第十一章 齿轮传动
机械设计基础11章齿轮传动
优点
• 传动效率高 • 精度高,传动平稳 • 调整方便
缺点
• 噪音较大,振动大 • 制造和维修成本高 • 使用温度限制
齿轮传动的应用领域
1 汽车领域
齿轮传动广泛应用于汽车变速箱以及其他部件中,如转向、制动等系统。
2 机械加工
在机械加工领域,齿轮传动是一种常见的工具传动方式,如钻床、铣床、数控机床等都 采用齿轮传动。
机械设计基础11章齿轮传 动
齿轮传动是机械传动重要的一种形式,本章将介绍齿轮传动的原理、分类、 工作原理、应用等方面的知识。
齿轮的分类和结构
直齿轮
齿轮依照拒合的直线方向分为直 齿轮和斜齿轮两类,其中最常用 的是直齿轮。
斜齿轮
斜齿轮主要用于高速和高载荷的 传动,它与直齿轮相比具有噪音 小、传动平稳和精度高的优点。
锥齿轮
锥齿轮是用于互相垂直的轴的传 动,它通过多个齿轮的嵌合形成 和从动齿轮
齿轮传动是通过一个主齿轮带动一个或多个从动齿轮,从而实现传递动力和转矩。
速比和转差
齿轮传动的速比可以根据主齿轮和从动齿轮的齿数比值计算,同时转差也是齿轮传动需要考 虑的一个因素。
齿轮传动的优点和缺点
齿轮长期存放或使用在潮湿环境 中,会导致齿轮生锈,影响齿轮 传动的使用寿命。
3 风力发电
齿轮传动广泛应用于风力发电机组中,可将机械能转化为电能,实现电网供电。
齿轮传动的设计考虑因素
1
齿轮传动比
齿轮传动比需要根据传动的要求进行计
齿轮的材料选择
2
算,以确保传动效率和减少传动误差。
齿轮的材料选择需要考虑到传动的环境、
载荷、运行温度等因素,以确保齿轮传
动的寿命和工作稳定性。
3
机械设计基础复习精要:第11章 齿轮传动
133第11章 齿轮传动11.1考点提要11.1.1 重要的术语及概念软齿面、硬齿面、许用应力、弯曲疲劳强度、接触疲劳强度、接触应力、弯曲应力、点蚀、胶合、载荷系数、齿宽系数、齿形系数、应力集中系数、应力循环次数、齿轮精度等级。
11.1.2 许用应力的计算接触疲劳强度的许用应力为: HH HN H S K lim ][σσ= (11—1) 式中:HN K 称为寿命系数,由应力循环次数确定;lim H σ是齿面材料的接触疲劳极限;H S 为安全系数。
即使两齿轮采用同样的材料和热处理,由于两齿轮会有齿数不同,所以应力循环次数也就不同,从而导致寿命系数HN K 不同,因此许用应力也不同。
只有两齿轮齿数相同或齿数虽不同但都按无限寿命取相同的寿命系数HN K 并取相同的安全系数H S ,许用应力才相同。
弯曲疲劳强度的许用应力为:FFE FN F S K σσ=][ (11—2) 式中:环次数确定)为寿命系数(由应力循FN K ;FE σ为齿面材料的弯曲疲劳极限;F S 为安全系数。
即使两齿轮采用同样的材料和热处理,由于两齿轮会有齿数不同,所以应力循环次数也就不同,从而导致寿命系数FN K 不同,因此许用应力也不同。
如果两齿轮齿数相同或齿数虽不同但都按无限寿命取相同的寿命系数FN K 并取相同的安全系数F S ,许用应力才会相同。
为实现等强度设计,如果采用软齿面(HBS 350≤),一般小齿轮比大齿轮硬度高30-50HBS,小齿轮对大齿轮有冷作硬化作用。
如采用硬齿面(HBS 350>),在淬火处理中难以做到如此的硬度差,设计时按同样硬度设计。
要注意:如果是开式齿轮传动,则极限应力要乘以0.7,由于极限应力是按单向转动所获得的数据,如果是双向转动,则也要乘以0.7。
11.1.3齿轮的失效形式和计算准则齿轮的失效形式有五种:(1)轮齿折断。
减缓措施:增大齿根的圆角半径,提高齿面加工精度,增大轴及支承的刚度。
过程装备基础 第11章 齿轮传动与蜗杆传动
rb2 ’
ra2
2 OO 2 2
24
啮合线
点击图标播放
25
11.5
斜齿圆柱齿轮传动
11.5.1 斜齿圆柱齿轮的形成及其传动特点
(1)齿廓曲面的形成 基圆柱上的螺旋角: b 分度圆柱上的螺旋角:
发生面 K K A 发生面 发生面 K
渐开线 ?端面齿形
b
K
A
B
A B
A
直齿轮齿廓曲面的形成
40
(5)齿面塑性变形
原因:用软钢或其它较软的材料制造的齿轮在重 载下工作。 条件:低速、起动频繁和瞬时过载。 现象:渐开线形状被破坏,瞬时传动比不恒定。 措施:提高齿面硬度,采用油性好的润滑油。
41
11.6.2 齿轮材料及热处理 (1)齿轮材料
45号钢 中碳合金钢 金属材料 低碳合金钢 最常用,经济、货源充足 40Cr、40MnB、35SiMn等 20Cr、20CrMnTi等
* 齿根圆直径 d f d 2hf ( z 2ha 2c* )m
基圆直径 db d cos mzcos
p m 齿距 齿厚与槽宽 s e m / 2
基圆齿厚
pb db / z mzcos / z m cos p cos
43
(3)按齿面硬度分类
软齿面( HBS≤350)齿轮:
主要失效形式:齿面点蚀。 应用:多用于中、低速传动。 热处理:调质或正火处理,热处理后再进行轮齿的精切。
硬齿面( HBS>350)齿轮:
主要失效形式:齿根弯曲疲劳折断。 应用:高速、中载、无猛烈冲击的重要齿轮。
热处理:中碳钢经表面淬火处理或用低碳钢经表面渗碳淬火处理。
第十一章 齿轮传动
强度计算方法
当量齿轮法,强度当量。 接触强度计算公式
校核公式
H
ZEZH Z
KT 1 u 1 bd 1
2
u
H
H lim
N / mm
2
设计公式
d1 2 KT
3 1
SH
2
d
u 1 ZEZ u
H
Z
H
mm
Z
cos 螺旋角系数
H
[
H
]
σH ——齿面啮合点最大接触应力 [σH]——齿轮材料的许用接触应力
圆柱面的最大接触应力σH的计算
赫兹公式:
H
4
Fn 2 ab
Fn
1
1
1 1 E1
2
1
2
1 21 E2
2
b
σH ——最大接触应力
与法向力Fn成正比; 与接触变形宽度2a成反比 与曲率半径ρ1 、ρ2成反比。 与宽度b成反比。
增加中心距a; 减小外载荷T1; 选σHlim高的材料和热处理。
336 ( u 1) u
3
提高许用接触应力[σH] :
KT 1 ba
2
H
H
H lim
SH
11-6 直齿圆柱齿轮传动的轮 齿弯曲强度计算
轮齿相当于一个悬臂 梁,受载后会发生弯 曲。 两个问题:
计算时载荷的作用点 及大小 危险截面的位置
齿轮传动经典ppt课件
刀号
1Hale Waihona Puke 2345
6
7
加工齿数范围 12~13 14~16
仿型法加工动画演示
17~2 0
21~2 5
26~34
35~5 4
55~13 4
8 135以上
26
2. 渐开线齿轮的加工方法
用盘铣刀切齿
用指状铣刀切齿
27
2.渐开线齿轮的加工方法
2) 展成法
原理 利用一对齿轮无侧隙啮合时两轮的齿廓互为包络线的原理
观看渐开线生成
10
2. 渐开线的性质
(1) BC=BK
(2)BK为渐开线在K点的法线,B为曲率中心,BK为曲率 半径,渐开线上任一点的法线与基圆相切。
(3)渐开线离基圆愈远,曲半半径愈大,渐开线愈平 直
(4)渐开线的形状决定于基圆的大小。
θK相同时,rb越大,曲半半径越大 rb→∞,渐开线→⊥N3K的直线
第十一章 齿轮传动
1
第十一章 齿轮传动
本章的教学目标:
1)了解齿轮传动的特点、分类与应用;齿轮传动基本知识。 2)熟悉掌握渐开线直齿圆柱齿轮齿轮各部分名称、基本参数
及各部分几何尺寸计算。 3)掌握渐开线斜齿轮传动的特点与应用、基本参数及各部分
几何尺寸计算; 4)了解标准直齿圆锥齿轮传动的特点与应用、基本参数及各
ha= ha*m hf=( ha*+ c*)m h=ha+hf=(2 ha*+ c*)m
P=πm
S e 1 m
2
19
三、标准直齿轮的几何尺寸
1.一对标准齿轮中心距:
a
1 2
(d 2
d1 )
齿轮传动(第11章)
K F FtYFa1YSa1Y F1 F 1 bm K F FtYFa 2YSa 2Y F2 F 2 bm
② 应力和许用应力的关系 两齿轮弯曲应力是否相同?许用应力呢?
F
K F Ft YFaYSaY [ F ] bm
39
③
设计计算时,因为 m 3
8
§11.2
齿轮传动的失效形式
1.轮齿折断
原因: • 齿根弯曲应力大; • 齿根应力集中。
9
1、轮齿折断
★ 疲劳折断 ★ 过载折断
全齿折断—常发生于齿宽较小的直齿轮
局部折断—常发生于齿宽较大的直齿轮,和斜齿轮
措施:选用合适的材料及热处理方法,使齿根芯部 有足够的韧性;采用正变位齿轮以增大齿根的厚度; 增大齿根圆角半径,消除齿根加工刀痕;对齿根进 行喷丸、碾压等强化处理; 提高齿面精度、增大 模数等
d1 sin 2
cos d1 d1 cos
O2
d N 2C 2 2 sin 2
1 1 1 2
d 2 z2 2 d2 u 1 d1 d1 z1
②
d'2 2
'
(从动)
2
②
u 1 1 2 d1 cos tan u
23
§11.4 齿轮传动的计算载荷
名义载荷:
Fn p L
pca K Fn L
计算载荷:
载荷系数:K K A Kv K K
24
1.使用系数KA
考虑齿以外的其他因素对齿轮传动 的影响,主要考虑原动机和工作机的影响
原动机 载荷状况 均匀平稳 轻微冲击 中等冲击 严重冲击 工作机器 … … … … 电机 1.0 … 1.1 … 1.25 1.5 1.75 2.0 内燃 机… 1.5 1.75 2.0 2.25 25
第十一章 齿轮传动PPT课件
影响载荷分布的均匀性 如:齿向误差
引起载荷分布不均匀
渐开线圆柱齿轮精度标准(GB10095-88)中规定了12个精度 等级。其中,1,2等级为远景级;
3,4,5级为高精度级; 6,7,8为中精度级,常用; 9,10,11,12级为低精度级。
常用6-9级
§11-4 直齿圆柱齿轮传动的作用力及计算载荷
措施:提高齿面硬度、 减小粗糙度;低速时采用 粘度大的润滑油;高速时 油中加抗胶合添加剂。
4、齿面磨损 原因:齿面进入磨料 后果:齿形破坏、变薄引起冲击
、振动,甚至断齿
措施:改善润滑、提高齿面硬度 、改用闭式传动
5 、轮齿塑性变形 齿体塑性变形:突然过载,引起齿体歪斜 齿面塑性变形:齿面表层材料沿摩擦力方向流动 原因:齿面软,润滑失效、摩擦变大 后果:齿廓形状变化,不能正确啮合 措施:提高齿面硬度、提高润滑油粘度
齿轮传动除需运转平稳外,还必须具有足够的承载能力。 本章讨论标准齿轮传动的强度计算。
齿轮传动的分类
开式:齿轮外露,不能防尘,周期润滑,精度低;
按工作条件
闭式:封闭在箱体内,安装精度高,润滑条件好。
按齿面硬度
软齿面: HBS<350 硬齿面: HBS>350
齿轮各部分的名称和符号
§11-1 轮齿的失效形式
最常用的材料:优质碳素钢,合金结构钢; 其次:铸钢、铸铁,还有非金属材料。
多采用锻件或轧制钢材。当直径大、不易 锻造时采用铸钢。低速传动可用灰铸铁。
二、齿轮的热处理 1. 表面淬火 表面淬火后再低温回火。
常用材料:中碳钢、中碳合金钢(45、40Gr) 齿面硬度52~56 HRC,齿变形不大,可不磨齿。 高频淬火、火焰淬火。 表面硬,芯部韧。
第11章齿轮传动
一、轮齿上的作用力及计算载荷 O2
O2
各作用力的方向如图
圆周力: Ft
2T1 d1
径向力:Fr1 Fr2 Fttg
法向力:Fn Ft / cos
小齿轮上的转矩:
α ω2 (从动)
t
d2 2
N2 Fn c αt 设计:潘存云
t
N1
Fn
d1 T1 2
N1
α
F N n 设计:潘存云
2
F α t r
c Ft
重要的传动、渗 碳淬火齿轮或铸
造齿轮
SH
1.0~1.1
1.1~1.2
1.3
SF
1.3~1.4
1.4~1.6
1.6~2.2
600 球墨铸铁
500
600
普通碳素 500 钢正火
800
合金钢调质
700
σHlim(N/mm) σHlim(N/mm) σHlim(N/mm)
400 300 200
100
灰铸铁
5. 渗氮 渗氮是一种化学处理。渗氮后齿面硬度可达60~62HRC。 氮化处理温度低,轮齿变形小,适用于难以磨齿的场合, 如内齿轮。材料为:38CrMoAlA.
特点及应用: 调质、正火处理后的硬度低,HBS ≤ 350,属软齿面, 工艺简单、用于一般传动。当大小齿轮都是软齿面时, 因小轮齿根薄,弯曲强度低,故在选材和热处理时, 小轮比大轮硬度高: 20~50HBS
表11-3 载荷系数K
原动机
工作机械的载荷特性
均匀
中等冲击
大的冲击
电动机
1.1~1.2
1.1~1.2
1.6~1.8
多缸内燃机
1.2~1.6
1.6~1.8
机械设计基础课件第十一章齿轮传动
齿轮传动的计算和设计
计算
根据传动比、转速和扭矩要求,确定齿轮的模数、 齿数和啮合角,以满足设计需求。
设计
基于计算结果,绘制齿轮的剖面图、齿形曲线,并 选择合适的材料和制造工艺。
齿轮传动的应用领域
汽车工业
齿轮传动广泛用于变速器、差速 器和传动系统,实现不同速度和 扭矩的转换。
工业机械
齿轮传动在机床、起重设备、工 厂生产线等领域中被广泛应用, 实现精确的运动控制。
齿轮传动的工作原理
齿轮传动通过齿面的啮合转动相邻齿轮,改变速度和扭矩。合理的模数和齿 数设计以及精准的制造工艺是实现高效传动的关键。
齿轮传动的优点和局限性
1 优点
高传动效率、精确的传动比、可靠性高、能承受大扭矩、使用寿命长。
2 局限性
容易产生噪音和振动、对工作环境要求高、制造成本较高、需要润滑和维护。
风力发电
齿轮传动在风力发电机组中用于 将风轮转动的风能转化为发电机 的高速旋转。
结论和总结
通过对齿轮传动的学习,我们了解了它的基本概念、工作原理、优点和局限 性以及计算和设计方法,同时认识了齿轮传动在各个应用领域的重要性。
机械设计基础课件第十一 章齿轮传动
欢迎大家来到本课件的第十一章,我们将一起探索齿轮传动的基本概念、常 见类型、工作原理、优点和局限性、计算和设计、应用领域等内容。
齿轮传动的基本概念轮之间的啮合实现动力和运动传递的机械装置。
2
组成
由多个齿轮组成,其中一般有一个驱动齿轮和一个被动齿轮。
3
原理
齿轮之间的齿面啮合使得驱动齿轮的旋转传递给被动齿轮,改变速度和扭矩。
常见的齿轮类型
直齿轮
齿面平行于齿轴直线,传动效率高,但噪音和振 动较大。
《机械设计基础》课件 第11章 齿轮传动
H
2
bd1
u
Zβ cos
32
§11-8 斜齿圆柱齿轮传动
2 KT1
F
YFaYSa F
bd1mn
2 KT1 YFaYSa
2
mn 3
cos
2
d z1 F
z
zv
3
cos
33
§11-9 直齿圆锥齿轮传动
34
§11-9 直齿圆锥齿轮传动
35
轴向力:
Fa Ft tan
29
§11-8 斜齿圆柱齿轮传动
力的方向:
圆周力t :主动轮与运动方向相反,
从动轮与运动方向相同
径向力r :两轮都是指向各自的轴心
轴向力a :主动轮的左(右)手法则
30
根据主动轮轮齿的齿向(左旋或右旋)伸左手或右手,四指
沿着主动轮的转向握住轴线,大拇指所指即为主动轮所受的
轮齿会变形,需要磨齿。
二、主要参数
1. 齿数比:一般≤7,同要求的传动比误差≤ (3~5)%
2. 齿数:一般z1>17
3. 齿宽:过大,宽度方向载荷分布不均匀
28
§11-8 斜齿圆柱齿轮传动
一、轮齿上的作用力
轮齿所受总法向力
可分解为:
2T1
圆周力:Ft
d1
Ft tan n
径向力:Fr
cos
开式传动的主要失效形式为齿面磨粒磨损和轮齿的弯曲疲劳
折断。
由于目前齿面磨粒磨损尚无完善的计算方法,因此通常只对
其进行抗弯曲疲劳强度计算,并采用适当加大(10%~20%)
模数(或降低许用弯曲应力)的方法来考虑磨粒磨损。
齿轮传动
渐开线齿廓
一、渐开线的形成
一直线在一个圆周上做纯滚动时,直线 上任意一点K的轨迹称为该圆渐开线。
vK
渐开线
K
F
压力角 aK
N
rK
向径rK
A
发生线
rb
aK
qK 展角 基圆
基圆半径 rb
K
二、渐开线的特性
1、NK = AN 发生线沿 基圆滚过的长 N O A
度等于基圆上
被滚过的圆弧
rb
长度。
2、渐开线上任一点的法线
重合度不仅是齿轮传动的连续性条件,而且是衡量
齿轮承载能力和传动平稳性的重要指标。
在一般机械制造中常使e≥1.1~1.4。对于标准齿轮 传动,一般都能满足这一条件。重合度愈大,表示两对
齿同时啮合的时间愈长,同时参与啮合的轮齿对数愈多,
传动愈平稳,每对轮齿所承受的载荷小,总体承载能力 愈大。
注意!
正确啮合条件和连续传动条件是保证一对齿 轮能够正确啮合并连续平稳传动的缺一不可的条
B 齿间 (齿槽) p pk
• 分度圆d (r): 设计齿轮的基准圆 分度圆上,p=s+e • 齿顶高 ha: • 齿根高hf: • 齿全高h=ha+hf •
• (1)齿数:z
• (2) 模数:m d=zp d=zm • 压力角a :分度圆压力角的简称分
度圆上的压力角20°
c
r2' o2
'
B
正常齿:
m≥1 mm: ha*=1,c*=0.25 m<1 mm: ha*=1,c*=0.35
e
s
p
短齿:
ha*=0.8,c*=0.3 标准齿轮: m, a, ha*,c*等于标准数值,
高等教育出版社第11章机械设计基础第五版 齿轮传动
材料及热处理;增大模数;增大齿根圆角半径; 消除刀痕;喷丸、滚压处理;增大轴及支承刚度。
二、齿面点蚀:
在润滑良好的闭式齿轮传动中,由于齿面材料在 交变接触应力(脉动循环)作用下,因为接触疲劳产 生金属微粒剥落形成凹坑的破坏形式称为点蚀。
则可得到:
2T1 圆周力: Ft d1
经向力:Fr
N N N
Ft tan
Ft 法向力: Fn cos
小齿轮上的转矩:
P T1 9550 ( N m) n1
圆周力Ft的方向在主动轮上与运动方向相反, 在从动轮上与运动方向相同。经向力Fr的方向都是 由作用点指向各自的轮心,与齿轮回转方向无关。
把
b d d1
代入上式得
m3
2 KT1 YFa
FE
SF
试验轮齿失效概率为1/100时的 齿根弯曲疲劳极限,见表11-1。 若轮齿两面工作时,应将数值乘 以0.7倍。 安全系数,见表11-5
在进行弯曲强度验算时,应对大小齿轮分别 进行验算;而在计算m时,应以
§11-5 直齿圆柱齿轮传动的 齿面接触强度计算
直齿圆柱齿轮的强度计算方法是其它各类齿轮
传动计算方法的基础,斜齿圆柱齿轮、直齿圆锥齿
轮等强度计算,可以折合成当量直齿圆柱齿轮来进
行计算。
强度计算的目的在于保证齿轮传动在工作载荷
的作用下,在预定的工作条件下不发生各种失效。
齿轮强度计算是根据齿轮可能出现的失效形式 来进行的。
三、齿面胶合
高速重载的齿轮传动,齿面间的压力大,瞬时 温度高,油变稀而降低了润滑效果,导致摩擦增大, 发热增多,将会使某些齿面上接触的点熔合焊在一 起,在两齿面间相对滑动时,焊在一起的地方又被 撕开。于是,在齿面上沿相对滑动的方向形成伤痕, 这种现象称作胶合。
机械设计基础第十一章 齿轮传动
Ft1 = 2T1
d1
Fr1 = Ft1tan
Fn1
Ft1
cos
小齿轮上的转矩:
O2
T1
106
P
1
9.55 106
P n1
N mm
P为传递的功率(KW)
t
ω1----小齿轮上的角速度,
d1----小齿轮上的分度圆直径, N1
n1----小齿轮上的转速
α----压力角
α
ω2
(从动)
标准直齿圆柱齿轮几何尺寸的计算
分度, 取标准值 ha*=1
齿根高:hf=(ha* +c*)m ca* ——顶隙系数, 取标准值 c*=0.25
ha s N e h hf
pn pb
rb
rf r ra
α
全齿高:h= ha+hf =(2ha* +c*)m
合金结构钢 铸钢 灰铸铁
球墨铸铁
表13-1
牌号
35
45
50 40Cr
35SiMn 40MnB
…… ZG270-500
…… HT200 …… QT500-5 ……
常用的齿轮材料
热处理
正火 调质 表面淬火 正火 调质 表面淬火 正火 调质 表面淬火 调质 表面淬火 调质 ……
正火
……
硬度(HBS或HRC)
1.2~1.6
1.6~1.8
1.6~1.8
1.8~2.0
(
Fn b
)min
大的冲击 1.6~1.8 1.9~2.1 2.2~2.4
§11-5 直齿圆柱齿轮传动的 齿面接触强度计算
齿轮强度计算的主要目的是避免失效。 闭式齿轮传动的主要失效形式是齿面点蚀 和齿根弯曲疲劳折断。 开式齿轮传动的主要失效形式是齿面磨损 和齿根弯曲疲劳折断。
第十一章-齿轮传动思维导图
齿数z
主要参数
11-7 圆柱齿轮材料和 参数的选取与计算方法
齿宽系数及齿宽
圆周力
径向力 斜齿轮圆柱齿轮的受力分析
轴向力
圆周力、径向力与直齿圆柱齿轮的方向相同
对主动轮:用左、右手法则来判 断,从动轮方向与主动轮相反
轴向力
斜齿圆柱齿轮传动的作用力方向
11-/s,采用油池润滑
精度等级
11-4 直齿圆柱齿轮传动 的作用力及计算载荷
直齿圆柱齿轮传动的受力分析
直齿圆柱齿轮传动的作用力方向
圆周力:“主反从同” 径向力:由作用点指向各自的轮心
直齿圆柱齿轮传动的计算载荷
法向力Fn为名义载荷
齿面最大接触应力可近似用赫兹公式计算
11-5 直齿圆柱齿轮传 动的齿面接触强度计算
齿面接触强度(简化后) 齿面接触疲劳强度的校核公式 齿面接触疲劳强度的设计公式
第十一章齿轮传动
11-1 齿轮的失效形 式和设计计算准则
失效形式
轮齿折断(闭式硬齿面齿轮传动的主要失效形式) 齿面点蚀(闭式软齿面齿轮传动的主要失效形式) 齿面胶合(主要出现在高速重载的闭式齿轮传动) 齿面磨损(开式齿轮传动的主要失效形式) 齿面塑性变形(重载软软齿面齿轮传动的主要失效形式)
设计计算准则
多级传动且大齿轮直径不等时, 采用惰轮蘸油润滑
v>12m/s,采用油泵喷油润滑
减少摩擦磨损,散热和防锈蚀
开式,半闭式,低速齿轮传动采用人工定 期润滑,用润滑油或润滑脂
润滑目的 润滑方式
闭式齿轮传动的润滑方式由圆周速度v决定
查表 润滑油牌号和粘度
功率损耗 传动效率
齿轮传动的效率
11-11 齿轮传动 的润滑和效率
11-2 齿轮材料及热处理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原因和分析(续):
齿面点蚀与齿面间的相对滑动速度和润滑油有关。
①相对速度大,粘度大,齿面间容易形成油膜,齿面有效 接触面积较大,接触应力小,点蚀不容易发生。
②在齿根节线附加,相对滑动速度低,不容易形成油膜。 ③粘度较低的润滑油,容易渗入裂纹。齿轮啮合时,润滑
油在裂纹内受到挤胀,加速裂纹扩展。
§11-1 齿轮的失效形式
(一)轮齿折断
一般发生在齿根部分
齿根弯曲应力最大、应力集中
断裂形式
整齿折断(齿宽较小的直齿圆柱齿轮) 局部折断(齿宽大的直齿轮、斜齿轮和人字齿轮)
断裂的原因
过载折断
受冲击载荷或短时严重过载,突然折断;
长期使用的齿轮因严重磨损而导致齿厚过分减薄。
脆性材料(淬火钢、铸铁)
产生的机理
当齿轮材料过软时,若齿轮上的载荷所产生的应力 超过材料的屈服极限,齿轮发生塑性变形
(1)冲击载荷产生压痕 (2)润滑不良而导致齿面摩擦力过大
主要出现
低速重载、启动频繁的传动
措施
提高齿面硬度、采用高粘度或者极压添加剂的润滑 油
齿轮设计准则
两条准则
齿根弯曲疲劳强度 和 齿面接触疲劳强度
首先出现在靠近节线的齿根面上,然后向其他部位 扩展。
提高齿面材料的硬度,可以增强齿轮抗点蚀的能力。
(四)齿面胶合
产生的机理
由于齿面之间未能有效地形成润滑油膜,导致两齿面金属直接 接触并相互粘连;
沿着相对滑动方向相互撕扯而出现的划痕。 齿面胶合主要发生在齿顶、齿根等相对速度较大处。
影响
第十一章 齿轮传动
§11-1 齿轮的失效形式 §11-2 齿轮材料及热处理 §11-3 齿轮传动的精度 §11-4 直齿圆柱齿轮传动的作用力及计算载荷 §11-5 直齿圆柱齿轮传动的齿面接触强度计算 §11-6 直齿圆柱齿轮传动的轮齿弯曲强度计算 §11-7 设计圆柱齿轮时材料和参数的选取 §11-8 斜齿圆柱齿轮传动 §11-10 齿轮的构造 §11-11 齿轮传动的润滑和效率
① 轮齿表层(齿面)应有较高的硬度以保证齿面抗 磨损、抗点蚀、抗胶合及抗塑性变形的能力。
② 齿芯材料应有足够的强度和韧性,使齿根具有良 好的抗弯曲和抗冲击的能力
③ 良好的加工工艺性能及热处理性能,经济性要求
常用的齿轮材料
钢:韧性好、耐冲击。热处理可以改善其力学 性能及提高齿面硬度。
锻钢(低碳钢、合金钢) (1)软齿轮面齿轮(硬度<=350 HBS)
对硬度、速度和精度要求不高 毛坯经过常化(正火)或者调质后切齿 软齿面便于加工、刀具磨损小,制造简便经济。
(2)硬齿轮面齿轮
高速、重载及精密机器 切齿之后,表面硬化处理,然后再精加工
铸钢(尺寸过大或形状复杂)
耐磨性和强度较好,应经过退火和常化处理。
铸铁:
材料较脆、抗冲击和耐磨性差,但抗胶合和点蚀性 能好。适用于工作平稳、速度较低、功率不大的场 合。
疲劳折断
在载荷的周期性作用下,弯曲应力超来自疲劳极限,齿根产生疲劳 裂纹;
加速齿根裂纹扩展,最终引起轮齿断裂。
应力集中(齿根过渡部分的形状突变和加工刀痕)。
采取的措施
①采用正变位齿轮,增大齿根的强度;②齿根过渡曲线变化更为 平稳(增大齿根圆角半径)及消除加工刀痕(提高齿面精度), 减少应力集中;③增大轴及支承的刚性,提高安装精度,使齿轮 接触线上的受载较为均匀;④热处理提高齿芯材料的韧性,对齿 根表面进行强化处理(齿芯要韧、齿面要硬)。
齿面胶合会引起振动和噪声、导致传动性能下降,甚至失效。
两种形式:
高速重载传动(齿面热胶合)和低速重载传动(齿面冷胶合)
措施
采用正变位齿轮、减少模数(降低齿高以减少滑动速度)、提 高齿面硬度、降低齿面表面粗糙度、合理选择润滑油:低速— —粘性大,高速——添加抗胶合添加剂。
(五)齿面塑性变形
非金属材料(尼龙、夹木胶布等):
高速、轻载、精度不高。 优点:降低噪声
常用的几种热处理方法
调质和正火用于软齿面;淬火和渗氮用于硬齿 面
大小齿轮都是软齿面
小齿轮比大齿轮高20~50 HBS
都是硬齿面
小齿轮略高、或者和大齿轮相等
表面淬火
一般用于中碳钢和中碳合金钢。表面淬火后轮 齿变形小,可不磨齿,硬度可达52~56HRC。 由于齿面强度高、耐磨性好,齿芯仍有较高韧 性,能承受一定冲击载荷。
(二)齿面磨损
(开式传动)齿面摩擦或啮合面间落入磨料性物质 (砂粒、铁屑等)。
开式传动齿轮的主要失效形式之一 润滑不良的闭式传动
原因:落入硬颗粒、润滑不良、加工表面粗糙度
影响:磨损引起齿廓变形和齿厚减少,产生振动和噪 声,甚至引起齿厚过薄而断裂。
措施:采用闭式传动、减少齿面粗糙度值和保持良好 的润滑。
两种形式:磨粒磨损(恶性)和跑合磨损(良性)。
新齿轮副在轻载下进行跑合
(三)齿面点蚀
产生的机理
症状:齿面上出现细碎的凹坑或麻点。 齿面接触应力超过材料的接触疲劳强度时,在载荷
的周期性作用下,齿面表层产生细微的疲劳裂纹; 裂纹蔓延扩展形成金属小片、剥落后形成疲劳点蚀。
原因和分析:
润滑良好的闭式软齿面(HBS≤350)传动中; 开式传动由于齿面磨损较快,点看蚀不实例到点蚀现象。
实际计算
闭式齿轮传动中:
一般软齿面时,以保证齿面接触疲劳强度为主。 硬齿面时(齿面硬度高,齿芯强度低;或者材料较脆的齿轮),
以保证齿根弯曲疲劳强度为主。
开式齿轮传动中:
以保证齿根弯曲疲劳强度为准则并根据磨损情况将模数适当增 大
§11-2 齿轮材料及热处理
选用的基本原则
归纳为:齿面要硬、齿芯要韧 具体要求:
齿轮传动:传递运动和传递动力
运转平稳外,还要有足够的承载能力
(工作条件)分类Ⅰ
开式传动
齿轮外露。不能保证良好润滑、容易落入杂质、齿面易磨 损。适于低速传动。
闭式传动
齿轮封闭在齿轮箱内。保证良好的润滑和工作条件。
(载荷情况)分类Ⅱ
低速轻载: V≤1~3m/S ; Fn≤5~10KN 中速中载: 3m/S<V<10m/S ; 10KN≤Fn<50KN 高速重载: V≥10m/S ; Fn≥50KN