一次函数与反比例函数专题

合集下载

中考数学总复习《反比例函数与一次函数综合》专题训练-附含答案

中考数学总复习《反比例函数与一次函数综合》专题训练-附含答案

中考数学总复习《反比例函数与一次函数综合》专题训练-附含答案学校:___________班级:___________姓名:___________考号:___________ 1.如图,在平面直角坐标系xOy 中,一次函数1y ax b (a ,b 为常数,且0a ≠)与反比例函数2m y x=(m 为常数,且0m ≠)的图象交于点()2,1A -和()1,B n .(1)求反比例函数与一次函数的解析式.(2)连接OA 、OB ,求△AOB 的面积.(3)直接写出当12y y <时,自变量x 的取值范围.2.定义:在平面直角坐标系中,如果一个点的纵坐标等于它的横坐标的三倍,则称该点为“纵三倍点”.例如()()()1,3,2,6,2,32--都是“纵三倍点”. (1)下列函数图象上只有一个“纵三倍点”的是______;(填序号)△21y x =-+;△21y x=;△21y x x =++. (2)已知抛物线2y x mx n =++(,m n 均为常数)与直线4y x =+只有一个交点,且该交点是“纵三倍点”,求抛物线的解析式;(3)若抛物线232y ax bx (,a b 是常数,0a >)的图象上有且只有一个“纵三倍点”,令226w b b a =-+,是否存在一个常数t ,使得当1t b t ≤≤+时,w 的最小值恰好等于t ,若存在,求出t 的值;若不存在,请说明理由.3.如图,点A 在反比例函数()0k y x x=>的图象上,AB y ⊥轴于点B ,且24OB AB ==.(1)求反比例函数的解析式; (2)点C 在这个反比例函数图象上,连接AC 并延长交x 轴于点D ,且45ADO ∠=︒,求点C 的坐标. 4.如图,在平面直角坐标系中,一次函数3yx 的图象与反比例函数(0)k y x x=>的图象交于点(,4)A a ,求此反比例函数的表达式.5.如图,一次函数()10y mx n m =+≠的图象与反比例函数()20k y k x=≠的图象交于(),1A a -,()1,3B -两点,且一次函数的图象交x 轴于点C ,交y 轴于点D .(1)求一次函数和反比例函数的解析式;(2)在第四象限的反比例图象上有一点P ,使得4=△△OCP OBD S S ,请求出点P 的坐标;(3)对于反比例函数()20k y k x=≠,当3y ≤时,直接写出x 的取值范围. 6.如图,已知反比例函数11k y x =的图象与直线22y k x b =+相交于()1,3A -,(3,)B n 两点.(1)求反比例函数与一次函数的解析式; (2)求△AOB 的面积;(3)直接写出当12y y >时,对应的x 的取值范围.7.如图,在平面直角坐标系中,一次函数1y k x b =+(10k ≠)的图象与反比例函数2k y x=(20k ≠)的图象相交于()3,4A ,()4,B m -两点.(1)求一次函数和反比例函数的解析式,并直接写出一次函数的值大于反比例函数的值时x 的取值范围;(2)若点D 在x 轴上,位于原点右侧,且OA OD =,求:ABO ABD S S △△.8.如图,一次函数5y x =-+的图象与函数(0,0)n y n x x=>>的图象交于点(4,)A a 和点B .(1)求n 的值;(2)若0x >,根据图象直接写出当5n x x-+>时x 的取值范围; (3)点P 在线段AB 上,过点P 作x 轴的垂线,交函数n y x =的图象于点Q ,若POQ △的面积为1,求点P 的坐标.9.如图,一次函数()110y k x b k =+≠与反比例函数()220k y k x=≠的图象交于点()2,3A 和(),1B a -,设直线AB 交x 轴于点C .(1)求反比例函数和一次函数的表达式;(2)若点P 是反比例函数图象上的一点,且POC △是以OC 为底边的等腰三角形,求P 点的坐标. 10.如图,在平面直角坐标系xOy 中,一次函数1152y x =+和22y x =-的图象相交于点A ,反比例函数3k y x =的图象经过点A .(1)则反比例函数的表达式为________;(2)当13y y <时,x 的取值范围为________.(3)求AOB 的面积.11.如图,已知反比例函数k y x=的图象与一次函数y mx =图象的一个交点为()4,,A m AB x ⊥轴,且AOB 的面积为4.(1)求k 和m 的值;(2)若两函数图象的另一交点为C ,直接写出点C 的坐标__________.12.已知 ()()4428A B --,,,是一次函数y kx b =+的图象和反比例函数m y x=的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的关系式;(2)求AOC 的面积;(3)结合图象直接写出不等式m kx b x +>的解集. 13.如图,直线32y x =与双曲线(0)k y k x=≠交于A ,B 两点,点A 的坐标为(,3)m -,点C 是双曲线第一象限分支上的一点,连结BC 并延长交x 轴于点D ,且2BC CD =.(1)求k 的值,并直接写出点B 的坐标;(2)点G 是y 轴上的动点,连结GB ,GC ,求GB GC +的最小值和点G 坐标;(3)P 是坐标轴上的点,Q 是平面内一点,是否存在点P ,Q ,使得四边形ABPQ 是矩形?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.14.如图,直线3y x b =+与x 轴交于点()1,0A -,与反比例函数()0ky x x=>的图象相交于点()1,B m .(1)求反比例函数的表达式;(2)C 是反比例函数()0k y x x=>的图象上的一点,连接AC ,若45CAO ∠=︒,求直线BC 的函数表达式. 15.如图,一次函数1=y ax b +的图象过点()40A -,,与y 轴交于点B ,与反比例函数(2>0)k y x x =的图象交于点C .D 为AB 的中点,过点D 作x 轴的平行线,交反比例函数的图象于点E ,连接OE .(1)当=3OB ,=6DE 时,求k 的值;(2)若635OB OE ==,,求一次函数的解析式和点C 的坐标.参考答案: 1.(1)2y x=- =1y x -- (2)1.5(3)20x -<<或1x >2.(1)△△(2)238y x x =-+(3)1t =3.(1)8y x= (2)()4,2C4.反比例函数的表达式为4y x =. 5.(1)一次函数的解析式为12y x =-+;(2)点P 的坐标为3,44⎛⎫- ⎪⎝⎭(3)1x ≤-或0x >6.(1)13y x=- 22y x =-+; (2)4;(3)10x -<<或3x >.7.(1)一次函数的关系式为1y x =+;40x -<<或3x >(2)1:68.(1)4(2)14x <<(3)(2,3)P 或(3,2)9.(1)6y x = 122y x =+(2)()2,3P --10.(1)38y x =-(2)8x <-或20x -<<(3)1511.(1)18,2k m ==(2)()4,2--12.(1)16y x = 24y x =+(2)8(3)40x -<<或2x >13.(1)623k B =,,(2)217(3)存在,点P 的坐标为1302⎛⎫ ⎪⎝⎭, 或1303⎛⎫⎪⎝⎭,14.(1)反比例函数的表达式为6y x =;(2)直线BC 的函数表达式为39y x =-+.15.(1)6k =(2)162y x =+,点C 的坐标为()29,。

一次函数与反比例涵数的专题复习

一次函数与反比例涵数的专题复习

一次函数与反比例函数专题复习第一部分 知识梳理考点一、平面直角坐标系 (3分) 1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x 轴和y 轴上的点,不属于任何象限。

2、点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。

考点二、不同位置的点的坐标的特征 (3分) 1、各象限内点的坐标的特征(1) 点P(x,y)在第一象限0,0>>⇔y x(2)点P(x,y)在第二象限0,0><⇔y x (3)点P(x,y)在第三象限0,0<<⇔y x (4)点P(x,y)在第四象限0,0<>⇔y x 2、坐标轴上的点的特征(1)点P(x,y)在x 轴上0=⇔y ,x 为任意实数(2)点P(x,y)在y 轴上0=⇔x ,y 为任意实数(3)点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征(1)点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等(2)点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征(1)位于平行于x 轴的直线上的各点的纵坐标相同。

(2)位于平行于y 轴的直线上的各点的横坐标相同。

5、关于x 轴、y 轴或远点对称的点的坐标的特征(1)点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数 (2)点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数 (3)点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数 6、点到坐标轴及原点的距离 (1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于x (3)点P(x,y)到原点的距离等于22y x +考点三、函数及其相关概念 (3~8分) 1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

专题:反比例函数与一次函数结合

专题:反比例函数与一次函数结合

26.26(4)专题:反比例函数与一次函数结合一.【知识要点】1.反比例函数与一次函数结合二.【经典例题】k S 的取值范围。

3.如图,已知直线l :6-=x y 与x 轴,y 轴交于点A,B 两点,与反比例函数xk y =(x >0)的图象交于点C (a,-1)和点D 。

(1)求k 的值及点D 的坐标。

(2)若点P 在反比例函数图象上且位于直线l 上方,过点P 作PM ⊥x 轴于点M 交AB 于E ,过点P 作PN ⊥y 轴于点N ,交AB 于点F ,求BE AF •的值。

4.如图,直线y=﹣x+4分别交x轴、y轴于A、B两点,P是反比例函数y=(x>0),图象上位于直线y=﹣x+4下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F,并且AF•BE=4(1)求k的值;(2)若反比例函数y=与一次函数y=﹣x+4交于C、D两点,求三角形OCD的面积.三.【题库】【A】1.如图,在平面直角坐标系xOy中,一次函数y=x+的图象与反比例函数y=(x>0)的图象相交于点A(a,3),与x轴相交于点B.(1)求反比例函数的表达式;(2)过点A的直线交反比例函数的图象于另一点C,交x轴正半轴于点D,当△ABD是以BD为底的等腰三角形时,求直线AD的函数表达式及点C的坐标.2.二次函数y=ax2+bx+c的图象如图,则一次函数y=ax+b2﹣4ac与反比例函数y=.在同一坐标系内的图象大致为()A .B .C .D .【B 】【C 】 1.(绵阳2018第22题本题满分11分) 如图,一次函数2521+-=x y 的图像与反比例函数)0(>k xk y =的图像交与A ,B 两点,过A 点作x 轴的垂线,垂足为M ,△AOM 面积为1.(1)求反比例函数的解析式;(2)在y 轴上求一点P ,使P A +PB 的值最小,并求出其最小值和P 点坐标.2.在平面直角坐标系xOy 中,反比例函数y =(x >0)的图象经过点A (3,4),过点A 的直线y =kx +b 与x 轴、y 轴分别交于B ,C 两点.(1)求反比例函数的表达式;(2)若△AOB 的面积为△BOC 的面积的2倍,求此直线的函数表达式.【D 】1.(2020年绵阳期末第12题)如图,已知点A(m ,m+3),点B(n ,n-3)是反比例函数()0>=k xk y 在第一象限的图象上的两点,连接AB.将直线AB 向下平移3个单位得到直线l ,在直线l 上任取一点C , 则△ABC 的面积为( ) A.29 B.6 C. 215 D.92.在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点P (x ,y ),我们把点P ′(,)称为点P 的“倒影点”,直线y =﹣x+1上有两点A ,B ,它们的倒影点A ′,B ′均在反比例函数y =的图象上.若AB =2,则k = .。

中考数学复习 查补重难点 反比例函数与一次函数的综合运用(原卷版)

中考数学复习 查补重难点 反比例函数与一次函数的综合运用(原卷版)

查补重难点03反比例函数与一次函数的综合运用考点一:反比例函数与一次函数综合反比例函数与一次函数进行综合考查的题型是江苏历年中考数学对于函数考查的重点内容,那么关于反比例函数与一次函数的综合专题当中,我们主要涉及到函数共存问题,交点和不等式(比大小)问题、最值问题以及与几何综合压轴类的题型。

无论是哪一类型的题型,在综合的考察过程当中都是对于反比例函数与一次函数的图像和性质有充分的了解,借助数形结合思想、方程思想、化归思想等。

通过函数的图像来得到我们所需要的求解问题。

在这过程当中,如果对于这两类函数没有全面的了解,那么在解题过程当中就要花费大家很多的时间而导致其解题效率的降低,那么在解决这三大类型的提醒过程当中,该如何利用这些函数的性质来进行解题,该专题可供大家在备考阶段能够进行专项的突破。

题型1.反比例函数和一次函数图像共存问题函数图象共存问题是一次函数和反比例函数当中含有共同的参数,根据分类讨论的形式,由函数的图像特点来判定符合两个函数参数的图形。

解决这类型的题不仅是反比例函数和一次函数进行综合考查,连同二次函数在内的题型进行考查也是比较常见的,所以解决这类型的问题时,我们先要根据一次函数或反比例函数中参数的共性,通过分别进行讨论的形式逐一进行排除,最终确定满足要求的函数图像。

.B ...变式1.(2023年湖北省襄阳市中考数学真题)在同一平面直角坐标系中,一次函数y kx =k x的图象可能是().B .C .D .变式2.(2022·广西·中考真题)已知反比例函数(0)b y b x=≠的图象如图所示,则一次函数()0y cx a c =-≠和二次函数2(0)y ax bx c a =++≠在同一平面直角坐标系中的图象可能是()A .B .C .D .题型2.反比例函数和一次函数的交点问题一次函数图像与反比例函数相关问题,牵扯到的知识点比较多,如求它们的函数解析式,或是通过两者的图像相交,需要考生结合两个函数解析式转化成一元二次方程,从而求得交点坐标等。

专题08一次函数与反比例函数的实际应用(原卷版)

专题08一次函数与反比例函数的实际应用(原卷版)

专题08 一次函数与反比例函数的实际应用(原卷版)类型一一次函数的实际应用(1)方案选择问题1.(2022•内蒙古)某商店决定购进A、B两种北京冬奥会纪念品.若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品的单价;(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且购进B种纪念品数量不少于20件,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?求出最大利润.2.(2021•东莞市校级二模)某移动通讯公司推出两种移动计费方式:方式一:月租费60元,主叫150分钟内不再收费,超过限定时间的部分a元/分钟;被叫免费.方式二:月租费100元,主叫380分钟内不再收费,超过限定时间的部分0.25元/分钟;被叫免费.两种方式的月计费y(单位:元)关于主叫时间t(单位:分钟)的函数图象如图.(1)求a的值;(2)结合题意和函数图象,分别求出函数图象中,射线BC和射线EF对应的月计费y(单位:元)关于主叫时间t(单位:分钟)的函数关系式,并写出对应的t的取值范围;(3)通过计算,写出当月主叫通话时间y(单位:分钟)满足什么条件时,选择方式一省钱.(2)最大利润问题3.(2022•襄阳)为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、某经销商购进甲、乙两种产品,甲种产品进价为8元/kg;乙种产品的进货总金额y(单位:元)与乙种产品进货量x(单位:kg)之间的关系如图所示.已知甲、乙两种产品的售价分别为12元/kg和18元/kg.(1)求出0≤x≤2000和x>2000时,y与x之间的函数关系式;(2)若该经销商购进甲、乙两种产品共6000kg,并能全部售出.其中乙种产品的进货量不低于1600kg,且不高于4000kg,设销售完甲、乙两种产品所获总利润为w元(利润=销售额﹣成本),请求出w(单位:元)与乙种产品进货量x(单位:kg)之间的函数关系式,并为该经销商设计出获得最大利润的进货方案;(3)为回馈广大客户,该经销商决定对两种产品进行让利销售.在(2)中获得最大利润的进货方案下,甲、乙两种产品售价分别降低a元/kg和2a元/kg,全部售出后所获总利润不低于15000元,求a的最大值.4.某农场的一个家电商场为了响应国家家电下乡的号召,准备用不超过10.57万元购进40台电脑,其中A 型电脑每台进价2500元,B型电脑每台进价2800元,A型每台售价3000元,B型每台售价3200元,预计销售额不低于12.32万元.设A型电脑购进x台、商场的总利润为y(元).(1)请你设计出进货方案;(2)求出总利润y(元)与购进A型电脑x(台)的函数关系式,并利用关系式说明哪种方案的利润最大,最大利润是多少元?(3)行程问题5.(2022•牡丹江)在一条平坦笔直的道路上依次有A,B,C三地,甲从B地骑电瓶车到C地,同时乙从B 地骑摩托车到A地,到达A地后因故停留1分钟,然后立即掉头(掉头时间忽略不计)按原路原速前往C地,结果乙比甲早2分钟到达C地,两人均匀速运动,如图是两人距B地路程y(米)与时间x(分钟)之间的函数图象.请解答下列问题:(1)填空:甲的速度为米/分钟,乙的速度为米/分钟;(2)求图象中线段FG所在直线表示的y(米)与时间x(分钟)之间的函数解析式,并写出自变量x 的取值范围;(3)出发多少分钟后,甲乙两人之间的路程相距600米?请直接写出答案.6.(2022•长春)已知A、B两地之间有一条长440千米的高速公路.甲、乙两车分别从A、B两地同时出发,沿此公路相向而行,甲车先以100千米/时的速度匀速行驶200千米后与乙车相遇,再以另一速度继续匀速行驶4小时到达B地;乙车匀速行驶至A地,两车到达各自的目的地后停止,两车距A地的路程y(千米)与各自的行驶时间x(时)之间的函数关系如图所示.(1)m=,n=;(2)求两车相遇后,甲车距A地的路程y与x之间的函数关系式;(3)当乙车到达A地时,求甲车距A地的路程.类型二反比例函数的实际应用7.(2022•广州)某燃气公司计划在地下修建一个容积为V(V为定值,单位:m3)的圆柱形天然气储存室,储存室的底面积S(单位:m2)与其深度d(单位:m)是反比例函数关系,它的图象如图所示.(1)求储存室的容积V的值;(2)受地形条件限制,储存室的深度d需要满足16≤d≤25,求储存室的底面积S的取值范围.8.(2022•台州)如图,根据小孔成像的科学原理,当像距(小孔到像的距离)和物高(蜡烛火焰高度)不变时,火焰的像高y(单位:cm)是物距(小孔到蜡烛的距离)x(单位:cm)的反比例函数,当x=6时,y=2.(1)求y关于x的函数解析式.(2)若火焰的像高为3cm,求小孔到蜡烛的距离.类型三一次函数与反比例函数的综合运用9.(2022•卧龙区模拟)通过心理专家实验研究发现:初中生在数学课上听课注意力指标指标)随上课时间的变化而变化,指标达到36为认真听讲,学生注意力指标y随时间x(分钟)变化的函数图象如图所示.当0≤x<10和10≤x<20时,图象是线段,当20≤x≤45时是反比例函数的一部分.(1)求点A对应的指标值.(2)李老师在一节课上讲一道数学综合题需17分钟,他能否经过适当安排.使学生在认真听讲时,进行讲解,请说明理由.10.(2021秋•东平县校级月考)教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃停止加热,水温开始下降,此时水温y(℃)与开机后用时x(min)成反比例关系,直至水温降至30℃,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时接通电源,水温y(℃)与时间x(min)的关系如图所示:(1)分别写出水温上升和下降阶段y与x之间的函数关系式并注明自变量的取值范围;(2)怡萱同学想喝高于50℃的水,请问她最多需要等待min?第二部分专题提优训练1.(2019•淮安)当矩形面积一定时,下列图象中能表示它的长y和宽x之间函数关系的是()A.B.C.D.2.(2021•宜昌)某气球内充满了一定质量m的气体,当温度不变时,气球内气体的气压p(单位:kPa)是气体体积V(单位:m3)的反比例函数:p=mV,能够反映两个变量p和V函数关系的图象是()A.B.C.D.4.(2022•鄂州一模)已知A、B两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从A地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止.甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示.(1)a=,b=.(2)求甲、乙两车相遇后y与x之间的函数关系式.(3)当甲车到达距B地90千米处时,求甲、乙两车之间的路程.4.(2022春•孝感期末)民生超市计划购进甲、乙两种商品共90件进行销售,有关信息如表,商品甲乙进价(元/件)6050售价(元/件)100100(其中一次性销售超过20件时,超出部分每件再让利20元)设乙种商品有x(件),销售完两种商品的总销售额为y(元).(1)求y与x的函数关系式;(2)若购进乙种商品不超过45件,且该超市购进这两种商品的总进货费用不超过5000元.①问共有多少种购进方案?②直接写出总利润的最大值(总利润=总销售额﹣总进货费用).。

函数专题之一次函数与反比例函数

函数专题之一次函数与反比例函数

函数专题之一次函数、反比例函数热点一:函数的定义与表达式;1.(1)k 为何值时,函数2(1)1k y k x k =+++是一次函数,它是正比例函数吗?(2)若函数2243my m x-=+-是y 关于x 的反比例函数,求m . 2.若直线y =kx +b 经过)0,25(,且与坐标轴所围成的三角形的面积为425,求该直线的表达式.3过点A ,A .y =x1C .y =x 12+4.11()(A x y B x ,,值分别为( )A .12k =,2b = B .49k =,1b = C .13k =,13b = D .49k =,13b =热点二:一次函数与反比例函数的图象与性质5.一次函数y 1=ax +b 与y 2=bx +a 的图象在同一坐标系中,大致是( )6.在函数(0)ky k x=>的图象上有三点111(,)A x y 、222(,)A x y 、333(,)A x y ,已知1230x x x <<<,则下列各式中,正确的是( )A .130y y <<B . 310y y <<C . 213y y y <<D .312y y y << 7.(2008浙江金华)如图1,已知双曲线y =xk(k >0)与直线y =k ′x 交于A ,B 两点,点A 在第一象限.试解答下列问题:(1)若点A 的坐标为(4,2).则点B 的坐标为 ;若点A 的横坐标为m ,则点B 的坐标可表示为 ;(2)如图2,过原点O 作另一条直线l ,交双曲线y =xk(k >0)于P ,Q 两点,点P 在第一象限.①说明四边形APBQ 一定是平行四边形;②设点A .P 的横坐标分别为m ,n ,四边形APBQ 可能是矩形吗?可能是正方形吗?若可能,直接写出mn 应满足的条件;若不可能,请说明理由.热点三:函数问题之数形结合8.(2011浙江杭州)如图,函数11y x =-和函数22y x=的图象相交于点M (2,m ),N (-1,n ),若12y y >,则x 的取值范围是( ) A .102x x <-<<或 B .12x x <->或C .1002x x -<<<<或D .102x x -<<>或9.如图,直线y kx b =+经过(21)A ,,(12)B --,两点,则不等式122x kx b >+>-的解集为 ____________ .热点四:反比例函数k 的几何意义10.(2011四川南充)过反比例函数y =xk(k ≠0)图象上一点A ,分别作x 轴,y 轴的垂线,垂足分别为B ,C ,如果△ABC 的面积为3.则k 的值为 .11.如图,过y 轴上任意一点P ,作x 轴的平行线,分别与反比例函数xy x y 24=-=和的图像交于A 点和B 点,若C 为x 轴上任意一点,连接AC ,BC 则△ABC 的面积为___________;12.(2010衡阳)如图,已知双曲线(0)ky k x=>经过直角三角形OAB 的斜边OB 的中点D ,与直角边AB 相交于点C ,若三角形OBC 的面积为3,则k =___________;13.(2010 四川) 如图,函数()0ky x x=>的图象经过矩形OABC 对角线的交点M ,分别与AB BC 、相交于点.D E 、若四边形ODBE 的面积为6,则k 的值为( )A .1B . 2C . 3D . 41A 2A 3B 2B 1B 3C 2C 1C Oxy3A14.(2010 广西)如图所示,点1A 、2A 、3A 在x 轴上,且11223OA A A A A ==,分别过点1A 、2A 、3A 作y 轴的平行线,与()80y x x=>的图象分别交于点1B 、2B 、3B ,分别过点1B ,2B ,3B 作x 轴的平行线,分别与y 轴交于点1C ,2C ,3C ,连接1OB ,2OB ,3OB ,那么图中阴影部分的面积之和为___________.热点五: 一次函数的应用15.(2011江苏泰州)小明从家骑自行车出发,沿一条直路到相距2400m 的邮局办事,小明出发的同时,他的爸爸以96m /min 的速度从邮局沿同一条道路步行回家,小明在邮局停留2min 后沿原路以原速返回,设他们出发后经过t min 时,小明与家之间的距离为 S 1 m ,小明爸爸与家之间的距离为S 2m ,,图中折线OABD ,线段EF 分别是表示S 1、S 2与t 之间函数关系的图象. (1) 求S 2与t 之间的函数关系式:(2) 小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?16.春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3张.某一天售票厅排队等候购票的人数y(人)与售票时间x(分钟)的关系如图所示,已知售票的前a分钟只开放了两个售票窗口(规定每人只购一张票).(1)求a的值.(2)求售票到第60分钟时,售票厅排队等候购票的旅客人数.(3)若要在开始售票后半小时内让所有的排队的旅客都能购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口?17.(2010湖北)如图所示,某地区对某种药品的需求量y1(万件),供应量y2(万件)与价格x(元/件)分别近似满足下列函数关系式:y1=-x + 70,y2=2x-38,需求量为0时,即停止供应.当y1=y2时,该药品的价格称为稳定价格,需求量称为稳定需求量.(1)求该药品的稳定价格与稳定需求量.(2)价格在什么范围内,该药品的需求量低于供应量?(3)由于该地区突发疫情,政府部门决定对药品供应方提供价格补贴来提高供货价格,以利提高供应量.根据调查统计,需将稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量.y2=2x-38y1=-x+70O x(元/件)热点六:一次函数与反比例综合18. (2010 湖北) 如图,一次函数y a x b =+的图象与x 轴,y 轴交于A ,B 两点,与反比例函数ky x=的图象相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE .有下列四个结论:①△CEF 与△DEF 的面积相等; ②△AOB ∽△FOE ;③△DCE ≌△CDF ; ④A C B D =.其中正确的结论是 .(把你认为正确结论的序号都填上)19.(2011山东聊城)如图,已知一次函数y =kx +b 的图象交反比例函数42my x-=(x >0)图象于点A 、B ,交x 轴于点C . (1)求m 的取值范围;(2)若点A 的坐标是(2,-4),且13BC AB =,求m 的值和一次函数的解析式;。

专题22反比例函数与一次函数综合类选择题精炼(原卷版)

专题22反比例函数与一次函数综合类选择题精炼(原卷版)

2023年中考数学以三种题型出现必考(难点)压轴题27个小微专题精炼 专题22 反比例函数与一次函数综合类选择题精炼1. 一次函数1y ax =+与反比例函数a y x=-在同一坐标系中的大致图象是( ) A. B. C. D. 2. 在同一平面直角坐标系中,函数1y kx =+与k y x=- (k 为常数且0k ≠)的图象大致是( ) A. B. C. D. 3. 已知一次函数y kx b =+的图象如图所示,则y kx b =-+与b y x=的图象为( )A. B. C. D.4.一次函数y =ax+b 与反比列函数y =的图象如图所示,则二次函数y =ax 2+bx+c 的大致图象是( )A .B .C .D .5. 如图,函数1y x =+与函数22y x=的图象相交于点()()1,,2,M m N n -.若12y y >,则x 的取值范围 是( )A .2x <-或01x <<B .2x <-或1x >C .20x -<<或01x <<D .20x -<<或1x > 6. 如图,在平面直角坐标系中,直线y =x 与反比例函数y =4x(x >0)的图象交于点A ,将直线y =x 沿y 轴向上平移b 个单位长度,交y 轴于点B ,交反比例函数图象于点C .若OA =2BC ,则b 的值为( )A .1B .2C .3D .47. 如图,在平面直角坐标系中,一次函数443y x =+的图象与x 轴、y 轴分别相交于点B ,点A ,以线段AB 为边作正方形ABCD ,且点C 在反比例函数(0)k y x x =<的图象上,则k 的值为( ) A .12- B .42- C .42 D .21-8.如图,在平面直角坐标系系中,直线y=k 1x+2与x 轴交于点A ,与y 轴交于点C ,与反比例函数y=在第一象限内的图象交于点B ,连接B0.若S △OBC =1,tan∠BOC=,则k 2的值是( )A .﹣3B .1C .2D .39.如图,直线3y x =-+与y 轴交于点A ,与反比例函数k y x =(0k ≠)的图象交于点C ,过点C 作CB ⊥x 轴于点B ,AO =3BO ,则反比例函数的解析式为( )A .4y x =B .4y x =-C .2y x =D .2y x=- 10.如图,在平面直角坐标系中,菱形ABCD 的边BC 与x 轴平行,A ,B 两点纵坐标分别为4,2,反比例函数y =经过A ,B 两点,若菱形ABCD 面积为8,则k 值为( )A.﹣8B.﹣2C.﹣8 D.﹣611. 如图,在平面直角坐标系中,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=(k>0,x >0)的图象经过顶点D,分别与对角线AC,边BC交于点E,F,连接EF,AF.若点E为AC的中点,△AEF的面积为1,则k的值为()A.B.C.2 D.3。

2025年中考数学高频考点专题练习-一次函数与反比例函数的实际应用

2025年中考数学高频考点专题练习-一次函数与反比例函数的实际应用

2025年中考数学高频考点专题练习 一次函数与反比例函数的实际应用一、解答题1.某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培蔬菜.某天恒温系统从开启到关闭及关闭后,大棚内温度y (℃)与时间x (h )之间的函数关系如图所示,其中BC 段是恒温阶段,CD 段是某反比例函数图象的一部分,请根据图中信息解答下列问题:(1)求CD 段反比例函数图象的关系式,并写出自变量x 的取值范围; (2)恒温阶段保持的时间有多少小时?(3)大棚里栽培的一种蔬菜在温度为12℃到20℃的条件下最适合生长,若某天恒温系统开启前的温度是10℃,那么这种蔬菜一天内最适合生长的时间有多长? 2.如图直线y x m =-+与双曲线ky x=交于A ,B 两点,点A 的坐标为(1,2).(1)求一次函数和反比例函数的表达式; (2)求AOB 的面积.3.在平面直角坐标系xOy 中,一次函数()0y kx b k =+≠经过点,()0,1A -,()3,2B .(1)求这个一次函数的解析式; (2)①当双曲线()0my m x=≠经过点B 时,求m 的值; ①当3x >时,对于x 的每一个值,永远有()10mkx b k x+->≠成立,直接写出m 的取值范围. 4.数学兴趣小组了解到一款如图1所示的电子托盘秤,它是通过所称重物调节可变电阻R 的大小,从而改变电路中的电流I ,最终通过显示器显示物体质量.已知可变电阻R (单位①k Ω)与物体质量m (单位①kg )之间的关系如图2所示,电流I (单位①mA )与可变电阻 R 之间关系为 ()603I R R =≥+.(1)该小组先探究函数 ()60I R =≥的图像与性质,并根据I 与R 之间关系得到如下表格:①表格中的p = ;①请在图3 中画出 ()603I R R =≥+对应的函数图像; (2)该小组综合图2和图3发现,I 随着m 的增大而 ;(填“增大”或“减小”)(3)若将该款电子秤中的电路电流范围设定为0.20.4I <≤(单位:mA ),判断该电子托盘秤能否称出质量为2kg 的物体的质量?请说明理由. 5.如图,一次函数y =x +4的图象与反比例函数ky x=(k ≠0)的图象交于A (-1,a ),B 两点,与x 轴交于点C .(1)直接写出结果:k = ,点B 的坐标为 ;(2)若点P 在x 轴上,且3ACP BOC S S ∆∆=,求点P 的坐标.6.如图,一次函数y x b =+的图像和反比例函数()0k y x x=>的图像交于()2,4A .(1)求一次函数的解析式和反比例函数的解析式;(2)设点()0,P m ,过点P 作平行于x 轴的直线与直线2y x =+和反比例函数()0ky x x=>的图像分别交于点C ,D ,当4CD ≤时,直接写出m 的取值范围.7.实验研究发现:初中生在数学课上听课注意力指标随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散.学生注意力指标y 随时间x (分钟)变化的函数图象如图所示,其中当2045x ≤≤时,图象是反比例函数的一部分.(1)求点C ,D 所在反比例函数的表达式和直线AB 的表达式;(2)张老师想在数学课上讲解一道数学综合题,希望学生注意力指标不低于36,那么她最多可以讲______分钟.8.已知某消毒药物燃烧时,室内每立方米空气中的含药量y (微克)与时间x (小时)成正比例,药物熄灭后,y (微克)与x (小时)成反比例,如图所示,现测得药物4小时燃毕,此时室内空气每立方米的含药量为6微克,请你根据题中提供的信息,解答下列问题:(1)分别求出药物燃烧时和药物熄灭后y 关于x 的函数关系式;(2)研究表明,当空气中每立方米的含药量不低于3微克且持续时间不低于10小时时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么? 9.如图,一次函数1y kx b =+的图像与反比例函数()20my x x=>的图像交于点(4,1)A 和点(2,)B n .(1)求一次函数和反比例函数解析式;(2)过点B 作BC y ⊥轴于点C ,连接OA ,求四边形OABC 的面积;(3)根据图像直接写出使mkx b x+<成立的x 的取值范围. 10.如图,在平面直角坐标系xOy 中,直线2y x =与双曲线ky x=与相交于A ,B 两点(点A 在点B 的左侧).(1)当5AB =k 的值;(2)点B 关于y 轴的对称点为C ,连接AC BC ,; ①判断ABC 的形状,并说明理由;①当ABC 的面积等于16时,双曲线上是否存在一点P ,连接AP BP ,,使PAB 的面积等于ABC 面积?若存在,求出点P 的坐标,若不存在,请说明理由.11.如图,已知点A 在正比例函数2y x =-图像上,过点A 作AB x ⊥轴于点B ,四边形ABCD 是正方形,点D 在反比例函数ky x=图像上.(1)若点A 的横坐标为−2,求k 的值;(2)若设正方形的边长为m ,试用含m 的代数式表示k 值.12.如图,直线1y x =+与y 轴交于A 点,与反比例函数(0)k y x x=>的图像交于点M ,过M 作MH x ⊥轴于点H ,且1tan 2AHO ∠=.(1)请直接写出k 的值;(2)设点()1,N a 是反比例函数()0k y x x=>图像上的点,在y 轴上是否存在点P ,使得PM PN +最小?若存在,求出点P 的坐标;若不存在,请说明理由.13.如图,已知直线1:y =x +4与反比例函数y =kx(x <0)的图象交于点A (−1,n ),直线l ′经过点A ,且与l 关于直线x =−1对称.(1)求反比例函数的解析式; (2)求图中阴影部分的面积.14.如图,在平面直角坐标系xOy 中,正比例函数1y k x =与反比例函数ky x=的图象相交于A ,B 两点,其中点A 的坐标为()14,.(1)直接写出点B 的坐标为_______________;(2)过点A 作直线AC ,交反比例函数图象于另一点C ,连接BC ,当线段AC 被y 轴分成长度比为1:2的两部分时,求BC 的长.15.如图,平面直角坐标系中,四边形AOBC 为平行四边形,11y k x b =+与双曲线22(0)k y x x=>交于点()1,3A 和点()3,E m .(1)求1k ,2k 和b 的值;(2)直接写出120y y -<时x 的取值范围;(3)如果平行四边形AOBC 的对角线OC 交双曲线于点P ,求点P 的坐标.。

一次函数及反比例函数难题(含答案)

一次函数及反比例函数难题(含答案)

专题训练7 一次函数及反比例函数一、选择题(每小题3分,共24分)1.函数y kx =-与y kx =(k ≠0)的图象的交点个数是( )A. 2B.1C. 0D.不确定2.若点(3,4)是反比例函数xm m y 122++=图象上一点,则此函数图象必经过点( )A.(3,-4)B.(2,-6)C.(4,-3)D. (2,6) 3. 函数y kx b =+与y kxkb =≠()0的图象可能是( )A B C D4.已知反比例函数)0(<=k xky 的图像上有两点A(1x ,1y ),B(2x ,2y ),且21x x <,则21y y -的值是 ( )A.正数B.负数C.非正数D. 不能确定5..在同一坐标系中,函数x ky =和3+=kx y 的图像大致是 ( )A B C D6.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化,其体温(℃)与时间(时)之间的关系如右图所示.若y (℃)表示0时到t 时内骆驼体温的温差(0时到t 时最高温度与最低温度的差).则y 与t 之间的函数关系用图象表示,大致正确的是( )(A ) (B ) (C ) (D ) (第6题)7.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。

在课堂上,李老师请学生画出自行车行进路程s 千米与行进时间t 的函数图像的示意图,同学们画出的示意图如下,你认为正确的是 ( )A B C D8.正比例函数与反比例函数的图象都经过点(1,4),在第一象限内正比例函数的图象在反比例函数图象上方的自变量x 的取值范围是( )(A )1x >. (B )01x <<. (C )4x >. (D )04x <<. 二、填空题(每小题3分,共18分)9.函数4y x =-与4y x=-的图象交于A 、B 两点,过点A 作AC 垂直于y 轴,垂足为点C ,则△BOC 的面积为___________. 10、若函数y=4x 与y=x 1的图象有一个交点是(21,2),则另一个交点坐标是 _。

反比例函数与一次函数综合问题

反比例函数与一次函数综合问题

2023-2024学年九年级数学上学期复习备考高分秘籍【人教版】专题2.11反比例函数与一次函数综合问题(期末培优30题)班级:_____________姓名:_____________ 得分:_____________一、选择题1.(2022秋•安化县期末)如图,已知在平面直角坐标系xOy 中,直线y =12x ―1分别交x 轴,y 轴于点A和点B ,分别交反比例函数y 1=k x (k >0,x >0),y 2=2kx(x <0)的图象于点C 和点D ,过点C 作CE⊥x 轴于点E ,连结OC ,OD ,若△COE 的面积与△DOB 的面积相等,则k 的值是( )A .2B .32C .1D .122.(2021秋•阳东区期末)如图所示的是反比例函数y 1=kx(x >0)和一次函数y 2=mx +n 的图象,则下列结论正确的是( )A .反比例函数的解析式是y 1=6xB .一次函数的解析式为y 2=﹣x +6C .当x >6时,y 1最大值为1D .若y 1<y 2,则1<x <63.(2022秋•鄞州区校级期末)如图,一次函数y =ax +b 与反比例函数y =kx (k >0)的图象交于点A (1,2),B (m ,﹣1).则关于x 的不等式ax +b >kx的解集是( )A .x <﹣2或0<x <1B .x <﹣1或0<x <2C .﹣2<x <0或x >1D .﹣1<x <0或x >24.(2022秋•绵阳期末)一次函数y =mx 和反比例函数y =nx 的一个交点坐标为(﹣3,4),则另一个交点坐标为( )A .(3,﹣4)B .(﹣3,﹣4)C .(3,4)D .(4,﹣3)5.(2023春•上虞区期末)如图,一次函数y =﹣x +b 与反比例函数y =4x(x >0)的图象相交于A 、B 两点,与x 轴,y 轴分别相交于C 、D 两点,连接OA 、OB ,过点A 作AE ⊥x 轴于点E ,交OB 于点F ,设点A 的横坐标为m ,若S △OAF +S 四边形EFBC =4,则m 的值为( )A .1BC .2D .46.(2023春•靖江市期末)探究函数y =1x 2+3的图象发现,可以由y =1x的图象先向右平移2个单位,再向上平移3个单位得到.根据以上信息判断,下列直线中与函数y =1x 1―3的图象没有公共点的是( )A .经过点(0,3)且平行于x 轴的直线B .经过点(0,﹣3)且平行于x 轴的直线C .经过点(﹣1,0)且平行于y 轴的直线D .经过点(3,0)且平行于y 轴的直线7.(2023春•翠屏区期末)如图直线y =kx +b 与双曲线y =mx 的交点A (2,3)、B (n ,2),则△AOB 的面积为( )A .1.5B .2C .2.5D .38.(2023春•亭湖区校级期末)如图,已知点A (3,0),B (0,4),C 是y 轴上位于点B 上方的一点,AD 平分∠OAB ,BE 平分∠ABC ,直线BE 交AD 于点D .若反比例函数y =kx(x <0)的图象经过点D ,则k 的值是( )A .﹣8B .﹣9C .﹣10D .﹣129.(2023春•嘉兴期末)如图,▱ABCD 在第一象限内,点A 是一次函数y =x 图象上一动点,点B ,C 的坐标分别是(b ,1),(b +1,2),若反比例函数y =k 1x 和y =k 2x的图象分别经过点A ,D ,则下列代数式的值为定值的是( )A .k 2k 1B .k 2﹣k 1C .k 2+k 1D 10.(2023春•沭阳县期末)如图,在平面直角坐标系中,直线y =﹣3x +3交x 轴于A 点,交y 轴于B 点,以AB 为边在第一象限作正方形ABCD ,其中顶点D 恰好落在双曲线y =kx上,现将正方形ABCD 沿x 轴向右平移a 个单位,可以使得顶点B 落在双曲线上,则a 的值为( )A .32B .73C .2D .43二、填空题11.(2021春•北仑区校级期末)如图,直线AB 交双曲线y =kx 于A 、B 两点,交x 轴于点C ,且B 恰为线段AC 的中点,连接OA .若S △OAC =72,则k 的值为  .12.(2022秋•松原期末)如图,若反比例函数y 1=kx与一次函数y 2=ax +b 交于A 、B 两点,当y 1<y 2时,则x 的取值范围是 .13.(2022秋•大荔县期末)在平面直角坐标系中,一次函数y =6x 与反比例函数y =kx(k >0)的图象交于A (x 1,y 1),B (x 2,y 2)两点,则y 1+y 2的值是 .14.(2022秋•鄄城县期末)如图,一次函数y =x 与反比例函数y =1x(x >0)的图象交于点A ,过点A 作AB ⊥OA ,交x 轴于点B ;作BA 1∥OA ,交反比例函数图象于点A 1;过点A 1作A 1B 1⊥A 1B 交x 轴于点B 1;再作B 1A 2∥BA 1,交反比例函数图象于点A 2,依次进行下去…,则点A 2023的横坐标为  .15.(2023春•邗江区校级期末)已知双曲线y =―3x 与直线y =x ﹣5有一交点为(a ,b ).则a b +b a= .16.(2023春•清江浦区期末)如图,正比例函数y =ax 与反比例函数y =bx的图象交于A ,B 两点,BC ∥x轴,AC ∥y 轴,若S △ABC =12,则b = .17.(2023春•威海期末)如图,一次函数y =―12x +52与反比例函数y =2x ,相交于点A ,点B ,AC ⊥x 轴于点C ,BD ⊥y 轴于点D .P 是线段AB 上的一点,连接PC ,PD ,若△BDP ∽△ACP ,则点P 的坐标为  .18.(2023春•海陵区期末)如图,直线y 1+y 2=m x 交于A (1,p )、B (q ,,则关于x +mx >0的解集是 .19.(2023春•泰州期末)直线y=kx(k≠0)与双曲线y=4x交于A、B两点,C为第二象限内一点,若A点横坐标为52,且CA=CB,∠ACB=90°,那么点C的坐标为 .20.(2023春•姜堰区期末)如图,一次函数y=﹣x+5与反比例函数y=kx(x>0)的图象相交于A、B两点,且点A的横坐标为1,该反比例函数的图象关于直线y=x﹣1对称后的图象经过直线y=﹣x+5上的点C,则线段AC的长度为 .三、解答题21.(2022秋•青羊区期末)已知一次函数y1=12x+2与反比例函数y2=kx的图象交于A(2,m)、B两点,交y轴于点C.(1)求反比例函数的表达式和点B的坐标;(2)过点C 的直线交x 轴于点E ,且与反比例函数图象只有一个交点,求CE 的长;(3)我们把一组邻边垂直且相等,一条对角线平分另一条对角线的四边形叫做“维纳斯四边形”.设点P 是y 轴负半轴上一点,点Q 是第一象限内的反比例函数图象上一点,当四边形APBQ 是“维纳斯四边形”时,求Q 点的横坐标x Q 的值.22.(2022秋•庐阳区期末)如图,一次函数y =kx +b 与反比例函数y =mx 的图象交于点A (1,8)、B (n ,﹣2),与x 轴交于点D ,与y 轴交于点C .(1)求m 、n 的值;(2)观察函数图象,直接写出不等式kx +b <mx 的解集;(3)连接AO ,BO ,求△AOB 的面积.23.(2022秋•市南区校级期末)如图,直线y =kx +b 与双曲线y =mx (x <0)相交于A (﹣3,1),B 两点,与x 轴相交于点C (﹣4,0).(1)分别求一次函数与反比例函数的解析式;(2)连接OA ,OB ,求△AOB 的面积;(3)直接写出当x <0时,关于x 的不等式kx +b <mx 的解集.24.(2023春•亭湖区校级期末)如图,在平面直角坐标系中,一次函数y =kx +b (k ≠0)的图象与反比例函数y =mx (m ≠0)的图象交于A (2,3)、B (﹣3,n )两点.(1)求一次函数和反比例函数的解析式;(2)直接写出当kx +b >mx 时,自变量x 的取值范围.(3)若P 是y 轴上一点,且满足△PAB 的面积是10,请求出点P 的坐标.25.(2022秋•嘉祥县校级期末)如图,一次函数y =kx +b (k ≠0)与反比例函数y =6x(x >0)的图象交于A(m ,6),B (3,n )两点.(1)求一次函数的解析式;(2)根据图象,直接写出使kx +b <6x成立的x 的取值范围;(3)求△AOB 的面积.26.(2022秋•新抚区期末)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A(﹣4,2),B(n,﹣4)两点.(1)求反比例函数的解析式;(2)求△AOB的面积;(3)观察图象直接写出不等式mx>kx+b的解集.27.(2023春•清江浦区期末)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于点A(﹣3,n),B(2,3).(1)求反比例函数与一次函数的函数表达式;(2)请结合图象直接写出不等式kx+b≥mx的解集;(3)若点P为x轴上一点,△ABP的面积为10,求点P的坐标.28.(2022秋•绵阳期末)如图,一次函数y=﹣x+5与反比例函数y=kx(k≠0)在第一象限交于A,B两点,AC垂直x轴于点C,O为坐标原点,AC=4OC.(1)求反比例函数的解析式;(2)求点B的坐标,并直接写出―x+5≤kx的解集;(3)点D在y轴上,满足△ABD的面积和△ABC的面积相等,求点D的坐标.29.(2022秋•开福区期末)如图,曲线y1=k1x(x>0)与直线y2=k2x+b交于A(1,3),B(m,1)两点.(1)求曲线y1=k1x(x>0)和直线y2=k2x+b的解析式;(2)根据第一象限图象观察,当y1<y2时,x的取值范围是 ;(3)求△AOB的面积.30.(2023春•内江期末)如图,在矩形ABCO中,AB=2,BC=4,点D是边AB的中点,反比例函数y1=kx(x>0)的图象经过点D,交BC于点E.(1)求k的值及直线DE的解析式;(2)在x轴上找一点P,使△PDE的周长最小,求此时点P的坐标;(3)在(2)的条件下,求△PDE的面积.。

2023中考数学复习-专题26 一次函数与反比例函数(练透)(学生版)

2023中考数学复习-专题26 一次函数与反比例函数(练透)(学生版)

专题26 一次函数与反比例函数一、单选题1.(2022·全国九年级课时练习)下列函数中,是反比例函数的是( ) A .2x y =-B .21y x=+ C .2y x=-D .21y x =+2.(2022·北京市第十三中学九年级期中)已知点A (1,a )与点B (3,b )都在反比例函数y 12x=-的图象上,则a 与b 之间的关系是( ) A .a >b B .a <b C .a ≥b D .a =b3.(2022·哈尔滨风华中学九年级开学考试)如图是甲、乙两车在某时段速度随时间变化的图象,下列结论正确的是( )A .乙前3秒行驶的路程为15米B .在0到6秒内甲的速度每秒增加6米/秒C .两车到第2.5秒时行驶的路程相等D .在0至6秒内甲的速度都大于乙的速度4.(2022·建昌县教师进修学校九年级)在平面直角坐标系中,函数2y mx m =++的图象如图所示,则m 的取值范围是( )A .0m <B .2m ->C .20m -<<D .02m <<5.(2022·武汉一初慧泉中学九年级月考)下表反映的是某地区用电量x (千瓦时)与应交电费y (元)之间的关系:用电量x (千瓦时) 1 2 3 4 …应交电费y (元)0.55 1.1 1.65 2.2 …下列说法:①x 与y 都是变量,且x 是自变量,y 是x 的函数;②用电量每增加1千瓦时,应交电费增加0.55元;③若用电量为8千瓦时,则应交电费4.4元;④若所交电费为2.75元,则用电量为6千瓦时,其中不正确的是( ) A .①B .②C .③D .④6.(2022·武汉一初慧泉中学九年级月考)已知反比例函数32y x=-,直线24y x =-+交于(),P a b 、(),Q m n 两点,则代数式33m a b n+++的值是( ) A .2 B .-2 C .4 D .-47.(2022·沙坪坝区·重庆八中九年级)如图:四边形ABCD 为菱形,且对角线BD ∥x 轴,A 、C 两点在y 轴上,E 点在BC 上,且BE =2CE ,双曲线y =k x(x >0)经过E 、B 两点,且8EFB S =△,则k 的值为( )A .3B .83C .4D .68.(2022·江苏泰州中学附属初中)在平面直角坐标系中,一次函数 2y x b =-+(b 为常数)的图像与x 、y 轴分别交于点A 、B ,直线AB 与双曲线4y x= 分别交于点P 、Q ,则AP ·BP 的值是( )A .4B .8C .10D .与b 的取值有关9.(2022·南宁市天桃实验学校九年级)如图,在平面直角坐标系中,若折线241y x =--+与直线交2y kx k =+(0k >)有且仅有一个交点,则k 的取值范围是( )A .01k <<或14k =B .1k >或14k =C .02k <<或14k =D .2k >或14k =10.(2022·湖南新田县·九年级期中)如图,11122233,,,OA B A A B A A B △△△…是分别以123,,,A A A …为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点111222333(,),(,),(,),C x y C x y C x y …均在反比例函数4y x=(x >0)的图象上,则12100y y y +++的值为( )A .10B .20C .42D .7二、填空题11.(2022·陕西西安·高新一中九年级月考)如果一个正比例函数的图象与反比例函数y =4x的图象交于A (x 1,y 1),B (x 2,y 2)两点,那么(x 2﹣x 1)(y 2﹣y 1)的值为___. 12.(2022·浙江省杭州市上泗中学九年级)如图,在直角坐标系中,第一象限内的点A ,B 都在反比例函数的图象上,横坐标分别是3和1,点C 在x 轴的正半轴上,满足AC BC ⊥.且BC AC =,则k 的值是_______________________.13.(2022·宜兴市实验中学九年级)如图,点B 在x 的正半轴上,且BA OB ⊥于点B ,将线段BA 绕点B 逆时针旋转60︒到BB '的位置,且点B '的坐标为()1,1.若反比例函数ky x=()0x >的图象经过A 点,则k =______.14.(2022·山东济宁学院附属中学九年级期末)如图,在平面直角坐标系中,直线y =32x与双曲线y =6x相交于A 、B 两点,C 是第一象限内双曲线上一点,连接CA 并延长交y 轴于点P ,连接BP 、BC ,若△PBC 的面积是30,则C 点的坐标为__________________.15.(2022·厦门海沧实验中学九年级开学考试)设函数1y x=与1y x =+的图象的交点坐标为(),m n ,则()()11m n ++的值为___________.三、解答题16.(2022·全国九年级专题练习)已知点A (0,2)和点B (0,-2),点P 在函数1y x=-的图象上,如果△P AB 的面积是6,求P 点的坐标. 17.(2022·广西贺州市·九年级期中)若反比例函数y =mx与一次函数y =kx +b 的图象都经过点(﹣2,﹣1),且当x =1时,这两个函数值相等.(1)求反比例函数的解析式; (2)求一次函数的解析式.18.(2022·哈尔滨市虹桥初级中学校九年级开学考试)在平面直角坐标系中,直线y =﹣x ﹣1与直线y 34=x +6交于点A ,直线y =﹣x ﹣1与x 轴交于点B ,直线y 34=x +6与x 、y 轴分别交于点D 、C . (1)求点A 的坐标; (2)求△ABD 的面积.19.(2022·重庆实验外国语学校)如图,直线y kx b =+与双曲线my x=的图象分别交于点(2,2)A ,点B ,与x 轴交于点C ,过点A 作线段AD 垂直x 轴于点D ,1tan 2ACD ∠=,连接AO ,BO .(1)直线y kx b =+与双曲线my x=的解析式; (2)求AOB ∆的面积;(3)在直线AB 上是否存在点P ,使得3AOB AOP S S ∆∆=?若存在,请直接写出所有满足条件的点P 的坐标,若不存在,请说明理由.20.(2022·福建三明一中)如图,折线ABC 是在某市乘出租车所付车费y (元)与行车里程x (千米)之间的函数关系图象.(1)根据图象,写出射线BC 的函数关系式并写出定义域;(2)某人乘坐2.5千米,应付 元;某人乘坐13千米,应付 元;(3)若某人付车费30.8元,出租车行驶了多少千米?21.(2022·北京市第十三中学九年级期中)如图,在平面直角坐标系xOy中,直线y=﹣2x﹣3与双曲线kyx=交于M(a,2),N(1,b)两点.(1)求k,a,b的值;(2)若P是y轴上一点,且△MPN的面积是7,直接写出点P的坐标.22.(2022·哈尔滨市虹桥初级中学校九年级开学考试)在平面直角坐标系中,点O为坐标原点,直线y=kx+4交x轴、y轴分别于点A、点B,且△ABO的面积为8.(1)如图1,求k的值;(2)如图2,点P是第一象限直线AB上的一个动点,连接PO,将线段OP绕点O顺时针旋转90°至线段OC,设点P的横坐标为t,△AOC的面积为S,求S与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点B作直线BM⊥OP,交x轴于点M,垂足为点N,∠PMB=2∠OPB,求点P的坐标.23.(2022·浙江诸暨市暨阳初级中学)如图,直线483y x=-+分别与x轴,y轴相交于点A,点B,作矩形ABCD,其中点C,点D在第一象限,且满足AB∶BC=2∶1.连接BD.(1)求点A,点B的坐标.(2)若点E是线段AB(与端点A不重合)上的一个动点,过E作EF∥AD,交BD于点F,作直线AF.①过点B作BG⊥AF,垂足为G,当BE=BG时,求线段AE的长度.②若点P是线段AD上的一个动点,连结PF,将△DFP沿PF所在直线翻折,使得点D的对应点D落在线段BD或线段AB上.直接写出线段AE长的取值范围.。

2024年中考数学压轴题型(广东专用)专题07一次函数与反比例函数综合问题(教师版)

2024年中考数学压轴题型(广东专用)专题07一次函数与反比例函数综合问题(教师版)

专题07一次函数与反比例函数综合问题通用的解题思路:1.三角形面积的解题步骤:类型一:三角形有其中一边与坐标轴平行(垂直)的,以这边为底边,以该边所对的顶点的坐标的绝对值为高•底边平行于V轴,则以所对顶点的横坐标的绝对值为高,反之则以纵坐标的绝对值为高.类型二:三角形没有其中一边与坐标轴平行(垂直)的,可以用公式水平宽X铅垂高求解.2.利用图象法解不等式解集的解题步骤:①求交点:联立方程求出方程组的解;②分区间:将一次函数和反比例函数两个交点以及y轴左右两侧分层4个区间;③比大小:图象谁在上方谁就大;④:写出对应区间自变量的取值范围.3.两线段和差的最值问题利用将军饮马模型:做对称,连定点,求交点.1.(2024广东东莞•一模)如图,一次函数y=+3的图象与'轴交于点,与反比例函数日的图象在第一象限内交于点瓦点B的横坐标为1,连接。

8,过点B作BClx轴于点C.⑴求一次函数和反比例函数的解析式;.....................................~4〜.......................⑵设点。

是x轴上一点,使得S^BCD=~S^AOB,求点Q的坐标.【答案】(1)必=2x+3,J=-x⑵点。

的坐标为(-1,0)或(3,0)【分析】本题主要考查了待定系数法确定函数的解析式,一次函数图象的性质,一次函数图象上点的坐标的特征,反比例函数的性质,反比例函数图象上点的坐标的特征,利用点的坐标表示出相应线段的长度是解题的关键.(1)把点代入一次函数了=心+3中,解得m=2,进而可得点B的坐标为(1,5),再利用待定系数法解答即可;(2)根据坐标求得S△朝=可知S%co=:S△皿=5,再根据S^cd=?CD・BC,得CD=2,即可求解.【详解】(1)解:把点{―代入一次函数:Y=m+3中,,一3___——m+3=0,解得m=2,园一次函数的解析式为"2x+3.把点B的横坐标工二1代入y=2x+3中,得"5,国点B的坐标为(1,5),国点B为一次函数和反比例函数图象的交点,园把点8(1,5)代入反比例函数y=|中,得S5,园反比例函数的解析式为:y=-;(2)园jo],8(1,5),BClx轴,0OA=-,BC=5,C(l,0),S5aaob=-AO-BC=-x-x5=—,△如2224[?]Q=—V-^x—=5U*BCD3°AA(9B34,0S ABCn=-CD BC=-CD=5,园CD=2,M(l,0),回点。

一次函数与反比例函数综合题型

一次函数与反比例函数综合题型

一次函数与反比例函数综合题型:专题1 1、.(2010 济宁)如图,正比例函数12y x =的图象与反比例函数k y x =(0)k ≠在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知OAM ∆的面积为1. (1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使PA PB +最小.24.(2011 聊城)如图,已知一次函数y =kx +b 的图象交反比例函数42(0)my x x-=>的图象于点A 、B ,交x 轴于点C .(1)求m 的取值范围;(2)若点A 的坐标是(2,-4),且BC AB = 13,求m 的值和一次函数的解析式.xA(第1题)3、.(2010年枣庄市)如图,一次函数y =a x +b 的图象与反比例函数y = kx的图象交于A 、B 两点,与x轴交于点C ,与y 轴交于点D ,已知OA =10,点B 的坐标为(m ,-2),t a n ∠AOC = 13.(1)求反比例函数的解析式; (2)求一次函数的解析式;(3)在y 轴上存在一点P ,使△PDC 与△CDO 相似,求P 点的坐标.4、(2011•临沂)如图,一次函数y=kx+b 与反比例函数y=的图象相较于A (2,3),B (﹣3,n )两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b >的解集;(3)过点B 作BC⊥x 轴,垂足为C ,求S △ABC .5、2010年烟台市18、如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A 在反比例函数y=的图像上,则菱形的面积为____________。

6、(2011•泰安)如图,一次函数y=k1x+b的图象经过A(0,﹣2),B(1,0)两点,与反比例函数的图象在第一象限内的交点为M,若△OBM的面积为2.(1)求一次函数和反比例函数的表达式;(2)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由.7. (德州市2010年)●探究 (1) 在图1中,已知线段AB ,CD ,其中点分别为E ,F .①若A (-1,0), B (3,0),则E 点坐标为__________;②若C (-2,2), D (-2,-1),则F 点坐标为__________;(2)在图2中,已知线段AB 的端点坐标为A (a ,b ) ,B (c ,d ), 求出图中AB 中点D 的坐标(用含a ,b ,c ,d 的 代数式表示),并给出求解过程. ●归纳 无论线段AB 处于直角坐标系中的哪个位置, 当其端点坐标为A (a ,b ),B (c ,d ), AB 中点为D (x ,y ) 时, x =_________,y =___________.(不必证明) ●运用 在图2中,一次函数2-=x y 与反比例函数xy 3=的图象交点为A ,B .①求出交点A ,B 的坐标;②若以A ,O ,B ,P 为顶点的四边形是平行四边形, 请利用上面的结论求出顶点P 的坐标.xy y =x3 y =x -2A B O第22题图3第22题图2一次函数与反比例函数综合题型:专题1 答案:1、(2010 济宁.)解:(1) 设A 点的坐标为(a ,b ),则kb a=.∴ab k =. ∵112ab =,∴112k =.∴2k =. ∴反比例函数的解析式为2y x=. ···················································· 3分(2) 由212y xy x ⎧=⎪⎪⎨⎪=⎪⎩ 得2,1.x y =⎧⎨=⎩ ∴A 为(2,1). ······································ 4分 设A 点关于x 轴的对称点为C ,则C 点的坐标为(2,1-). 令直线BC 的解析式为y mx n =+.∵B 为(1,2)∴2,12.m n m n =+⎧⎨-=+⎩∴3,5.m n =-⎧⎨=⎩∴BC 的解析式为35y x =-+. ························································· 6分 当0y =时,53x =.∴P 点为(53,0). ·········································· 7分2、(2011 聊城24.) 解:(1)因为反比例函数42(0)my x x-=>的图象在第四象限, 所以420m -<,解得2m >. (2)因为点A(2,4-)在函数42my x-=图象上, 所以4242m--=,解得6m =. 过点A 、B 分别作AM ⊥OC 于点M ,BN ⊥OC 于点N , 所以∠BNC=∠AMC=90°. 又因为∠BCN=∠ACM ,所以△BCN ∽△ACM ,所以BN BCAM AC=. 因为14BC AB =,所-以14BC AC =,即14BN AM =. 因为AM=4,所以BN=1. 所以点B 的纵坐标是1-. 因为点B 在反比例函数8y x=-的图象上,所以当1y =-时,8x =. 所以点B 的坐标是(8.1-).因为一次函数y kx b =+的图象过点A(2,4-)、B(8,1-).∴2481k b k b +=-⎧⎨+=-⎩,解得125k b ⎧=-⎪⎨⎪=-⎩所以一次函数的解析式是152y x =--. 3、(2010年枣庄市)(1)过点A 作AE ⊥x 轴,垂足为E .221tan 3310101 3.AOE OE AE OA OE AE AE OE ∠=∴==+=∴==,.,, ∴点A 的坐标为(3,1).………………………2分A 点在双曲线上,13k∴=,3k =.∴双曲线的解析式为3y x=. ………………………………………………………3分(2)点(2)B m -,在双曲线3y x=上,3322m m ∴-==-,.∴点B 的坐标为322⎛⎫-- ⎪⎝⎭,. ………………………………………………………4分231332 1.2a b a a b b +=⎧⎧=⎪⎪∴∴⎨⎨-+=-⎪⎪=-⎩⎩,, ∴一次函数的解析式 为213y x =-. …………………………………………………7分(3)C D ,两点在直线213y x =-上,C D ∴,的坐标分别是30(01)2C D ⎛⎫- ⎪⎝⎭,,,. ∴312OC OD ==,,DC =. ………………………………………8分过点C 作CP AB ⊥,垂足为点C .PDC CDO △∽△,213.4PD DC DC PD DC OD OD ∴===, 又139144OP DP OD =-=-=, P ∴点坐标为904⎛⎫⎪⎝⎭,.……………………………………………………10分4、(2011•临沂)考点:反比例函数与一次函数的交点问题。

一次函数与反比例函数综合题中考专题

一次函数与反比例函数综合题中考专题

一次函数与反比例函数综合题中考专题1、在图中,点D位于双曲线上,AD垂直于x轴,垂足为A。

点C位于AD上,CB平行于x轴并与曲线相交于点B。

直线AB与y轴相交于点F。

已知AC:AD=1:3,点C的坐标为(2,2)。

1)求该双曲线的解析式;2)求△OFA的面积。

1)由于点D位于双曲线上,且AD垂直于x轴,垂足为A,因此双曲线的中心点为O(0,0)。

又因为AC:AD=1:3,所以点A的坐标为(0,6)。

设双曲线的方程为y=a/x,由于点B位于双曲线上,且CB平行于x轴,因此点B的坐标为(2,2a/2)。

由于直线AB与y轴相交于点F,因此直线AB的方程为x=2/F。

将点A和B代入直线AB的方程,得到F=3.因此,直线AB的方程为x=2/3.将点A和B的坐标代入双曲线的方程,得到2a=18,因此双曲线的方程为y=9/x。

2)由于△OFA为直角三角形,因此△OFA的面积为(1/2)×OF×OA=(1/2)×3×6=9.2、在图中,已知双曲线y=经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B连接AB,BC。

1)求k的值;2)若△BCD的面积为12,求直线CD的解析式;3)判断AB与CD的位置关系,并说明理由。

1)由于点D位于双曲线上,因此6k=1,解得k=1/6.2)由于点C位于双曲线第三象限上,且过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B连接AB,BC,因此点A的坐标为(6,0),点B的坐标为(0,1/6)。

设直线CD的方程为y=ax+b,由于点C的坐标为(x,0),点D的坐标为(0,y),因此直线CD的方程为y=-x/6+2.3)因为直线AB的斜率为-1/6,直线CD的斜率为-1/6,所以AB与CD平行。

又因为点B在直线CD的上方,点A在直线CD的下方,所以AB与CD相交。

3、在图中,已知反比例函数y=k/x的图像经过第二象限内的点A(-1,m),AB⊥x轴于点B,x=k的图像上另一点C(n,1/2)。

中考数学总复习《一次函数与反比例函数的实际应用》专题训练-附含答案

中考数学总复习《一次函数与反比例函数的实际应用》专题训练-附含答案

中考数学总复习《一次函数与反比例函数的实际应用》专题训练-附含答案学校:___________班级:___________姓名:___________考号:___________1.工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料煅烧到800℃,然后停止煅烧进行锻造操作,经过8min 时,材料温度降为600℃.煅烧时温度()y ℃与时间()min x 成一次函数关系;锻造时,温度()y ℃与时间()min x 成反比例函数关系(如图).已知该材料初始温度是32℃.(1)分别求出材料煅烧和锻造时y 与x 的函数关系式;(2)根据工艺要求,当材料温度低于480℃时,需停止操作,那么锻造的操作时间有多长?2.已知某蓄电池的电压为定值,使用该蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.(1)求出这个反比例函数的解析式;(2)如果以此蓄电池为电源的用电器限制电流不能超过10A,求出用电器可变电阻应控制在什么范围.3.南宁市五象新区有长24000m的新建道路要铺上沥青.(1)写出铺路所需时间t(天)与铺路速度v(m/天)的函数关系式.(2)负责铺路的工程公司现有的铺路机每天最多能铺路400m,预计最快多少天可以完成铺路任务?(3)为加快工程进度,公司决定投入不超过400万元的资金,购进10台更先进的铺路机.现有甲、乙两种机器可供选择,其中每种机器的价格和日铺路能力如下表.在原有的铺路机连续铺路40天后,新购进的10台机器加入铺路,公司要求至少比原来预计的时间提前10天完成任务.问有哪几种方案?请你通过计算说明选择哪种方案所用资金最少.4.张先生以按揭方式(首付一部分,剩余部分按每月分期付款)购买了价格为16万元的汽车,交了首付款之后每月还款y元,x个月结清,y与x之间的函数关系如图所示,根据图象提供的信息解答下列问题.(1)确定y与x之间的函数关系式,并求出首付款的金额.(2)张先生若打算120个月结清余款,每月应付多少元?(3)若打算每月付款不超过1500元,问:张先生至少几个月才能结清余款?5.一工程中,某工程队工人每天需要挖掘20吨土的深沟,整个工程完毕恰好用了6天. (1)在工程结束后,工人需要把所有的土进行回填,在整个回填过程中,平均回填速度v(单位:吨/天)与回填天数t之间有怎样的函数关系?(2)由于遇到紧急情况,要求整个回填工程不超过4天完毕,那么平均每天至少要回填多少吨土?6.通过实验研究发现:初中生在数学课上听课注意力指标随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散.学生注意力指标y 随时间x (分钟)变化的函数图象如图所示,当010x ≤<和1020x ≤<时,图象是线段;当2045x ≤≤时,图象是反比例函数的一部分.(1)求点A 对应的指标值;(2)张老师在一节课上讲解一道数学综合题需要18分钟,他能否经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于36?请说明理由.7.越来越多的人选择骑自行车这种低碳方便又健身的方式出行.某日,一位家住宝山的骑行爱好者打算骑行去上海蟠龙天地,记骑行时间为t小时,平均速度为v千米/小时(骑行速度不超过40千米/小时).根据以往的骑行经验,v、t的一些对应值如下表:v(千米/小时)15202530t(小时)2 1.5 1.21(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)如果这位骑行爱好者上午8:30从家出发,能否在上午9:10之前到达上海蟠龙天地?请说明理由;t≤≤,求平均速度v的取值范围.(3)若骑行到达上海蟠龙天地的行驶时间t满足0.8 1.68.1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈,这就是有趣的“瞎转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的x>),其图象如图所示,半径y(米)是其两腿迈出的步长之差x(厘米)的反比例函数(0请根据图象中的信息解决下列问题:x10.周末,学校组织全体团员进行社会实践活动,活动结束后,李杰要把一份1600字的社会调查报告录入电脑.设他录入文字的速度为v字/分,完成录入所需的时间为t分钟.(1)求t与v之间的函数关系式;(2)当李杰录入文字的速度v为100字/分,完成录入的时间t为多少?11.某公司从2009年开始投入技术改造资金,经技术改进后,其产品的生产成本不断降低,具体数据如表:年度2009201020112012投入技改资金x(万元) 2.534 4.5产品成本y(万元/件)7.26 4.54(1)试判断:从上表中的数据看出,y与x符合你学过的哪个函数模型?请说明理由,并写出它的解析式.(2)按照上述函数模型,若2013年已投入技改资金5万元①预计生产成本每件比2012年降低多少元?①如果打算在2013年把每件产品的成本降低到3.2万元,则还需投入技改资金多少万元?12.如图,学校打算用材料围建一个面积为18平方米的矩形ABCD的生物园,用来饲养小兔,其中矩形ABCD的一边AB靠墙,墙长为8米,设AD的长为y米,CD的长为x米.(1)求y与x之间的函数表达式;(2)若围成矩形ABCD的生物园的三边材料总长不超过18米,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.13.某公司生产一种产品,月销售量为x吨(0x>),每吨售价为7万元,每吨的成本y(万-与月销元)由两部分组成,一部分是原材料费用a固定不变,另一部分人力等费用,y a售量x成反比,市场部研究发现月销售量x吨与月份n(n为1~12的正整数)符合关系式22=-+(k为常数),参考下面给出的数据解决问题.226x n n k月份n(月)12成本y(万元/吨)5 5.6销售量为x(吨/月)120100-与x的函数关系式;(1)求y a(2)求k的值;(3)在这一年12个月中①求月最大利润;m+个月的利润相差最大,直接写出m的值.①若第m个月和第()114.某电子科技公司研发出一套学习软件,并对这套学习软件在24周的销售时间内,做出了下面的预测:设第x周该软件的周销售量为T(单位:千套),当0<x≤8时,T与x+4成反比;当8<x≤24时.T﹣2与x成正比,并预测得到了如表中对应的数据.设第x周销售该软件每千套的利润为K(单位:千元),K与x满足如图中的函数关系图象:x/周824T/千套1026(1)求T与x的函数关系式;(2)观察图象,当12≤x≤24时,K与x的函数关系式为________.(3)设第x周销售该学习软件所获的周利润总额为y(单位:千元),则:①在这24周的销售时间内,是否存在所获周利润总额不变的情况?若存在,求出这个不变的值;若不存在,请说明理由.①该公司销售部门通过大数据模拟分析后认为,最有利于该学习软件提供售后服务和销售的周利润总额的范围是286≤y≤504,求在此范围内对应的周销售量T的最小值和最大值.15.如图,某人对地面的压强p(单位:2N/m)与这个人和地面接触面积S(单位:2m)满足反比例函数关系.10,80,求函数解析式;(1)图象上点A坐标为()(2)如果此人所穿的每只鞋与地面的接触面积大约为2400cm,那么此人双脚站立时对地面的第 11 页 共 13 页 压强有多大?(3)如果某沼泽地面能承受的最大压强为2320N/m ,那么此人应站立在面积至少多大的木板上才不至于下陷(木板的质量忽略不计)?参考答案: 1.(1)燃烧时函数解析式为()1283206y x x =+≤<;锻造时函数解析式为()48006y x x=≥ (2)4min2.(1)48I R = (2)4.8Ω以上的范围内.3.解:(1)铺路所需要的时间t 与铺路速度V 之间的函数关系式是24000vt =. (2)当v=400时,24000400t ==60(天). (3)解:设可以购买甲种机器x 台,则购买乙种机器(10-x )台,则有解之,得3≤x≤5.因此可以购买甲种机器3台、乙种机器7台;甲种机器4台、乙种机器6台;甲种机器5台,乙种机器5台;总共三种方案.第一种方案所花费费用为:45×3+25×7=310万;第二种方案花费为:4×45+6×25=330万;第三种方案花费为:5×45+5×25=350万,因此选择第一种方案花费最少.4.见解析11.(1)反比例函数关系y=第12页共13页(2)44K x=-+;(3)①存在,不变的值为240;①当周利润总额的范围是286≤y≤504时,对应的周销售量T的最小值是11千套,最大值是18千套.15.(1)函数解析式为800 pS =(2)4210N/mp=(3)此人应站立在面积至少22.5mS=大的木板上才不至于下陷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

t=3或t=-3
O
x
4 ∴把(-3,0)代入y=kx+4中解得 k 3 4 所求解析式为: y x 4 3 1 b 直线y=kx+b与坐标轴围 S b 成的三角形面积的计算 2 k
∵y=kx+b过一、二、三象限 ∴t<0 ∴t=-3
1
2.(2011年黄冈)如图,点A在双曲线y= 上,AB⊥x轴于B,且△AOB的面积S△AOB=2 则k=______.
y A D C
o B x
A
B
O
x
二 求一次函数解析式与反比例函数解析式
三 与一次函数与反比例函数有关的面积问题
1:已知y=kx+b过一、二、三象限,且与x轴、y轴的 交点坐标分别是A(t,0),B(0,4),若△AOB 的面积是6,求这个一次函数的解析式。
解:由题意可知:
y
B ( 0, 4) A (t,0)
小结:
(1)求出函数关系式
(2)平面直角坐标系中,与函数相关的面积的计算 (3)一次函数与反比例函数综合题,解题的思路和方法
一次函数与反比例函数专题 y
O

x
一 基本知识点
1.正比例函数y=kx(k≠0)的性质:
⑴当k>0时,图象过______象限;y随x的增大而____。
⑵当k<0时,图象过______象限;y随x的增大而____。 2、一次函数y=kx+b(k ≠ 0)的性质: ⑴当k>0时,y随x的增大而_________。 ⑵当k<0时,y随x的增大而_________。 ⑶根据下列一次函数y=kx+b(k ≠ 0)的草图回答出各图 中k、b的符号:
k___0,b___0
k___0,b___0
k___0,b___0
k___0,b___0
随堂检测 1
1
2 小华的爷爷每天坚持体育锻炼.某天他慢步到离家较远的绿岛公园,打了一会儿 太极拳后跑步回家.下面能反映当天小华的爷爷离家的距离y与时间x的函数关系 的大致图象是( )
3.直线y=kx+b与坐标轴围 成的三角形面积的计算
四 提升训练
1
2.如图,一次函数y1=﹣x+2的图象与反比例函数y2= 的图象相交于A,B两点,与x轴相交于点C.已知 S∆BOC=2
1
(1)求反比例函数的解析式; (2)请直接写出当y2<y1时,x的取值范围.
1
3.如图,一次函数y=kx+1(k≠0)与反比例函数y= (m≠0)的图象有公共点A(1,2).直线l⊥x 轴于点N(3,0),与一次函数和反比例函数的 图象分别交于点B,C. (1)求一次函数与反比例函数的解析式; (2)求△ABC的面积?
4.反比例函数的性质
k>0 k<0 k的几何意义:
随堂检测
1.如图,直线 的值为( A.-5 ) B.-10 C.5 D.10 与双曲线 交于 两点,则
1
2.如图,已知双曲线
,4),则△AOC的面积为( A.12 B .9
y
经过直角三角形OAB斜边OA的中点D(-3,2),且与直角边AB相交于点C.若点A的坐标为( ) C .6 D .4
相关文档
最新文档