流突然减小,并保持不变。
这说明电子与汞原子发生了碰撞,将能量传递给汞原子,使其从低能级跃迁到高能级。
这个能量等于两能级之间的能量差,即第一激发电势。
根据实验数据,我们计算得出氩原子的第一激发电势约为16.5V。
这与理论值相符,证明了原子能级的存在。
五、实验结论1. 通过弗兰克-赫兹实验,我们验证了原子能级的存在,加深了对量子化概念的理解。
2. 实验结果表明,原子能级是分立的,电子与原子碰撞时能量交换是量子化的。
3. 弗兰克-赫兹实验是研究原子内部结构的重要手段,对于近代物理学的发展具有重要意义。
六、实验体会通过本次实验,我深刻体会到以下两点:1. 实验是验证理论的重要手段。
在实验过程中,我们需要仔细观察实验现象,分析实验数据,从而得出结论。
2. 实验过程中,我们需要严谨、细致,以确保实验结果的准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弗兰克 -赫兹实验
一.实验目的
测量 F-H 管传统情况下加速电压与板极电流的关系曲线。
二.实验原理
1.激发电势
(1)玻尔的原子理论
原子只能较长地停留在定态,原子在这些状态时,不发射也不吸收能量。
各
定态有一定的能量,其数值是彼此分割的。
原子的能量不论通过什么方式发生改变,它只能从一个定态跃迁到另一个定态。
原子从一个定态跃迁到另一个定态而发射或吸收辐射时,辐射频率是一定
的,如果用E
m和
E
n分别表示有关两定态的能量,辐射的频率决定如下关系:
h E m E n
式中,h
为普朗克常量,为了使原子从低能级向高能级跃迁,可以通过具有
一定能量的电子与原子相碰撞进行能量交换的办法来实现。
( 2)设初速度为零的电子在电势差为U 0的加速电场作用下,获得能量
eU0,当具有这种能量的汞电子与稀薄气体的原子发生碰撞时,就会发生能量
交换。
如以 E1代表汞原子的基态能量,E2代表汞原子的第一激发态能量,那么
当汞原子吸收从电子传递来的能量恰为
eU0 E2 E1(1)
汞原子就会从基态跃迁到第一激发态,相应的电势差称为汞的第一激发电
势。
测定出这个电势差 U 0,就可以根据公式(1)求出汞原子的基态和第一激发
态之间的能量差了。
2.弗兰克 - 赫兹管
K5BKGP]BYN.png" \* MERGEFORMATINET K5BKGP]BYN.png" \* MERGEFORMATINET
图一:G1G2短接,G1G2为等势区,电子由热阴极发出,经加速电压U
G2K使电
子加速,电子可达到任意位置。
如果电子在空间中与汞原子碰撞,把自己一部分能量传
给
汞原子。
从阴极射出来的电子能量不同,从小到大分布,能量大的原子传递给汞原子能量,先进入激发状态。
图二:加速电压的正极接 G 1;图三:加速电压的正极接 G2。
这样连接的电路 , 能保证没有热电子打到板极上,只有正离子会从加速电压正极向板极加速运动。
此时由于原子电离可以测到板极电流。
三.实验装置
1.弗兰克 -- 赫兹管
弗兰克 - 赫兹管为实验仪的核心部件,弗兰克 - 赫兹管采用间热式阴极、双栅极和板极的四极形式,各极均为圆筒状。
弗兰克 -- 赫兹管充汞气,玻璃封装。
2.工作电源: F—H 管电源组用来提供 F— H 管各极所需的工作电压。
其中包括灯丝电压 UF,直流 0V~6.3V 连续可调;第一栅极电压 UG1K,直流 0~5V 连续可调;第二栅极电压 UG2K,直流 0~100V连续可调。
3.扫描电源和微电流放大器:提供 0~12V 的手动可调直流电压或自动慢扫描输
出锯齿波电压,作为 F—H 管的加速电压,供手动测量或函数记录仪测量。
4.微电流测量仪:微电流放大器用来检测 F—H 管的板流。
四.实验内容
1.了解弗兰克 -- 赫兹管的结构
2.了解炉温对汞管内蒸汽浓度和电子自由程的控制,蒸汽浓度与 T 为指数关系,自由程与 T 成反比关系。
3.分析电子碰撞原子造成原子激发类型和退激发的后果,即造成原子能级的跳
跃。
原子激发类型分为:低激发、高激发、电离。
并且需要的能量越来越高。
激
发类型与自由程的关系:自由程越小,碰撞的机会越大,低激发概率就越大。
因
此:
在炉温为 140 摄氏度时,观察低激发态;
在炉温为 100 摄氏度时,观察高激发态;
在 70 至 80 摄氏度时,观察电离现象。
退激发:原子处于低激发态时是不稳定的,容易从高能级跃迁到低能级,能量通
常是同 u 过光辐射释放出去,在原子与原子之间传递。
3.选择外部电路,连接电路图,从 0.0v 起,每隔一定的电压值调节电压源 U GK,仔细观察弗兰克 - 赫兹管的极板电流值I p的变化,读出极板电流值I p及对应的电
压值 U GK。
4.自拟表格,详细记录实验条件和相应的 I U G2K值。
五.实验数据分析
表 1测量汞原子的电离曲线
电压 U GK(V)板极电流 I
p
()
A
7.60.1 7.80.3 80.4 8.10.6 8.20.7 8.30.9 8.61
8.9 1.2
9 1.3 9.1 1.4 9.3 1.8
9.52
10.6 2.1 12.6 2.2 12.83
12.9 3.4
13.24 13.6 6.1 13.78 13.911 1412.6
14.321.2
14.424
14.536.7
14.639
14.742
14.846
图四
根据实验图像可知,该图像可分为 4 个阶段。
第一阶段( A 点):电流为 0,说明板极上没有粒子打上去,也没有粒子跑出来,即没有粒子激发也没有粒子电离。
第二阶段( A--B 段):激发开始,光电流产生,光子打到板极上。
第三阶段:( B--C 段)激发达到饱和,
加速电压同时是控制电压,热电子发射
达到饱和,此时G
1
G
2间是等势区,热电子在获得了加速能量后,在此区与汞
原子碰撞,碰撞的距离长,碰撞机会多,因此,在加速能量没有达到电离能以前,
就会有很多汞原子被激发,因紫外辐射所形成的光电流较大,能被测量到,这就是“矮平台”的来源,但是此时加速能量不足以达到电离能。
第四阶段:(C以后)电离开始,
当电子的能量被加速到电离能以上的数值,电
子与原子的碰撞就可能使汞原子电离,而电子在奔向极板 p 的过程被加速,所获得的能量有可能让别的原子电离,形成“雪崩效应”,极板电流就会迅速增大,
这就是曲线上升的原因。
表二
电压 U GK(V)板极电流I
p
()
A
8.90 130 13.40.1 13.50.2 13.61
13.9 1.2
14 1.4 14.12 14.3 2.4 14.5 2.6 14.6 2.8 14.73 14.8 3.8 154 15.1 4.8 15.2 5.8 15.57.2 15.68.1 15.78.2 15.910.1 1610.4 16.213.8 16.415.9 16.617.9 16.921.9 1724 17.126 17.227.9 17.432.2 17.534 17.636 17.739.2
17.840.1
17.942.3
18.149
表三
电压 U GK(V)板极电流I
p
()
A
25.50 260.1
27.10.8
28.81 30.5 1.2
30.8 1.3
31.1 1.5 31.4 1.7
31.6 1.9
32.32 32.7 2.1 333 33.1 3.4 33.3 3.8 33.4 3.9 33.54 33.6 4.2
33.7 5.9
34 6.2 34.28 34.38.6 34.49.9 34.510.2 34.711.9 34.813
34.914.1
35.116 35.218.4 35.522 35.623.8 35.726 3632 36.136 36.238 36.442.4 36.546.6 36.649.9
图五
前三个不同的电路图所测数据画在在同一个表上所得到的结果。
图中电流为
0 时电压的值有明显的差别,造成这种情况的原因是:对于图一电路来说,G 2
与 P 之间是反射区,加速电压同时是控制电压。
此时G 1 与 G 2 间是等势区,热
电子在获得了加速能量后,在此区与汞原子碰撞,碰撞的距离长,碰撞机会多,
所以整体比较靠左;对于图二电路来说,加速电压同时也是控制电压,电子一旦进入了 G1与 P 之间的反射区域 , 就开始减速,到不足一半的距离就要反射回来。
此时,电子与原子非弹性碰撞的机会少,在电子能量达到电离能以前,汞原子被激发的数量少,所以比图一电路所得曲线整体右移;对于图三电路来说, G2与 P 之间是反射区,加速电压被阴极到G2的长距离所分散。
同时悬空的G1收集部分电子,使该处电位略有降低。
六.参考文献
董键李咏梅崔秀芝弗兰克 - 赫兹实验中几个问题的研究高铁
军孟祥省王书运近代物理实验。