大物仿真实验报告_热敏电阻的温度特性
关于大学物理实验报告参考精选5篇(最新)
大学物理实验报告1摘要:热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,具有许多独特的优点和用途,在自动控制、无线电子技术、遥控技术及测温技术等方面有着广泛的应用。
本实验通过用电桥法来研究热敏电阻的电阻温度特性,加深对热敏电阻的电阻温度特性的了解。
关键词:热敏电阻、非平衡直流电桥、电阻温度特性1、引言热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为(-0.003~+0.6)℃-1。
因此,热敏电阻一般可以分为:Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。
国产的主要是指MF91~MF96型半导体热敏电阻。
由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。
大多应用于测温控温技术,还可以制成流量计、功率计等。
Ⅱ、正电阻温度系数(简称PTC)的热敏电阻元件常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。
这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。
载流子数目随温度的升高呈指数增加,载流子数目越多,电阻率越小。
应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。
2、实验装置及原理【实验装置】FQJ—Ⅱ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(2.7kΩ)以及控温用的温度传感器),连接线若干。
【实验原理】根据半导体理论,一般半导体材料的电阻率和绝对温度之间的关系为(1—1)式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。
热敏电阻实验报告
热敏电阻实验报告————————————————————————————————作者:————————————————————————————————日期:班 级__光电3班___________ 组 别____第二组_________ 姓 名__邓菊霞___________ 学 号_1110600095_____日 期___2012.11.20____ 指导教师_刘丽峰___【实验题目】 热敏电阻温度特性实验【实验目的】1、研究热敏电阻的温度特性;2、掌握非平衡电桥的工作原理;3、了解半导体温度计的结构及使用方法【实验仪器】直流稳压电源、滑线变阻器、热敏电阻、温度计、电阻箱、微安表、检流计、保温杯、冰块等。
【实验原理】热敏电阻器是敏感元件的一类,按照温度系数不同分为正温度系数热敏电阻器(PTC )和负温度系数热敏电阻器(NTC )。
热敏电阻器的典型特点是对温度敏感,不同的温度下表现出不同的电阻值。
正温度系数热敏电阻器(PTC )在温度越高时电阻值越大,负温度系数热敏电阻器(NTC )在温度越高时电阻值越低,它们同属于半导体器件。
本实验所用的是负温度系数热敏电阻。
负温度系数热敏电阻其电阻-温度关系的数学表达式为:)]T T (B exp[R R n T T 0011-= (1) 式中T R 、0T R 代表温度为T 、0T 时热敏电阻的阻值,n B 为热敏电阻的材料系数(n 代表负电阻温度系数)。
上式是一个经验公式,当测温范围不太大时(<450℃),该式成立。
其关系曲线如左图所示。
为便于使用,常取环境温度为25℃作为参考温度(即0T =298K ),则负温度系数的热敏电阻的电阻―温度特性可写成:)]T T (B exp[R R n T 02511-= (2) 0T R (常为25R )是热敏电阻的标称电阻,其大小由热敏电阻材料和几何尺寸决定,对于一个确定的热敏电阻,25R 和n B 为常数,可用实验方法求得。
热敏电阻温度特性研究实验
热敏电阻温度特性研究实验热敏电阻是一种电阻值随温度变化而变化的电阻器件,其特性可以用于温度测量、温度补偿和温度控制等应用。
为了研究热敏电阻的温度特性,我们可以进行以下实验来获取相关数据并分析。
第一步:实验准备在进行实验之前,我们需要准备以下材料和仪器:1. 热敏电阻:选择一款具有明确参数和规格的热敏电阻。
我们可以根据实际需求和实验目的选择合适的材料和规格。
2. 温度控制装置:使用恒温水槽或热电偶与温控器等设备来提供稳定的温度环境。
3. 电阻测量设备:选择一台高精度的电阻计来测量热敏电阻的电阻值。
4. 数据记录装置:通过连接电阻计和计算机,或是使用独立的数据记录设备,将实验数据记录下来以便后续分析。
第二步:实验过程1. 首先,将热敏电阻与电阻测量设备连接。
注意确保连接的稳定和可靠,避免因为松动或接触不良导致实验误差。
2. 将热敏电阻放置在温度控制装置中,并设定一系列不同的温度值。
可以根据实验需求选择适当的温度范围和步进值。
3. 保持每个温度值下的稳定状态,等待热敏电阻达到热平衡。
这样确保测量的数据准确可靠。
4. 使用电阻计测量每个温度下热敏电阻的电阻值,并记录下来。
为了提高准确度,可以对每个温度值进行多次测量并取平均值。
5. 根据实验需要,可以重复多次实验以获得更加可靠的数据。
第三步:实验数据分析与应用1. 整理实验数据,将测量得到的热敏电阻电阻值与相应的温度值进行对应。
2. 基于这些数据,我们可以绘制出热敏电阻的温度特性曲线,其中横轴表示温度,纵轴表示电阻值。
通过曲线的形状和趋势,我们可以分析出热敏电阻的温度响应特性和敏感度。
3. 进一步,我们可以根据实验数据和温度特性曲线,开发出与热敏电阻相关的温度测量、控制和补偿等应用。
例如,使用热敏电阻的温度特性来实现恒温控制系统、电子温度计或温度补偿技术。
其他专业性角度:1. 理论分析:可以通过数学模型和物理方程来解释和解析热敏电阻的温度特性。
例如,通过电阻和温度之间的数学关系,可以计算出电阻值随温度变化的速率或曲线斜率。
大物仿真实验报告 热敏电阻的温度特性
大学物理仿真实验报告热敏电阻得温度特性一、实验目得了解热敏电阻得电阻—温度特性及测温原理,学习惠斯通电桥得原理及使用方法,学习坐标变换、曲线改直得技巧。
二、实验所用仪器及使用方法直流单臂电桥、检流计、待测热敏电阻与温度计、调压器。
三、实验原理半导体热敏电阻得电阻—温度特性热敏电阻得电阻值与温度得关系为:为绝对温度,根据定义,电阻温度系数T,AB就是与半导体材料有关得常数,为:R惠斯通电桥得工作原理时得电阻值。
t就是在温度为t如图所示:就就是待测,四个电阻R0,R1,R2Rx组成一个四边形,即电桥得四个臂,其中Rx之间接入与电阻。
在四边形得一对对角AC之间连接电源,而在另一对对角B与D平衡时与D两点电位相等时,中无电流通过,电桥便达到了平衡。
GB检流计G。
当即可求出。
都已知,RxR0R0必有Rx = (R1/R2)·,(R1/R2)与电桥灵敏度得定义为:说明电桥灵敏度越高。
越大,ΔRx式中Δ指得就是在电桥平衡后Rx得微小改变量,n 实验仪器四、实验所测数据? 不同T所对应得Rt 值RR1 / T,及均值,ln 得值tt五、实验结果:tR -1、热敏电阻得特性曲线t数据点连线作图所对应得点做切线,可以求得切线得斜率:在图上找到T=5088/(0-85)=5(500-0)、 K=031 由此计算出:α=-0、二次拟合得曲线:所对应得点做切线,可以求得切线得斜率:在图上找到T=5089)/(0-84)=5、(K=495-0 由031 =--0、由此计算出:α1 / TR 2、ln -- ()曲线t仿真实验画出图线如下图所示、将图修正0153A=0A但计算机仿真实验画出得曲线图中得值计算有误,正确得、后如下:5383 0153、,B=3047A=0、由此写出R01530、t=六、思考题 1.如何提高电桥得灵敏度?答:电桥得灵敏度与电源电压,检流计得灵敏度成正比,因此提高电源电压,检2.流计得灵敏度能提高电桥灵敏度。
关于大学物理实验报告参考精选5篇
关于大学物理实验报告参考精选5篇通过实验,我们得出结果,很明显的可以发现热敏电阻的阻值对温度的变化是非常敏感的。
下面就是小编给大家带来的大学物理实验报告,希望能帮助到大家!大学物理实验报告1摘要:热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,具有许多独特的优点和用途,在自动控制、无线电子技术、遥控技术及测温技术等方面有着广泛的应用。
本实验通过用电桥法来研究热敏电阻的电阻温度特性,加深对热敏电阻的电阻温度特性的了解。
关键词:热敏电阻、非平衡直流电桥、电阻温度特性1、引言热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为(-0.003~+0.6)℃-1。
因此,热敏电阻一般可以分为:Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。
国产的主要是指MF91~MF96型半导体热敏电阻。
由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。
大多应用于测温控温技术,还可以制成流量计、功率计等。
Ⅱ、正电阻温度系数(简称PTC)的热敏电阻元件常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。
这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。
载流子数目随温度的升高呈指数增加,载流子数目越多,电阻率越小。
应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。
2、实验装置及原理【实验装置】FQJ—Ⅱ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(2.7kΩ)以及控温用的温度传感器),连接线若干。
热电阻特性实验报告
一、实验目的1. 了解热电阻的基本原理和测温原理。
2. 学习使用惠斯通电桥测量热电阻的电阻值。
3. 掌握热电阻的温度特性曲线测量方法。
4. 分析热电阻的温度系数及其影响因素。
二、实验原理热电阻是一种温度敏感元件,其电阻值随温度变化而变化。
根据温度系数的不同,热电阻可分为正温度系数热敏电阻(PTC)和负温度系数热敏电阻(NTC)。
本实验主要研究NTC热电阻的特性。
热电阻的电阻值与温度之间的关系可以用以下公式表示:\[ R(T) = R_0 \cdot e^{\beta \cdot (1/T - 1/T_0)} \]其中,\( R(T) \) 为温度为 \( T \) 时的电阻值,\( R_0 \) 为参考温度\( T_0 \) 时的电阻值,\( \beta \) 为温度系数。
实验中,我们通过改变环境温度,测量不同温度下的热电阻电阻值,并绘制温度-电阻曲线,从而分析热电阻的温度特性。
三、实验仪器与材料1. 热电阻(NTC)2. 惠斯通电桥3. 直流稳压电源4. 温度计5. 导线6. 数据采集器四、实验步骤1. 将热电阻接入惠斯通电桥的测量电路中。
2. 调节直流稳压电源,使电路中的电流稳定。
3. 读取温度计的温度值,并记录。
4. 读取电桥的输出电压值,并记录。
5. 根据输出电压值,计算热电阻的电阻值。
6. 改变环境温度,重复步骤3-5,得到一系列温度-电阻数据。
7. 绘制温度-电阻曲线。
五、实验结果与分析根据实验数据,绘制了温度-电阻曲线,如图1所示。
图1 温度-电阻曲线从图1可以看出,热电阻的电阻值随温度升高而降低,符合NTC热电阻的特性。
在实验温度范围内,热电阻的温度系数约为 \( \beta = -0.005 \)。
此外,我们还分析了以下影响因素:1. 温度范围:实验结果表明,在-20℃至80℃的温度范围内,热电阻的温度特性较为稳定。
2. 环境温度:环境温度的变化会影响热电阻的测量精度,因此在实验过程中应尽量保持环境温度稳定。
计算机仿真实验半导体热敏电阻的电阻—温度特性实验报告
半导体热敏电阻的电阻—温度特性实验原理 1. 半导体热敏电阻的电阻—温度特性:某些金属氧化物半导体(如:Fe3O4、MgCr2O4 等)的电阻与温度的关系满足式(1)RT = R∞ eB T(1)式中 RT 是温度为 T 时的热敏电阻阻值,R∞ 是 T 趋于无穷时热敏电阻的阻值①,B 是热敏电阻的材料常数, T 为热力学温度。
热敏电阻对温度变化反应的灵敏度一般由电阻温度系数α来表示。
根据定义,电阻温度系数可由式(2)来决定:α=1 dRT RT dT(2)由于这类热敏电阻的α值为负,因此被称为负温度系数(NTC)热敏电阻,这也是最常见的一类热敏电阻。
2. 惠斯通电桥的工作原理半导体热敏电阻的工作阻值范围一般在 1~106Ω,需要较精确测量时常用电桥法,惠斯通电桥是一种应用很广泛的仪器。
惠斯通电桥的原理如图 1 所示。
四个电阻 R0 、 R1 、R2 和 R x 组成一个四边形,其中 R x 就是待测电阻。
在四边形的一对对角 A 和C 之间连接电源;而在另一对对角 B 和 D 之间接入检流计 G。
当 B 和 D 两点电势相等时,G 中无电流通过,电桥便达到了平衡。
平衡时必D R1 RxSGAGCR2 R B ER0Sb图 1 惠斯通电桥原理图图 2 惠斯通电桥面板图①由于(1)式只在某一温度范围内才适用,所以更确切的说R∞ 仅是公式的一个系数,而并非实际 T 趋于无穷时热敏电阻的阻值。
有 Rx =R1 R R0 , 1 和 R0 都已知, R x 即可求出。
R0 为标准可变电阻,由有四个旋钮的电 R2 R2阻箱组成,最小改变量为 1Ω。
R1 称电桥的比率臂,由一个旋钮调节,它采用十进制固定 R2值,共分 0.001,0.01,0.1,1,10,100,1000 七挡。
测量时应选择合适的挡位,保证测量值有 4 位有效数。
电桥一般自带检流计,如图 2 所示,如果有特殊的精度要求也可外接检流计,本实验采用外接的检流计来判断电桥的平衡。
热敏电阻温度特性的研究带实验数据处理
本科实验报告实验名称:热敏电阻温度特性的研究 (略写)实验15热敏电阻温度特性的研究【实验目的和要求】 1. 研究热敏电阻的温度特性。
2. 用作图法和回归法处理数据。
【实验原理】 1. 金属导体电阻金属导体的电阻随温度的升高而增加,电阻值t R 与温度t 间的关系常用以下经验公式表示:)1(320 ++++=ct bt t R R t α (1)式中t R 是温度为t 时的电阻,0R 为00=t C 时的电阻,c b ,,α为常系数。
在很多情况下,可只取前三项:)1(20bt t R R t ++=α (2)因为常数b 比α小很多,在不太大的温度范围内,b 可以略去,于是上式可近似写成:)1(0t R R t α+= (3)式中α称为该金属电阻的温度系数。
2. 半导体热敏电阻热敏电阻由半导体材料制成,是一种敏感元件。
其特点是在一定的温度范围内,它的电阻率T ρ随温度T 的变化而显著地变化,因而能直接将温度的变化转换为电量的变化。
一般半导体热敏电阻随温度升高电阻率下降,称为负温度系数热敏电阻,其电阻率T ρ随热力学温度T 的关系为TB T e A /0=ρ (4)式中0A 与B 为常数,由材料的物理性质决定。
也有些半导体热敏电阻,例如钛酸钡掺入微量稀土元素,采用陶瓷制造工艺烧结而成的热敏电阻在温度升高到某特定范围(居里点)时,电阻率会急剧上升,称为正温度系数热敏电阻。
其电阻率的温度特性为: TB T eA ⋅'=ρρ (5)式中A '、ρB 为常数,由材料物理性质决定。
对(5)式两边取对数,得A T BR T ln 1ln +=(6)可见T R ln 与T1成线性关系,若从实验中测得若干个T R 和对应的T 值,通过作图法可求出A(由截距Aln求出)和B(即斜率)。
ABC R TR2I1IgⅠⅡI2G3.实验原理图图1 实验原理图4.单臂电桥的基本原理用惠斯通电桥测量电阻时,电桥应调节到平衡状态,此时0=gI。
热敏电阻温度特性研究
实验报告实验名称:热敏电阻温度特性研究学院:班级:姓名:学号:一、实验目的及要求了解热敏电阻的电阻—温度特性及测温原理,学习惠斯通电桥的原理及使用方法,学习坐标变换、曲线改直的技巧。
二、实验器材热敏电阻测温实验装置包括:自耦调压器、待测热敏电阻和温度计、直流单臂电桥、电压源、滑线变阻器(2个)、四线电阻箱(3个)、检流计、单刀开关。
有关器材的一些注意事项:1.实验开始时,加热电压不宜太高。
因为实验过程中,既要观察温度的变化,又要调节电桥平衡,操作有一定难度。
待操作熟练后,可适当加大电压,让温度升高的快些。
2.实验完成后,一定要将电池按钮开。
当电桥达到平衡时,检流计中电流为零。
在使用检流计时,要注意保护检流计,不要让大电流通过检流计。
3.实验完毕后,为了保护检流计,请松开“电计”和“短路”按钮,并将档位旋钮打到“红点”位置。
三、实验原理1.半导体热敏电阻的电阻—温度特性热敏电阻的电阻值与温度的关系为:A,B是与半导体材料有关的常数,T为绝对温度,根据定义,电阻温度系数为:R t是在温度为t时的电阻值。
2.惠斯通电桥的工作原理,如图所示:四个电阻R1,R2,R3,R x组成一个四边形,即电桥的四个臂,其中R x就是待测热敏电阻。
在四边形的一对对角A和C之间连接电源,而在另一对对角B和D之间接入检流计G。
当B和D两点电位相等时,G中无电流通过,电桥便达到了平衡。
平衡时必有R x=(R2/R1)·R3,(R2/R1)和R3都已知,R x即可求出。
电桥灵敏度的定义为:式中△R x指的是在电桥平衡后R x的微小改变量,△n越大,说明电桥灵敏度越高。
四、实验内容1.用箱式电桥研究热敏电阻温度特性(1)使用内接电源和内接检流计,按照实验电路图连线。
(2)线路连接好以后,检流计调零。
(3)调节直流电桥平衡。
(4)测量并计算出室温时待测热敏电阻值R x,微调电路中的电阻箱,测量并根据电桥灵敏度公式:S=△n/(△Rx/Rx)或S=△n/(△R0/R0),计算出室温时直流电桥的电桥灵敏度。
2021年整理大物仿真实验报告 热敏电阻的温度特性.doc
2021年整理大物仿真实验报告热敏电阻的温度特性.doc
一、实验目的
本次实验是为了研究热敏电阻的温度特性。
热敏电阻是一种特殊的电阻,通过实
验的方法来研究其随温度变化的特性,以确定其在不同温度下的电阻值,找出其受热量、
温度变化下的传感响应规律。
二、实验原理
热敏电阻的电阻值随温度的变化而变化,其存在热敏效应。
具体来说,温度升高,热敏电阻的电阻值减小,反之温度降低,热敏电阻的电阻值则增大。
本次实验即是利用此
效应进行热敏电阻特性测试,以便研究其电阻值随温度变化的规律。
三、实验仪器与设备
实验的仪器装置主要有电源、万用表、频道及实验箱等。
实验箱对热敏电阻施加
不同温度,万用表检测热敏电阻电阻值,实验箱根据万用表检测出的信号进行反馈控温,
其参数设置为保持恒温30°C。
四、实验程序
1.启动电源,将热敏电阻放入实验箱内;
2.设置万用表检测热敏电阻的电阻值;
3.调整实验箱参数设置恒温30°C;
4.记录热敏电阻的电阻值和温度;
5.调整实验箱温度,重复步骤4,直至温度抵达预设值,实验结束。
五、实验结果
实验结果表中记录的是热敏电阻的电阻值R(Ω)与实验箱温度T(°C)之间的
关系,表格中温度标记为T1~T8,电阻值标记为R1~R8。
温度T 电阻值R
T1 R1
T2 R2
T3 R3
T4 R4
T5 R5 T6 R6 T7 R7 T8 R8。
热敏电阻实验报告
Rt 均值 4730 3905 3340 2940 2400 2150 1980 1550 1375 1205 1030 985 780 690
学生实验报告
倍率 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
降温 R0 4750 3910 3340 2990 2400 2090 1860 1600 1380 1210 1030 980 780 690
倍率 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
1/T 0.00341 0.00336 0.00330 0.00320 0.00311 0.00308 0.00304 0.00301 0.00298 0.00294 0.00291 0.00285 0.00282 0.00279
1、 原始数据记录表:
温度 T
升温 R0
T=20
4710
T=25
3900
T=30
3340
T=35
2890
T=40
2400
T=45
2200
T=50
1900
T=55
1430
T=60
1370
T=65
1200
T=70
1030
T=75
990
T=80
780
T=85
690
2、计算结果:
T(K) T=273+20 T=273+25 T=273+30 T=273+35 T=273+40 T=273+45 T=273+50 T=273+55 T=273+60 T=273+65 T=273+70 T=273+75 T=273+80 T=273+85
大物仿真实验报告热敏电阻的温度特性
大学物理仿真实验报告热敏电阻的温度特性一、实验目的了解热敏电阻的电阻—温度特性及测温原理,学习惠斯通电桥的原理及使用方法,学习坐标变换、曲线改直的技巧;二、实验所用仪器及使用方法直流单臂电桥、检流计、待测热敏电阻和温度计、调压器;三、实验原理半导体热敏电阻的电阻—温度特性热敏电阻的电阻值与温度的关系为:A,B是与半导体材料有关的常数,T为绝对温度,根据定义,电阻温度系数为:R是在温度为t时的电阻值; 惠斯通电桥的工作原理t如图所示:四个电阻R0,R1,R2,Rx组成一个四边形,即电桥的四个臂,其中Rx就是待测电阻;在四边形的一对对角A和C之间连接电源,而在另一对对角B和D之间接入检流计G;当B和D两点电位相等时,G中无电流通过,电桥便达到了平衡;平衡时必有Rx = R1/R2·R0,R1/R2和R0都已知,Rx即可求出;电桥灵敏度的定义为:式中ΔRx指的是在电桥平衡后Rx的微小改变量,Δn越大,说明电桥灵敏度越高;实验仪器四、实验所测数据•不同T所对应的Rt 值R均值,1 / T,及ln R t的值t五、实验结果:1.热敏电阻的R t-t特性曲线数据点连线作图在图上找到T=50所对应的点做切线,可以求得切线的斜率: K=500-0/0-85=由此计算出:α=二次拟合的曲线:在图上找到T=50所对应的点做切线,可以求得切线的斜率:K=495-0/0-84=由由此计算出:α=R-- 1 / T曲线t仿真实验画出图线如下图所示但计算机仿真实验画出的曲线图中A的值计算有误,正确的A=.将图修正后如下:A=,B=由此写出Rt=六、思考题1.如何提高电桥的灵敏度2.答:电桥的灵敏度和电源电压,检流计的灵敏度成正比,因此提高电源电压,检流计的灵敏度能提高电桥灵敏度;另外,检流计电阻,桥臂总阻值,桥臂电阻比也关系到电桥的灵敏度,因此合适的桥臂总阻值,桥臂电阻比也能提高电桥灵敏度;2. 电桥选择不同量程时,对结果的准确度有效数字有何影响答:第1测量盘×1000,即第1测量盘不置于“0”时,结果的有效数字位数都为四位;但选择不同量程时,电阻精确到的小数位数不同;选择量程时,要尽量使能读取四位有效数字,即第1测量盘不置于“0”;。
热敏电阻温度特性研究实验
热敏电阻温度特性研究实验热敏电阻是指在特定温度范围内,其电阻值随温度变化而变化的电阻器件。
它是一种温度传感器,在自动控制、冷却系统、卫生间智能化管理等领域应用广泛。
为了研究热敏电阻的温度特性,我们设计了实验。
具体实验流程如下:实验器材:1.实验箱2.热敏电阻3.万用表4.电烙铁5.电线实验步骤:1.将实验箱开启并连接电源。
2.将热敏电阻连线到万用表中。
3.利用电烙铁将电线与热敏电阻焊接起来。
4.将热敏电阻所在的回路接入到实验箱中的控制板上。
5.调整实验箱的温度,使它从室温升高至40℃,并记录下每个温度点对应的电阻值。
6.将实验数据转化为数据表或图表,并对其进行分析。
7.对实验结果进行讨论,探讨热敏电阻的特性及其在实际应用中的意义。
实验结果:当温度从室温升高至40℃时,热敏电阻的电阻值呈现一个递减的趋势。
随着温度的升高,热敏电阻的电阻值下降的速度也越来越快。
当温度达到一定值(本实验中为35℃)时,热敏电阻的电阻值下降速度会变得更加明显。
分析:首先,在室温下,热敏电阻的电阻值处于其最高点。
这时,温度升高时热敏电阻的电阻值逐渐降低,因为热敏电阻的材料在温度升高时,其内部晶格结构发生变化,导致了电子的迁移距离变小,从而电阻值减小。
其次,当温度超过一定值时,热敏电阻的材料会进入一个临界温度范围内。
在这个范围内,热敏电阻的电阻值的下降速度会明显加快。
原因是在这个温度范围内,热敏电阻的材料会发生另一种相变,导致电子的迁移距离更短,电阻值更小。
结论:本实验通过测量热敏电阻在不同温度下的电阻值,探讨了热敏电阻的温度特性。
实验结果显示,热敏电阻的在温度变化下的电阻值呈现明显的下降趋势。
此外,在临界温度范围内,其电阻值开始加速下降。
这些结论对于热敏电阻在温控、卫浴设备等领域的实际应用具有重要的参考价值。
大学热敏电阻实验报告
大学热敏电阻实验报告摘要:热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,具有许多独特的优点和用途,在自动控制、无线电子技术、遥控技术及测温技术等方面有着广泛的应用。
本实验通过用电桥法来研究热敏电阻的电阻温度特性,加深对热敏电阻的电阻温度特性的了解。
关键词:热敏电阻、非平衡直流电桥、电阻温度特性1、引言热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为(-0.003~+0.6)℃-1。
因此,热敏电阻一般可以分为:Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。
国产的主要是指MF91~MF96型半导体热敏电阻。
由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。
大多应用于测温控温技术,还可以制成流量计、功率计等。
Ⅱ、正电阻温度系数(简称PTC)的热敏电阻元件常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。
这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。
载流子数目随温度的升高呈指数增加,载流子数目越多,电阻率越小。
应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。
2、实验装置及原理【实验装置】FQJ—Ⅱ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(2.7kΩ)以及控温用的温度传感器),连接线若干。
【实验原理】根据半导体理论,一般半导体材料的电阻率和绝对温度之间的关系为(1—1)式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。
大学物理仿真实验报告
大学物理仿真实验报告篇一:大学物理仿真实验报告大学物理仿真实验报告实验日期:2011年5月31日实验人员:机自实验名称:热敏电阻的温度特性一、实验目的:1、了解热敏电阻的电阻—温度特性及测温原理;2、学习惠斯通电桥的原理及使用方法;3、学习坐标变换、曲线改直的技巧。
二、实验原理:热敏电阻---实验原理半导体热敏电阻的电阻—温度特性热敏电阻的电阻值与温度的关系为:A、B是与半导体材料有关的常数,T为绝对温度,根据定义,电阻温度系数为惠斯通电桥的工作原理:如图所示:四个电阻R0,R1,R2,Rx 组成一个四边形,即电桥的四个臂,其中Rx就是待测电阻。
在四边形的一对对角A和C之间连接电源,而在另一对对角B和D之间接入检流计G。
当B和D两点电位相等时,G中无电流通过,电桥便达到了平衡。
平衡时必有Rx = (R1/R2)·R0,(R1/R2)和R0都已知,Rx 即可求出。
电桥灵敏度的定义为:式中ΔRx指的是在电桥平衡后Rx的微小改变量,Δn越大,说明电桥灵敏度越高。
实验仪器三、实验仪器及使用方法:直流单臂电桥、检流计、待测热敏电阻和温度计、调压器、稳压电源。
四、实验内容:1、从室温开始,每隔5°C测量一次Rt,直到85°C。
撤去电炉,使水慢慢冷却,测量降温过程中,各对应温度点的Rt。
2、作ln Rt ~ (R1 / T)曲线,确定式(R1)中常数A和B五、数据记录及处理:1、数据处理结果如下:2、作ln Rt ~ (R1 / T)曲线如下:六、实验结论,误差分析及建议:1、实验结论:了解了惠斯通电桥的原理及使用方法;基本掌握坐标变换、曲线改直的技巧。
作ln Rt ~ (R1 / T)曲线,成线性关系。
2、误差分析:由于在记录过程中温度计视数在变化,故出现误差; 电源不稳定,造成系统误差;数据处理时产生偶然误差。
3、建议:1)在使用检流计时,要注意保护检流计,不要让大电流通过检流计,实验中间要用跃接2)实验过程中要注意电池按钮和接通检流计按钮的使用,检流计按钮先使用粗,然后再使用细,不要两个按钮同时使用。
大学物理实验报告
大学物理实验报告各位读友大家好!你有你的木棉,我有我的文章,为了你的木棉,应读我的文章!若为比翼双飞鸟,定是人间有情人!若读此篇优秀文,必成天上比翼鸟!大学物理实验报告摘要:热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,具有许多独特的优点和用途,在自动控制、无线电子技术、遥控技术及测温技术等方面有着广泛的应用。
本实验通过用电桥法来研究热敏电阻的电阻温度特性,加深对热敏电阻的电阻温度特性的了解。
关键词:热敏电阻、非平衡直流电桥、电阻温度特性1、引言热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为(-0.003~+0.6)℃-1。
因此,热敏电阻一般可以分为:Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。
国产的主要是指MF91~MF96型半导体热敏电阻。
由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。
大多应用于测温控温技术,还可以制成流量计、功率计等。
Ⅱ、正电阻温度系数(简称PTC)的热敏电阻元件常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。
这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。
载流子数目随温度的升高呈指数增加,载流子数目越多,电阻率越小。
应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。
2、实验装置及原理【实验装置】FQJⅡ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(2.7k)以及控温用的温度传感器),连接线若干。
【实验原理】根据半导体理论,一般半导体材料的电阻率和绝对温度之间的关系为(11)式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。
大物仿真实验报告热敏电阻的温度特性-V1
大物仿真实验报告热敏电阻的温度特性-V1以下为正文内容:
热敏电阻是一种电阻值与温度变化呈反比例关系的电子元件。
在实际应用中,热敏电阻常用于温度测量、温度控制等领域。
本文主要介绍了利用大物仿真软件进行的热敏电阻温度特性实验,并总结了实验结果。
一、实验介绍
在大物仿真软件中,我们选用了热敏电阻Rt作为被测元件,在一定的电压U下,通过不同的温度T,测量热敏电阻的电阻值R,进而绘制出热敏电阻的电阻-温度特性曲线。
本文中采用的热敏电阻型号为MF52。
二、实验步骤与结果
1. 搭建电路:将电源接到电阻与热敏电阻组成的串联电路上,开启电源。
将测量手段接入电路,通过测量热敏电阻的电阻值得到其在不同温度下的电阻值,记录数据。
2. 实验数据处理:将测量得到的电阻-温度数据绘制成图表,得到热敏电阻的电阻-温度特性曲线。
3. 实验结果:我们得到了热敏电阻的电阻-温度特性曲线,结果表明热敏电阻在不同温度下的电阻值变化与温度呈反比例关系,即随着温度的升高,热敏电阻的电阻值逐渐降低。
同时,我们还发现在一定范围内,热敏电阻的电阻值变化与温度变化的比例系数相对稳定,可用于温度测量和控制。
三、实验总结
本实验利用大物仿真软件进行了热敏电阻的电阻-温度特性曲线绘制实验,结果表明热敏电阻在不同温度下的电阻值变化与温度呈反比例关系,且在一定范围内比例系数相对稳定。
该实验验证了热敏电阻的基本特性,并为其在实际应用中提供了理论基础。
大物仿真实验报告热敏电阻的温度特性(1)
大物仿真实验报告热敏电阻的温度特性(1)实验背景:热敏电阻的温度特性是指在不同温度下,热敏电阻的电阻值变化情况。
热敏电阻是指在一定温度范围内电阻值随温度变化而变化的电阻器件。
其应用广泛,例如在汽车引擎中使用用于测量水温,或在空调中使用用于测量室内温度等。
实验目的:本次实验旨在了解热敏电阻的基本特性,探究其电阻值与温度之间的关系,并通过仿真实验的结果对理论进行验证。
实验原理:热敏电阻将温度变化给传感器,传感器在传递到仪表中转化为电信号。
热敏电阻分为两种:正温度系数电阻和负温度系数电阻。
正温度系数电阻,随温度的升高,电阻值也随之升高;负温度系数电阻,随温度的升高,电阻值随之降低。
仿真实验过程:本次实验采用Multisim软件对热敏电阻的温度特性进行仿真,具体步骤如下:1.利用仿真器件库中的电阻器添加热敏电阻器件。
2.将测得的不同温度数据导入Multisim软件中。
3.在Multisim软件中将温度数据与电阻值的关系图形化。
4.分别绘制不同温度下,热敏电阻的电阻值图形,并进行比较分析。
实验结果:通过Multisim软件仿真得到的热敏电阻的电阻值-温度特性曲线如下所示:从图中可以看出,在不同温度下,热敏电阻的电阻值呈现出不同的趋势。
在较低温度下,电阻值随温度的增加而增加,而在较高温度下,电阻值反而随温度的升高而下降。
根据电阻温度系数的定义,我们可以知道这是由于热敏材料呈正温度系数或负温度系数导致的。
结论:通过本次实验,我们得出了热敏电阻的温度特性曲线,在实验结果的基础上,我们得到如下结论:1.热敏电阻器件随温度变化导致电阻值变化。
2.热敏电阻器件具有一定的温度灵敏度。
3.热敏电阻器件的温度特性可以根据实验结果进行比较并分析。
综上所述,本次实验深入了解了热敏电阻的基本特性,探究了其电阻值与温度之间的关系,并通过仿真实验的结果对理论进行了验证,为我们今后更好地应用和开发热敏电阻器件提供了帮助。
大学物理热敏电阻实验报告
大学物理热敏电阻实验报告一、实验目的1、了解热敏电阻的特性和工作原理。
2、掌握测量热敏电阻温度特性的方法。
3、学会使用数据处理软件对实验数据进行分析和处理。
二、实验原理热敏电阻是一种对温度敏感的电阻元件,其电阻值随温度的变化而显著变化。
热敏电阻分为正温度系数(PTC)热敏电阻和负温度系数(NTC)热敏电阻。
本实验中使用的是负温度系数热敏电阻,其电阻值随温度的升高而减小。
热敏电阻的电阻值与温度之间的关系可以用以下经验公式表示:\ R_T = R_0 e^{B\left(\frac{1}{T} \frac{1}{T_0}\right)}\其中,\(R_T\)为温度\(T\)时的电阻值,\(R_0\)为温度\(T_0\)时的电阻值,\(B\)为材料常数。
通过测量不同温度下热敏电阻的电阻值,然后对数据进行拟合,可以得到热敏电阻的温度特性曲线,并确定其材料常数\(B\)。
三、实验仪器1、热敏电阻实验装置,包括加热装置、温度传感器、电阻测量仪等。
2、计算机及数据采集软件。
四、实验步骤1、连接实验装置将热敏电阻接入电路,连接好温度传感器和电阻测量仪,并将其与计算机相连。
2、设定实验参数在计算机上设置温度测量范围、测量间隔等参数。
3、开始测量启动加热装置,让温度逐渐升高,同时计算机自动采集不同温度下热敏电阻的电阻值。
4、重复测量为了提高实验数据的准确性,重复进行多次测量。
5、结束实验当温度达到设定的上限时,停止加热,结束实验。
五、实验数据记录与处理以下是一组实验测量得到的数据:|温度(℃)|电阻值(Ω)||||| 20 | 1000 || 25 | 850 || 30 | 720 || 35 | 600 || 40 | 500 || 45 | 420 || 50 | 360 |对实验数据进行处理,首先将温度转换为绝对温度\(T\)(单位:K),计算公式为\(T = t + 27315\)。
然后,对数据进行对数变换,得到\(ln R_T\)和\(1/T\)的值。
热敏电阻特性测量及应用实验报告
热敏电阻特性测量及应用实验报告热敏电阻特性测量及应用实验报告引言:热敏电阻是一种能够根据温度变化而改变电阻值的器件。
它在许多领域都有广泛的应用,如温度测量、温度控制等。
本实验旨在通过测量热敏电阻的特性曲线,并探索其在温度测量中的应用。
实验设备与方法:实验中我们使用了一台数字万用表、一个恒温水槽和一个热敏电阻。
首先,我们将热敏电阻连接到数字万用表的电阻测量端口,并将其放入恒温水槽中。
然后,我们逐渐调节水槽的温度,同时记录下热敏电阻的电阻值和水槽的温度。
实验结果与分析:通过实验测量,我们得到了热敏电阻的特性曲线。
从曲线上可以看出,热敏电阻的电阻值随着温度的升高而减小,呈现出一个明显的负温度系数特性。
这是因为热敏电阻的电阻值与温度之间存在着一定的函数关系,一般可以用以下公式表示:R = R0 * exp(B * (1/T - 1/T0))其中,R为热敏电阻的电阻值,R0为参考温度下的电阻值,B为常数,T为当前温度,T0为参考温度。
根据实验数据,我们可以通过拟合曲线来确定热敏电阻的参数。
通过计算,我们得到了热敏电阻的参考电阻值R0和常数B的数值。
这些参数可以用于后续的温度测量和控制。
应用实例:热敏电阻在温度测量中有着广泛的应用。
例如,在温度传感器中,我们可以将热敏电阻与其他电路元件组合,构成一个精确测量温度的装置。
通过测量热敏电阻的电阻值,我们可以间接地得到当前温度的数值。
这在许多领域都有着重要的应用,如工业控制、医疗设备等。
此外,热敏电阻还可以用于温度控制。
通过将热敏电阻与其他控制电路相连,我们可以根据热敏电阻的电阻值来调节温度。
当温度超过设定的阈值时,控制电路可以自动启动冷却装置,以维持温度在设定范围内。
结论:通过本次实验,我们了解了热敏电阻的特性及其在温度测量和控制中的应用。
热敏电阻的负温度系数特性使其成为一种理想的温度传感器,可以广泛应用于各个领域。
通过进一步的研究和实践,我们可以进一步发挥热敏电阻的优势,为社会的发展做出更大的贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热敏电阻的温度特性
一、实验目的
(1)了解热敏电阻的电阻—温度特性及测温原理
(2)学习惠斯通电桥的原理及使用方法
(3)学习坐标变换、曲线改直的技巧。
二、实验所用仪器及使用方法
直流单臂电桥、检流计、待测热敏电阻和温度计、调压器。
实验过程中要注意电池按钮和接通检流计按钮的使用,检流计按钮先使用粗,然后再使用细,不要两个按钮同时使用。
实验完成后,一定要将电池按钮开。
三、实验原理
半导体热敏电阻的电阻—温度特性
热敏电阻的电阻值与温度的关系为:
A,B是与半导体材料有关的常数,T为绝对温度,根据定义,电阻温度系数为:
R
是在温度为t时的电阻值。
惠斯通电桥的工作原理
t
如图所示:
四个电阻R0,R1,R2,Rx组成一个四边形,即电桥的四个臂,其中Rx就是待测电阻。
在四边形的一对对角A和C之间连接电源,而在另一对对角B和D之间接入检流计G。
当B和D两点电位相等时,G中无电流通过,电桥便达到了平衡。
平衡时必有Rx = (R1/R2)·R0,(R1/R2)和R0都已知,Rx即可求出。
电桥灵敏度的定义为:
式中ΔRx指的是在电桥平衡后Rx的微小改变量,Δn越大,说明电桥灵敏度越高。
实验仪器
四、测量内容及数据处理
1、不同T所对应的Rt 值
1.热敏电阻的R t-t特性曲线
数据点连线作图
在图上找到T=50所对应的点做切线,可以求得切线的斜率: K=(500-0)/(0-85)=5.88
由此计算出:α=-0.031
二次拟合的曲线:
在图上找到T=50所对应的点做切线,可以求得切线的斜率:K=(495-0)/(0-84)=5.89
由
由此计算出:α=--0.031
2、R
t 均值,1 / T,及ln R
t
的值
ln R t -- (1 / T)曲线
仿真实验画出图线如下图所示
A=0.0153,B=3047.5383
由此写出R t= 0.0153
五、思考题
1.如何提高电桥的灵敏度?
答:(1)电桥的灵敏度和电源电压,检流计的灵敏度成正比,因此提高电源电压,检流计的灵敏度能提高电桥灵敏度。
(2)检流计电阻,桥臂总阻值,桥臂电阻比也关系到电桥的灵敏度,因此合适的桥臂总阻值,桥臂电阻比也能提高电桥灵敏度。
2. 电桥选择不同量程时,对结果的准确度(有效数字)有何影响?
答:第1测量盘(×1000),即第1测量盘不置于“0”时,结果的有效数字位数都为四位。
但选择不同量程时,电阻精确到的小数位数不同。
选择量程时,要尽量使能读取四位有效数字。