初中数学重点知识点及重要题型
2024年八年级数学重点知识点总结(2篇)
2024年八年级数学重点知识点总结(____字)一、整数与小数1. 整数的定义与性质:自然数、整数、相反数、绝对值、数轴、整数的比较和运算性质。
2. 小数的定义和性质:有限小数、无限小数、循环小数、小数与分数的关系。
3. 整数的加减运算:同号相加、异号相减、减法的运算法则等。
4. 小数与整数的加减运算:小数与整数相加减、小数加减法与整数的结合。
5. 有理数的加减运算:有理数的加法性质、有理数的加法运算、有理数的减法性质、有理数的减法运算。
二、代数式与方程式1. 代数式的定义和性质:代数式的定义、代数式的运算。
2. 等式的性质:等式的基本性质、等式两边相等的性质。
3. 一元一次方程式:方程的解、方程的变形、方程解的判定、一元一次方程的解法、方程的应用。
4. 解一元一次方程:等式的两边加(减)上同一个数、等式的两边乘(除)以同一个数。
三、几何图形的认识1. 点、线、面:点的概念、线的概念、面的概念。
2. 角:角的概念、角的大小、平角、直角、锐角、钝角、对顶角、邻补角、互补角。
3. 三角形:三角形的定义、三角形的分类、三角形的性质、三角形的判定、三角形的内角和、三角形的外角和。
4. 平行线与垂直线:平行线的判定、平行线的性质、平行线与横线的关系、平行线与竖线的关系、垂直线的判定、垂直线的性质。
四、比例和相似1. 比与比例:比的定义和性质、比例的定义和性质。
2. 比例运算:比例的四则运算、比例的平方与倒数运算。
3. 相似与全等:相似的概念与性质、相似判定的方法。
4. 三角形的相似:全等三角形、相似三角形、比例定理、相似三角形的性质。
五、数据的分析与统计1. 平均数:算术平均数、加权平均数。
2. 数据的搜集与整理:搜集数据的方法、整理数据的方法。
3. 数据的图表表示:表格、条形图、折线图、饼图。
4. 概率:试验与事件、概率的定义和性质、概率的大小。
六、函数与图像1. 一元一次函数:函数概念、函数自变量与因变量、一元一次函数的图像、函数的线性关系。
新人教版九年级上册数学[随机事件和概率--知识点整理及重点题型梳理]
新人教版九年级上册初中数学重难点有效突破知识点梳理及重点题型巩固练习随机事件和概率--知识讲解【学习目标】1、通过对生活中各种事件的判断,归纳出必然事件、不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断;2、初步理解概率定义,通过具体情境了解概率意义.【要点梳理】要点一、必然事件、不可能事件和随机事件【 391875 名称:随机事件与概率初步:随机事件】1.定义:(1)必然事件在一定条件下重复进行试验时,在每次试验中必然会发生的事件,叫做必然事件.(2)不可能事件在每次试验中都不会发生的事件叫做不可能事件.(3)随机事件在一定条件下,可能发生也可能不发生的事件,称为随机事件.要点诠释:1.必然发生的事件和不可能发生的事件均为“确定事件”,随机事件又称为“不确定事件”;2.要知道事件发生的可能性大小首先要确定事件是什么类型.一般地,必然发生的事件发生的可能性最大,不可能发生的事件发生的可能性最小,随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小有可能不同.要点二、概率的意义概率是从数量上刻画了一个随机事件发生的可能性的大小.一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数附近,那么这个常数就叫做事件A的概率(probability),记为.要点诠释:(1)概率是频率的稳定值,而频率是概率的近似值;(2)概率反映了随机事件发生的可能性的大小;(3) 事件A的概率是一个大于等于0,且小于等于1的数,,即,其中P(必然事件)=1,P(不可能事件)=0,0<P(随机事件)<1.【典型例题】类型一、随机事件1.(1)指出下列事件中,哪些是不可能事件?哪些是必然事件?哪些是随机事件?①若 a、b、c都是实数,则a(bc)=(ab)c;②没有空气,动物也能生存下去;③在标准大气压下,水在 90℃时沸腾;④直线 y=k(x+1)过定点(-1,0);⑤某一天内电话收到的呼叫次数为 0;⑥一个袋内装有形状大小完全相同的一个白球和一个黑球,从中任意摸出 1个球则为白球.【答案与解析】①④是必然事件;②③是不可能事件;⑤⑥是随机事件.【总结升华】准确掌握定义,依据定义判别.【 391875 名称:随机事件与概率初步:经典例题1】举一反三【变式1】下列事件是必然事件的是( ).A.明天要下雨;B.打开电视机,正在直播足球比赛;C.抛掷一枚正方体骰子,掷得的点数不会小于1;D.买一张彩票,一定会中一等奖.【答案】C.【变式2】下列说法中,正确的是( ).A.生活中,如果一个事件不是不可能事件,那么它就必然发生;B.生活中,如果一个事件可能发生,那么它就是必然事件;C.生活中,如果一个事件发生的可能性很大,那么它也可能不发生;D.生活中,如果一个事件不是必然事件,那么它就不可能发生.【答案】C.2. 在一个不透明的口袋中,装有10个除颜色外其它完全相同的球,其中5个红球,3个蓝球,2个白球,它们已经在口袋中搅匀了.下列事件中,哪些是必然发生的?哪些是不可能发生的?哪些是可能发生的?(1)从口袋中任取出一个球,它恰是红球;(2)从口袋中一次性任意取出2个球,它们恰好全是白球;(3)从口袋中一次性任意取出5个球,它们恰好是1个红球,1个蓝球,3个白球. 【答案与解析】(1)可能发生,因为袋中有红球;(2)可能发生,因为袋中刚好有2个白球;(3)不可能发生,因为袋中只有2个白球,取不出3个白球.【总结升华】了解并掌握三种事件的区别和联系.举一反三【变式】甲、乙两人做掷六面体骰子的游戏,双方规定,若掷出的骰子的点数大于3,则甲胜,若掷出的点数小于3,则乙胜,游戏公平吗?若不公平,请你设计出一种对于双方都公平的游戏.【答案】不公平,小于3的点数有1、2,大于3的点数有4、5、6,因此,它们的可能性是不同的,所以不公平.可设计掷出的点数为偶数时甲胜,掷出的点数为奇数时乙胜.类型二、概率3.(2015春•山亭区期末)一只口袋里放着4个红球、8个黑球和若干个白球,这三种球除颜色外没有任何区别,并搅匀.(1)取出红球的概率为,白球有多少个?(2)取出黑球的概率是多少?(3)再在原来的袋中放进多少个红球,能使取出红球的概率达到?【答案与解析】解:(1)设袋中有白球x个.由题意得:4+8+x=4×5,解得:x=8,答:白球有8个;(2)取出黑球的概率为:,答:取出黑球的概率是,(3)设再在原来的袋中放入y个红球.由题意得:3(4+y)=20+y,或2(4+y)=8+8,解得:y=4,答:再在原来的袋中放进4个红球,能使取出红球的概率达到.【总结升华】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.举一反三【变式】(2014•宁波模拟)中央电视台“非常6+1”栏目中有个互动环节,在电视直播现场有三个“金蛋”三个“银蛋”其中只有一个“金蛋”内有礼物,银蛋也是如此.有一个打进电话的观众,选择并打开后得到礼物的可能性是()A.B.C.D.【答案】D.【 391875 名称:随机事件与概率初步:例6及思考题】投篮次数n8 10 12 9 16 10进球次数m 6 8 9 7 12 7进球频率nm(1)计算表中各场次比赛进球的频率;(2)这位运动员每次投篮,进球的概率约为多少? 【答案与解析】 (1)投篮次数n 8 10 12 9 16 10 进球次数m 6897127进球频率nm0.75 0.8 0.75 0.78 0.75 0.7 (2)P(进球)≈0.75.【总结升华】频率和概率的关系:当大量重复试验时,频率会稳定在概率附近. 举一反三【变式】某射手在同一条件下进行射击,结果如下表所示:射击次数(n) 10 20 50 100 200 500 击中靶心次数(m)9 19 44 91 178 451 击中靶心频率()(1)计算表中击中靶心的各个频率(精确到0.01);(2)这个射手射击一次,击中靶心的概率约是多少(精确到0.1)?【答案】 (1)击中靶心的各个频率依次是:0.90,0.95,0.88,0.91,0.89,0.90. (2)这个射手击中靶心的概率约为0.9.。
北师大版七年级下册数学(全册知识点考点梳理、重点题型分类巩固练习)(基础版)(家教、补习、复习用)
北师大版七年级下册数学全册知识点梳理及重点题型巩固练习幂的运算(基础)【学习目标】1. 掌握正整数幂的乘法运算性质(同底数幂的乘法、幂的乘方、积的乘方);2. 能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算. 【要点梳理】要点一、同底数幂的乘法性质+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即mnpm n pa a a a++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即m n m n a a a +=⋅(,m n 都是正整数).要点二、幂的乘方法则()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n p mnp a a (0≠a ,,,m n p 均为正整数)(2)逆用公式: ()()nmmnm n aa a ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题. 要点三、积的乘方法则()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅nnnnabc a b c (n 为正整数).(2)逆用公式:()nn na b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭要点四、注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方. (5)灵活地双向应用运算性质,使运算更加方便、简洁. (6)带有负号的幂的运算,要养成先化简符号的习惯. 【典型例题】类型一、同底数幂的乘法性质1、计算:(1)234444⨯⨯;(2)3452622a a a a a a ⋅+⋅-⋅;(3)11211()()()()()n n m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+. 【答案与解析】 解:(1)原式234944++==.(2)原式34526177772222a a a a a a a +++=+-=+-=.(3)原式11211222()()()()2()n n m n m n m n m n m x y x y x y x y x y +++-++-+++=+++=+++=+.【总结升华】(2)(3)小题都是混合运算,计算时要注意运算顺序,还要正确地运用相应的运算法则,并要注意区别同底数幂的乘法与整式的加减法的运算法则.在第(2)小题中a 的指数是1.在第(3)小题中把x y +看成一个整体. 举一反三: 【变式】计算:(1)5323(3)(3)⋅-⋅-;(2)221()()p p p x x x +⋅-⋅-(p 为正整数); (3)232(2)(2)n ⨯-⋅-(n 为正整数). 【答案】解:(1)原式532532532103(3)333333++=⋅-⋅=-⋅⋅=-=-. (2)原式22122151()p p p p p p p x x x x x +++++=⋅⋅-=-=-. (3)原式525216222(2)22n n n +++=⋅⋅-=-=-.2、已知2220x +=,求2x 的值.【思路点拨】同底数幂乘法的逆用:22222x x +=⋅ 【答案与解析】 解:由2220x +=得22220x ⋅=.∴ 25x=.【总结升华】(1)本题逆用了同底数幂的乘法法则,培养了逆向思维能力.(2)同底数幂的乘法法则的逆运用:m nm n a a a +=⋅.类型二、幂的乘方法则3、计算:(1)2()m a ;(2)34[()]m -;(3)32()m a -. 【思路点拨】此题是幂的乘方运算,(1)题中的底数是a ,(2)题中的底数是m -,(3)题中的底数a 的指数是3m -,乘方以后的指数应是2(3)62m m -=-. 【答案与解析】解:(1)2()m a 2ma=.(2)34[()]m -1212()m m =-=.(3)32()m a -2(3)62m ma a --==. 【总结升华】运用幂的乘方法则进行计算时要注意符号的计算及处理,一定不要将幂的乘方与同底数幂的乘法混淆.幂的乘方法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.4、(2016春•湘潭期末)已知a x =3,a y =2,求a x+2y 的值.【思路点拨】 直接利用同底数幂的乘法运算法则将原式变形进而将已知代入求出答案. 【答案与解析】 解:∵a x =3,a y =2, ∴a x+2y =a x ×a 2y =3×22=12.【总结升华】本题考查同底数幂的乘法,幂的乘方,解题时记准法则是关键. 举一反三:【变式1】已知2ax =,3bx =.求32a bx+的值.【答案】 解:32323232()()238972a b a b a b x x x x x +===⨯=⨯=. 【变式2】已知84=m ,85=n ,求328+m n的值.【答案】解:因为3338(8)464===m m , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m n m n.类型三、积的乘方法则5、指出下列各题计算是否正确,指出错误并说明原因:(1)22()ab ab =; (2)333(4)64ab a b =; (3)326(3)9x x -=-. 【答案与解析】解:(1)错,这是积的乘方,应为:222()ab a b =. (2)对.(3)错,系数应为9,应为:326(3)9x x -=. 【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方. (2)注意系数及系数符号,对系数-1不可忽略. 举一反三:【变式】(2015春•铜山县校级月考)(﹣8)57×0.12555. 【答案】解:(﹣8)57×0.12555=(﹣8)2×[(﹣8)55×]=﹣64.北师大版七年级下册数学重难点突破知识点梳理及重点题型巩固练习【巩固练习】 一.选择题1.(2015•杭州模拟)计算的x 3×x 2结果是( ) A .x 6 B .6xC . x 5D . 5x2.2nn a a+⋅的值是( ).A. 3n a + B. ()2n n a + C. 22n a+D. 8a3.(2016•淮安)下列运算正确的是( )A .a 2•a 3=a 6B .(ab )2=a 2b 2C .(a 2)3=a 5D .a 2+a 2=a 44.下列各题中,计算结果写成10的幂的形式,其中正确的是( ).A. 100×210=310 B. 1000×1010=3010 C. 100×310=510 D. 100×1000=4105.下列计算正确的是( ). A.()33xy xy =B.()222455xyx y -=- C.()22439xx -=-D.()323628xy x y -=-6.若()391528m n a b a b=成立,则( ). A. m =6,n =12 B. m =3,n =12 C. m =3,n =5D. m =6,n =5二.填空题 7.(2016•大庆)若a m =2,a n =8,则a m+n = .8. 若()319x aa a ⋅=,则x =_______.9. 已知35na=,那么6n a =______. 10.若38m a a a ⋅=,则m =______;若31381x +=,则x =______. 11. ()322⎡⎤-=⎣⎦______; ()33n ⎡⎤-=⎣⎦______; ()523-=______.12.若n 是正整数,且210na =,则3222()8()n n a a --=__________.三.解答题13.(2015春•莱芜校级期中)计算:(﹣x )3•x 2n ﹣1+x 2n •(﹣x )2.14.(1) 3843()()x x x ⋅-⋅-; (2)2333221()()3a b a b -+-;(3)3510(0.310)(0.410)-⨯-⨯⨯⨯; (4)()()3522b a a b --;(5)()()2363353a a a -+-⋅;15.(1)若3335nn x x x +⋅=,求n 的值.(2)若()3915n ma b b a b ⋅⋅=,求m 、n 的值.【答案与解析】 一.选择题1. 【答案】C ;【解析】解:原式=x 3+2=x 5,故选C . 2. 【答案】C ; 【解析】2222nn n n n a a a a ++++⋅==.3. 【答案】B ;【解析】解:A 、a 2•a 3=a 2+3=a 5,故本选项错误;B 、(ab )2=a 2b 2,故本选项正确;C 、(a 2)3=a 2×3=a 6,故本选项错误;D 、a 2+a 2=2a 2,故本选项错误.故选B .4. 【答案】C ;【解析】100×210=410;1000×1010=1310;100×1000=510.5. 【答案】D ;【解析】()333xy x y =;()2224525xyx y -=;()22439x x -=.6. 【答案】C ; 【解析】()333915288,39,315m n m n a b a b a b m n ====,解得m =3,n =5.二.填空题7. 【答案】16;【解析】解:∵a m =2,a n =8,∴a m+n =a m •a n =16,故答案为:16. 8. 【答案】6;【解析】3119,3119,6x a a x x +=+==. 9. 【答案】25; 【解析】()2632525nn aa ===.10.【答案】5;1;【解析】338,38,5m m a a a a m m +⋅==+==;3143813,314,1x x x +==+==. 11.【答案】64;9n -;103-; 12.【答案】200;【解析】()()32322222()8()81000800200n nn n a a a a --=-=-=.三.解答题 13.【解析】解:(﹣x )3•x 2n ﹣1+x 2n •(﹣x )2 =﹣x 2n+2+x 2n+2 =0. 14.【解析】解:(1)3843241237()()x x x x x x x ⋅-⋅-=-⋅⋅=-;(2)233322696411()()327a b a b a b a b -+-=-+;(3)3535810(0.310)(0.410)0.30.4101010 1.210-⨯-⨯⨯⨯=⨯⨯⨯⨯=⨯;(4)()()()()()3535822222b a a b a b a b a b --=---=--;(5)()()236331293125325272a a a a a a a -+-⋅=-⋅=-.15.【解析】 解:(1)∵3335nn x x x +⋅= ∴ 4335n xx +=∴4n +3=35 ∴n =8(2)m =4,n =3解:∵()3915n ma b ba b ⋅⋅=∴ 333333915nmnm a b b a b a b +⋅⋅=⋅=∴3n =9且3m +3=15 ∴n =3且m =4北师大版七年级下册数学重难点突破知识点梳理及重点题型巩固练习同底数幂的除法【学习目标】1. 会用同底数幂的除法性质进行计算.2. 掌握零指数幂和负整数指数幂的意义. 3.掌握科学记数法. 【要点梳理】要点一、同底数幂的除法法则同底数幂相除,底数不变,指数相减,即mnm na a a -÷=(a ≠0,m n 、都是正整数,并且m n >)要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式. (3)当三个或三个以上同底数幂相除时,也具有这一性质. (4)底数可以是一个数,也可以是单项式或多项式. 要点二、零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点诠释:底数a 不能为0,00无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式. 要点三、负整数指数幂任何不等于零的数的n -(n 为正整数)次幂,等于这个数的n 次幂的倒数,即1nnaa -=(a ≠0,n 是正整数).引进了零指数幂和负整数指数幂后,指数的范围已经扩大到了全体整数,以前所学的幂的运算性质仍然成立.m n m n a a a +=(m 、n 为整数,0a ≠);()mm m ab a b =(m 为整数,0a ≠,0b ≠)()nm mn a a =(m 、n 为整数,0a ≠).要点诠释:()0n a a -≠是na 的倒数,a 可以是不等于0的数,也可以是不等于0的代数式.例如()1122xy xy -=(0xy ≠),()()551a b a b -+=+(0a b +≠). 要点四、科学记数法的一般形式(1)把一个绝对值大于10的数表示成10na ⨯的形式,其中n 是正整数,1||10a ≤<(2)利用10的负整数次幂表示一些绝对值较小的数,即10na -⨯的形式,其中n 是正整数,1||10a ≤<.用以上两种形式表示数的方法,叫做科学记数法. 【典型例题】类型一、同底数幂的除法1、计算:(1)83x x ÷;(2)3()a a -÷;(3)52(2)(2)xy xy ÷;(4)531133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭.【思路点拨】利用同底数幂相除的法则计算.(2)、(4)两小题要注意符号. 【答案与解析】 解:(1)83835x x xx -÷==.(2)3312()a a a a --÷=-=-.(3)5252333(2)(2)(2)(2)8xy xy xy xy x y -÷===.(4)535321111133339-⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-=-= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭. 【总结升华】(1)运用法则进行计算的关键是看底数是否相同.(2)运算中单项式的系数包括它前面的符号.2、计算下列各题:(1)5()()x y x y -÷- (2)125(52)(25)a b b a -÷- (3)6462(310)(310)⨯÷⨯ (4)3324[(2)][(2)]x y y x -÷-【思路点拨】(1)若被除式、除式的底数互为相反数时,先将底数变为相同底数再计算,尽可能地去变偶次幂的底数,如1212(52)(25)a b b a -=-.(2)注意指数为1的多项式.如x y -的指数为1,而不是0. 【答案与解析】解:(1)5514()()()()x y x y x y x y --÷-=-=-.(2)1251257(52)(25)(25)(25)(25)a b b a b a b a b a -÷-=-÷-=-(3)64626426212(310)(310)(310)(310)910-⨯÷⨯=⨯=⨯=⨯.(4)3324[(2)][(2)]x y y x -÷-9898(2)(2)(2)2x y x y x y x y -=-÷-=-=-.【总结升华】底数都是单项式或多项式,把底数作一个整体利用同底数幂的除法法则进行计算.3、已知32m=,34n=,求129m n+-的值.【答案与解析】解: 121222222221222244449(3)33333(3)399(3)33(3)(3)m m m m m m m nn n n n n n ++++-======. 当32m =,34n=时,原式224239464⨯==. 【总结升华】逆用同底数除法公式,设法把所求式转化成只含3m,3n 的式子,再代入求值.本题是把除式写成了分数的形式,为了便于观察和计算,我们可以把它再写成除式的形式. 举一反三:【变式】(2015春•苏州)已知以ma =2,na =4,ka =32.则32m n ka +-的值为 .【答案】解:3ma=32=8,2n a =24=16,32m n k a +-=3m a •2n a ÷k a =8×16÷32=4,故答案为:4.类型二、负整数次幂的运算4、计算:(1)223-⎛⎫- ⎪⎝⎭;(2)23131()()a b a b ab ---÷.【答案与解析】解:(1)222119434293-⎛⎫-=== ⎪⎝⎭⎛⎫- ⎪⎝⎭; (2)2313123330()()a b a b ab a b a b ab a b b -----÷===.【总结升华】要正确理解负整数指数幂的意义. 举一反三:【变式】计算:4513012222( 3.14)2π----⎛⎫++⨯⨯+- ⎪⎝⎭.【答案】解: 4513012222( 3.14)2π----⎛⎫++⨯⨯+- ⎪⎝⎭45311111122116212223228=++⨯⨯+=++⨯⨯+ 1151611732832=+++= 5、 已知1327m=,1162n⎛⎫= ⎪⎝⎭,则n m 的值=________.【答案与解析】 解: ∵ 331133273m-===,∴ 3m =-. ∵ 122n n -⎛⎫= ⎪⎝⎭,4162=,∴ 422n -=,4n =-.∴ 4411(3)(3)81n m -=-==-. 【总结升华】先将127变形为底数为3的幂,122nn -⎛⎫= ⎪⎝⎭,4162=,然后确定m 、n 的值,最后代值求nm . 举一反三:【变式】计算:(1)1232()a b c --;(2)3232312b c b c ---⎛⎫⨯ ⎪⎝⎭;【答案】解:(1)原式424626b a b c a c--==.(2)原式8236981212888b b c b c b cc---=⨯==. 类型三、科学记数法6、(2014秋•福州)观察下列计算过程:(1)∵33÷53=332231333=⨯,33÷53=353-=23-,∴23-=(2)当a≠0时,∵2a ÷7a =27a a=225a a a ⨯=51a ,2a ÷7a =27a -=5a -,5a -=51a ,由此可归纳出规律是:pa -=1p a(a≠0,P 为正整数)请运用上述规律解决下列问题: (1)填空:103-= ;259x x x ⨯÷= .(2)用科学记数法:3×410-= .(写成小数形式)(3)把0.00000002写成如(2)的科学记数法10na ⨯的形式是: . 【答案与解析】 解:(1)103-=1013; 259x x x ⨯÷ =259x +-=221x x -=; (2)3×410-=0.0003, (3)0.00000002=2×810-.【总结升华】本题考查用科学记数法表示较小的数,一般形式为10na ⨯,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.北师大版七年级下册数学重难点突破知识点梳理及重点题型巩固练习【巩固练习】一.选择题1. (2015•桂林)下列计算正确的是( )A .()25a=10a B .16x ÷4x =4x C .22a +23a =46a D .3b •3b =32b2.下列计算中正确的是( ).A.212a a xx x ++÷=B.()()6322xy xy x y ÷= C.()12529x x x x ÷÷=D.()42332n nn n x xx x +÷= 3.近似数0.33万表示为( )A .3.3×210-B .3.3000×310C .3.3×310D .0.33×410 4.020122012(1)(0.125)8π-+⨯的结果是( )A .3B .23-C .2D .05..将201)3(,)2(,)61(---这三个数按从小到大的顺序排列为()A .21)3()61()2(-<<-- B .201)3()2()61(-<-<-C .12)61()2()3(-<-<- D .12)61()3()2(-<-<-6.下列各式中正确的有( )①21()9;3-=②224-=-;③01a =;④()111--=;⑤()2336-=.A .2个B .3个C .4个D .1个二.填空题7. =-+-01)π()21(______,()011 3.142--++=______.8. ()()532aa -÷-=__________,201079273÷÷=__________,02139⎛⎫+= ⎪⎝⎭______.9. ()3223a b-=______,()22a b---=______.10.一种细菌的半径为0.0004m ,用科学记数法表示为______m .11.“神威一号”计算机运算速度为每秒384000000000次,其运算速度用科学记数法表示,为______次/秒.12(2015春•江西)若m a =-2, na =-12-,则23m na -= . 三.解答题13.(2015春•吉州)已知2x=3,2y=5.求:(1)2x y+的值;(2)32x的值; (3)212x y +-的值.14.用小数表示下列各数:(1)8.5×310-(2)2.25×810-(3)9.03×510-15. 先化简,后求值:()()23424211212a b a b a b ----⎛⎫--÷ ⎪⎝⎭,其中23a b ==-,.【答案与解析】一.选择题1. 【答案】A ; 【解析】A 、()25a=10a ,正确; B 、16x ÷4x =12x ,错误;C 、22a +23a =25a ,错误;D 、3b •3b =6b b 3•b 3=b 6,错误;故选A.2. 【答案】C ; 【解析】21a a xx x ++÷=;()()6333xy xy x y ÷= ;()4235n n n n x x x x ÷= .3. 【答案】C ;【解析】0.33万=3300=3.3×310. 4. 【答案】C ;【解析】2012020*******(1)(0.125)8181128π⎛⎫-+⨯=+⨯=+= ⎪⎝⎭.5. 【答案】A ; 【解析】1021()6,(2)1,(3)96-=-=-=,所以210)3()61()2(-<<--.6. 【答案】D ;【解析】只有①正确;2124-=;()010a a =≠;()111--=-;()239-=. 二.填空题 7. 【答案】3;12; 【解析】()01111 3.1421122--++=-++=. 8. 【答案】7;27;10a ;【解析】201074030739273333327÷÷=÷÷==.9.【答案】6627a b ;42a b【解析】()632266627327a a ba b b --==;()422422a a b a b b----==.10.【答案】4410-⨯; 11.【答案】113.8410⨯;12.【答案】-32; 【解析】解:()224mm a a ,==()3318n n a a ==-,23m n a -=4=﹣32.三.解答题 13.【解析】 解:(1)2x y+=2x•2y=3×5=15;(2)32x=()32x =33=27;(3)212x y +-=()22x •2y÷2=23×5÷2=.14.【解析】解:(1)8.5×310-=0.0085 (2)2.25×810-=0.0000000225(3)9.03×510-=0.0000903 15.【解析】 解:原式4863482323444a ba b a b a b a b ------=-÷=-=-当23a b ==-,时,原式23412(3)27=-=-.北师大版七年级下册数学重难点突破知识点梳理及重点题型巩固练习整式的乘法(基础)【学习目标】1. 会进行单项式的乘法,单项式与多项式的乘法,多项式的乘法计算.2. 掌握整式的加、减、乘、乘方的较简单的混合运算,并能灵活地运用运算律简化运算. 【要点梳理】要点一、单项式的乘法法则单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它们的指数作为积的一个因式.要点诠释:(1)单项式的乘法法则的实质是乘法的交换律和同底数幂的乘法法则的综合应用.(2)单项式的乘法方法步骤:积的系数等于各系数的积,是把各单项式的系数交换到一起进行有理数的乘法计算,先确定符号,再计算绝对值;相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算;只在一个单项式里含有的字母,要连同它的指数写在积里作为积的一个因式.(3)运算的结果仍为单项式,也是由系数、字母、字母的指数这三部分组成. (4)三个或三个以上的单项式相乘同样适用以上法则. 要点二、单项式与多项式相乘的运算法则单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加. 即()m a b c ma mb mc ++=++. 要点诠释:(1)单项式与多项式相乘的计算方法,实质是利用乘法的分配律将其转化为多个单项式乘单项式的问题.(2)单项式与多项式的乘积仍是一个多项式,项数与原多项式的项数相同. (3)计算的过程中要注意符号问题,多项式中的每一项包括它前面的符号,同时还要注意单项式的符号.(4)对混合运算,应注意运算顺序,最后有同类项时,必须合并,从而得到最简的结果.要点三、多项式与多项式相乘的运算法则多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.多项式与多项式相乘的最后结果需化简,有同类项的要合并.特殊的二项式相乘:()()()2x a x b x a b x ab ++=+++. 【典型例题】类型一、单项式与单项式相乘1、计算:(1)221323ab a b abc ⎛⎫⋅-⋅ ⎪⎝⎭; (2)121(2)(3)2n n x y xy x z +⎛⎫-⋅-⋅-⎪⎝⎭; (3)232216()()3m n x y mn y x -⋅-⋅⋅-.【思路点拨】前两个题只要按单项式乘法法则运算即可,第(3)题应把x y -与y x -分别看作一个整体,那么此题也属于单项式乘法,可以按单项式乘法法则计算. 【答案与解析】解: (1)221323ab a b abc ⎛⎫⋅-⋅ ⎪⎝⎭22132()()3a a a b b b c ⎡⎤⎛⎫=⨯-⨯⋅⋅⋅⋅ ⎪⎢⎥⎝⎭⎣⎦ 442a b c =-.(2)121(2)(3)2n nx y xy x z +⎛⎫-⋅-⋅- ⎪⎝⎭121(2)(3)()()2n n x x x y y z +⎡⎤⎛⎫=-⨯-⨯-⋅⋅⋅ ⎪⎢⎥⎝⎭⎣⎦413n n x y z ++=-.(3)232216()()3m n x y mn y x -⋅-⋅⋅- 232216()()3m n x y mn x y =-⋅-⋅⋅- 22321(6)()()[()()]3m m n n x y x y ⎡⎤=-⨯⋅⋅-⋅-⎢⎥⎣⎦3352()m n x y =--.【总结升华】凡是在单项式里出现过的字母,在其结果里也应全都有,不能漏掉. 举一反三:【变式】(2014•甘肃模拟)计算:2m 2•(﹣2mn )•(﹣m 2n 3). 【答案】解:2m 2•(﹣2mn )•(﹣m 2n 3)=[2×(﹣2)×(﹣)](m 2×mn×m 2n 3) =2m 5n 4.类型二、单项式与多项式相乘2、 计算:(1)21242233ab ab ab b ⎛⎫⎛⎫--+ ⎪⎪⎝⎭⎝⎭;(2)22213(6)32xy y x xy ⎛⎫-+-- ⎪⎝⎭;(3)2222340.623a ab b a b ⎛⎫⎛⎫+-- ⎪⎪⎝⎭⎝⎭;【答案与解析】 解:(1)21242233ab ab ab b ⎛⎫⎛⎫--+ ⎪⎪⎝⎭⎝⎭212114(2)23223ab ab ab ab ab b ⎛⎫⎛⎫⎛⎫=-⋅+--+-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 232221233a b a b ab =-+-.(2)22213(6)32xy y x xy ⎛⎫-+-- ⎪⎝⎭2222213(6)(6)()(6)32xy xy y xy x xy ⎛⎫=--+-+-- ⎪⎝⎭23432296x y xy x y =-+.(3)2222340.623a ab b a b ⎛⎫⎛⎫+-- ⎪⎪⎝⎭⎝⎭2222334253a ab b a b ⎛⎫⎛⎫=+-- ⎪⎪⎝⎭⎝⎭222222223443423353a a b ab a b b a b ⎛⎫⎛⎫⎛⎫⎛⎫=⋅-+⋅-+-- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭42332444235a b a b a b =--+.【总结升华】计算时,符号的确定是关键,可把单项式前和多项式前的“+”或“-”号看作性质符号,把单项式乘以多项式的结果用“+”号连结,最后写成省略加号的代数和. 举一反三:【变式1】224312(6)2m n m n m n ⎛⎫-+- ⎪⎝⎭.【答案】解:原式2224232211222m n m n m n +⨯⎛⎫=-+-⋅ ⎪⎝⎭26262262171221244m n m n m n m n m n =-+=-.【变式2】若n 为自然数,试说明整式()()2121n n n n +--的值一定是3的倍数. 【答案】解:()()2121n n n n +--=222223n n n n n +-+=因为3n 能被3整除,所以整式()()2121n n n n +--的值一定是3的倍数.类型三、多项式与多项式相乘3、计算:(1)(32)(45)a b a b +-; (2)2(1)(1)(1)x x x -++;(3)()(2)(2)()a b a b a b a b +--+-;(4)25(21)(23)(5)x x x x x ++-+-.【答案与解析】 解:(1)(32)(45)a b a b +-221215810a ab ab b =-+-2212710a ab b =--.(2)2(1)(1)(1)x x x -++22(1)(1)x x x x =+--+41x =-.(3)()(2)(2)()a b a b a b a b +--+-2222(2)(2)a ab b a ab b =---+-222222a ab b a ab b =----+2ab =-.(4)25(21)(23)(5)x x x x x ++-+-322(5105)(2715)x x x x x =++---32251052715x x x x x =++-++ 32581215x x x =+++.【总结升华】多项式乘以多项式时须把一个多项式中的每一项乘以另一个多项式的每一项,刚开始时要严格按法则写出全部过程,以熟悉解题步骤,计算时要注意的是:(1)每一项的符号不能弄错;(2)不能漏乘任何一项.4、(2016春•长春校级期末)若(x+a )(x+2)=x 2﹣5x+b ,则a+b 的值是多少? 【思路点拨】根据多项式与多项式相乘的法则把等式的左边展开,根据题意列出算式,求出a 、b 的值,计算即可. 【答案与解析】解:(x+a )(x+2)=x 2+(a+2)x+2a , 则a+2=﹣5,2a=b , 解得,a=﹣7,b=﹣14, 则a+b=﹣21.【总结升华】本题考查的是多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加. 举一反三:【变式】求出使(32)(34)9(2)(3)x x x x +->-+成立的非负整数解. 【答案】不等式两边分别相乘后,再移项、合并、求解. 解:22912689(6)x x x x x -+->+-,229689954x x x x -->+-, 229699854x x x x --->-, 1546x ->-,4615x <.∴ x 取非负整数为0,1,2,3.北师大版七年级下册数学重难点突破知识点梳理及重点题型巩固练习【巩固练习】一.选择题1.下列算式中正确的是( ). A.326326a a a⋅=B.358248x x x ⋅= C.44339x x x ⋅=D.77145510y y y ⋅= 2.(2016•毕节市)下列运算正确的是( ) A .﹣2(a+b )=﹣2a+2b B .(a 2)3=a 5C .a 3+4a=a 3D .3a 2•2a 3=6a 53.(2014秋•白云区期末)下列计算正确的是( )A .x (x 2﹣x ﹣1)=x 3﹣x ﹣1B .ab (a+b )=a 2+b 2C .3x (x 2﹣2x ﹣1)=3x 3﹣6x 2﹣3xD .﹣2x (x 2﹣x ﹣1)=﹣2x 3﹣2x 2+2x 4.已知()()221323x x x mx +-=--,那么m 的值为( ). A.-2B.2C.-5D.55. 要使()23254x x a x b x x ++-=++成立,则a ,b 的值分别是( ).A. 22a b =-=-,B. 22a b ==,C. 22a b ==-,D. 22a b =-=,6.设M =()()37x x --,N =()()28x x --,则M 与N 的关系为( ). A.M <N B.M >N C.M =N D.不能确定 二.填空题7. 已知三角形的底边为(62)a b -,高是(26)b a -+,则三角形的面积是_________. 8. 计算:①()()23x x ++=________;②()()37x x ++=______;③()()710x x +-=_______;④()()56x x --=______.9.(2016•瑶海区一模)计算:x 2y (2x+4y )= .10. ()()()_______x y z y x z z x y ---+-=. 11.(2015•江都市模拟)若化简(ax+3y )(x ﹣y )的结果中不含xy 项,则a 的值为 . 12. 若2xy =,3x y +=,则()()11x y ++=____________.三.解答题13.(2015春•邳州市期末)当我们利用2种不同的方法计算同一图形的面积时,可以得到一个等式.例如,由图1,可得等式:(a+2b )(a+b )=a 2+3ab+2b 2. (1)由图2,可得等式: . (2)利用(1)中所得到的结论,解决下面的问题: 已知 a+b+c=11,ab+bc+ac=38,求a 2+b 2+c 2的值;(3)利用图3中的纸片(足够多),画出一种拼图,使该拼图可用来验证等式:2a 2+5ab+2b 2=(2a+b )(a+2b );(4)小明用2 张边长为a 的正方形,3 张边长为b 的正方形,5 张边长分别为a 、b 的长方形纸片重新拼出一个长方形,那么该长方形较长的一条边长为 .14. 解下列各方程.(1)222(1)(32)22y y y y y y +--+=- (2)25(3)4(6)(4)0x x x x x x +--++-+= 15. 化简求值:(1)11112323x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭,其中4x =-.(2)22323(21)(342)x x x x x x x -+--+,其中1x =-.【答案与解析】 一.选择题1. 【答案】B ;【解析】325326a a a ⋅=;45339x x x ⋅=;77145525y y y ⋅=. 2. 【答案】D ;【解析】A 、原式=﹣2a ﹣2b ,错误;B 、原式=a 6,错误;C 、原式不能合并,错误;D 、原式=6a 5,正确.3. 【答案】C ;【解析】解:A 、x (x 2﹣x ﹣1)=x 3﹣x 2﹣x ,故此选项错误;B 、ab (a+b )=a 2b+ab 2,故此选项错误;C 、3x (x 2﹣2x ﹣1)=3x 3﹣6x 2﹣3x ,故此选项正确;D 、﹣2x (x 2﹣x ﹣1)=﹣2x 3+2x 2+2x ,故此选项错误;故选:C .4. 【答案】D ;【解析】()()2221325323x x x x x mx +-=--=--,所以5m =. 5. 【答案】C ;【解析】由题意3524a b +=-=,,所以22a b ==-,.6. 【答案】B ;【解析】M =21021x x -+,N =21016x x -+,所以M >N. 二.填空题7. 【答案】2212182-++ab a b ;8. 【答案】222256;1021;370;1130x x x x x x x x ++++---+. 9. 【答案】x 3y+2x 2y 2;10.【答案】0;【解析】原式=0xy xz xy yz xz yz --++-=. 11.【答案】3;【解析】解:(ax+3y )(x ﹣y )=ax 2+(3﹣a )xy ﹣3y 2, 含xy 的项系数是3﹣a ,∵展开式中不含xy 的项, ∴3﹣a=0, 解得a=3. 故答案为:3.12.【答案】6;【解析】原式=12316xy x y +++=++=. 三.解答题 13.【解析】解:(1)(a+b+c )2=a 2+b 2+c 2+2ab+2ac+2bc ; (2)∵a+b+c=11,ab+bc+ac=38,∴a 2+b 2+c 2=(a+b+c )2﹣2(ab+ac+bc )=121﹣76=45; (3)如图所示:(4)根据题意得:2a 2+5ab+3b 2=(2a+3b )(a+b ), 则较长的一边为2a+3b . 14.【解析】解:(1)2222223222y y y y y y +-++=-.42y =-,12y =-. (2)222551524440x x x x x x +----+=.1515x -=, 1x =-.15.【解析】解:(1)原式2111111111111222332334669x x x x x x x ⎛⎫=⋅-⋅+⋅+-=-+- ⎪⎝⎭ 21149x =-. 当4x =-时,原式21118(4)434999=⨯--=-=.(2)原式4324324326333423x x x x x x x x x =-+-+-=++当1x =-时,原式4323(1)(1)(1)3113=⨯-+-+-=-+=.北师大版七年级下册数学重难点突破知识点梳理及重点题型巩固练习乘法公式(基础)【学习目标】1. 掌握平方差公式、完全平方公式的结构特征,并能从广义上理解公式中字母的含义;2. 学会运用平方差公式、完全平方公式进行计算.了解公式的几何意义,能利用公式进行乘法运算;3. 能灵活地运用运算律与乘法公式简化运算. 【要点梳理】要点一、平方差公式平方差公式:22()()a b a b a b +-=-两个数的和与这两个数的差的积,等于这两个数的平方差.要点诠释:在这里,b a ,既可以是具体数字,也可以是单项式或多项式.抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型:(1)位置变化:如()()a b b a +-+利用加法交换律可以转化为公式的标准型 (2)系数变化:如(35)(35)x y x y +- (3)指数变化:如3232()()m n m n +- (4)符号变化:如()()a b a b --- (5)增项变化:如()()m n p m n p ++-+(6)增因式变化:如2244()()()()a b a b a b a b -+++ 要点二、完全平方公式完全平方公式:()2222a b a ab b +=++2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.以下是常见的变形:()2222a b a b ab +=+-()22a b ab =-+()()224a b a b ab +=-+要点三、添括号法则添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.要点诠释:添括号与去括号是互逆的,符号的变化也是一致的,可以用去括号法则检查添括号是否正确. 要点四、补充公式2()()()x p x q x p q x pq ++=+++;2233()()a b a ab b a b ±+=±;33223()33a b a a b ab b ±=±+±;2222()222a b c a b c ab ac bc ++=+++++. 【典型例题】类型一、平方差公式的应用1、下列两个多项式相乘,哪些可用平方差公式,哪些不能?能用平方差公式计算的,写出计算结果.(1)()()2332a b b a --; (2) ()()2323a b a b -++; (3) ()()2323a b a b ---+; (4) ()()2323a b a b +-; (5) ()()2323a b a b ---; (6) ()()2323a b a b +--.【思路点拨】两个多项式因式中,如果一项相同,另一项互为相反数就可以用平方差公式. 【答案与解析】解:(2)、(3)、(4)、(5)可以用平方差公式计算,(1)、(6)不能用平方差公式计算. (2) ()()2323a b a b -++=()23b -()22a =2294b a -.(3) ()()2323a b a b ---+=()22a - -()23b =2249a b -.(4) ()()2323a b a b +-=()22a -()23b =2249a b -.(5) ()()2323a b a b ---=()23b --()22a =2294b a -.【总结升华】利用平方差公式进行乘法运算,一定要注意找准相同项和相反项(系数为相反数的同类项). 举一反三:【变式】计算:(1)332222x x y y ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭; (2)(2)(2)x x -+--; (3)(32)(23)x y y x ---.【答案】解:(1)原式2222392244x x y y ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭.(2)原式222(2)4x x =--=-.(3)原式22(32)(23)(32)(32)94x y y x x y x y x y =-+-=+-=-. 2、计算:(1)59.9×60.1; (2)102×98. 【答案与解析】解:(1)59.9×60.1=(60-0.1)×(60+0.1)=22600.1-=3600-0.01=3599.99(2)102×98=(100+2)(100-2)=221002-=10000-4=9996. 【总结升华】用构造平方差公式计算的方法是快速计算有些有理数乘法的好方法,构造时可利用两数的平均数,通过两式(两数)的平均值,可以把原式写成两数和差之积的形式.这样可顺利地利用平方差公式来计算.举一反三: 【变式】(2015春•莱芜校级期中)怎样简便就怎样计算: (1)1232﹣124×122 (2)(2a+b )(4a 2+b 2)(2a ﹣b ) 【答案】解:(1)1232﹣124×122 =1232﹣(123+1)(123﹣1) =1232﹣(1232﹣1) =1232﹣1232+1 =1;(2)(2a+b )(4a 2+b 2)(2a ﹣b ) =(2a+b )(2a ﹣b )(4a 2+b 2) =(4a 2﹣b 2)(4a 2+b 2) =(4a 2)2﹣(b 2)2 =16a 4﹣b 4.类型二、完全平方公式的应用3、计算:(1)()23a b +; (2)()232a -+; (3)()22x y -; (4)()223x y --.【思路点拨】此题都可以用完全平方公式计算,区别在于是选“和”还是“差”的完全平方公式.【答案与解析】解:(1) ()()22222332396a b a a b b a ab b +=+⨯⋅+=++.(2) ()()()222223223222334129a a a a a a -+=-=-⨯⨯+=-+.(3) ()()22222222244x y x x y y x xy y -=-⋅⋅+=-+ .(4) ()()()()2222222323222334129x y x y x x y y x xy y --=+=+⨯⨯+=++.【总结升华】(1)在运用完全平方公式时要注意运用以下规律:当所给的二项式符号相同时,结果中三项的符号都为正,当所给的二项式符号相反时,结果中两平方项为正,乘积项的符号为负.(2)注意()()22a b a b --=+之间的转化.4、(2015春•吉安校级期中)图a 是由4个长为m ,宽为n 的长方形拼成的,图b 是由这四个长方形拼成的正方形,中间的空隙,恰好是一个小正方形. (1)用m 、n 表示图b 中小正方形的边长为 . (2)用两种不同方法表示出图b 中阴影部分的面积;(3)观察图b ,利用(2)中的结论,写出下列三个代数式之间的等量关系,代数式(m+n )2,(m ﹣n )2,mn ;(4)根据(3)中的等量关系,解决如下问题:已知a+b=7,ab=5,求(a ﹣b )2的值.【答案与解析】解:(1)图b 中小正方形的边长为m ﹣n .故答案为m ﹣n ; (2)方法①:(m ﹣n )(m ﹣n )=(m ﹣n )2;方法②:(m+n )2﹣4mn ;(3)因为图中阴影部分的面积不变,所以(m ﹣n )2=(m+n )2﹣4mn ; (4)由(3)得:(a ﹣b )2=(a+b )2﹣4ab ,∵a+b=7,ab=5, ∴(a ﹣b )2=72﹣4×5=49﹣20=29.【总结升华】本题考查了完全平方公式的应用,列代数式,可以根据题中的已知数量利用代数式表示其他相关的量.5、已知7a b +=,ab =12.求下列各式的值: (1) 22a ab b -+;(2) 2()a b -.【答案与解析】解:(1)∵ 22a ab b -+=22a b +-ab =()2a b +-3ab =27-3×12=13.(2)∵ ()2a b -=()2a b +-4ab =27-4×12=1.【总结升华】由乘方公式常见的变形:①()2a b +-()2a b -=4ab ;②22a b +=()2a b +-2ab =()2a b -+2ab .解答本题关键是不求出,a b 的值,主要利用完全平方公式的整体变换求代数式的值. 举一反三:【变式】已知2()7a b +=,2()4a b -=,求22a b +和ab 的值.【答案】解:由2()7a b +=,得2227a ab b ++=; ①由2()4a b -=,得2224a ab b -+=. ② ①+②得222()11a b +=,∴ 22112a b +=. ①-②得43ab =,∴ 34ab =. 北师大版七年级下册数学重难点突破知识点梳理及重点题型巩固练习【巩固练习】一.选择题1. 在下列计算中,不能用平方差公式计算的是( )A.))((n m n m +--B.()()3333x yx y -+ C.))((b a b a --- D.()()2222cd d c -+2.若x y +=6,x y -=5,则22x y -等于( ). A.11 B.15 C.30 D.603.下列计算正确的是( ). A.()()55m m -+=225m -B. ()()1313m m -+=213m -C.()()24343916n n n ---+=-+D.( 2ab n -)(2ab n +)=224ab n -4.下列多项式不是完全平方式的是( ). A.244x x -- B.m m ++241C.2296a ab b ++D.24129t t ++5.(2015春•重庆校级期中)已知关于x 的二次三项式4x 2﹣mx+25是完全平方式,则常数m 的值为( ) A .10 B .±10 C .﹣20 D .±20 6.下列等式不能恒成立的是( ).A.()222396x y x xy y -=-+B.()()22a b c c a b +-=--C.22241)21(n m n m n m +-=- D.()()()2244x y x y x y x y -+-=-二.填空题7.若2216x ax ++是一个完全平方式,则a =______. 8. 若2294x y +=()232x y M ++,则M =______. 9. 若x y +=3,xy =1,则22x y +=_______.10.(2015春•陕西校级期末)(1+x )(1﹣x )(1+x 2)(1+x 4)= . 11. ()25(2)(2)21x x x -+--=___________.12.若()212x -=,则代数式225x x -+的值为________.三.解答题13.(2015春•兴平市期中)用平方差公式或完全平方公式计算(必须写出运算过程). (1)69×71; (2)992.14.先化简,再求值:22)1(2)1)(1(5)1(3-+-+-+a a a a ,其中3=a .15.已知:2225,7x y x y +=+=,且,x y >求x y -的值. 【答案与解析】 一.选择题1. 【答案】A ;【解析】A 中m 和m -符号相反,n 和n -符号相反,而平方差公式中需要有一项是符号相同的,另一项互为相反数.2. 【答案】C ;【解析】()()22x y x y x y -=+-=6×5=30.3. 【答案】C ;【解析】()()55m m -+=225m -;()()1313m m -+=219m -;(2ab n -)(2ab n +)=2224a b n -.4. 【答案】A ;【解析】2211()42m m m ++=+;22296(3)a ab b a b ++=+;224129(23)t t t ++=+. 5. 【答案】D ;【解析】解:∵关于x 的二次三项式4x 2﹣mx+25是完全平方式, ∴﹣m =±20,即m=±20. 故选:D .6. 【答案】D ;【解析】()()()()22222x y x y x yxy-+-=-.二.填空题7. 【答案】±4;【解析】222216244x ax x x ++=±⨯+,所以4a =±. 8. 【答案】12xy -;【解析】2294x y +=()23212x y xy +-. 9. 【答案】7;【解析】()2222x y x y xy +=++,22927x y +=-=.10.【答案】1﹣x 8;【解析】解:(1+x )(1﹣x )(1+x 2)(1+x 4)=(1﹣x 2)(1+x 2)(1+x 4) =(1﹣x 4)(1+x 4) =1﹣x 8, 故答案为:1﹣x 811.【答案】2421x x +-;【解析】()()()22225(2)(2)2154441421x x x x x x x x -+--=---+=+-.12.【答案】6;【解析】因为()212x -=,所以2221,256x x x x -=-+=.三.解答题 13.【解析】 解:(1)原式=(70﹣1)×(70+1)=4900﹣1=4899; (2)原式=(100﹣1)2=10000﹣200+1=9801. 14.【解析】解:223(1)5(1)(1)2(1)a a a a +-+-+-()()()22232151221210a a a a a a =++--+-+=+当3,=231016a =⨯+=时原式.15.【解析】解:∵()2222x y x y xy +=++,且2225,7x y x y +=+=∴27252xy =+,∴12xy =,∵()2222252121x y x y xy -=+-=-⨯=∴1x y -=±∵,x y >即0x y -> ∴1x y -=.北师大版七年级下册数学重难点突破知识点梳理及重点题型巩固练习整式的除法(基础)【学习目标】1. 会进行单项式除以单项式的计算.2. 会进行多项式除以单项式的计算. 【要点梳理】要点一、单项式除以单项式法则单项式相除,把系数与同底数幂分别相除作为商的因式,对于只有被除式里含有的字母,则连同它的指数作为商的一个因式.要点诠释:(1)法则包括三个方面:①系数相除;②同底数幂相除;③只在被除式里出现的字母,连同它的指数作为商的一个因式.(2)单项式除法的实质即有理数的除法(系数部分)和同底数幂的除法的组合,单项式除以单项式的结果仍为单项式.要点二、多项式除以单项式法则多项式除以单项式:先把多项式的每一项除以这个单项式,再把所得的商相加.即()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点诠释:(1)由法则可知,多项式除以单项式转化为单项式除以单项式来解决,其实质是将它分解成多个单项式除以单项式.(2)利用法则计算时,多项式的各项要包括它前面的符号,要注意符号的变化.【典型例题】类型一、单项式除以单项式1、计算:(1)342222(4)(2)x y x y ÷;(2)2137323m n m m n xy z x y x y z +⎛⎫÷÷- ⎪⎝⎭;(3)22[()()]()()x y x y x y x y +-÷+÷-;(4)2[12()()][4()()]a b b c a b b c ++÷++. 【思路点拨】(1)先乘方,再进行除法计算.(2)、(3)三个单项式连除按顺序计算.(3)、(4)中多项式因式当做一个整体参与计算. 【答案与解析】解:(1)342222684424(4)(2)1644x y x y x y x y x y ÷=÷=. (2)2137323m n m m n xy z x y x y z +⎛⎫÷÷- ⎪⎝⎭。
初一数学重点知识点总结归纳
初一数学重点知识点总结归纳初一数学重点知识点总结相反数(1)相反数的概念:只有符号不同的两个数叫做互为相反数.(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正.(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.2代数式求值(1)代数式的:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.3由三视图判断几何体(1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法初一数学重点知识点归纳平面直角坐标系1.定义:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。
2.平面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。
初中数学基础知识及经典题型完整版(实用的中考专题复习指导书)
综合知识讲解目录第一章绪论11.1初中数学的特点11.2怎么学习初中数学21.3如何去听课51.4几点建议6第二章应知应会知识点72.1代数篇72.2几何篇11第三章例题讲解17第四章兴趣练习294.1代数部分294.2几何部分45第五章复习提纲50第一章绪论1.1初中数学的特点1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.1.2怎么学习初中数学1,培养良好的学习兴趣。
两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。
”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。
“好”和“乐”就是愿意学,喜欢学,这就是兴趣。
兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。
在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者。
那么如何才能建立好的学习数学兴趣呢?(1)课前预习,对所学知识产生疑问,产生好奇心。
(2)听课中要配合老师讲课,满足感官的兴奋性。
听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。
(3)思考问题注意归纳,挖掘你学习的潜力。
(4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?(5)把概念回归自然。
所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、直角坐标系的产生都是从实际生活中抽象出来的。
只有回归现实才能对概念的理解切实可*,在应用概念判断、推理时会准确。
2,建立良好的学习数学习惯。
习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。
建立良好的学习数学习惯,会使自己学习感到有序而轻松。
高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。
初中数学知识点总结和题型
初中数学知识点总结和题型初中数学是学生数学学习的重要阶段,它不仅巩固了小学数学的基础知识,还为高中数学的深入学习打下了坚实的基础。
初中数学的知识点覆盖面广,题型多样,以下是对初中数学主要知识点和题型的总结。
# 初中数学知识点总结1. 数与代数- 有理数:包括整数、分数、小数等,掌握有理数的四则运算规则。
- 整式与分式:理解整式的加减乘除,因式分解,以及分式的约分和通分。
- 方程与不等式:包括一元一次方程、二元一次方程、一元一次不等式及其解集。
- 函数:初步认识函数的概念,理解函数图像,掌握线性函数和二次函数的基本性质。
2. 几何- 平面几何:包括点、线、面的基本性质,角的概念,三角形、四边形的性质和计算。
- 圆的性质:理解圆的基本性质,包括圆周角、圆心角、弦、切线等。
- 相似与全等:掌握全等三角形的判定和性质,相似三角形的判定和性质。
- 几何变换:包括平移、旋转、轴对称等基本几何变换。
3. 统计与概率- 统计:了解数据的收集、整理、描述和分析,掌握平均数、中位数、众数等统计量。
- 概率:初步认识概率,理解事件的可能性和概率的基本概念。
# 初中数学题型总结1. 选择题- 概念题:考查对数学概念的理解和记忆。
- 计算题:考查四则运算、方程求解等基本计算能力。
- 图形题:考查对几何图形性质的理解和应用。
2. 填空题- 简算题:考查简化计算过程,快速得出答案的能力。
- 概念应用题:考查将数学概念应用于具体问题的能力。
3. 解答题- 计算题:包括复杂的四则运算、分式运算、代数式的化简等。
- 证明题:考查证明几何定理和性质的能力。
- 应用题:将数学知识应用于解决实际问题,如速度、比例、利润等问题。
4. 综合题- 多步骤解答题:考查综合运用多种数学知识和技能解决问题的能力。
- 探索性问题:考查学生的创新思维和问题解决能力。
# 学习策略- 基础知识:打牢基础,确保对概念和公式有清晰的理解和记忆。
- 练习题:通过大量练习,提高解题速度和准确性。
人教中考数学重难点题型分类必刷题 人教版七年级下学期数学
人教中考数学重难点题型分类必刷题人教版七年级下学期数学在人教版七年级下学期数学教材中,有一些题型被认为是重难点题型,考生需要特别关注和重点复习。
本文将对这些题型进行分类,并介绍一些必刷题,帮助同学们更好地备考。
一、整数的加减法运算整数的加减法运算是初中数学中的基础知识,也是中考中相对较为简单的题型之一。
但是,加减法题目中常常融合了其他知识点,比如小数、分数等,需要同学们运用多种知识进行联想和综合运算。
在此我们推荐一道必刷题:例题:已知a=-3,b=5,则a-(-4)-b+(2-a)的值是多少?解析:根据运算符的优先级,先计算括号中的式子,再依次进行减法、加法运算。
将a、b的值代入得:-3-(-4)-5+(2-(-3))=-7+6=-1。
二、平方根与立方根求平方根与立方根是数学中的重要知识点,也是中考中较为常见的题型之一。
在做这类题目时,同学们需要熟悉根号的运算规则,并且要注意约分化简。
以下是一道建议练习的必刷题:例题:将8的平方根与立方根分别化简。
解析:8的平方根为√8,化简为2√2。
8的立方根为∛8,化简为2。
三、比例与百分数比例和百分数在中考数学中也是常考题型之一。
同学们需要掌握比例的概念和计算方法,以及百分数与小数、分数之间的转化。
以下是一道必刷题:例题:某商店原价150元的商品现在打8折出售,小明买了5件,请问小明买这些商品的总价是多少?解析:由于打折是按照商品原价的比例进行的,打折后的价格为150×0.8=120元。
小明买了5件商品,所以总价为120×5=600元。
四、图形的周长与面积图形的周长和面积是中考数学中的重点知识,同学们需要熟悉各种图形的计算公式,并根据题目要求进行计算。
以下是一道必刷题:例题:长方形的长是7cm,宽是5cm,求其周长和面积。
解析:周长=2×(长+宽)=2×(7+5)=2×12=24cm,面积=长×宽=7×5=35cm²。
初三数学上册重点题型
初三数学上册重点题型一、引言初三数学上册是初中数学的重要阶段,涵盖了许多重要的知识点和题型。
为了帮助学生更好地掌握这些知识点和题型,本文将列举初三数学上册的一些重点题型,并给出相应的解题方法和思路。
二、重点题型及解题方法1. 代数方程代数方程是初三数学上册的重要题型之一,主要考察学生的代数运算能力和方程求解能力。
常见的代数方程包括一元一次方程、一元二次方程等。
解题方法:(1) 观察方程形式,确定方程类型;(2) 对方程进行化简,消去未知数;(3) 对方程进行求解,得出未知数的值。
2. 几何图形几何图形是初三数学上册的重要知识点之一,主要考察学生的空间想象能力和几何图形的性质。
常见的几何图形包括三角形、四边形、圆等。
解题方法:(1) 观察图形特点,确定图形的类型;(2) 根据图形的性质,进行相关的计算或证明;(3) 结合题目要求,得出结论或答案。
3. 函数图像函数图像是初三数学上册的重要知识点之一,主要考察学生对函数图像的认知和函数的性质。
常见的函数图像包括一次函数、二次函数等。
解题方法:(1) 观察函数图像,确定函数的类型;(2) 根据函数的性质,进行相关的计算或证明;(3) 结合题目要求,得出结论或答案。
4. 应用题应用题是初三数学上册的重要题型之一,主要考察学生将数学知识应用于实际问题的能力。
常见的应用题包括路程问题、时间问题、利润问题等。
解题方法:(1) 仔细阅读题目,理解题意;(2) 找出题目中的已知量和未知量;(3) 根据数学知识,建立数学模型;(4) 对数学模型进行求解,得出答案。
三、解题思路总结1. 仔细阅读题目,理解题意;2. 找出题目中的已知量和未知量;3. 根据数学知识,建立数学模型;4. 对数学模型进行求解,得出答案。
初中数学知识点与题型总结
初中数学知识点与题型总结初中数学是学生数学学习的重要阶段,它为高中及以后的数学学习打下基础。
初中数学的知识点和题型多样,涵盖了从基础运算到复杂概念的各个方面。
以下是初中数学的主要知识点与题型的总结。
# 一、数与代数1. 有理数- 有理数的定义和性质- 有理数的四则运算- 绝对值和有理数的大小比较2. 整式与分式- 整式的加减乘除- 乘法公式(平方差、完全平方等)- 分式的基本性质和运算- 分式的化简和约分3. 代数方程- 一元一次方程和二元一次方程- 不等式及其解集- 二元一次方程组的解法(代入法、消元法)- 一元二次方程的解法(开平方法、配方法、公式法、因式分解法)4. 函数- 函数的概念和表示方法- 线性函数和二次函数的图像及性质- 函数的基本运算(函数的和、差、积、商)# 二、几何1. 平面几何- 点、线、面的基本性质- 角的概念和分类(邻角、对角、同位角等)- 三角形的分类和性质(等边、等腰、直角三角形)- 四边形的分类和性质(矩形、菱形、正方形、平行四边形、梯形)- 圆的基本性质和圆中的计算(圆周角、圆心角、弦、切线等)2. 空间几何- 立体图形的名称和特性(立方体、长方体、圆柱、圆锥、球)- 空间图形的表面积和体积计算- 空间图形的展开图和折叠3. 相似与全等- 全等三角形的判定条件- 相似三角形的判定和性质- 相似多边形和相似比4. 解析几何- 坐标系中点的坐标表示- 直线和曲线的方程表示- 点、线、面间的距离和角度计算# 三、统计与概率1. 统计- 数据的收集和整理- 频数分布表和直方图- 平均数、中位数、众数的计算- 方差和标准差的计算2. 概率- 随机事件的概念- 概率的计算方法- 等可能事件的概率- 简单事件和复合事件的概率# 四、题型分析1. 选择题- 概念题:考查对数学概念的理解和记忆- 计算题:考查基本运算能力和解题技巧- 应用题:考查将数学知识应用于实际问题的能力2. 填空题- 计算类:要求准确快速地进行数学运算- 概念类:考查对数学定理、性质的记忆和理解3. 解答题- 证明题:考查逻辑推理能力和几何证明技巧- 计算题:考查综合运用数学知识解决问题的能力- 应用题:考查分析实际问题并用数学方法解决的能力4. 综合题- 多步骤计算:考查综合运用多种数学知识和技能- 多知识点结合:考查对不同数学知识点的掌握和应用# 结语初中数学的学习不仅要掌握各个知识点,还要通过大量的练习来提高解题能力。
初中数学常见题型
初中数学常见题型
初中数学常见题型主要包括以下几类:
1. 代数题:代数题是初中数学的重要题型之一,主要涉及数的运算、方程求解、不等式求解等方面。
2. 函数题:函数题是初中数学的重要题型之一,主要涉及一次函数、二次函数、反比例函数等。
这类题型通常要求掌握函数的性质、图像以及应用。
3. 几何题:几何题是初中数学的重要题型之一,主要涉及平面几何、立体几何等方面。
这类题型通常要求掌握图形的性质、面积和体积的计算等。
4. 概率与统计题:概率与统计题是初中数学的重要题型之一,主要涉及概率、统计、数据分析等方面。
这类题型通常要求掌握概率的基本概念、统计的方法和数据分析的技巧等。
5. 综合题:综合题是初中数学的难点之一,通常涉及多个知识点,如代数、函数、几何等。
这类题型通常要求掌握多个知识点的综合运用能力,需要学生具备较强的逻辑思维和问题解决能力。
以上是初中数学常见的几种题型,掌握这些题型的基本概念和解题方法对于提高数学成绩非常重要。
初中数学题型总结
初中数学题型总结初中数学是学生学习的重要科目之一,数学题型也是丰富多样。
本文对初中数学的主要题型进行了总结,旨在帮助学生更好地掌握初中数学的知识点和解题方法。
下面是本店铺为大家精心编写的3篇《初中数学题型总结》,供大家借鉴与参考,希望对大家有所帮助。
《初中数学题型总结》篇1一、计算题计算题是初中数学的基础题型,包括口算题、简算题、四则运算题等。
计算题的重点在于提高学生的计算速度和准确性,需要学生掌握基本的计算方法和技巧,如分配律、结合律、交换律等。
二、应用题应用题是初中数学的重要题型,包括代数题、几何题、三角题等。
应用题的重点在于培养学生的解题能力和应用能力,需要学生掌握基本的数学知识和解题方法,如解方程、化简、证明等。
三、选择题选择题是初中数学的常见题型,包括单项选择题、多项选择题等。
选择题的重点在于提高学生的判断能力和选择能力,需要学生掌握基本的数学知识和解题方法,如排除法、代入法、比较法等。
四、填空题填空题是初中数学的基础题型,包括算式填空、代数式填空、几何式填空等。
填空题的重点在于提高学生的计算速度和准确性,需要学生掌握基本的数学知识和解题方法,如代数式化简、几何式证明等。
五、解答题解答题是初中数学的重要题型,包括计算题解答、应用题解答、证明题解答等。
解答题的重点在于培养学生的解题能力和应用能力,需要学生掌握基本的数学知识和解题方法,如解方程、化简、证明等。
《初中数学题型总结》篇2初中数学题型可以分为以下几个大类:一、计算题1. 四则运算题:加减乘除、整除、取余等基本运算题。
2. 代数式题:化简代数式、求值、代数式求解等。
3. 算式题:解方程、解不等式、解绝对值等。
二、几何题1. 点线面题:点与线的位置关系、线与线的位置关系、面与面的位置关系等。
2. 三角形题:三角形的性质、三角形的面积、三角形的角度等。
3. 四边形题:四边形的性质、四边形的面积、四边形的角度等。
4. 圆题:圆的性质、圆的面积、圆的周长、圆心角等。
整式的乘除知识点及题型复习
整式的乘除知识点及题型复习整式的乘除是初中数学中的重要内容,它不仅是后续学习分式、二次根式等知识的基础,也在实际生活中有着广泛的应用。
接下来,我们将对整式的乘除相关知识点及常见题型进行详细的复习。
一、整式乘法的知识点1、同底数幂的乘法同底数幂相乘,底数不变,指数相加。
即:$a^m×a^n =a^{m+n}$($m$、$n$都是正整数)例如:$2^3×2^4 = 2^{3+4} = 2^7$2、幂的乘方幂的乘方,底数不变,指数相乘。
即:$(a^m)^n = a^{mn}$($m$、$n$都是正整数)例如:$(2^3)^4 = 2^{3×4} = 2^{12}$3、积的乘方积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
即:$(ab)^n = a^n b^n$($n$为正整数)例如:$(2×3)^4 = 2^4×3^4$4、单项式乘以单项式单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
例如:$3x^2y×(-2xy^3) = 3×(-2)×(x^2×x)×(y×y^3) =-6x^3y^4$5、单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
例如:$2x(3x^2 5x + 1) = 2x×3x^2 2x×5x + 2x×1 = 6x^3 10x^2 + 2x$6、多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
例如:$(x + 2)(x 3) = x×x + x×(-3) + 2×x + 2×(-3) =x^2 3x + 2x 6 = x^2 x 6$二、整式除法的知识点1、同底数幂的除法同底数幂相除,底数不变,指数相减。
初中数学题型整理知识点归纳
初中数学题型整理知识点归纳数学是一门重要的学科,也是学生学习过程中必修的科目之一。
而在初中阶段,数学的内容较为广泛,题型也较为复杂。
为了帮助同学们更好地掌握初中数学,下面对常见的数学题型进行知识点的整理和归纳。
一、整数运算整数运算是数学的基础,是其他数学知识的基石。
初中数学中的整数运算主要包括加法、减法、乘法和除法。
在进行整数运算时,需要注意以下几点:1.加法运算- 同号相加,取相同符号,结果的绝对值相加。
- 异号相加,取绝对值较大的符号,结果取绝对值相减。
2.减法运算- 减去一个整数等于加上这个整数的相反数。
3.乘法运算- 同号相乘,结果为正数。
- 异号相乘,结果为负数。
4.除法运算- 除数不为0。
- 同号相除,结果为正数。
- 异号相除,结果为负数。
二、方程与不等式方程与不等式是初中数学中的重要内容,也是数学运算的一种应用。
常见的方程和不等式有一元一次方程、一元一次不等式、一元二次方程等。
1.一元一次方程- 方程的解即使使方程两边相等的值。
- 求解一元一次方程时,可以利用消元、等式移项和分配律等方法简化方程。
2.一元一次不等式- 不等式的解即使使不等式成立的值。
- 在求解一元一次不等式时,需要注意变号。
3.一元二次方程- 一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b、c分别为系数,a ≠ 0。
- 解一元二次方程时,可以利用因式分解法、配方法、二次根式等方法。
三、几何图形与运算几何图形与运算是初中数学教学的重点内容,包括平面图形和立体图形。
1.平面图形知识点- 点、线、面的定义与性质。
- 直线与平面的关系、点与直线的关系、点与平面的关系。
- 三角形、四边形、多边形的定义、分类与性质。
- 圆的定义、圆心角、弧、弧长与圆周角的关系。
2.立体图形知识点- 正方体、长方体、棱柱、棱锥、棱台、球体的定义、性质、视图和计算等。
四、概率与统计概率与统计是一个实用性较强的数学分支,主要包括概率和统计两个方面。
初中数学函数知识点和常见题型总结
函数知识点及常见题型总结函数在初中数学中考中分值大约有20~25分,一次函数、二次函数和反比例函数都会考查,其中一次函数和反比例函数分值共约占其中的50%,二次函数约占另一半。
函数的题型以下归纳总结了11种,当然这并不包括所有可能出现的情况,仅仅只是较为常见的。
函数有时是以下题型组合起来构成的较为复杂的题型,因此,我们必须掌握住以下题型才能寻求突破。
换句话说,我们掌握住以下题型,复杂的题型分解开来,我们也能各个突破,最终解决掉。
一、核心知识点总结1、函数的表达式1)一次函数:y=kx+b(,k b 是常数,0k ≠) 2)反比例函数:函数xky =(k 是常数,0k ≠)叫做反比例函数。
注意:0x ≠ 3)二次函数:)0,,(2≠++=a c b a c bx ax y 是常数,, 2、点的坐标与函数的关系1)点的坐标用(),a b 表示,横坐标在前,纵坐标在后,中间有“,”分开。
平面内点的坐标是有序实数对,当b a ≠时,(),a b 和(),b a 是两个不同点的坐标。
2)点的坐标:从点向x 轴和y 轴引垂线,横纵坐标的绝对值对应相对应线段的长度。
3)若某一点在某一函数图像上,则该点的坐标可代入函数的表达式中,要将函数图像上的点与坐标一一联系起来。
3、函数的图像 1)一次函数一次函数by=的=的图像是经过点(0,b)的直线;正比例函数kxy+kx图像是经过原点(0,0)的直线。
2)反比例函数3)二次函数4、函数图像的平移① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ② 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:③平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位二、常见题型:1、求函数的表达式常见求函数表达式的方法是待定系数法,假设出函数解析式,将函数上的点的坐标代入函数,求出未知系数。
新人教版初中数学中考总复习:统计与概率--知识点整理及重点题型梳理
新人教版初中数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:统计与概率—知识讲解【考纲要求】1.能根据具体的实际问题或者提供的资料,运用统计的思想收集、整理和处理一些数据,并从中发现有价值的信息,在中考中多以图表阅读题的形式出现;2.了解总体、个体、样本、平均数、加权平均数、中位数、众数、极差、方差、频数、频率等概念,并能进行有效的解答或计算;3.能够对扇形统计图、列频数分布表、画频数分布直方图和频数折线图等几种统计图表进行具体运用,并会根据实际情况对统计图表进行取舍;4.在具体情境中了解概率的意义;能够运用列举法(包括列表、画树状图)求简单事件发生的概率.能够准确区分确定事件与不确定事件;5.加强统计与概率的联系,这方面的题型以综合题为主,将逐渐成为新课标下中考的热点问题.【知识网络】「I 统计图表——।阅读图表提取信息T 集中程度I 怦均数中位教嬴【考点梳理】考点一、数据的收集及整理1 .一般步骤:调查收集数据的过程一般有下列六步:明确调查问题、确定调查对象、选择调查方法、展 开调查、记录结果、得出结论.2 .调查收集数据的方法:普查与抽样调查. 要点诠释:(1)通过调查总体的方式来收集数据的,抽样调查是通过调查样本方式来收集数据的.(2)一般地,当总体中个体数目较多,普查的工作量较大;受客观条件的限制,无法对所有个体进行 普查;或调查具有破坏性时,不允许普查,这时我们往往会用抽样调查来体现估计总体的思想 (3)用抽签的办法决定哪些个体进入样本.统计学家们称这种理想的抽样方法为简单的随机抽样 3 .数据的统计:条形统计图、折线统计图、扇形统计图是三种最常用的统计图. 要点诠释:这三种统计图各具特点:条形统计图可以直观地反映出数据的数量特征;折线统计图可以直观地反映出数据的数量变化规律;扇形统计图可以直观地反映出各部分数量在总量中所占的份额.收集数据媒体查询抽样调查-抽样的基本要求总体个体样本T 整理数据借助统计活动研究概率从概 率角度分析善数据特征离散程度限差方差标准差实验估计概必然事不可能事游戏的 公平与模拟等效实考点二.数据的分析 1 .基本概念:总体:把所要考查的对象的全体叫做总体; 个体:把组成总体的每一个考查对象叫做个体;样本:从总体中取出的一部分个体叫做总体的一个样本; 样本容量:样本中包含的个体的个数叫做样本容量;频数:在记录实验数据时,每个对象出现的次数称为频数;频率:每个对象出现的次数与总次数的比值(或者百分比)称为频率;平均数:在一组数据中,用数据的总和除以数据的总个数就得到这组数据的平均数;中位数:将一组数据从小到大依次排列,位于正中间位置的数(或正中间两个数据的平均数)叫做这组 数据的中位数;众数:在一组数据中,出现频数最多的数叫做这组数据的众数; 极差:一组数据中的最大值减去最小值所得的差称为极差;方差:我们可以用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的 情况,这个结果通常称为方差.计算方差的公式:设一组数据是/,无是这组数据的平均数。
初中代数知识点及经典题型
初中代数知识点及经典题型代数是数学中的一个重要分支,也是初中数学研究的基础。
本文将介绍初中代数的一些常见知识点和经典题型。
一、常见知识点1. 代数符号代数符号是代数中常用的符号表示法,常见的代数符号包括加法符号(+)、减法符号(-)、乘法符号(×或*)、除法符号(÷或/)等。
2. 代数式代数式是由代数符号和数字构成的表达式,通常包含未知数。
常见的代数式如:3x + 2、4a - 5b、2(x + 3)等。
3. 等式和方程等式是两个代数式用等号连接而成的表达式,如2x + 3 = 7。
方程是一个含有未知数的等式,通过求解方程可以确定未知数的值,如3x - 5 = 7。
4. 一元一次方程一元一次方程是一个未知数的一次方程,通常形式为ax + b = c。
解一元一次方程的方法包括逆运算、移项、合并同类项等。
5. 一元一次不等式一元一次不等式是一个未知数的一次不等式,通常形式为ax + b > c。
解一元一次不等式的方法与解一元一次方程类似,需要注意不等号的方向。
二、经典题型1. 简单代数式计算计算给定代数式的值,如求3x - 2当x=5时的结果。
2. 解一元一次方程给定一元一次方程,求解未知数的值,如求解2x + 3 = 7中x的值。
3. 解一元一次不等式给定一元一次不等式,求解满足不等式的范围,如求解2x - 3 > 7中x的范围。
4. 应用题将实际问题转化为代数方程或不等式,然后求解,如某数的1/3等于它的倒数减4,求这个数。
结语初中代数是数学学习的重要内容,掌握代数的基本知识点和解题方法对于学生的数学发展至关重要。
通过学习和解答经典的代数题型,可以进一步提高学生的数学能力和解决问题的能力。
七上数学重难点题型
七上数学重难点题型
七年级数学的重点和难点题型包括:
1. 有理数的加减法:这是初步接触负数的一种方式,包括正负数的加减关系、绝对值的计算以及带括号的加减运算。
2. 小数的乘除法:这需要将小数转换成整数进行计算,然后再根据小数点的位置确定结果。
3. 整式的加减:这涉及整式的概念和简单的运算,包括同类项的概念和化简求值,以及完全平方公式、平方差公式的几何意义等。
4. 一元一次方程:这是初一学习的重点内容,涉及方程及方程解的概念、根据题意列一元一次方程,以及解一元一次方程。
题型包括追击、相遇、时间速度路程的关系、打折销售、利润公式等。
5. 几何知识:角和线段是基础,为下册学习三角形打下基础。
这些题型都是七年级数学的重要知识点,需要学生掌握解题方法和思路。
如需更多信息,建议请教初中数学教师。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学重点知识点及重要题型知识点1:一元二次方程的基本概念1.一元二次方程3x 2+5x-2=0的常数项是-2.2.一元二次方程3x 2+4x-2=0的一次项系数为4,常数项是-2.3.一元二次方程3x 2-5x-7=0的二次项系数为3,常数项是-7.4.把方程3x(x-1)-2=-4x 化为一般式为3x 2-x-2=0.知识点2:直角坐标系与点的位置1.直角坐标系中,点A (3,0)在y 轴上。
2.直角坐标系中,x 轴上的任意点的横坐标为0.3.直角坐标系中,点A (1,1)在第一象限.4.直角坐标系中,点A (-2,3)在第四象限.5.直角坐标系中,点A (-2,1)在第二象限.知识点3:已知自变量的值求函数值1.当x=2时,函数y=32-x 的值为1. 2.当x=3时,函数y=21-x 的值为1. 3.当x=-1时,函数y=321-x 的值为1. 知识点4:基本函数的概念及性质1.函数y=-8x 是一次函数.2.函数y=4x+1是正比例函数.3.函数x y 21-=是反比例函数. 4.抛物线y=-3(x-2)2-5的开口向下.5.抛物线y=4(x-3)2-10的对称轴是x=3.6.抛物线2)1(212+-=x y 的顶点坐标是(1,2).7.反比例函数xy 2=的图象在第一、三象限. 知识点5:数据的平均数中位数与众数1.数据13,10,12,8,7的平均数是10.2.数据3,4,2,4,4的众数是4.3.数据1,2,3,4,5的中位数是3.知识点6:特殊三角函数值1.cos30°= 23.2.sin 260°+ cos 260°= 1.3.2sin30°+ tan45°= 2.4.tan45°= 1.5.cos60°+ sin30°= 1.知识点7:圆的基本性质1.半圆或直径所对的圆周角是直角.2.任意一个三角形一定有一个外接圆.3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.4.在同圆或等圆中,相等的圆心角所对的弧相等.5.同弧所对的圆周角等于圆心角的一半.6.同圆或等圆的半径相等.7.过三个点一定可以作一个圆.8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等.10.经过圆心平分弦的直径垂直于弦。
知识点8:直线与圆的位置关系1.直线与圆有唯一公共点时,叫做直线与圆相切.2.三角形的外接圆的圆心叫做三角形的外心.3.弦切角等于所夹的弧所对的圆心角.4.三角形的内切圆的圆心叫做三角形的内心.5.垂直于半径的直线必为圆的切线.6.过半径的外端点并且垂直于半径的直线是圆的切线.7.垂直于半径的直线是圆的切线.8.圆的切线垂直于过切点的半径.知识点9:圆与圆的位置关系1.两个圆有且只有一个公共点时,叫做这两个圆外切.2.相交两圆的连心线垂直平分公共弦.3.两个圆有两个公共点时,叫做这两个圆相交.4.两个圆内切时,这两个圆的公切线只有一条.5.相切两圆的连心线必过切点.知识点10:正多边形基本性质1.正六边形的中心角为60°.2.矩形是正多边形.3.正多边形都是轴对称图形.4.正多边形都是中心对称图形.知识点11:一元二次方程的解1.方程042=-x 的根为 .A .x=2B .x=-2C .x 1=2,x 2=-2D .x=42.方程x 2-1=0的两根为 .A .x=1B .x=-1C .x 1=1,x 2=-1D .x=23.方程(x-3)(x+4)=0的两根为 .A.x 1=-3,x 2=4B.x 1=-3,x 2=-4C.x 1=3,x 2=4D.x 1=3,x 2=-44.方程x(x-2)=0的两根为 .A .x 1=0,x 2=2B .x 1=1,x 2=2C .x 1=0,x 2=-2D .x 1=1,x 2=-25.方程x 2-9=0的两根为 .A .x=3B .x=-3C .x 1=3,x 2=-3D .x 1=+3,x 2=-3 知识点12:方程解的情况及换元法1.一元二次方程02342=-+x x 的根的情况是 .A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根2.不解方程,判别方程3x 2-5x+3=0的根的情况是 .A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根3.不解方程,判别方程3x 2+4x+2=0的根的情况是 .A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根4.不解方程,判别方程4x 2+4x-1=0的根的情况是 .A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根5.不解方程,判别方程5x 2-7x+5=0的根的情况是 .A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根6.不解方程,判别方程5x 2+7x=-5的根的情况是 .A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根7.不解方程,判别方程x 2+4x+2=0的根的情况是 .A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根8. 不解方程,判断方程5y 2+1=25y 的根的情况是A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根9. 用 换 元 法 解方 程4)3(5322=---x x x x 时, 令 32-x x = y,于是原方程变为 .A.y 2-5y+4=0B.y 2-5y-4=0C.y 2-4y-5=0D.y 2+4y-5=010. 用换元法解方程4)3(5322=---x x x x 时,令23x x -= y ,于是原方程变为 . A.5y 2-4y+1=0 B.5y 2-4y-1=0 C.-5y 2-4y-1=0 D. -5y 2-4y-1=011. 用换元法解方程(1+x x )2-5(1+x x )+6=0时,设1+x x =y ,则原方程化为关于y 的方程是 .A.y 2+5y+6=0B.y 2-5y+6=0C.y 2+5y-6=0D.y 2-5y-6=0知识点13:自变量的取值范围1.函数2-=x y 中,自变量x 的取值范围是 .A.x ≠2B.x ≤-2C.x ≥-2D.x ≠-22.函数y=31-x 的自变量的取值范围是 .A.x>3B. x ≥3C. x ≠3D. x 为任意实数3.函数y=11+x 的自变量的取值范围是 .A.x ≥-1B. x>-1C. x ≠1D. x ≠-14.函数y=11--x 的自变量的取值范围是 .A.x ≥1B.x ≤1C.x ≠1D.x 为任意实数5.函数y=25-x 的自变量的取值范围是 .A.x>5B.x ≥5C.x ≠5D.x 为任意实数知识点14:基本函数的概念1.下列函数中,正比例函数是 .A. y=-8xB.y=-8x+1C.y=8x 2+1D.y=x8- 2.下列函数中,反比例函数是 .A. y=8x 2B.y=8x+1C.y=-8xD.y=-x8 3.下列函数:①y=8x 2;②y=8x+1;③y=-8x ;④y=-x 8.其中,一次函数有个 .A.1个B.2个C.3个D.4个知识点15:圆的基本性质1.如图,四边形ABCD 内接于⊙O,已知∠C=80°,则∠A 的度数是 .A. 50°B. 80° • BO C A D • B O C ADC. 90°D. 100°2.已知:如图,⊙O 中, 圆周角∠BAD=50°,则圆周角∠BCD 的度数是 .A.100°B.130°C.80°D.50°3.已知:如图,⊙O 中, 圆心角∠BOD=100°,则圆周角∠BCD 的度数是 .A.100°B.130°C.80°D.50°4.已知:如图,四边形ABCD 内接于⊙O ,则下列结论中正确的是 .A.∠A+∠C=180°B.∠A+∠C=90°C.∠A+∠B=180°D.∠A+∠B=905.半径为5cm 的圆中,有一条长为6cm 的弦,则圆心到此弦的距离为 .A.3cmB.4cmC.5cmD.6cm6.已知:如图,圆周角∠BAD=50°,则圆心角∠BOD 的度数是 .A.100°B.130°C.80°D.507.已知:如图,⊙O 中,弧AB 的度数为100°,则圆周角∠ACB 的度数是 .A.100°B.130°C.200°D.508. 已知:如图,⊙O 中, 圆周角∠BCD=130°,则圆心角∠BOD 的度数是 .A.100°B.130°C.80°D.50° • D BCA O•• C B A O • B O C A D • B O C A D9. 在⊙O 中,弦AB 的长为8cm,圆心O 到AB 的距离为3cm,则⊙O 的半径为 cm.A.3B.4C.5D. 10 10. 已知:如图,⊙O 中,弧AB 的度数为100°,则圆周角∠ACB 的度数是 .A.100°B.130°C.200°D.50°12.在半径为5cm 的圆中,有一条弦长为6cm,则圆心到此弦的距离为 .A. 3cmB. 4 cmC.5 cmD.6 cm知识点16:点、直线和圆的位置关系1.已知⊙O 的半径为10㎝,如果一条直线和圆心O 的距离为10㎝,那么这条直线和这个圆的位置关系为 .A.相离B.相切C.相交D.相交或相离2.已知圆的半径为6.5cm,直线l 和圆心的距离为7cm,那么这条直线和这个圆的位置关系是 .A.相切B.相离C.相交D. 相离或相交3.已知圆O 的半径为6.5cm,PO=6cm,那么点P 和这个圆的位置关系是A.点在圆上B. 点在圆内C. 点在圆外D.不能确定4.已知圆的半径为6.5cm,直线l 和圆心的距离为4.5cm,那么这条直线和这个圆的公共点的个数是 .A.0个B.1个C.2个D.不能确定5.一个圆的周长为a cm,面积为a cm 2,如果一条直线到圆心的距离为πcm,那么这条直线和这个圆的位置关系是 . • C BA OA.相切B.相离C.相交D. 不能确定6.已知圆的半径为6.5cm,直线l和圆心的距离为6cm,那么这条直线和这个圆的位置关系是.A.相切B.相离C.相交D.不能确定7. 已知圆的半径为6.5cm,直线l和圆心的距离为4cm,那么这条直线和这个圆的位置关系是.A.相切B.相离C.相交D. 相离或相交8. 已知⊙O的半径为7cm,PO=14cm,则PO的中点和这个圆的位置关系是 .A.点在圆上B. 点在圆内C. 点在圆外D.不能确定知识点18:公切线问题1.如果两圆外离,则公切线的条数为.A. 1条B.2条C.3条D.4条2.如果两圆外切,它们的公切线的条数为.A. 1条B. 2条C.3条D.4条3.如果两圆相交,那么它们的公切线的条数为.A. 1条B. 2条C.3条D.4条4.如果两圆内切,它们的公切线的条数为.A. 1条B. 2条C.3条D.4条5. 已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=9cm,则这两个圆的公切线有条.A.1条B. 2条C. 3条D. 4条6.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=7cm,则这两个圆的公切线有 条.A.1条B. 2条C. 3条D. 4条知识点19:正多边形和圆1.如果⊙O 的周长为10πcm ,那么它的半径为 .A. 5cmB.10cmC.10cmD.5πcm2.正三角形外接圆的半径为2,那么它内切圆的半径为 .A. 2B. 3C.1D.23.已知,正方形的边长为2,那么这个正方形内切圆的半径为 .A. 2B. 1C.2 D.3 4.扇形的面积为32π,半径为2,那么这个扇形的圆心角为= .A.30°B.60°C.90°D. 120°5.已知,正六边形的半径为R,那么这个正六边形的边长为 . A.21R B.R C.2R D.R 36.圆的周长为C,那么这个圆的面积S= .A.2C πB.π2C C.π22C D.π42C7.正三角形内切圆与外接圆的半径之比为 .A.1:2B.1:3C.3:2 D.1:2 8. 圆的周长为C,那么这个圆的半径R= . A.2C π B. C π C. π2CD. πC9.已知,正方形的边长为2,那么这个正方形外接圆的半径为 .A.2B.4C.22 D.2310.已知,正三角形的半径为3,那么这个正三角形的边长为 .A. 3B. 3C.32D.33知识点20:函数图像问题1.已知:关于x 的一元二次方程32=++c bx ax 的一个根为21=x ,且二次函数c bx ax y ++=2的对称轴是直线x=2,则抛物线的顶点坐标是 .A. (2,-3)B. (2,1)C. (2,3)D. (3,2)2.若抛物线的解析式为y=2(x-3)2+2,则它的顶点坐标是 .A.(-3,2)B.(-3,-2)C.(3,2)D.(3,-2)3.一次函数y=x+1的图象在 .A.第一、二、三象限B. 第一、三、四象限C. 第一、二、四象限D. 第二、三、四象限4.函数y=2x+1的图象不经过 .A.第一象限B. 第二象限C. 第三象限D. 第四象限5.反比例函数y=x2的图象在 . A.第一、二象限 B. 第三、四象限 C. 第一、三象限 D. 第二、四象限6.反比例函数y=-x10的图象不经过 . A 第一、二象限 B. 第三、四象限 C. 第一、三象限 D. 第二、四象限7.若抛物线的解析式为y=2(x-3)2+2,则它的顶点坐标是 .A.(-3,2)B.(-3,-2)C.(3,2)D.(3,-2)8.一次函数y=-x+1的图象在 .A .第一、二、三象限 B. 第一、三、四象限C. 第一、二、四象限D. 第二、三、四象限9.一次函数y=-2x+1的图象经过 .A .第一、二、三象限 B.第二、三、四象限C.第一、三、四象限D.第一、二、四象限10. 已知抛物线y=ax 2+bx+c (a>0且a 、b 、c 为常数)的对称轴为x=1,且函数图象上有三点A(-1,y 1)、B(21,y 2)、C(2,y 3),则y 1、y 2、y 3的大小关系是 .A.y 3<y 1<y 2B. y 2<y 3<y 1C. y 3<y 2<y 1D. y 1<y 3<y 2 知识点21:分式的化简与求值1.计算:)4)(4(yx xy y x y x xy y x +-+-+-的正确结果为 . A. 22x y - B. 22y x - C. 224y x - D. 224y x -2.计算:1-(121)11222+-+-÷--a a a a a a 的正确结果为 .A. a a +2B.a a -2 C. -a a +2 D. -a a -2 3.计算:)21(22x x x -÷-的正确结果为 .A.xB.x 1C.-x 1D. -xx 2- 4.计算:)111()111(2-+÷-+x x 的正确结果为 . A.1 B.x+1 C.x x 1+ D.11-x 5.计算)11()111(-÷-+-xx x x 的正确结果是 . A.1-x x B.-1-x x C.1+x x D.-1+x x6.计算)11()(y x x y y y x x -÷-+-的正确结果是 . A.y x xy - B. -y x xy - C.y x xy + D.-y x xy + 7.计算:22222222222)(y xy x xy y x y x y x y x y x +++-+--⋅-的正确结果为 . A.x-yB.x+yC.-(x+y)D.y-x8.计算:)1(1xx x x -÷-的正确结果为 . A.1 B.11+x C.-1 D.11-x 9.计算xx x x x x -÷+--24)22(的正确结果是 . A.21-x B. 21+x C.- 21-x D.- 21+x 知识点22:二次根式的化简与求值1. 已知xy>0,化简二次根式2x y x-的正确结果为 . A.y B.y - C.-y D.-y - 2.化简二次根式21a a a+-的结果是 . A.1--a B.-1--a C.1+a D.1--a 3.若a<b ,化简二次根式a ba-的结果是 . A.ab B.-ab C.ab - D.-ab -4.若a<b ,化简二次根式a b a b a a 2)(---的结果是 . A.a B.-a C. a - D.a --5. 化简二次根式23)1(--x x 的结果是 . A.x xx --1 B.x xx ---1 C.x x x --1 D.1--x xx6.若a<b ,化简二次根式a b a b a a 2)(---的结果是 . A.a B.-a C. a -D.a -- 7.已知xy<0,则y x 2化简后的结果是 . A.y x B.-y xC.y x -D.y x -8.若a<b ,化简二次根式a b a b a a 2)(---的结果是 . A.a B.-a C.a - D.a -- 9.若b>a ,化简二次根式a 2a b-的结果是 . A.ab a B.ab a -- C.ab a - D.ab a -10.化简二次根式21a a a+-的结果是 . A.1--a B.-1--a C.1+a D.1--a 11.若ab<0,化简二次根式321b a a -的结果是 . A.b b B.-b b C. b b - D. -bb - 知识点23:方程的根1.当m= 时,分式方程x x m x x --=+--2312422会产生增根. A.1 B.2 C.-1 D.22.分式方程x x x x --=+--23121422的解为 .A.x=-2或x=0B.x=-2C.x=0D.方程无实数根3.用换元法解方程05)1(2122=--++x x xx ,设x x 1-=y ,则原方程化为关于y 的方程 .A.y 2+2y-5=0B.y 2+2y-7=0C.y 2+2y-3=0D.y 2+2y-9=04.已知方程(a-1)x 2+2ax+a 2+5=0有一个根是x=-3,则a 的值为 .A.-4B. 1C.-4或1D.4或-15.关于x 的方程0111=--+x ax 有增根,则实数a 为 . A.a=1 B.a=-1 C.a=±1 D.a= 26.二次项系数为1的一元二次方程的两个根分别为-2-3、2-3,则这个方程是 .A.x 2+23x-1=0 B.x 2+23x+1=0 C.x 2-23x-1=0 D.x 2-23x+1=0 7.已知关于x 的一元二次方程(k-3)x 2-2kx+k+1=0有两个不相等的实数根,则k 的取值范围是 . A.k>-23 B.k>-23且k ≠3 C.k<-23 D.k>23且k ≠3 知识点24:求点的坐标1.已知点P 的坐标为(2,2),PQ ‖x 轴,且PQ=2,则Q 点的坐标是 .A.(4,2)B.(0,2)或(4,2)C.(0,2)D.(2,0)或(2,4)2.如果点P 到x 轴的距离为3,到y 轴的距离为4,且点P 在第四象限内,则P 点的坐标为 .A.(3,-4)B.(-3,4)C.4,-3)D.(-4,3)3.过点P(1,-2)作x 轴的平行线l 1,过点Q(-4,3)作y 轴的平行线l 2, l 1、l 2相交于点A ,则点A 的坐标是 .A.(1,3)B.(-4,-2)C.(3,1)D.(-2,-4)知识点25:基本函数图像与性质1.若点A(-1,y 1)、B(-41,y 2)、C(21,y 3)在反比例函数y=xk (k<0)的图象上,则下列各式中不正确的是 .A.y 3<y 1<y 2B.y 2+y 3<0C.y 1+y 3<0D.y 1•y 3•y 2<02.在反比例函数y=x m 63 的图象上有两点A(x 1,y 1)、B(x 2,y 2),若x 2<0<x 1 ,y 1<y 2,则m 的取值范围是 .A.m>2B.m<2C.m<0D.m>03.已知:如图,过原点O 的直线交反比例函数y=x2 的图象于A 、B 两点,AC ⊥x 轴,AD ⊥y 轴,△ABC 的面积为S,则 .A.S=2B.2<S<4C.S=4D.S>44.已知点(x 1,y 1)、(x 2,y 2)在反比例函数y=-x2的图象上, 下列的说法中: ①图象在第二、四象限;②y 随x 的增大而增大;③当0<x 1<x 2时, y 1<y 2;④点(-x 1,-y 1) 、(-x 2,-y 2)也一定在此反比例函数的图象上,其中正确的有 个.A.1个B.2个C.3个D.4个5.若反比例函数xk y =的图象与直线y=-x+2有两个不同的交点A 、B ,且∠AOB<90º,则k 的取值范围必是 .A. k>1B. k<1C. 0<k<1D. k<06.若点(m ,m 1)是反比例函数xn n y 122--=的图象上一点,则此函数图象与直线y=-x+b (|b|<2)的交点的个数为 .A.0B.1C.2D.47.已知直线b kx y +=与双曲线xk y =交于A (x 1,y 1),B (x 2,y 2)两点,则x 1·x 2的值 .A.与k 有关,与b 无关B.与k 无关,与b 有关C.与k 、b 都有关D.与k 、b 都无关知识点26:正多边形问题1.一幅美丽的图案,在某个顶点处由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三边形、正四边形、正六边形,那么另个一个为 .A. 正三边形B.正四边形C.正五边形D.正六边形2.为了营造舒适的购物环境,某商厦一楼营业大厅准备装修地面.现选用了边长相同的正四边形、正八边形这两种规格的花岗石板料镶嵌地面,则在每一个顶点的周围,正四边形、正八边形板料铺的个数分别是.A.2,1B.1,2C.1,3D.3,13.选用下列边长相同的两种正多边形材料组合铺设地面,能平整镶嵌的组合方案是.A.正四边形、正六边形B.正六边形、正十二边形C.正四边形、正八边形D.正八边形、正十二边形4.用几何图形材料铺设地面、墙面等,可以形成各种美丽的图案.张师傅准备装修客厅,想用同一种正多边形形状的材料铺成平整、无空隙的地面,下面形状的正多边形材料,他不能选用的是.A.正三边形B.正四边形C. 正五边形D.正六边形5.我们常见到许多有美丽图案的地面,它们是用某些正多边形形状的材料铺成的,这样的材料能铺成平整、无空隙的地面.某商厦一楼营业大厅准备装修地面.现有正三边形、正四边形、正六边形、正八边形这四种规格的花岗石板料(所有板料边长相同),若从其中选择两种不同板料铺设地面,则共有种不同的设计方案.A.2种B.3种C.4种D.6种6.用两种不同的正多边形形状的材料装饰地面,它们能铺成平整、无空隙的地面.选用下列边长相同的正多边形板料组合铺设,不能平整镶嵌的组合方案是.A.正三边形、正四边形B.正六边形、正八边形C.正三边形、正六边形D.正四边形、正八边形7.用两种正多边形形状的材料有时能铺成平整、无空隙的地面,并且形成美丽的图案,下面形状的正多边形材料,能与正六边形组合镶嵌的是(所有选用的正多边形材料边长都相同).A.正三边形B.正四边形C.正八边形D.正十二边形8.用同一种正多边形形状的材料,铺成平整、无空隙的地面,下列正多边形材料,不能选用的是.A.正三边形B.正四边形C.正六边形D.正十二边形9.用两种正多边形形状的材料,有时既能铺成平整、无空隙的地面,同时还可以形成各种美丽的图案.下列正多边形材料(所有正多边形材料边长相同),不能和正三角形镶嵌的是.A.正四边形B.正六边形C.正八边形D.正十二边形知识点27:科学记数法1.为了估算柑桔园近三年的收入情况,某柑桔园的管理人员记录了今年柑桔园中某五株柑桔树的柑桔产量,结果如下(单位:公斤):100,98,108,96,102,101.这个柑桔园共有柑桔园2000株,那么根据管理人员记录的数据估计该柑桔园近三年的柑桔产量约为公斤.A.2×105B.6×105C.2.02×105D.6.06×1052.为了增强人们的环保意识,某校环保小组的六名同学记录了自己家中一周内丢弃的塑料袋数量,结果如下(单位:个):25,21,18,19,24,19.武汉市约有200万个家庭,那么根据环保小组提供的数据估计全市一周内共丢弃塑料袋的数量约为.A.4.2×108B.4.2×107C.4.2×106D.4.2×105知识点28:数据信息题 1.对某班60名学生参加毕业考试成绩(成绩均为整数)整理后,画出频率分布直方图,如图所示,则该班学生及格人数为 .A. 45B. 51C. 54D. 572.某校为了了解学生的身体素质情况,对初三(2)班的50名学生进行了立定跳远、铅球、100米三个项目的测试,每个项目满分为10分.如图,是将该班学生所得的三项成绩(成绩均为整数)之和进行整理后,分成5组画出的频率分布直方图,已知从左到右前4个小组频率分别为0.02,0.1,0.12,0.46.下列说法:①学生的成绩≥27分的共有15人;②学生成绩的众数在第四小组(22.5~26.5)内;③学生成绩的中位数在第四小组(22.5~26.5)范围内.其中正确的说法是 .A.①②B.②③C.①③D.①②③3.某学校按年龄组报名参加乒乓球赛,规定“n 岁年龄组”只允许满n 岁但未满n+1岁的学生报名,学生报名情况如直方图所示.下列结论,其中正确的是 .成绩频率0.150.050.250.100.3049.559.569.579.589.599.5100 分数组距频率30.5| _ _ _ _ _ _ _ _ _ _ _ 女生 男生 681012141624610A.报名总人数是10人;B.报名人数最多的是“13岁年龄组”;C.各年龄组中,女生报名人数最少的是“8岁年龄组”;D.报名学生中,小于11岁的女生与不小于12岁的男生人数相等. 4.某校初三年级举行科技知识竞赛,50名参赛学生的最后得分(成绩均为整数)的频率分布直方图如图,从左起第一、二、三、四、五个小长方形的高的比是1:2:4:2:1,根据图中所给出的信息,下列结论,其中正确的有 .①本次测试不及格的学生有15人;②69.5—79.5这一组的频率为0.4;③若得分在90分以上(含90分)可获一等奖,则获一等奖的学生有5人.A ①②③B ①②C ②③D ①③5.某校学生参加环保知识竞赛,将参赛学生的成绩(得分取整数)进行整理后分成五组,绘成频率分布直方图如图,图中从左起第一、二、三、四、五个小长方形的高的比是1:3:6:4:2,第五组的频数为6,则成绩在60分以上(含60分)的同学的人数 .A.43B.44C.45D.486.对某班60名学生参加毕业考试成绩(成绩均为整数)整理后,画出频率分布直方图,如图所 组距频率分数59.569.579.589.599.549.5 成绩 频率 0.150.050.250.100.3049.559.569.579.589.599.5100 成绩 人数 81216249.559.569.579.589.599.5成绩 组距频率49.559.569.579.589.599.5示,则该班学生及格人数为 . A 45 B 51 C 54 D 577.某班学生一次数学测验成绩(成绩均为整数)进行统计分 析,各分数段人数如图所示,下列结论,其中正确的有( )①该班共有50人; ②49.5—59.5这一组的频率为0.08; ③本次测验分数的中位数在79.5—89.5这一组; ④学生本次测验成绩优秀(80分以上)的学生占全班人数的56%.A.①②③④ B.①②④ C.②③④ D.①③④8.为了增强学生的身体素质,在中考体育中考中取得优异成绩,某校初三(1)班进行了立定跳远测试,并将成绩整理后, 绘制了频率分布直方图(测试成绩保留一位小数),如图所示,已知从左到右4个组的频率分别是0.05,0.15,0.30,0.35,第五 小组的频数为9 , 若规定测试成绩在2米以上(含2米) 为合格, 则下列结论:其中正确的有 个 . ①初三(1)班共有60名学生; ②第五小组的频率为0.15;③该班立定跳远成绩的合格率是80%. A.①②③ B.②③ C.①③ D.①② 知识点29: 增长率问题1.今年我市初中毕业生人数约为12.8万人,比去年增加了9%,预计明年初中毕业生人数将比今年减少9%.下列说法:①去年我市初中毕业生人数约为%918.12 万人;②按预计,明年我市初中毕业生人数将与去年持平;③按预计,明年我市初中毕业生人数会比去年多.其中正确的组距频率成绩1.791.59是 .A. ①②B. ①③C. ②③D. ①2.根据湖北省对外贸易局公布的数据:2002年我省全年对外贸易总额为16.3亿美元,较2001年对外贸易总额增加了10%,则2001年对外贸易总额为 亿美元. A.%)101(3.16+ B.%)101(3.16- C.%1013.16+ D.%1013.16-3.某市前年80000初中毕业生升入各类高中的人数为44000人,去年升学率增加了10个百分点,如果今年继续按此比例增加,那么今年110000初中毕业生,升入各类高中学生数应为 . A.71500 B.82500 C.59400 D.6054.我国政府为解决老百姓看病难的问题,决定下调药品价格.某种药品在2001年涨价30%后,2003年降价70%后至78元,则这种药品在2001年涨价前的价格为 元.78元 B.100元 C.156元 D.200元5.某种品牌的电视机若按标价降价10%出售,可获利50元;若按标价降价20%出售,则亏本50元,则这种品牌的电视机的进价是 元.( )A.700元B.800元C.850元D.1000元6.从1999年11月1日起,全国储蓄存款开始征收利息税的税率为20%,某人在2001年6月1日存入人民币10000元,年利率为2.25%,一年到期后应缴纳利息税是 元. A.44 B.45 C.46 D.487.某商品的价格为a 元,降价10%后,又降价10%,销售量猛增,商场决定再提价20%出售,则最后这商品的售价是 元. A.a 元 B.1.08a 元 C.0.96a 元 D.0.972a 元8.某商品的进价为100元,商场现拟定下列四种调价方案,其中0<n<m<100,则调价后该商品价格最高的方案是 . A.先涨价m%,再降价n% B.先涨价n%,再降价m% C.先涨价2n m +%,再降价2n m +%D.先涨价mn%,再降价mn%9.一件商品,若按标价九五折出售可获利512元,若按标价八五折出售则亏损384元,则该商品的进价为 .A.1600元B.3200元C.6400元D.8000元10.自1999年11月1日起,国家对个人在银行的存款利息征收利息税,税率为20%(即存款到期后利息的20%),储户取款时由银行代扣代收.某人于1999年11月5日存入期限为1年的人民币16000元,年利率为2.25%,到期时银行向储户支付现金 元.16360元 B.16288 C.16324元 D.16000元 知识点30:圆中的角1.已知:如图,⊙O 1、⊙O 2外切于点C ,AB 为外公切线,AC 的延长线交⊙O 1于点D,若AD=4AC,则∠ABC 的度数为 .A.15°B.30°C.45°D.60°2.已知:如图,PA 、PB 为⊙O 的两条切线,A 、B 为切点,AD• oAPBDE EDC••O 2O 1BCAD⊥PB 于D 点,AD 交⊙O 于点E,若∠DBE=25°,则∠P= . A.75° B.60° C.50° D.45°3.已知:如图, AB 为⊙O 的直径,C 、D 为⊙O 上的两点,AD=CD ,∠CBE=40°,过点B 作⊙O 的切线交DC 的延长线于E 点,则∠CEB= . A. 60° B.65° C.70° D.75°4.已知EBA 、EDC 是⊙O 的两条割线,其中EBA 过圆心,已知弧AC 的度数是105°,且AB=2ED ,则∠E 的度数为 .A.30°B.35°C.45°D.755.已知:如图,Rt △ABC 中,∠C=90°,以AB 上一点O 为圆心,OA 为半径作⊙O 与BC 相切于点D, 与AC 相交于点E,若∠ABC=40°,则∠CDE= . A.40° B.20° C.25° D.30°6.已知:如图,在⊙O 的内接四边形ABCD 中,AB 是直径, ∠BCD=130º,过D 点的切线PD 与直线AB 交于P点,则∠ADP 的度数为 .A.40ºB.45ºC.50ºD.65º7.已知:如图,两同心圆的圆心为O ,大圆的弦AB 、 AC 切小圆于D 、E 两点,弧DE 的度数为110°, 则弧AB 的度数为 .A.70°B.90°C.110°D.1308. 已知:如图,⊙O 1与⊙O 2外切于点P ,⊙O 1的弦AB·BAC DOP •EOADB C• • ABC•DBOACE •ABOEDC切⊙O 2于C 点,若∠APB=30º, 则∠BPC= .A.60ºB.70ºC.75ºD.90º 知识点31:三角函数与解直角三角形1.在学习了解直角三角形的知识后,小明出了一道数学题:我站在综合楼顶,看到对面教学楼顶的俯角为30º,楼底的俯角为45º,两栋楼之间的水平距离为20米,请你算出教学楼的高约为 米.(结果保留两位小数,2≈1.4 ,3≈1.7)A.8.66B.8.67C.10.67D.16.67 2.在学习了解直角三角形的知识后,小明出了一道数学题:我站在教室门口,看到对面综合楼顶的仰角为30º,楼底的俯角为45º,两栋楼之间的距离为20米,请你算出对面综合楼的高约为 米.(2≈1.4 ,3≈1.7)A.31B.35C.39D.543.已知:如图,P 为⊙O 外一点,PA 切⊙O 于点A,直线PCB 交⊙O 于C 、B, AD ⊥BC 于D,若PC=4,PA=8,设∠ABC=α,∠ACP=β,则sin α:sin β= . A.31 B.21 C.2 D. 44.如图,是一束平行的阳光从教室窗户射入的平面示意图,光线与地面所成角∠AMC=30°,在教室地面的影子MN=23米.若窗户的下檐到教室地面的距离BC=1米,则窗户的上檐到教室地面的距离AC 为 米. A. 23米 B. 3米 C. 3.2米 D.233米ADA•┑αβO ADBC P5.已知△ABC 中,BD 平分∠ABC ,DE ⊥BC 于E 点,且DE:BD=1:2,DC:AD=3:4,CE=76,BC=6,则△ABC 的面积为 .A.3B.123C.243D.12知识点32:圆中的线段1.已知:如图,⊙O 1与⊙O 2外切于C 点,AB 一条外公切线,A 、B 分别为切点,连结AC 、BC.设⊙O 1的半径为R ,⊙O 2的半径为r ,若tan ∠ABC=2,则rR 的值为 . A .2B .3C .2D .32.已知:如图,⊙O 1、⊙O 2内切于点A ,⊙O 1的直径AB 交⊙O 2于点C ,O 1E ⊥AB 交⊙O 2于F 点,BC=9,EF=5,则CO 1= A.9 B.13 C.14 D.163.已知:如图,⊙O 1、⊙O 2内切于点P, ⊙O 2的弦AB 过O 1点且交⊙O 1于C 、D 两点,若AC :CD :DB=3:4:2,则⊙O 1与⊙O 2的直径之比为 .A.2:7B.2:5C.2:3D.1:34.已知:如图,⊙O 1与⊙O 2外切于A 点,⊙O 1的半径为r ,⊙O 2的半径为R,且r:R=4:5,P 为⊙O 1一点,PB 切⊙O 2于B 点,若PB=6,则PA= . A.2 B.3 C.4 D.56.已知:如图,PA 为⊙O 的切线,PBC 为过O 点的割线,PA=45,•O BPC· ·O 1O 2BAC • •BE C AO 2O 1F• •APO 2CO1DB••O 2O 1APB⊙O 的半径为3,则AC 的长为为 . A.413B.13133C.13265D.1326154.已知:如图, Rt ΔABC ,∠C=90°,AC=4,BC=3,⊙O 1内切于ΔABC ,⊙O 2切BC ,且与AB 、AC 的延长线都相切,⊙O 1的半径R 1, ⊙O 2的半径为R 2,则21R R = .A.21B.32C.43D.54 5.已知⊙O 1与边长分别为18cm 、25cm 的矩形三边相切,⊙O 2与⊙O 1外切,与边BC 、CD 相切,则⊙O 2的半径为 . A.4cm B.3.5cm C.7cm D.8cm6.已知:如图,CD 为⊙O 的直径,AC 是⊙O 的切线,AC=2,过A 点的割线AEF 交CD 的延长线于B 点,且AE=EF=FB ,则⊙O 的半径为 . A.7145B.14145C.714 D.14147.已知:如图, ABCD ,过B 、C 、D 三点作⊙O ,⊙O 切AB 于B 点,交AD 于E 点.若AB=4,CE=5,则DE 的长为 . A.2B.59C.516 D.18. 如图,⊙O 1、⊙O 2内切于P 点,连心线和⊙O 1、⊙O 2分别交于A 、B 两点,过P 点的直线与⊙O 1、⊙O 2分别交于C 、D 两点,若∠BPC=60• •DPO 1O 2A C •BAO CD E••O 1 O 2BC••O 2 O 1 ADBC•ODCBAEFº,AB=2,则CD= .A.1B.2C.21 D.41知识点33:数形结合解与函数有关的实际问题1.某学校组织学生团员举行“抗击非典,爱护城市卫生”宣传活动,从学校骑车出发,先上坡到达A 地,再下坡到达B 地,其行程中的速度v(百米/分)与时间t(分)关系图象如图所示.若返回时的上下坡速度仍保持不变,那么他们从B 地返回学校时的平均速度为 百米/分.34110B.27 C.43110 D.932102.有一个附有进出水管的容器,每单位时间进、出的水量都是一定的.设从某一时刻开始5分钟内只进水不出水,在接着的2分钟内只出水不进水,又在随后的15分钟内既进水又出水,刚好将该容器注满.已知容器中的水量y 升与时间x 分之间的函数关系如图所示.则在第7分钟时,容器内的水量为 升.A.15B.16C.17D.183. 甲、乙两个个队完成某项工程,首先是甲单独做了10天,然后乙队加入合做,完成剩下的全部工程,设工程总量为单位1,工程进度满足如图所示的函数关系,那么实际完成这项工程所用的时间比由甲单独完成这项工程所需时间少 .A.12天B.13天C.14天D.15天2141工作量天数1储油量(吨)时间(分)O816242440v(百米/分)t(分)52034 O220522467O x(分)y(升)4. 某油库有一储油量为40吨的储油罐.在开始的一段时间内只开进油管,不开出油管;在随后的一段时间内既开进油管,又开出油管直至储油罐装满油.若储油罐中的储油量(吨)与时间(分)的函数关系如图所示. 现将装满油的储油罐只开出油管,不开进油管,则放完全部油所需的时间是 分钟.A.16分钟B.20分钟C.24分钟D.44分钟5. 校办工厂某产品的生产流水线每小时可生产100件产品,生产前没有积压.生产3小时后另安排工人装箱(生产未停止),若每小时装产品150件,未装箱的产品数量y 是时间t 的函数,则这个函数的大致图像只能是 .A B C D6. 如图,某航空公司托运行李的费用y(元)与托运行李的重量x(公斤)的关系为一次函数,由图中可知,行李不超过 公斤时,可以免费托运.A.18 B.19 C.20 D.21xyOx yOxyOxyOy(元)930506304033030x(公斤)O1030O2030x(分钟)1060S(百米)。